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Abstract

It has been usual in most old-style text books for dynamics to treat the formulas describing
linear(or translational) and angular(or rotational) motion of a rigid body separately. For
example, the famous Newton’s 2nd law, f = ma, for the translational motion of a rigid
body has its partner, so-called the Euler’s equation which describes the rotational motion
of the body. Separating translation and rotation, however, causes a huge complexity in
deriving the equations of motion of articulated rigid body systems such as robots.

In Section 1, an elegant single equation of motion of a rigid body moving in 3D space is
derived using a Lie group formulation. In Section 2, the recursive Newton-Euler algorithm
(inverse dynamics), Articulated-Body algorithm (forward dynamics) and a generalized
recursive algorithm (hybrid dynamics) for open chains or tree-structured articulated body
systems are rewritten with the geometric formulation for rigid body. In Section 3, dynamics
of constrained systems such as a closed loop mechanism will be described. Finally, in
Section 4, analytic derivatives of the dynamics algorithms, which would be useful for
optimization and sensitivity analysis, are presented.1

1 Dynamics of a Rigid Body

This section describes the equations of motion of a single rigid body in a geometric manner.

1.1 Rigid Body Motion

To describe the motion of a rigid body, we need to represent both the position and orien-
tation of the body. Let {B} be a coordinate frame attached to the rigid body and {A} be
an arbitrary coordinate frame, and all coordinate frames will be right-handed Cartesian
from now on. We can define a 3× 3 matrix

R = [xab, yab, zab] (1)

where xab, yab, zab ∈ <3 are the coordinates of the coordinate axes of {B} with respect to
{A}. A matrix of this form is called a rotation matrix as it can be used to describe the
orientation(or rotation) of a rigid body, relative to a reference frame. Since the columns

1GEAR (Geometric Engine for Articulated Rigid-body simulation) is a C++ implementation of the
algorithms presented in this article. (http://www.cs.cmu.edu/~junggon/tools/gear.html)
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Figure 1: Coordinates frames for a rigid body

of a rotation matrix are mutually orthonormal and the coordinate frame is right-handed,
the rotation matrix has two properties,

RRT = RTR = I, detR = 1, (2)

and it is denoted by SO(3)2.
Let p ∈ <3 be the position vector of the origin of {B} from the origin of {A}, and

R ∈ SO(3) be the rotation matrix of {B} relative to {A}. The configuration space of the
rigid body motion can be represented with the pair (R, p), which is denoted as SE(3). A
4× 4 matrix,

T =

[
R p
0 1

]
(3)

is called the homogeneous representation of T = (R, p) ∈ SE(3), and its inverse can be
obtained with

T−1 =

[
RT −RTp
0 1

]
. (4)

From now on, a simple declaration, T ∈ SE(3) : {A} → {B}, will be used to notify that
T ∈ SE(3) represents the orientation and position of a coordinate frame {B} with respect
to another coordinate frame {A}.

The Lie algebra of SE(3), denoted as se(3), is identified as a 6-dimensional vector
space (w, v) ∈ <6 where w ∈ so(3), the Lie algebra of SO(3). ξ = (w, v) ∈ se(3) can also
be represented as a 4× 4 matrix,

ξ =

[
[w] v
0 0

]
(5)

where [w] =

[
0 −w3 w2
w3 0 −w1
−w2 w1 0

]
∈ <3×3 is a skew-symmetric matrix.

The adjoint action of T ∈ SE(3) on ξ ∈ se(3), Ad : SE(3)× se(3)→ se(3), is defined
as

AdT ξ = T ξ T−1. (6)

2 The notation SO abbreviates special orthogonal and ‘special’ refers to the fact that detR = +1 rather
than ±1. See [2] for more details.
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From (3), (4) and (5), AdT can be regarded as a linear transformation, AdT : se(3) →
se(3), which is defined by a 6× 6 matrix

AdT =

[
R 0

[p]R R

]
(7)

where T = (R, p) ∈ SE(3). The coadjoint action of T on ξ∗ ∈ dse(3) which is the dual of
ξ, Ad∗T : dse(3)→ dse(3), is defined by a 6× 6 matrix

Ad∗T = AdT
T . (8)

1.2 Generalized Velocity and Force

Let T (t) = (R(t), p(t)) ∈ SE(3) be a motion trajectory of a coordinate frame attached to
a rigid body with respect to an inertial frame. The generalized velocity of the rigid body
is defined as

V = T−1Ṫ =

[
[w] v
0 0

]
(9)

where [w] = RTṘ and v = RTṗ. The physical meaning of w ∈ <3 is the rotational(or an-
gular) velocity of the coordinate frame attached to the body relative to the inertial frame,
but expressed in the body coordinate frame. Similarly, v ∈ <3 represents the velocity of
the origin of the coordinate frame relative to the inertial frame, and still expressed in the
body frame. The generalized velocity is an element of se(3), and can be simply regarded
as a 6-dimensional vector, i.e.,

V =

(
w
v

)
. (10)

As the generalized velocity is an instance of se(3), it follows the adjoint transformation
rule defined in (7). Let {A}, {B} be two different coordinate frames attached to the same
rigid body, and Ta, Tb ∈ SE(3) represent the orientation and position of the two frames
with respect to an inertial frame. Then, from (6) and (9), the generalized velocities of
{A} and {B} have the following relation:

Vb = AdTbaVa (11)

where Tba ∈ SE(3) : {B} → {A}.
With a coordinate frame attached to a rigid body, the generalized force acting on the

body can be defined as

F =

(
m
f

)
(12)

where m ∈ <3 and f ∈ <3 represent a moment and force acting on the body respectively,
viewed in the body frame. The generalized force is known as the member of dse(3), and
has the following transformation rule,

Fb = Ad∗TabFa (13)

where Fa and Fb denote a generalized force viewed from different body frames {A} and
{B}, and Tab ∈ SE(3) : {A} → {B}.
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1.3 Generalized Inertia and Momentum

The kinetic energy of a rigid body is given by the following volume integral

e =

∫
vol

1

2
‖v‖2 dm (14)

which means the sum of the kinetic energies of all the mass particles constituting the body.
By introducing a coordinate frame attached to the body, (14) can be restructured as the
following simple quadratic form,

e =
1

2
V TIV (15)

where V ∈ <6 is the generalized velocity of the body and I ∈ <6×6, which is known as
generalized inertia, represents the mass and mass distribution with respect to the body
frame.

To obtain an explicit form of the generalized inertia of a rigid body, let r ∈ <3 be
the position of a body point relative to the body frame and (R, p) ∈ SE(3) represents
orientation and position of the body frame with respect to an inertial frame respectively.
Using ||v||2 = ||ṗ+ Ṙr||2, RTṘ = [w] and RTṗ = v, (14) can be rewritten as

e =
1

2

∫
vol

(
||ṗ||2 + 2ṗTṘr + ||Ṙr||2

)
dm (16)

=
1

2

{
ṗTṗ

∫
vol
dm− 2ṗTR

(∫
vol

[r]dm

)
w + wT

(∫
vol

[r]T[r]dm

)
w

}
(17)

=
1

2

{
mvTv − 2vT

(∫
vol

[r]dm

)
w + wT

(∫
vol

[r]T[r]dm

)
w

}
(18)

=
1

2
V TIV (19)

where V = (w, v) is the generalized velocity of the body and the generalized inertia, I,
has the following explicit matrix form:

I =

[ ∫
vol [r]T[r]dm

∫
vol[r]dm∫

vol [r]Tdm m1

]
. (20)

The generalized inertia is symmetric positive definite, and its upper diagonal term, I =∫
vol [r]T[r]dm, is the definition of the well-known 3 × 3 inertia matrix of the rigid body

with respect to the body frame. If the origin of the body frame is located on the center of
mass, then the generalized inertia becomes a block diagonal matrix because

∫
vol[r]dm = 0.

In addition, if the orientation of the body frame also coincides with the principle axes of
the body, then the generalized inertia becomes a diagonal matrix.

Let {A} and {B} be coordinate frames attached to a rigid body, Ia and Ib be the
generalized inertias of the body corresponding to the two frames. Using (11), (15), and
the fact that the kinetic energy of the body should remain under change of coordinate
frame, the following transformation rule between the generalized inertias can be obtained:

Ib = Ad∗TabIaAdTab (21)
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where Tab ∈ SE(3) : {A} → {B}. If the mass, m, and the inertia matrix in a center of
mass frame3, Ic ∈ <3×3, are given, one can get the generalized inertia in an arbitrary body
frame from (21), rather than using (20), as

I =

[
RIcR

T+m[p]T[p] m[p]

m[p]T m1

]
(22)

where (R, p) ∈ SE(3) represents the orientation and position of the center of mass frame
with respect to the body frame.

The generalized momentum of a rigid body is defined as

L = IV (23)

where I and V are the generalized inertia and velocity of the body expressed in a coordi-
nate frame attached to the body.

La and Lb be the generalized momentum of a rigid body expressed in different body
frames, {A} and {B}, respectively. Using (11) and (21) one can derive the following
transformation rule for generalized momentums:

Lb = Ad∗TabLa (24)

which is same to that of generalized forces, and indeed, the generalized momentum is also
known as dse(3).

1.4 Time Derivatives of se(3) and dse(3)

Recall that the time derivative of a 3-dimensional vector x =
∑3

i=1 xiêi, expressed in a
moving coordinate frame {êi}, can be obtained as

d

dt
x =

3∑
i=1

{(
d

dt
xi

)
êi + xi

(
d

dt
êi

)}
= ẋ+ w × x (25)

where ẋ =
∑3

i=1

(
d
dtxi

)
êi =

(
dx1
dt ,

dx2
dt ,

dx3
dt

)
is the component-wise time derivative of x

and w is the angular velocity of the moving frame.
The time derivatives of se(3) and dse(3) which are expressed in a moving frame have

more generalized form. A simple approach to obtain the derivatives is to transform se(3)(or
dse(3)) to a stationary coordinate frame, differentiate it there, and transform the derivative
back to the original moving coordinate frame with the (correct) assumption that the
derivative of se(3)(or dse(3)) can be transformed with the rule of se(3)(or dse(3)).4Note
that differentiating a vector in a stationary coordinate frame with respect to time is just
getting the component-wise derivative of it.

Lemma 1. Let X ∈ se(3) be expressed in a moving frame attached to a rigid body. Then
the time derivative of X can be obtained by

d

dt
X = Ẋ + adVX (26)

3 A coordinate frame whose origin is located on the center of mass of the body.
4 In [1] the time derivative of a spatial velocity which is similar to the generalized velocity in this article

was obtained with this approach.
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where Ẋ is the component-wise time derivative of X and adV : se(3) → se(3) is a linear
transformation defined as

adV =

[
[w] 0
[v] [w]

]
(27)

where V = (w, v) ∈ se(3) is the generalized velocity of the body.

Proof. Let T = (R, p) ∈ SE(3) denote the orientation and position of the moving frame
with respect to an inertial frame which is stationary in the space. By transforming X to
the inertial frame, differentiating it there, and then transforming the result back to the
original body frame, one can get

d

dt
X = AdT−1

d′

dt
(AdTX) = Ẋ + AdT−1

d′

dt
(AdT )X

where d′

dt represents the component-wise differentiation and Ẋ = d′

dtX. Using (7) and

V = (w, v) = (RTṘ, RTṗ), one can show AdT−1
d′

dt (AdT ) = adV as follows:

AdT−1

d′

dt
AdT =

[
RT 0

−RT [p] RT

] [
Ṙ 0

[ṗ]R+ [p] Ṙ Ṙ

]
=

[
[w] 0
[v] [w]

]

Lemma 2. Let Y ∈ dse(3) be expressed in a moving frame attached to a rigid body. Then
the time derivative of Y can be obtained by

d

dt
Y = Ẏ − ad∗V Y (28)

where Ẏ is the component-wise time derivative of Y and ad∗V : dse(3)→ dse(3) is a linear
transformation defined as

ad∗V = adT
V =

[
[w] 0
[v] [w]

]T

(29)

where V = (w, v) ∈ se(3) is the generalized velocity of the body.

Proof. Similarly to the proof of Lemma 1, the derivative of Y ∈ dse(3) can be obtained
by

d

dt
Y = Ad∗T

d′

dt

(
Ad∗T−1Y

)
= Ẏ + Ad∗T

d′

dt

(
Ad∗T−1

)
Y.

Using (8) and V = (w, v) = (RTṘ, RTṗ), one can show Ad∗T
d′

dtAd∗T−1 = −ad∗V as follows:

Ad∗T
d′

dt
Ad∗T−1 =

[
RT −RT [p]
0 RT

] [
Ṙ [ṗ]R+ [p] Ṙ

0 Ṙ

]
=

[
[w] [v]
0 [w]

]
= −adT

V = −ad∗V
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1.5 Geometric Dynamics of a Rigid Body

Equations of motion of a rigid body can be written as

F =
d

dt
L (30)

where F represents the net sum of the generalized forces acting on the rigid body and L
is the generalized momentum of the body. Using (23) and (28), the equations of motion
of the rigid body can be written as

F = IV̇ − ad∗V IV (31)

where V̇ is the component-wise time derivative of the generalized velocity of the body.
Note that L̇ = İV + IV̇ = IV̇ because the components of I doesn’t vary.

The dynamics equation of a rigid body is coordinate invariant, i.e., the structure of the
equation still remains under change of coordinate frame. Let {A} and {B} be coordinate
frames attached to a body, Va and Vb be the generalized velocities, Fa and Fb be the
generalized forces, and Ia and Ib be the generalized inertias corresponding to {A} and
{B} respectively. Using the transformation rules, (11), (13), and (21), one can easily
transform the dynamics equations with respect to {A}, Fa = IaV̇a − ad∗VaIaVa, to the

equations in {B}, Fb = IbV̇b − ad∗VbIbVb, and this shows the coordinate invariance of (31)
under change of coordinate frame.

2 Dynamics of Open Chain Systems

Let q ∈ <n denote the set of coordinates of all joints in a system, and for open chain
systems, n is equal to the degree-of-freedom of the system. The dynamics equations of
the system can be written as

Mq̈ + b = τ (32)

where M(q) ∈ <n×n is a symmetric mass matrix of the system, b(q, q̇) ∈ <n represents
Coriolis, centrifugal, and gravity terms, and τ ∈ <n denotes torque(or force) vector corre-
sponding to the system coordinates q.

We assume the current system state (q, q̇) is fully known. Calculating the joint torques
(or forces for translational coordinates) τ with prescribe accelerations q̈ is called inverse
dynamics. It is typically used to obtain the required joint torques which make the system
move along a prescribed joint trajectory. On the other hand, calculating the resulting joint
accelerations q̈ from the given joint torques τ is called forward dynamics, and this is usually
used to simulate the system motion in time by integrating the computed acceleration to
obtain the system state at the next time step.

In general, the command input to a joint coordinate can be either torque or acceleration
during the simulation and the command type does not have to be same for all coordinates.
Let’s rewrite the equations of motion as

M

(
q̈u
q̈v

)
+ b =

(
τu
τv

)
(33)

where the subscript ‘u’ denotes the joint coordinates with prescribed acceleration and
the subscript ‘v’ represents the coordinates with given or known torque. We can obtain
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Inverse dynamics q̈ → τ

Forward dynamics τ → q̈

Hybrid dynamics (q̈u, τv)→ (τu, q̈v)

Table 1: Input and output of dynamics algorithms

(τu, q̈v) from the prescribed (q̈u, τv) by solving the equations of motion, which is called
hybrid dynamics.5 One possible solution for hybrid dynamics is to rearrange (33) and
solve it with a direct matrix inversion. For example, the resulting accelerations of the
torque-specified joint coordinates can be obtained as

q̈v = M−1
vv (τv − bv −Muv q̈u) (34)

where M =
[
Muu Muv
Muv Mvv

]
, b =

(
bu
bv

)
, and q = ( quqv ). The method, however, is not efficient for

a complex system because it requires building the mass matrix and inverting the submatrix
corresponding to the unprescribed joints, which leads to an O(n2)+O(n3

b) algorithm where
n and nv denote the number of all coordinates and the number of unprescribed coordinates
respectively.

In Table 1 the input and output of inverse, forward, and hybrid dynamics are sum-
marized. Note that hybrid dynamics is a generalization of traditional inverse and forward
dynamics, i.e., they can be regarded as the extreme cases of hybrid dynamics when qu = q
(inverse dynamics) and qv = q (forward dynamics).

2.1 Recursive Inverse Dynamics

A recursive Newton-Euler inverse dynamics algorithm using the geometric notations shown
in Section 1 was presented in [3]. Here the algorithm is slightly modified to support multi-
degree-of-freedom joints in the formulation.

Let {0} be an inertial frame which is stationary in the space, {i} be a coordinate frame
attached to the i-th rigid body of the open chain system, and {λ(i)} be a coordinate frame
attached to the parent body of the i-th rigid body. Also, let Ti ∈ SE(3) : {0} → {i},
Tλ(i) ∈ SE(3) : {0} → {λ(i)}, and Tλ(i),i ∈ SE(3) : {λ(i)} → {i}. From Ti = Tλ(i)Tλ(i),i

and (6), the generalized velocity of the i-th body can be rewritten as

Vi = T−1
i Ṫi (35)

= T−1
λ(i),iT

−1
λ(i)

(
Ṫλ(i)Tλ(i),i + Tλ(i)Ṫλ(i),i

)
(36)

= AdT−1
λ(i),i

Vλ(i) + Siq̇i (37)

where Siq̇i = T−1
λ(i),iṪλ(i),i ∈ se(3) represents the relative velocity of the i-th body with

respect to its parent. Si = Si(qi) ∈ (se(3) × ni) is called the Jacobian of the joint
connecting the i-th body and its parent and qi ∈ <ni represents the coordinate vector of
the joint.

As shown in (31), component-wise time derivatives of the generalized velocities of all
bodies in the system are needed to build the dynamics equations for each body. Recalling

5We follow [1] for the terminology.

8



that Ȧ−1 = −A−1ȦA−1 for an arbitrary matrix A, and adξ1ξ2 = ξ1ξ2 − ξ2ξ1 for arbi-
trary ξ1, ξ2 ∈ se(3), one can derive the following formula for V̇i, the component-wise time
derivative of Vi:

V̇i =
d′

dt

(
T−1
λ(i),iVλ(i)Tλ(i),i

)
+ Ṡiq̇i + Siq̈i (38)

= −T−1
λ(i),iṪλ(i),iT

−1
λ(i),iVλ(i)Tλ(i),i + T−1

λ(i),iV̇λ(i)Tλ(i),i

+ T−1
λ(i),iVλ(i)Ṫλ(i),i + Ṡiq̇i + Siq̈i (39)

= AdT−1
λ(i),i

V̇λ(i) + adAd
T−1
λ(i),i

Vλ(i)Siq̇i + Ṡiq̇i + Siq̈i (40)

= AdT−1
λ(i),i

V̇λ(i) + adViSiq̇i + Ṡiq̇i + Siq̈i (41)

(37) and (41) are well suited to calculate the generalized velocity and its component-
wise time derivative of each body in a open chain system from the ground to the end of
the system recursively, as the velocity and acceleration of the ground are known in most
cases.6 Note that Ṡi 6= 0 as the joint Jacobian Si is a function of qi in general.

Let Fi ∈ dse(3) be the generalized force transmitted to i-th body from its parent
through the connecting joint, and F ext

i ∈ dse(3) be a generalized force acting on the i-th
body from environment. Both Fi and F ext

i are expressed in {i}. From (31), the equations
of motion for the i-th body can be written as

Fi + F ext
i −

∑
k∈µ(i)

Ad∗
T−1
i,k

Fk = IiV̇i − ad∗ViIiVi (42)

where the left hand side of the equations represents the net force acting on the body,
µ(i) is the set of child bodies of the i-th body, and −Ad∗

T−1
i,k

Fk is the generalized force,

transmitted from k-th child body, expressed in {i}. It should be noted that the generalized
force, Fi, for each body can be calculated by (42) from the ends to the ground recursively,
as the end bodies have no child.

A recursive inverse dynamics algorithm for open chain systems is shown in Table 2,
and the following is a list of symbols for the geometric inverse dynamics:

• i = index of the i-th body.

• λ(i) = index of the parent body of the i-th body.

• µ(i) = set of indexes of the child bodies of the i-th body.

• qi ∈ <ni = coordinates of the i-th joint which connects the i-th body with its parent
body.

• τi ∈ <ni = torque(or force) exerted by the i-th joint.

• Tλ(i),i ∈ SE(3) : {λ(i)} → {i}, a function of qi.

• Vi ∈ se(3) = the generalized velocity of the i-th body, viewed in the body frame {i}.
6One can assume that V0 = 0 and V̇0 = (0, g) where g ∈ <3 denote the gravity vector, viewed in the

inertial frame, with appropriate direction and magnitude.
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• V̇i ∈ se(3) = component-wise time derivative of Vi.

• Si ∈ (se(3)× ni) = Jacobian of Tλ(i),i viewed in {i}.

Si =

[
T−1
λ(i),i

∂T−1
λ(i),i

∂q1i
, · · · , T−1

λ(i),i

∂T−1
λ(i),i

∂q
ni
i

]
, where qki ∈ < denotes the k-th coordinate of

the i-th joint, i.e., qi = (q1
i , · · · , q

ni
i ).

• Ii = the generalized inertia of the i-th body, viewed in {i}.

• Fi ∈ dse(3) = the generalized force transmitted to the i-th body from its parent
through the connecting joint, viewed in {i}.

• F ext
i ∈ dse(3) = the generalized force acting on the i-th body from environment,

viewed in {i}.

Table 2: Recursive Inverse Dynamics

while forward recursion do
Tλ(i),i = function of qi
Vi = AdT−1

λ(i),i
Vλ(i) + Siq̇i

V̇i = AdT−1
λ(i),i

V̇λ(i) + adViSiq̇i + Ṡiq̇i + Siq̈i

end while
while backward recursion do

Fi = IiV̇i − ad∗ViIiVi − F
ext
i +

∑
k∈µ(i) Ad∗

T−1
i,k

Fk

τi = ST
i Fi

end while

2.2 Recursive Forward Dynamics

Featherstone [1] found that the dynamics equations of the i-th body can be reformulated
to have the following form,

Fi = ÎiV̇i + B̂i, (43)

where Îi is called as the articulated body inertia of the body and B̂i is an associated
bias force. He also showed that the articulated body inertia and bias force corresponding
to each body in open chain systems can be calculated recursively, and by using these
new quantities, forward dynamics can be solved with an O(n) algorithm. A Lie group
formulation of the articulated body inertia method was reported in [4]. Here, a more
general form of the geometric formulation supporting multi-degree-of-freedom joint models
is presented.

Starting from (43), we’ll show that the same form of dynamics equations still holds for
the parent of the i-th body(λ(i)-th body), and Îλ(i) and B̂λ(i) can be calculated from Îi
and B̂i, which leads a backward recursion process for them.

Let’s assume that the equations of motion for i-th body can be written as (43). By
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substituting (41) for V̇i in (43), one can get

Fi = Îi
(

AdT−1
λ(i),i

V̇λ(i) + adViSiq̇i + Siq̈i + Ṡiq̇i

)
+ B̂i, (44)

and from ST
i Fi = τi, the unknown q̈i can be written as

q̈i =
(
ST
i ÎiSi

)−1
{
τi − ST

i Îi
(

AdT−1
λ(i),i

V̇λ(i) + adViSiq̇i + Ṡiq̇i

)
− ST

i B̂i
}
. (45)

From (42) the dynamics equations for the λ(i)-th body becomes

Fλ(i) = Iλ(i)V̇λ(i) − ad∗Vλ(i)Iλ(i)Vλ(i) − F ext
λ(i) +

∑
k∈µ(λ(i))

Ad∗
T−1
λ(i),k

Fk, (46)

and by substituting (44) for Fk in (46), one can get

Fλ(i) = Iλ(i)V̇λ(i) − ad∗Vλ(i)Iλ(i)Vλ(i) − F ext
λ(i)

+
∑

k∈µ(λ(i))

Ad∗
T−1
λ(i),k

{
Îk
(

AdT−1
λ(i),k

V̇λ(i) + adVkSkq̇k + Skq̈k + Ṡkq̇k

)
+ B̂k

}
.

(47)

By substituting (45) for the unknown q̈k in (47) and arranging the equations in terms of
V̇λ(i), one can have the dynamics equations for the λ(i)-th body with the following desired
form:

Fλ(i) = Îλ(i)V̇λ(i) + B̂λ(i) (48)

where

Îλ(i) = Iλ(i) +
∑

k∈µ(λ(i))

Ad∗
T−1
λ(i),k

{
Îk − ÎkSk

(
ST
k ÎkSk

)−1
ST
k Îk

}
AdT−1

λ(i),k
(49)

B̂λ(i) = −ad∗Vλ(i)Iλ(i)Vλ(i) − F ext
λ(i)

+
∑

k∈µ(λ(i))

Ad∗
T−1
λ(i),k

{
B̂k + Îk

(
adVkSkq̇k + Ṡkq̇k

)
+ ÎkSk

(
ST
k ÎkSk

)−1 (
τk − ST

k Îk(adVkSkq̇k + Ṡkq̇k)− ST
k B̂k

)}
.

(50)

In summary, the O(n) algorithm for forward dynamics of open chain systems consists
of the following three main recursion process:

1. Forward recursion: recursively calculates Vi for each body with (37).

2. Backward recursion: recursively calculates Îi and B̂i for each body with (49) and
(50).

3. Forward recursion: recursively calculates q̈i and V̇i for each body with (45) and (41).

Table 3 shows the forward dynamics algorithm for open chain systems with a few
additional intermediate variables, such as ηi,Ψi,Πi, and βi, for the simplicity and efficiency
of the equations.
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Table 3: Recursive Forward Dynamics

while forward recursion do
Tλ(i),i = function of qi
Vi = AdT−1

λ(i),i
Vλ(i) + Siq̇i

ηi = adViSiq̇i + Ṡiq̇i
end while
while backward recursion do

Îi = Ii +
∑

k∈µ(i) Ad∗
T−1
i,k

ΠkAdT−1
i,k

B̂i = −ad∗ViIiVi − F
ext
i +

∑
k∈µ(i) Ad∗

T−1
i,k

βk

Ψi = (ST
i ÎiSi)−1

Πi = Îi − ÎiSiΨiS
T
i Îi

βi = B̂i + Îi
{
ηi + SiΨi

(
τi − ST

i

(
Îiηi + B̂i

))}
end while
while forward recursion do

q̈i = Ψi

{
τi − ST

i Îi
(

AdT−1
λ(i),i

V̇λ(i) + ηi

)
− ST

i B̂i
}

V̇i = AdT−1
λ(i),i

V̇λ(i) + Siq̈i + ηi

Fi = ÎiV̇i + B̂i
end while

2.3 Recursive Hybrid Dynamics

A geometric recursive algorithm for hybrid dynamics of open chain systems was reported
in [5], but the formulation was based on 1-dof joints. Here, more general form of the
geometric hybrid dynamics is presented to support multi-degree-of-freedom joints more
conveniently.

One can derive the hybrid dynamics for open chain systems with a similar way as in
2.2 for forward dynamics. Let’s go back to (47). Unlike the case of forward dynamics, as
q̈k in (47) corresponding to an active joint is already known, one can arrange (47) in terms
of V̇λ(i) by substituting (45) into (47) for q̈k of passive joints only as follows:

Fλ(i) = Îλ(i)V̇λ(i) + B̂λ(i) (51)

12



where

Îλ(i) = Iλ(i) +
∑

k∈{µ(λ(i))∩u}

Ad∗
T−1
λ(i),k

ÎkAdT−1
λ(i),k

+
∑

k∈{µ(λ(i))∩v}

Ad∗
T−1
λ(i),k

{
Îk − ÎkSk

(
ST
k ÎkSk

)−1
ST
k Îk

}
AdT−1

λ(i),k

(52)

B̂λ(i) = −ad∗Vλ(i)Iλ(i)Vλ(i) − F ext
λ(i)

+
∑

k∈{µ(λ(i))∩u}

Ad∗
T−1
λ(i),k

{
B̂k + Îk

(
adVkSkq̇k + Ṡkq̇k + Skq̈k

)}

+
∑

k∈{µ(λ(i))∩v}

Ad∗
T−1
λ(i),k

{
B̂k + Îk

(
adVkSkq̇k + Ṡkq̇k

)
+ ÎkSk

(
ST
k ÎkSk

)−1 (
τk − ST

k Îk(adVkSkq̇k + Ṡkq̇k)− ST
k B̂k

)}
.

(53)

where ‘u’ and ‘v’ denote the sets of the acceleration-prescribed and torque-specified joints
in the system respectively. Table 4 shows the hybrid dynamics algorithm for open chain
systems.

Table 4: Recursive Hybrid Dynamics

while forward recursion do
Tλ(i),i = function of qi
Vi = AdT−1

λ(i),i
Vλ(i) + Siq̇i

ηi = adViSiq̇i + Ṡiq̇i
end while
while backward recursion do

Îi = Ii +
∑

k∈µ(i) Ad∗
T−1
i,k

ΠkAdT−1
i,k

B̂i = −ad∗ViIiVi − F
ext
i +

∑
k∈µ(i) Ad∗

T−1
i,k

βk

if i ∈ u then

Πi = Îi
βi = B̂i + Îi (ηi + Siq̈i)

else

Ψi = (ST
i ÎiSi)−1

Πi = Îi − ÎiSiΨiS
T
i Îi

βi = B̂i + Îi
{
ηi + SiΨi

(
τi − ST

i

(
Îiηi + B̂i

))}
end if

end while
while forward recursion do

if i ∈ u then

V̇i = AdT−1
λ(i),i

V̇λ(i) + Siq̈i + ηi

Fi = ÎiV̇i + B̂i
τi = ST

i Fi

13



else

q̈i = Ψi

{
τi − ST

i Îi
(

AdT−1
λ(i),i

V̇λ(i) + ηi

)
− ST

i B̂i
}

V̇i = AdT−1
λ(i),i

V̇λ(i) + Siq̈i + ηi

Fi = ÎiV̇i + B̂i
end if

end while

3 Dynamics of Constrained Systems

Let q ∈ <n denote a set of joint coordinates in an unconstrained open chain system, and
A(q)q̇ = 0 represents a set of m constraints enforced to the system (A ∈ <m×n). For
a closed loop system, for example, a (virtual) unconstrained open chain system can be
obtained by cutting the joint loops, and the closed loop constraints to be enforced can be
written as f(q) = 0, which can be linearized as the form of Aq̇ = 0 where A = ∂f

∂q is the
Jacobian matrix of the constraints.

The equations of motion of the constrained system can be written as:

Mq̈ + b = τ +ATλ (54)

Aq̇ = 0 (55)

where (54) represents the equations of motion of the unconstrained open chain system with
an additional constraint force JTλ acting on the configuration space q, and the Lagrange
multipliers λ ∈ <m give the relative magnitudes of the constraint forces.

Similarly to the previous section (§2) we will derive inverse dynamics (q̈ → τ), forward
dynamics (τ → q̈) and hybrid dynamics ((q̈u, τv) → (τu, q̈v)) for the constrained system
where q = (qu, qv). We assume the current system state (q, q̇) is known and consistent
with the constraints, and A is full rank.

3.1 Inverse Dynamics of Constrained Systems

Inverse dynamics finds the joint torques (τ) satisfying the equations of motion when the
current system state (q, q̇) and the acceleration (q̈) are given. We assume the state
and prescribed acceleration (q, q̇, q̈) satisfy the constraints Aq̇ = 0 and its differential
Aq̈ + Ȧq̇ = 0, and focus on solving the equations of motion of the unconstrained system
with the additional constraint force in (54).

The inverse dynamics solution for a constrained system may not be unique depending
on the number of constraints and actuators. For example, when all joints can be actuated,
any arbitrary constraint force λ and its corresponding joint torques τ = Mq̈ + b − ATλ
becomes a solution of (54), and one particular solution is τ = Mq̈+ b and λ = 0 where the
system acts as if it were a unconstrained open-loop system. In general, if the system is
redundantly actuated or there are too many actuators, the joint torques that are required
to make the system move in a prescribed way are not unique, and in this case, we often
want to choose an optimal one. On the contrary, if the number of actuators is fewer than
the minimum necessary to move the system, there would be no solution as expected.
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Let q = (qa, qp) where qa and qp denote the actuated joint coordinates and non-actuated
or passive joint coordinates respectively. The passive joint torques τp need not to be zero
but they are assumed to be determined by the system state. We want to find the active
joint torques (τa) satisfying (54) or(

τar
τpr

)
=

(
τa +AT

a λ
τp +AT

p λ

)
(56)

where τr = Mq̈ + b is the inverse dynamics solution for the unconstrained open chain
system and the subscripts ‘a’ and ‘p’ denote the components for the active and passive
coordinates respectively and the subscript ‘r’ is for a solution of unconstrained dynamics.
Since we already know τp, we can obtain the constraint force λ by solving the lower row
of (56) or

AT
p λ = τpr − τp. (57)

If m = np where m and np denote the numbers of constraints and the non-actuated

coordinates respectively (Ap ∈ <m×np), a unique solution λ =
(
AT
p

)−1
(τpr − τp) exists7.

From the upper row of (56), the active joint torques can be obtained as

τa = τar −AT
a

(
AT
p

)−1
(τpr − τp) . (58)

For example, in a planar five-bar linkage system where the closed loop constrains two
translation and one rotation axes (m = 3), if there are two active joints (i.e., three of the
five joints are passive and np = 3), we can obtain unique active joints from (58) as long
as Ap is full rank or the configuration is not singular.

However, if m > np (e.g., a planar five-bar linkage with three or more active joints)8,
there are infinite number of solutions for (57) which can be written as

λ =
(
AT
p

)†
(τpr − τp) +N (AT

p ) (59)

where (·)† andN (·) denote the Moore-Penrose pseudoinverse and the null space of a matrix
respectively, and this leads to a general solution for the active joint torques as follows.

τa = τar −AT
a λ (60)

= τar −AT
a

{(
AT
p

)†
(τpr − τp) +N (AT

p )
}

(61)

We can choose an optimal solution here:

• Constraint force minimization: The solution becomes τa = τar − AT
a λ
∗ where

λ∗ =
(
AT
p

)†
(τpr − τp).

• Minimum active joint torques: We can find this by exploring the null space of AT
p

in (61). For example, in the case of n > m > np,

τa =
(
1−AT

aN
(
AT
aN
)†){

τar −AT
a

(
AT
p

)†
(τpr − τp)

}
(62)

λ =
(
AT
p

)†
(τpr − τp) +Ns∗ (63)

s∗ =
(
AT
aN
)† {

τar −AT
a

(
AT
p

)†
(τpr − τp)

}
(64)

7We assume A is full rank.
8We call this a redundantly actuated system.
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minimizes ‖τa‖2 where 1 ∈ <na×na denotes the identity matrix and N ∈ <m×(m−np)

represents a basis of the null space of AT
p ∈ <np×m. As a special case of this, if all

joints are actuated (n > m,np = 0), N becomes an identity matrix and thus the
minimum joint torques and the corresponding constraint forces can be written as

τ = τr −ATλ (65)

λ =
(
AT
)†
τr =

(
AAT

)−1
Aτr, (66)

which can also be directly deduced from (56). In the case of n < m, τa = 0 becomes
the minimal torque solution, which means the system forms an immobile structure
due to too many constraints.

In the case of m < np (e.g., a planar five-bar linkage with only one active joint), we
cannot find active joint torques making the system move exactly as prescribed (q, q̇, q̈).
However, even in such a system, we can still find a solution for the active joint torques,
that must be applied in order to make the active joints follow a prescribed acceleration (q̈a)
exactly, while letting the other passive joints move in a passive way. See hybrid dynamics
of constrained systems (§3.3) for this.

3.2 Forward Dynamics of Constrained Systems

In contrast to the inverse dynamics of constrained systems whose solution depends on the
system property and configuration, forward dynamics which finds the resulting acceleration
(q̈) in response to the applied joint torques (τ) always has a unique solution.

By differentiating the constraint equations (55) to get Aq̈+ Ȧq̇ = 0 and combining this
with (54), we can obtain the constraint forces as

λ = −
(
AM−1AT

)−1
(
Aq̈r + Ȧq̇

)
(67)

where q̈r = M−1 (τ − b) is the forward dynamics solution of the unconstrained open chain
system with assuming there is no constraint [2]. Once the constraint forces are obtained
from (67), we can get the joint acceleration by solving the forward dynamics of the un-
constrained open chain system (54) with considering the constraint forces.

In order to improve the computational efficiency in (67), we can exploit the O(n)
recursive forward dynamics algorithm for open chain systems described in §2.2. The
recursive algorithm can be used not only for obtaining q̈r but also for calculating M−1AT

by running the algorithm m times. More specifically, we can set the joint torque with the
i-th column of AT call the forward dynamics algorithm (but with ignoring the term b, i.e.,
the term related with gravitation and joint velocities) to calculate M−1AT

i , and repeat
this for all columns. Note that, during the repetition, we can save much computation by
reusing the intermediate quantities calculated in the dynamics algorithm.

We can additionally save computation by splitting (54) into two equations

Mq̈ + b = τ +ATλ −→

{
Mq̈r + b = τ

Mq̈c = ATλ
(68)
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and this reveals that the solution of the forward dynamics of a constrained system can be
obtained by summing the two solutions from the unconstrained open chain system, i.e.,

q̈ = q̈r + q̈c (69)

where q̈r is the solution of the unconstrained open chain system with assuming there is
no constraint, and q̈c is the solution when applied the constraint forces to the open chain
system with ignoring the term b as described above. In total, we need a single call of
the full version of the recursive open-chain forward dynamics algorithm (q̈ = M−1(τ − b))
and m + 1 calls of the simplified version of the dynamics algorithm (q̈ = M−1τ). The
complexity of the resulting algorithm becomes O(n)+O(m3) where m denotes the number
of constraints and O(m3) is for inverting AM−1AT .

3.3 Hybrid Dynamics of Constrained Systems

Let q = (qu, qv) where qu and qv are the joint coordinates with prescribed accelerations and
given or known torques respectively. The equations of motion of the constrained system
can be rewritten as

M

(
q̈u
q̈v

)
+ b =

(
τu
τv

)
+ATλ (70)

A

(
q̈u
q̈v

)
+ Ȧq̇ = 0, (71)

and an hybrid dynamics algorithm finds (τu, q̈v) from given (q̈u, τv) by solving the con-
strained dynamics equations.

We first show the constraint forces λ can be obtained in a similar form as in (67).
From (70) we get

q̈v = M−1
vv

(
τv − bv −Muv q̈u +AT

v λ
)

(72)

where M =
[
Muu Muv
Muv Mvv

]
, b =

(
bu
bv

)
and A = [Au Av ]. Plugging this to (71) leads to

(
AvM

−1
vv A

T
v

)
λ = −

{
Auq̈u +AvM

−1
vv (τv − bv −Muv q̈u) + Ȧq̇

}
. (73)

If m ≤ nv where m and nv denote the numbers of constraints and the torque-specified
coordinates (Av ∈ <m×nv ,Mvv ∈ <nv×nv), there exists a unique solution for the constraint
forces λ, and this leads to a unique solution for (τu, q̈v).

9 In this case, the constraint forces
can be obtained as follows.

λ = −
(
AvM

−1
vv A

T
v

)−1
{
Auq̈u +AvM

−1
vv (τv − bv −Muv q̈u) + Ȧq̇

}
(74)

= −
(
AvM

−1
vv A

T
v

)−1
{
Auq̈u +Av q̈rv + Ȧq̇

}
(75)

= −
(
AvM

−1
vv A

T
v

)−1
(
Aq̈r + Ȧq̇

)
(76)

where
q̈rv = M−1

vv (τv − bv −Muv q̈u) (77)

9Again, we assume A is full rank.
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denotes the resulting acceleration of the torque-specified coordinates in the unconstrained
open chain system and q̈r = (q̈u, q̈rv) denotes the acceleration of the unconstrained system.
Note that q̈u is the prescribed acceleration and q̈rv can be efficiently obtained by using the
recursive algorithm described in §2.3.

Similarly to the case of forward dynamics (§3.2), M−1
vv A

T
v can be efficiently obtained

by calling a simplified version of the recursive open chain hybrid dynamics algorithm m
times. More specifically, as can be easily recognized from (77), M−1

vv A
T
vi can be interpreted

as the resulting acceleration of the torque-specified coordinates when the term related to
gravity and joint velocities is ignored and the joint command input to the unconstrained
open chain system is set to (q̈u = 0, τv = AT

vi) where AT
vi denotes the i-th column of AT

v .
Once we obtain the constraint forces λ from (76), we can obtain (τu, q̈v) by solving (70)

using the recursive hybrid dynamics algorithm for open chain systems. However, splitting
(70) into two equations can lead to more efficient computation as we already discussed in
§3.2. The equation can be rewritten as

M

(
q̈u
q̈v

)
+ b =

(
τu
τv

)
+ATλ −→



M

(
q̈u

q̈vr

)
+ b =

(
τur

τv

)

M

(
0

q̈vc

)
=

(
τuc

AT
v λ

) (78)

where (q̈u, τv) and (0, AT
v λ) are the inputs of the two hybrid dynamics problems for the

unconstrained open chain system respectively. This separation reveals that the solution
of the original hybrid dynamics problem for the constrained system can be obtained as

τu = τur + τ̃uc (79)

q̈v = q̈vr + q̈vc (80)

where τ̃uc = τuc−AT
uλ. Note that the hybrid dynamics solution exactly matches with the

forward dynamics solution in §3.2 when qv = q.
If m > nv, the constraint forces are not uniquely determined, which is similar to the

case of inverse dynamics when there are more actuators than necessary (m > np). In this
case, if q̈u was set arbitrary, there may not exist a solution for q̈v satisfying the constraint
equations (71) or Av q̈v = −Auq̈u − Ȧq̇. If q̈u has been set carefully so that there exist
accelerations satisfying the constraints, the joint torques for the acceleration-prescribed
coordinates (τu) has an infinite number of solutions and an optimal solution can be chosen
by exploring the null space of AT

v . The inverse dynamics solution (61) provides a simpler
formulation where the subscripts ‘a’ and ‘p’ must be replaced with ‘u’ and ‘v’ respectively
for the notation in hybrid dynamics.

4 Differentiation of the Geometric Dynamics

4.1 Basic Derivatives

It is useful to have the following derivatives for differentiating the recursive dynamics
algorithms with the chain rule.
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Lemma 3. Let p ∈ < be an arbitrary scalar variable and T ∈ SE(3) be a function of p.
Then

∂

∂p
AdT = ad ∂T

∂p
T−1AdT . (81)

Proof. Let ξ be an arbitrary se(3). If AdT is regarded as a 6× 6 matrix, then

∂

∂p
(AdT ξ) =

∂

∂p
(AdT ) ξ + AdT

∂ξ

∂p
. (82)

AdT can also be regarded as a linear mapping, AdT : ξ → TξT−1, and in this case,

∂

∂p
(AdT ξ) =

∂

∂p

(
TξT−1

)
(83)

=
∂T

∂p
ξT−1 + T

∂ξ

∂p
T−1 + Tξ

∂T−1

∂p
(84)

=
∂T

∂p
T−1TξT−1 − TξT−1∂T

∂p
T−1 + T

∂ξ

∂p
T−1 (85)

= ad ∂T
∂p
T−1AdT ξ + AdT

∂ξ

∂p
. (86)

As ξ ∈ se(3) is arbitrary, one can see ∂
∂pAdT = ad ∂T

∂p
T−1AdT from (82) and (86).

Corollary 1. Let p ∈ < be an arbitrary scalar variable and Tλ(i),i ∈ SE(3) : {λ(i)} → {i}.
Then

∂

∂p
AdT−1

λ(i),i
= −ad ∂hi

∂p

AdT−1
λ(i),i

(87)

∂

∂p
Ad∗

T−1
λ(i),i

= −Ad∗
T−1
λ(i),i

ad∗∂hi
∂p

(88)

where ∂hi
∂p ∈ se(3) is defined as

∂hi
∂p

= T−1
λ(i),i

∂Tλ(i),i

∂p
. (89)

Corollary 2. If p = qki where qki denotes the k-th coordinate of the i-th joint, then

∂hi
∂p

= Ski (90)

where Ski ∈ se(3) denotes the k-th column of the i-th joint Jacobian, Si ∈ (se(3)× ni). If
p /∈ qi = {q1

i , · · · , q
ni
i }, then

∂hi
∂p

= 0. (91)
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4.2 Derivatives of the Dynamics

By applying chain rule with (87) and (88), the recursive algorithm for inverse, forward, and
hybrid dynamics can be differentiated with respect to an arbitrary scalar variable p ∈ <.
Table 5 shows the derivative of the recursive inverse dynamics, and it can solve ∂τ

∂p with

given
(
∂q
∂p ,

∂q̇
∂p ,

∂q̈
∂p

)
. In Table 6, the derivative of the recursive forward dynamics, which

calculates ∂q̈
∂p with given ∂τ

∂p , is given. The derivative of the recursive hybrid dynamics

which solves
(
∂τu
∂p ,

∂q̈v
∂p

)
with given

(
∂q
∂p ,

∂q̇
∂p ,

∂q̈u
∂p ,

∂τv
∂p

)
is presented in Table 7.

Table 5: Derivative of the Recursive Inverse Dynamics

while forward recursion do
∂hi
∂p , T−1

λ(i),i

∂Tλ(i),i
∂p

∂Vi
∂p = AdT−1

λ(i),i

∂Vλ(i)
∂p − ad ∂hi

∂p

AdT−1
λ(i),i

Vλ(i) + ∂Si
∂p q̇i + Si

∂q̇i
∂p

∂V̇i
∂p = AdT−1

λ(i),i

∂V̇λ(i)
∂p − ad ∂hi

∂p

AdT−1
λ(i),i

V̇λ(i) + ∂Si
∂p q̈i + Si

∂q̈i
∂p

+ ad ∂Vi
∂p

Siq̇i + adVi

(
∂Si
∂p q̇i + Si

∂q̇i
∂p

)
+ ∂Ṡi

∂p q̇i + Ṡi
∂q̇i
∂p

end while
while backward recursion do

∂Fi
∂p = ∂Ii

∂p V̇i + Ii ∂V̇i∂p − ad∗∂Vi
∂p

IiVi − ad∗Vi

(
∂Ii
∂p Vi + Ii ∂Vi∂p

)
− ∂F ext

i
∂p

+
∑

k∈µ(i) Ad∗
T−1
i,k

(
∂Fk
∂p − ad∗∂hk

∂p

Fk

)
∂τi
∂p = ∂Si

∂p

T
Fi + ST

i
∂Fi
∂p

end while

Table 6: Derivative of the Recursive Forward Dynamics

while forward recursion do
∂hi
∂p , T−1

λ(i),i

∂Tλ(i),i
∂p

∂Vi
∂p = AdT−1

λ(i),i

∂Vλ(i)
∂p − ad ∂hi

∂p

AdT−1
λ(i),i

Vλ(i) + ∂Si
∂p q̇i + Si

∂q̇i
∂p

∂ηi
∂p = ad ∂Vi

∂p

Siq̇i + adVi

(
∂Si
∂p q̇i + Si

∂q̇i
∂p

)
+ ∂Ṡi

∂p q̇i + Ṡi
∂q̇i
∂p

end while
while backward recursion do

∂Îi
∂p = ∂Ii

∂p +
∑

k∈µ(i) Ad∗
T−1
i,k

{
∂Πk
∂p −Πkad ∂hk

∂p

−
(

Πkad ∂hk
∂p

)T
}

AdT−1
i,k

∂B̂i
∂p = −ad∗∂Vi

∂p

IiVi − ad∗Vi

(
∂Ii
∂p Vi + Ii ∂Vi∂p

)
− ∂F ext

i
∂p

+
∑

k∈µ(i) Ad∗
T−1
i,k

(
∂βk
∂p − ad∗∂hk

∂p

βk

)
∂Ψi
∂p = −Ψi

{
ST
i
∂Îi
∂p Si + ∂Si

∂p

TÎiSi +
(
∂Si
∂p

TÎiSi
)T
}

Ψi

∂Πi
∂p = ∂Îi

∂p −
{
ÎiSi ∂Ψi

∂p S
T
i Îi + ∂Î

∂pSiΨiS
T
i Îi +

(
∂Î
∂pSiΨiS

T
i Îi
)T
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+ Îi ∂Si∂p ΨiS
T
i Îi +

(
Îi ∂Si∂p ΨiS

T
i Îi
)T
}

∂βi
∂p = ∂B̂i

∂p + ∂Îi
∂p

{
ηi + SiΨi

(
τi − ST

i

(
Îiηi + B̂i

))}
+ Î

{
∂ηi
∂p +

(
∂Si
∂p Ψi + Si

∂Ψi
∂p

)(
τi − ST

i

(
Îiηi + B̂i

))
+ SiΨi

(
∂τi
∂p −

∂Si
∂p

T(Îiηi + B̂i
)
− ST

i

(
∂Îi
∂p ηi + Îi ∂ηi∂p + ∂B̂i

∂p

))}
end while
while forward recursion do

∂q̈i
∂p = ∂Ψi

∂p

{
τi − ST

i Îi
(
AdT−1

λ(i),i
V̇λ(i) + ηi

)
− ST

i B̂i
}

+ Ψi

{
∂τi
∂p −

(
∂Si
∂p

TÎi + ST
i
∂Îi
∂p

)(
AdT−1

λ(i),i
V̇λ(i) + ηi

)
− ST

i Îi
(

AdT−1
λ(i),i

∂V̇λ(i)
∂p − ad ∂hi

∂p

AdT−1
λ(i),i

V̇λ(i) + ∂ηi
∂p

)
− ∂Si

∂p

TB̂i − ST
i
∂B̂i
∂p

}
∂V̇i
∂p = AdT−1

λ(i),i

∂V̇λ(i)
∂p − ad ∂hi

∂p

AdT−1
λ(i),i

V̇λ(i) + ∂Si
∂p q̈i + Si

∂q̈i
∂p + ∂ηi

∂p

∂Fi
∂p = ∂Îi

∂p V̇i + Îi ∂V̇i∂p + ∂B̂i
∂p

end while

Table 7: Derivative of the Recursive Hybrid Dynamics

while forward recursion do
∂hi
∂p , T−1

λ(i),i

∂Tλ(i),i
∂p

∂Vi
∂p = AdT−1

λ(i),i

∂Vλ(i)
∂p − ad ∂hi

∂p

AdT−1
λ(i),i

Vλ(i) + ∂Si
∂p q̇i + Si

∂q̇i
∂p

∂ηi
∂p = ad ∂Vi

∂p

Siq̇i + adVi

(
∂Si
∂p q̇i + Si

∂q̇i
∂p

)
+ ∂Ṡi

∂p q̇i + Ṡi
∂q̇i
∂p

end while
while backward recursion do

∂Îi
∂p = ∂Ii

∂p +
∑

k∈µ(i) Ad∗
T−1
i,k

{
∂Πk
∂p −Πkad ∂hk

∂p

−
(

Πkad ∂hk
∂p

)T
}

AdT−1
i,k

∂B̂i
∂p = −ad∗∂Vi

∂p

IiVi − ad∗Vi

(
∂Ii
∂p Vi + Ii ∂Vi∂p

)
− ∂F ext

i
∂p

+
∑

k∈µ(i) Ad∗
T−1
i,k

(
∂βk
∂p − ad∗∂hk

∂p

βk

)
if i ∈ u then

∂Πi
∂p = ∂Îi

∂p
∂βi
∂p = ∂B̂i

∂p + ∂Îi
∂p (ηi + Siq̈i) + Îi

(
∂ηi
∂p + ∂Si

∂p q̈i + Si
∂q̈i
∂p

)
else

∂Ψi
∂p = −Ψi

{
ST
i
∂Îi
∂p Si + ∂Si

∂p

TÎiSi +
(
∂Si
∂p

TÎiSi
)T
}

Ψi

∂Πi
∂p = ∂Îi

∂p −
{
ÎiSi ∂Ψi

∂p S
T
i Îi + ∂Î

∂pSiΨiS
T
i Îi +

(
∂Î
∂pSiΨiS

T
i Îi
)T
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+ Îi ∂Si∂p ΨiS
T
i Îi +

(
Îi ∂Si∂p ΨiS

T
i Îi
)T
}

∂βi
∂p = ∂B̂i

∂p + ∂Îi
∂p

{
ηi + SiΨi

(
τi − ST

i

(
Îiηi + B̂i

))}
+ Î

{
∂ηi
∂p +

(
∂Si
∂p Ψi + Si

∂Ψi
∂p

)(
τi − ST

i

(
Îiηi + B̂i

))
+ SiΨi

(
∂τi
∂p −

∂Si
∂p

T(Îiηi + B̂i
)
− ST

i

(
∂Îi
∂p ηi + Îi ∂ηi∂p + ∂B̂i

∂p

))}
end if

end while
while forward recursion do

if i ∈ u then
∂V̇i
∂p = AdT−1

λ(i),i

∂V̇λ(i)
∂p − ad ∂hi

∂p

AdT−1
λ(i),i

V̇λ(i) + ∂Si
∂p q̈i + Si

∂q̈i
∂p + ∂ηi

∂p

∂Fi
∂p = ∂Îi

∂p V̇i + Îi ∂V̇i∂p + ∂B̂i
∂p

∂τi
∂p = ∂Si

∂p

T
Fi + ST

i
∂Fi
∂p

else

∂q̈i
∂p = ∂Ψi

∂p

{
τi − ST

i Îi
(
AdT−1

λ(i),i
V̇λ(i) + ηi

)
− ST

i B̂i
}

+ Ψi

{
∂τi
∂p −

(
∂Si
∂p

TÎi + ST
i
∂Îi
∂p

)(
AdT−1

λ(i),i
V̇λ(i) + ηi

)
− ST

i Îi
(

AdT−1
λ(i),i

∂V̇λ(i)
∂p − ad ∂hi

∂p

AdT−1
λ(i),i

V̇λ(i) + ∂ηi
∂p

)
− ∂Si

∂p

TB̂i − ST
i
∂B̂i
∂p

}
∂V̇i
∂p = AdT−1

λ(i),i

∂V̇λ(i)
∂p − ad ∂hi

∂p

AdT−1
λ(i),i

V̇λ(i) + ∂Si
∂p q̈i + Si

∂q̈i
∂p + ∂ηi

∂p

∂Fi
∂p = ∂Îi

∂p V̇i + Îi ∂V̇i∂p + ∂B̂i
∂p

end if
end while

To obtain the derivatives of the dynamics, it is needed to run the associated recursive
dynamics in advance, and in addition, the following quantities

∂Si
∂p

,
∂Ṡi
∂p

,
∂F ext

i

∂p
,
∂Ii
∂p

, and
∂hi
∂p

(92)

for each body should be set properly in the initialization step.
The algorithms for the derivatives of the dynamics are so general that they can be

applied to differentiating the equations of motion with respect to any arbitrary scalar
variable. It should be noted that, by implementing the algorithms cleverly, the calculation
speed can be much faster than its naive implementation, because, in some cases, many of
the quantities in (92) are zero. For example,

• if p = qk where qk ∈ < denotes the k-th coordinate of system, then

– ∂Ii
∂p = 0

– ∂Si
∂p = ∂Ṡi

∂p = ∂hi
∂p = 0 when qk /∈ qi
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• if p = q̇k, then

– ∂Si
∂p = ∂Ii

∂p = ∂hi
∂p = 0

– ∂Ṡi
∂p = 0 when qk /∈ qi

• if p = q̈k, then

– ∂Ṡi
∂p = ∂Si

∂p = ∂Ii
∂p = ∂hi

∂p = 0.
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