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Abstract 

This paper presents a class of  Newton-type algo- 
ri thms fo r  the optimization of robot motions that take 
in to  account the dynamics. Using techniques f rom the 
theory of L ie  groups and Lie  algebras, the equations of 
mot ion  of a rigid multibody sys tem can be formulated 
in such a way that both the f irst  and second derivatives 
of the dynamic equations with respect t o  arbitrary jo in t  
variables can be computed analytically. The  result i s  
that one can formulate the exact gradient and Hessian 
of a n  objective func t ion  involving the dynamics, and 
develop efficient second-order Newton-type optimiza- 
t ion  algorithms for generating optimal robot motions. 
T h e  methodology i s  illustrated with a nontrivial exam- 
ple. 

1 Introduction 

Of all the remarkable physical abilities of humans, 
motor control is the skill that is most often taken for 
granted, as it seems to require the least conscious ef- 
fort on our part. Our aim in this paper is to em- 
ulate, for robots, the low-level capabilities of human 
motor coordination and learning within the framework 
of optimal control theory. Our approach is based on 
the simple observation that, in nearly all of the motor 
learning scenarios that we have observed, some form 
of optimization with respect to  a physical criterion is 
taking place. 

There is ample biological evidence to justify an 
optimization-based approach to motor control and 
learning. Indeed, in the literature one can find many 
optimal control-based studies of various human mo- 
tions, e.g., maximum-height jumping [l], and volun- 
tary arm movements [2]. In addition to the more 
obvious optimization criteria like minimum energy or 

control effort, strategies that involve minimizing the 
derivative of acceleration (or jerk) [3], as well as mus- 
cle or metabolic energy costs [4], have also been ex- 
amined in the context of specific arm motions. 

From an engineering perspective an optimization- 
based approach to motion generation usually comes 
to mind as the first reasonable thing to try. Past ap- 
proaches have usually met failure, however, because 
the complexity of the governing equations of motion 
usually led to  intractable optimization problems. In a 
series of previous papers [6] ,  [7], it was shown that by 
appealing to techniques from the theory of Lie groups, 
one can formulate the equations of motion of even 
complicated multibody systems like the human body 
in such a way as to render the optimization problem 
tractable. In many cases the solutions can even be 
obtained quite efficiently and in a numerically robust 
way. The key, as we discuss below, lies in the ability 
to compute exact analytic gradients of the objective 
function, without resorting to  expensive and inaccu- 
rate numerical approximations that are often the cause 
of instability and lack of convergence. 

Even with such a capability, however, the algo- 
rithms still require significant amounts of computa- 
tion, and can be quite slow to converge. Such slow con- 
vergence is characteristic of optimization algorithms 
that rely only on first-order gradient information- 
the classical example involves the steepest descent al- 
gorithm, which leads to the well-known zig-zag phe- 
nomena near poorly conditioned local minima (i.e., lo- 
cal minima at which the Hessian becomes poorly con- 
ditioned). Quasi-Newton methods such as the DFP 
and BFGS methods construct an approximation to the 
Hessian (or more accurately, its inverse) with the gra- 
dient information gathered during the descent process. 
It has been pointed out, however [lo], that the perfor- 
mance of quasi-Newton methods is highly sensitive to 
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the accuracy of the line search algorithm, and that 
in general exact Hessian information, if it can be ob- 
tained efficiently, will lead to more robust and efficient 
optimization algorithms. 

In this paper we show that, by suitably reformulat- 
ing the recursive geometric dynamics algorithms de- 
rived in [6] and [7], one can formulate the Hessian of 
the objective function in analytic form, thereby mak- 
ing the implementation of second-order Newton-type 
optimization algorithms possible. As is well-known, 
Newton-type algorithms have quadratic convergence 
properties, and in general offer much greater robust- 
ness and faster convergence compared to strictly first- 
order gradient-based methods. 

We begin by first describing the dynamic modeling 
and gradient-based optimization algorithms developed 
using techniques from Lie group theory. We then show 
how to modify and extend this formulation such that 
second derivatives of the dynamic equations can be 
obtained recursively. We then investigate a class of 
natural motion problems that involve generating min- 
imum torque motions: after parameterizing the trajec- 
tories in terms of B-splines, we formulate the trajec- 
tory generation problem as a parameter optimization 
problem involving the B-spline control points. Exper- 
imental results obtained using steepest descent, the 
BFGS quasi-Newton method, and a modified Newton 
method are obtained and compared. Natural motions 
obtained using these algorithms are illustrated for a 
two-link planar open chain, and the numerical effi- 
ciency and convergence properties of the various algo- 
rithms are discussed. 

2 Recursive Differentiation of the Dy- 
namics 

In order to determine optimal, natural motions for 
the robot systems of interest, a complete dynamic 
model is needed. Within the fixed kinematic topology, 
our motion optimizer can vary the parameters of the 
model to find the optimal motion, or motor program, 
for whatever performance measure selected. The dy- 
namic equations for an open kinematic chain can be 
written in the form 

M(q)ii + C(4,Q)Q -I- G(q) = 7 (1) 

where q denotes the joint position vector, M ( q )  is 
the inertia matrix, and C and G represent the Corio- 
lis/centrifugal and gravity terms, respectively. The 
above dynamics equation can be computed recur- 
sively; first we begin with some definitions and nota- 

tion. Recall that the group of rigid body transforma- 
tions on R3, denoted SE(3), is given by 4 x 4 matrices 
of the form 

g = [ :  :] 
where p E R3 and R is a 3 x 3 rotation matrix. The 
Lie algebra of S E ( 3 )  is called se(3) ,  and can be rep- 
resented by the following 4 x 4 matrix form 

t =  [ $1 ;;I ( 3 )  

0 -w3 w2 

-w3 w1 0 
where w,v E R3, and [w] = ( w3 o - w l ) .  Note 
that se(3)  can be regarded as 6-dimensional vector 
space, < = (w,v) E !R6. Now, the exponential map 
exp : se(3)  + S E ( 3 )  is defined as the following rela- 
tion 

(4) 

where 

We will now give several mappings, which help to 
reduce the complexity of dynamics. With g E S E ( 3 )  
and e E se(3) ,  the adjoint mapping Ad : S E ( 3 )  x 
se(3)  + se(3)  is defined as follows. 

Lie bracket can be represented by the mapping ad : 
se(3)  x se(3)  -+ se(3) ,  which is defined as 

It could be more convenient to treat the above map- 
pings as the following 6 x 6 transformation matrices 
acting on B6 
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where g = ( R , p ) ,  & = ( ~ 1 , 2 1 1 )  and ( 2 ' =  ( w 2 , 2 ) 2 ) .  We 
can also define the dual adjoint mapping and dual Lie 
bracket with the following matrix transformation. 

Now, the Newton-Euler formulation of an n-dof se- 
rial robot dynamics can be written with the above 
notations: 

0 Forward recursion: for k=l  to n 

f k - l , k  = M k e S k q b  

v k  = Adf-i v k - 1  + S k q k  

v k  = s k q k  + Adf-i v k - 1  + advbSkqk 
b-1,b 

b - 1 , k  

0 Backward recursion: for k=n to 1 

F k  = Ad;;, F k + l  4- J k v k  - a d G b J k V k  

T k  = S k T F k  

k b + l  

where f k - l , k  = M k e S k q b  denotes the rigid body trans- 
formation from link k - 1 to k with M k  E SE(3)  and 
s k  E se(3) ,  K E R6 is the generalized velocity of link 
k, Fi E R6 is the total generalized force transmitted 
from link k - 1 to  k ,  and J k  is the 6 x 6 generalized in- 
ertia matrix of link k .  J k  is composed of inertia matrix 
4,  mass m k  and the vector r k  from the link k frame 
to the center of mass of link k with the following form: 

I k  - m k [ r k I 2  m k [ r k ]  ] 
Jk = [ - m k [ r k ]  m k l  

For more details on the geometric dynamics and its 
notations, one is referred to [6] and [8]. 

To derive the derivatives of the dynamic equations, 
we need the following basic derivatives: 

d 89 
a P  a P  
- AdesqM = - adsAdesqM 

d 89 - AdMeSq = - AdM,sqads 
a P  a P  
- d Ad,*sqM = - 89 Ad,*s,,ad; 
a P  aP 

where S E se(3) and M E SE(3)  are all constants, 
and q E 92 and V E R6 are variables. 

Now one can easily differentiate the recursive dy- 
namic equations with respect to a variable p = 
(Pl,... ,Pm) E w. 

0 Forward recursion: for k= l  to n 

0 Backward recursion: for k=n to 1 

One c n also recognize the ab ve first derivative al- 
gorithm as being similar to the form as presented in 
[7] with some subtle yet important differences. Dif- 
ferentiating this modified form of the recursive gradi- 
ent algorithm, we can obtain a recursive algorithm for 
analytically evaluating the second derivatives of the 
dynamics as follows: 
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Despite the seeming complexity of the recursive 
computations, it should be noted that many of the 
computations embedded in the forward and backward 
recursions need only be evaluated once. 

3 Generating Minimum Control Effort 
Motions 

We now show how the recursive algorithms of the 
previous section can be effectively put to use to gen- 
erate minimum control effort motions for robots. The 
particular form of the objective function we consider 
is as follows: 

t f  
min J = rTr dt 
4 ( t )  

subject to the dynamic equations of the system; here 
q( t )  and T represent the joint and torque profiles, re- 
spectively. A local solution to the above optimal con- 
trol problem is found by assuming that the joint co- 
ordinates q( t )  in (1) are parameterized by B-splines, 
and varying these parameters in the following man- 
ner. The B-spline curve depends on the blending, 
or basis, functions B i ( t ) ,  and the control points P = 
{ P I ,  . . . ,pm},  with pi E P. The joint trajectories then 
have the form q = q(t ,  P )  with 

m 

q( t ,  P> = Bi(t)pi  (12) 
i=l  

We should note that the use of B-Spline polyno- 
mials as the basic primitives upon which all of our 
motions are developed is consistent with recent re- 
sults in neuroscience. In [5] it was observed clini- 
cally that when human subjects move their hand in 
a circular motion, the trajectory obtained can be best 
described as a summation of "bell shaped" basis func- 
tions. These functions are then translated and scaled 
to find the best match to the human movement. We 
are achieving the same basic effect through (12). 

With this approach T = r ( P , t ) ;  q,q,  and 4 all are 
given functions of t and P from (12) and its time- 
derivatives, and hence r is an explicit function of the 
spline parameters through (1).  

We have converted the original problem into a 
parameter optimization problem, and efficient quasi- 
Newton algorithms can then be used to solve the prob- 
lem. However, for assured convergence of these algo- 
rithms two conditions must be met: the second deriva- 
tives of J(P) must be bounded, and every approxi- 
mate Hessian (found, for example, from a BFGS up- 
date [lo]) used in the quasi-Newton algorithm must 
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remain positive definite with bounded condition num- 
ber [9]. 

Due to the complexity of the dynamic equations of 
motion, most previous solutions to nontrivial optimal 
control problems for robotic systems use finite differ- 
ence gradient approximations of J (P) .  In these cases, 
it is usually not possible to ensure a bounded con- 
dition number of the approximate Hessian, and the 
algorithms usually terminate prematurely. In order 
to  compute the gradient and Hessian of the objective 
function, we note that 

The most significant step for evaluating the gradient 
and Hessian is computing the derivatives of the joint 
torques with respect to the path parameters P. We 
compute these derivatives analytically by the recursive 
algorithms derived previously. 

We now consider the optimal lifting motion of a 2 
d.0.f. planar open chain under the influence of gravity. 
The joint trajectory for the open chain is represented 
by a B-spline with 9 control points, and the follow- 
ing three optimization algorithms are evaluated for 
comparison purposes: steepest descent, BFGS quasi- 
Newton method, modified Newton's method with line 
search. A linearly interpolated trajectory is used as 
the initial trajectory in each of the optimization al- 
gorithms, for which the initial value of the objective 
function is 703.447, and the stopping criterion is set to 
11g11 < We briefly describe each algorithm and 
the corresponding optimization results. 

3.1 Steepest Descent 

The steepest descent method is described by the 
following recursive algorithm: 

T 
z k + l  = a k - a k g k  

a k  = arg min J ( 2 k  - as:) 
f f > O  

where g k  denotes the gradient at x k .  The final value of 
the objective function is 314.069. The number of iter- 
ations was forcefully terminated at 229 after the algo- 
rithm failed to meet the stopping criterion-the zig- 
zag phenomena was encountered. The elapsed time 
on a Pentium 300MHz PC was 472 seconds. It is pre- 
cisely because of the poor convergence properties of 
the steepest descent method that more sophisticated 
second-order algorithms have been developed; we next 

consider the performance of these Newton-type algo- 
rithms. 

3.2 BFGS Quasi-Newton Method 

In the BFGS quasi-Newton Method, the Hessian 
H of the objective function is approximated with the 
gradient information gathered during the descent pro- 
cess: 

2k+1 = x k  - C r k H L 1 g r  

(Yk = arg min J ( Z k  - aH;'g;) 
a>O 

In spite of using an approximated Hessian, the conver- 
gence properties are not as good as expected. We also 
found that the algorithm was extremely slow to con- 
verge near the solution, and that the algorithm had to 
be forcefully terminated after 45 iterations. The final 
value of the objective function was 314.069, and the 
elapsed computation time was 88 seconds. 

3.3 Modified Newton Method 

The recursive steps for the modified Newton 
method are given as follows: 

x k + l  = X k  - a k H L 1 g $  

a k  = arg min ff J ( X k  - aH; lg ; )  

The final value of the objective function was 314.069, 
which is same with the previous ones. The algorithm 
satisfied the stopping criteria after 13 iterations, and 
the elapsed computation time was 76 seconds. 

3.4 Discussion of Results 

Even though the steepest descent method shows the 
simplest formula, its poor convergence property makes 
one hesitate to adopt it. Also the BFGS method shows 
good performance in searching the local minima with 
only gradient information, but has the disadvantage 
of poor performance near the solution. In spite of its 
fastest convergence property, the speed of the modi- 
fied Newton algorithm was not so fast because of its 
long calculation time in obtaining the Hessian. In fact, 
even though the fastest algorithm in obtaining the lift- 
ing motion of the 2 d.0.f. planar open chain was the 
modified Newton method, the BFGS method is the 
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Figure 1: The objective function value and the norm 
of the gradient profiles 
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Figure 2: Lifting motion of a 2 d.0.f. planar open 
chain : initial and final trajectories 

fastest one in finding near local minima for higher 
d.0.f. systems. So, it seems promising to combine 
the BFGS method with the algorithms, which use the 
exact Hessian, such as the modified Newton method 
for fast convergence property near a solution. 

4 Conclusions 

In this paper we have presented a methodology for 
generating optimal robot motions, by developing opti- 
mization algorithms that involve second-order deriva- 
tive information of the dynamic equations. By formu- 
lating the equations of motion using techniques from 
the theory of Lie groups and Lie algebras, one is able 
to derive efficient recursive algorithms for evaluating 
both the gradient and Hessian of the objective func- 
tion. The performance of several numerical optimiza- 
tion algorithms involving gradient and Hessian infor- 
mation are compared. 

Some potential uses for our optimization algo- 
rithms include using the optimized motions as training 
data for, e.g., neural network-based learning schemes. 
While our algorithm produces reliable and physically 
plausible solutions, the computational requirements 
are still significant enough to prevent real-time tra- 
jectory generation. Using the optimized motions as 
training data for more advanced learning schemes ap- 
pears to be a promising approach to generating mo- 
tions in a more computationally efficient way. 
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