
121

Fast Simulation of Skeleton-Driven Deformable
Body Characters

JUNGGON KIM and NANCY S. POLLARD
Carnegie Mellon University

We propose a fast physically-based simulation system for skeleton-driven
deformable body characters. Our system can generate realistic motions of
self-propelled deformable body characters by considering the two-way in-
teractions among the skeleton, the deformable body, and the environment in
the dynamic simulation. It can also compute the passive jiggling behavior
of a deformable body driven by a kinematic skeletal motion. We show that
a well-coordinated combination of: (1) a reduced deformable body model
with nonlinear finite elements, (2) a linear-time algorithm for skeleton dy-
namics, and (3) explicit integration can boost simulation speed to orders of
magnitude faster than existing methods, while preserving modeling accu-
racy as much as possible. Parallel computation on the GPU has also been
implemented to obtain an additional speedup for complicated characters.
Detailed discussions of our engineering decisions for speed and accuracy of
the simulation system are presented in the article. We tested our approach
with a variety of skeleton-driven deformable body characters, and the tested
characters were simulated in real time or near real time.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Com-
putational Geometry and Object Modeling—Physically based modeling;
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—
Animation

General Terms: Algorithms

Additional Key Words and Phrases: Physics simulation, deformable body,
skeleton, finite element method, mesh embedding, hybrid dynamics, parallel
computing, physically-based simulation, skeleton-driven deformable body

ACM Reference Format:

Kim, J. and Pollard, N. S. 2011. Fast simulation of skeleton-driven de-
formable body characters. ACM Trans. Graph. 30, 5, Article 121 (October
2011), 19 pages.
DOI = 10.1145/2019627.2019640
http://doi.acm.org/10.1145/2019627.2019640

This research was partially supported by NSF award CCF-0702443.
Authors’ addresses: J. Kim (corresponding author), N. S. Pollard, Depart-
ment of Computer Science, Carnegie Mellon University, Robotics Institute,
5000 Forbes Avenue, Pittsburgh, PA; email: junggon@cs.cmu.edu.
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific permission
and/or a fee. Permissions may be requested from Publications Dept., ACM,
Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1
(212) 869-0481, or permissions@acm.org.
c© 2011 ACM 0730-0301/2011/10-ART121 $10.00

DOI 10.1145/2019627.2019640
http://doi.acm.org/10.1145/2019627.2019640

1. INTRODUCTION

Many researchers are interested in fast simulation of elastically de-
formable bodies and many approximate techniques have been pro-
posed, along with fixes to those techniques. However, it is not clear
how to make the best choices to have a fast simulation that is also
as accurate and realistic as possible. In addition, although skeleton-
driven deformable bodies are very important, they have been little
studied in previous literature. This article looks at skeleton-driven
deformable bodies, discusses design choices for mathematical mod-
eling, and details a complete implementation of a simulation system.

Producing character motion through physics simulation usually
takes a long time not only because the simulation itself is com-
putationally expensive, but also because many trials must be run
with different settings of simulation parameters to reach a desired
result. Therefore, in order to be most useful to animators, a sim-
ulation system should be fast enough to run at interactive rates.
Speed, however, is not the only virtue required of a simulation al-
gorithm. The accuracy of the simulation is also very important,
because obtaining better, or realistic, animation is the very reason
for using an expensive physics-based technique. Because speed and
accuracy usually cannot be pursued at the same time, most existing
techniques find their own points of compromise between the two
ultimate goals. This article considers in detail which design trade-
offs should be made when real-time or near real-time simulation of
characters such as that shown in Figure 1 is a requirement.

We focus on physics-based simulation for elastically deformable
body characters which have their own skeletons inside the soft
bodies, and the deformable bodies are assumed to be driven by
their skeletons. The types of simulation may be classified into two
groups: the so-called one-way and two-way simulations. In one-
way simulation, the skeleton is driven kinematically so that the
global skeletal motion is not affected by the secondary motions of
the passive deformable bodies and the environment. Such one-way
simulation systems have been implemented in many commercial
animation tools for postprocessing the behavior of passive elements
such as hair and clothing. In two-way simulation, on the contrary,
the character is usually actuated by internal forces only; in this
case, forces or torques applied at the joints of the skeleton. The
two physical systems, the skeleton and the deformable body, in-
teract with each other so that the global motion of the skeleton is
affected by the secondary motions of the soft body as well as the
internal actuation. The character and the environment can also be
affected by each other through contact and collisions, and this often
leads to complicated behaviors, especially when the environment is
changeable, for example, by having movable obstacles as shown in
Figure 2.

In this article we present a fast physics simulation system
for skeleton-driven deformable body characters. Our system can
handle both one-way and two-way simulations for skeleton-driven
deformable body characters in a unified framework. Moreover, the
simulation speed is fast enough to be applied to an interactive char-
acter animation system. For example, the jiggling in the deformable

ACM Transactions on Graphics, Vol. 30, No. 5, Article 121, Publication date: October 2011.

121:2 • J. Kim and N. S. Pollard

Fig. 1. A skeleton-driven deformable body character (Fatman): A realistic jiggling behavior of the dancing character’s deformable body can be captured in
near real time with our physically-based simulation technique. See Figure 15 and Table IV for its simulation model and computation time.

Fig. 2. A starfish escaping from a glass cage: A starfish has been trapped in a glass cage and is trying to escape by attempting a few trials, for example, hitting
the obstacle with a jump (the second frame) or lifting up the obstacle’s edge using its arm (the third frame). Our two-way simulation handles such complicated
interaction between the character and the changeable environment automatically, and results in a physically plausible animation.

body of the complex skeleton-driven character, Fatman, shown
in Figure 1 can be generated in almost real time in our system
(Table IV). Our system for skeleton-driven deformable body
characters has the following features, and to our knowledge, no
previous work shows all of them (see Figure 3).

(1) Speed. The simulation speed is fast enough to be applied to an
interactive animation control system while preserving model-
ing accuracy as much as possible.

(2) Unity. Our system handles both the one-way and two-way sim-
ulations in a unified formulation.

(3) Scalability. The cost of all runtime computations for solving the
equations of motion for a single simulation time-step is linear
in the model complexity, which is desirable for good scalability
to complicated characters.

We investigate existing techniques, review their strengths and
weaknesses, and take some of their advantages while addressing
their drawbacks by modifying them or by hiring other techniques.
More specifically, a nonlinear finite element method is chosen to
handle largely deformed elements effectively, a reduced system
for deformable bodies obtained by applying mesh embedding and
mass lumping is used to speed up the simulation, and a linear-
time algorithm is used to solve the fully nonlinear dynamics of
the skeletons. We present detailed discussions on our engineering
decisions in putting such technical pieces together to achieve a fast
simulation speed while preserving modeling accuracy as much as
possible.

After reviewing related previous work in Section 2, we will ex-
plain our choices in building an approximate mathematical model
for a skeleton-driven deformable body system and solving the equa-
tions of motion of the dynamical system efficiently in Sections 3, 4,

and 5. Parallelizing the computation can lead to additional speedup,
and this will be addressed in Section 6. Finally, we will show the
results in our experiments in Section 7, and conclude this article in
Section 8.

2. RELATED WORK

Generating realistic behaviors of deformable bodies has been an
active research topic in computer graphics. After the pioneering
work by Terzopoulos et al. [1987], physics-based methods have
been applied successfully to the simulation of various phenom-
ena in deformable objects such as cloth [Baraff and Witkin 1998;
Bridson et al. 2002; Choi and Ko 2002], elasticity [O’Brien and
Hodgins 1999; Müller et al. 2002], and plasticity [O’Brien et al.
2002; Bargteil et al. 2007]. An excellent survey on the methods
for deformable bodies in computer graphics can be seen in Nealen
et al. [2006], and here we briefly summarize the previous work most
closely related to ours, that is, the techniques for physically-based
simulation of soft elastic bodies with skeletons.

Shinar et al. [2008] presented a time integration scheme for solv-
ing dynamic elastic deformations in soft bodies interacting with
rigid bodies. Their framework can handle an articulated rigid body
skeleton embedded in a soft body using prestabilization and post-
stabilization to enforce joint constraints, and capture the two-way
coupling between the skeleton and the deformable body. However,
their method does not facilitate development of an interactive ani-
mation system because of the massive computation required for the
finite elements representing the deformable body. In their experi-
ment, for example, it took about 30 min for a 1s simulation of a
flopping fish motion. In our approach we obtain a similar two-way
coupling of dynamic motions in real time with a reduced model
while preserving modeling accuracy as much as possible.

ACM Transactions on Graphics, Vol. 30, No. 5, Article 121, Publication date: October 2011.

Fast Simulation of Skeleton-Driven Deformable Body Characters • 121:3

Fig. 3. Simulated motions of self-propelled characters: The fish and worm characters have deformable bodies attached to their skeletons, and the jumping
and rolling motions were actuated only by internal motors (i.e., the active joints in the skeleton). The only external forces are those due to gravity and contact
forces computed using a penalty-based contact mechanism. This physically plausible model of forces was used for the two-way simulation in order to mimic
lifelike self-propelled motions.

Focusing on the surface rather than the volume is one possible
approach to a fast solution for physically-based deformations of
soft bodies [Turner and Thalmann 1993; Bro-nielsen and Cotin
1996; James and Pai 1999; Shi et al. 2008]. Galoppo et al. [2006]
presented a fast method to capture dynamic deformations on the
surface of a soft body including a rigid core, and they extended
their method to apply to soft body characters with multiple rigid
bones in Galoppo et al. [2007]. Their formulation, however, only
considers the elastic energy from skin-layer deformation and does
not include the deformation inside the volume, so it does not capture
pose-dependent deformations correctly.

Another possible approach to fast, physically-based volumetric
deformations in the soft body is using a quasistatic approximation.
Teran et al. [2005] presented a quasistatic solution for flesh defor-
mation driven by a skeleton. Lee et al. [2009] used a similar method
to compute the deformation of the soft tissue in their biomechanical
model of the human upper body. Though such quasistatic solutions
are much faster than a fully dynamic simulation with the same
model size, they do not capture the dynamic behaviors of the soft
body such as jiggling.

Reducing the mathematical model size would be a practical
choice to speed the full dynamics simulation to an interactive
rate. Mesh embedding, which is also called free-form deforma-
tion [Sederberg and Parry 1986], uses a low-dimensional coarse
volumetric mesh to represent the behavior of a deformable body.
The embedding mesh representation has been successfully applied
to physics-based simulations of deformable objects such as elastic
soft bodies [Faloutsos et al. 1997, Capell et al. 2002b, Nesme et al.
2006, 2009; Kharevych et al. 2009] and viscoplastic material flow
with thin features [Wojtan and Turk 2008]. Particularly, Capell et al.
[2002a] employed a skeleton to control the coarse mesh enclosing a
soft elastic body and they extended their method to include rigging
forces which guide the deformation to a desired shape [Capell et al.
2005]. They handled the skeletal constraints as a set of prescribed
trajectories for the nodes located on the bones, so that the trajec-
tories must be given before simulation. Though their method can
effectively handle one-way simulation with a given global skeletal
motion, it does not consider two-way coupling among the skeleton,
the soft body, and the environment which is needed to generate
physically plausible motions of lifelike characters. Our approach
can handle two-way interactions in the simulation to create realis-
tic motions of self-propelled characters like the starfish shown in
Figure 2, in addition to one-way simulation. In this animation, two-
way coupling gives us, for example, physically plausible ballistic

trajectories, and realistic vibration of the entire character body, in-
cluding the skeleton, when the starfish drops onto the pier, while
handling complicated interaction between the character and the
movable obstacle.

Using a linear subspace spanned by a small number of basis vec-
tors to represent the global deformation of a deformable body is
one of the most popular techniques for reducing the dimension of
complexity in a huge physics model. Such a technique, which is also
called modal analysis, has been successfully applied to the analysis
of mechanical structures in engineering, because usually very small
deformation occurs in such systems. After the pioneering work by
Pentland and Williams [1989], modal analysis has also been stud-
ied by many researchers in the graphics community. James and
Pai [2002] used precomputed modal vibration models excited by
rigid body motions to produce secondary motions of the soft tissues
attached to the character bones in real time. More recently, many
researchers have tried to expand the applications of modal anal-
ysis by effectively handling nonlinear deformation and geometric
constraints. For example, Hauser et al. [2003] presented a method
for real-time manipulation of positional constraints, Choi and Ko
[2005] presented a modal warping technique which handles large
rotational displacements and orientational constraints, and Barbič
and James [2005] used additional basis vectors obtained from either
modal derivatives or user sketches to capture the nonlinear deforma-
tion effectively. Kim and James [2009] introduced an online model
reduction technique, which incrementally builds a reduced model
as the simulation progresses, to skip the computationally expen-
sive precomputation stage and not to be restricted to any initial
basis. Though exploiting the modal technique is complementary to
the approach described in this article and may potentially give our
simulation system further speedup, it is still inherently difficult to
handle the nonlinear kinematic constraints caused by a complex
internal skeleton within the linear subspace framework.

In this article, we reduce the mathematical model size through
the use of mesh embedding, but in a form that allows for two-
way coupling. We discuss the implications of using nonlinear finite
elements in such an implementation, and present a novel technique
to speed up treatment of largely deformed elements. We discuss the
advantages of the lumped mass model and detail proper treatment
of mechanical properties near the boundary of the body in order
to preserve modeling accuracy as much as possible even in such a
reduced system. We describe how to treat skeletal dynamics so that
the entire system scales in a linear way with character complexity.
Finally, we discuss issues that arise in parallel implementation of

ACM Transactions on Graphics, Vol. 30, No. 5, Article 121, Publication date: October 2011.

121:4 • J. Kim and N. S. Pollard

such a system. Throughout the article, we explain our engineering
decisions and compare to alternatives.

3. NONLINEAR FINITE ELEMENTS

The first decision that must be made is to choose how to model
the deformable body for simulation. In this section we argue
for the choice of nonlinear finite elements, discuss the impor-
tance of handling largely deformed elements properly, and present
a novel algorithm for fast detection of largely deformed ele-
ments. For additional background information to supplement this
section, please see the textbooks Bonet and Wood [1997] and
Basar and Weichert [2000], as well as the overview by Nealen
et al. [2006].

3.1 Nonlinear Deformation

Strain is a geometric measure of deformation such as stretching,
compression, and shearing in a deformable body. Most previous
work pursuing fast simulation relies on a linearized strain, or
infinitesimal strain under the assumption of small deformation,
because of its simplicity in computation. The linearized strain,
however, can cause serious problems such as inflation of the
body especially when the deformation contains rotational modes
as illustrated in Müller and Gross [2004]. This is because the
linearized strain cannot cleanly filter out the rigid rotational
modes. Many techniques, called corotational methods, have been
suggested to remove as much of the rigid rotation as possible by
using local coordinate frames following the global motion of the
body [Terzopoulos and Witkin 1988; Capell et al. 2002a; Müller
et al. 2002; Müller and Gross 2004]. Though corotated linearized
strain has been widely used in interactive graphics applications, it
is still valid only when the deformation is very small.

Skeleton-driven deformable bodies, however, are likely to un-
dergo large deformation, especially near the skeletal joints (e.g., see
Figure 4). When deformations are large, a linearized method can
generate highly unrealistic deformations as pointed out in Capell
et al. [2005]. In order to handle large deformation in the elements
effectively, we use the nonlinear Green-Lagrangian strain tensor
because it can express large deformations correctly regardless of
the rigid modes. From the viewpoint of simulation speed, however,
using the nonlinear strain could be risky because of the expen-
sive computation required. We overcome this problem by reduc-
ing the number of mesh elements with a coarse mesh (Section 4)
and by parallelizing the computation (Section 6). This combina-
tion of decisions makes it possible to have convincing large de-
formations near the joints at real-time or near real-time simulation
speeds.

Nonlinear Strain Details. The nonlinear Green-Lagrangian
strain is defined as

E = 1

2
(F T F − I), (1)

where I is the identity tensor and F is the deformation gradient
tensor F = ∂x

∂X
where x and X denote the positions of a point in the

material after and before deformation, respectively.
In a finite element method, the strain E for each element is com-

puted from the nodal positions in the currently deformed state and
the initially undeformed state. In the case of a tetrahedral mesh with
a linear shape function, E becomes a constant 3×3 matrix for each
element. One can see, for example, O’Brien and Hodgins [1999],
for an explicit formula in such a case.

Fig. 4. A largely deformed mesh: Large deformations may easily occur
during the simulation of skeleton-driven deformable body systems. This
figure shows an example of such deformations in the worm mesh. The red
ovals indicate highly deformed regions due to the underlying skeleton motion
and the contacts between the character and the ground (black horizontal
line). Handling such large deformations effectively is important to obtain a
pleasing result and to achieve a stable simulation system. The reddish grid
lines represent the volumetric finite element mesh. This mesh is attached
to the skeleton (blue links and yellow joints) by fixing some of the the
mesh nodes (black spheres) to the links. See Section 5 for detail on our
skeleton-driven deformable body model.

3.2 Elastic Forces

To compute elastic forces from deformation, or strain, we need
to know how internal stress is distributed across the entire soft
body. Because the internal stress depends on both the amount of
deformation and the material’s mechanical properties, we need a
mathematical material model, which is also called as a constitutive
equation, to represent the relationship. Once a proper material model
is chosen, we can compute the stress from the strain already obtained
before.

St. Venant-Kirchhoff (or StVK) material is one of the most pop-
ular models for the purpose of computer animation because it is
simple to compute and applicable to geometric nonlinear analysis.
The material is defined by

S = λ(trE)I + 2μE, (2)

where S is the second Piola stress tensor, and λ and μ are Lamé pa-
rameters which determine the material’s elastic properties. Though
our simulation system does not require the use of a particular mate-
rial model, we chose the StVK model for our examples because of
its simple implementation. The StVK model, however, has a fatal
drawback when the element undergoes large compression. During
large compression the stiffness of the material gets weaker as com-
pression increases so that the internal stress finally becomes zero
when the element is flat. Moreover, if the element gets inverted,
the stress acts in the opposite direction so that the inverted element
cannot be naturally restored after the inversion [Irving et al. 2004].
To handle the problem, Irving et al. [2004] suggested a correction
mechanism for largely deformed elements, which will be briefly
reviewed in Section 3.3 along with our suggested improvement for
fast computation.

The elastic forces acting on the element nodes can be obtained
from the second Piola stress tensor S in (2). We follow the formula
in Teran et al. [2003] because the formula fits well with the diag-
onalization technique of Irving et al. [2004]. The elastic forces are
obtained by

fi = Pbi, (3)

ACM Transactions on Graphics, Vol. 30, No. 5, Article 121, Publication date: October 2011.

Fast Simulation of Skeleton-Driven Deformable Body Characters • 121:5

where P = FS denotes the first Piola-Kirchhoff stress tensor and
bi = − 1

3 (A1N1 + A2N2 + A3N3) where Aj are the areas of the
undeformed faces incident to the vertex and Nj denotes the normal
vectors to those undeformed faces. Because Aj and Nj do not
change during simulation, bi can be precomputed. One can also
save multiplications by using the relationship f0 = −(f1 +f2 +f3).
The total elastic force acting on a node is obtained by summing the
forces exerted by all elements incident to the node. Note that (3)
is valid only when the mesh element is fully filled with elastic
material. We will discuss how to handle partially filled elements,
which are commonly found when modeling with mesh embedding,
in Section 4.3. Treating partially filled elements properly is critical
for achieving accuracy in modeling and for improving stability
of the simulation, but to our knowledge is not addressed in prior
publications.

3.3 Largely Deformed Elements

As mentioned earlier, the StVK material becomes softer as the
material gets compressed and this can lead elements to become
inverted quite easily. More seriously, the material is getting rapidly
stiffer as it gets stretched and this may cause the simulation to
diverge. In fact, many other mathematical material models have
similar problems. For example, Neo-Hookean material has behavior
opposite to StVK material in large compression, becoming rapidly
stiffened as it is compressed.

To overcome such a problem Irving et al. [2004] presented a
technique for modifying the material model in the range of large
deformation. Suppose that the deformation gradient F can be de-
composed as

F = UF̂V T , (4)

where F̂ is a diagonal matrix, and U and V are pure rotations,
that is, UT U = V T V = I and det U = det V = 1. Note that such
a decomposition is slightly different from the traditional singular
value decomposition in the sense that U and V must be pure
rotation matrices and the diagonal entries in F̂ can be negative.
The diagonal entries of F̂ , which are called the principal stretches,
represent how much the element has been stretched or compressed
along principal axes. Therefore, through the diagonalization of the
deformation gradient, we can determine if an element undergoes
large deformation or not. For example, if one of the diagonal entries
is negative, it means that the element has been inverted along the
corresponding principal axis. If the element has been stretched or
compressed too much in a certain principal direction, a different
material model such as a linear model is applied in that direction
to obtain reasonable stress and stiffness. In our implementation the
StVK model is replaced with rotated linear models when the defor-
mation exceeds given lower or upper limits as shown in Figure 5.
Once the stresses along the principal axes are determined from the
principal stretches, the first Piola-Kirchhoff stress tensor can be
obtained as

P = UP̂V T , (5)

where P̂ = P (F̂) is a diagonal matrix whose diagonal entries
are the stresses along the principal axes, and U and V have been
obtained in (4).

In order to decompose the deformation gradient, we need to
perform singular value decomposition on F (or solve the eigen-
problem F T Fv = λv) and postprocess to ensure U and V are pure
rotations [Irving et al. 2004]. Though F is just a 3 × 3 matrix, exe-
cuting the process for every element is computationally expensive.
We suggest an efficient way to address this problem by diagonal-

0 1

0

deformation gradient

st
re

ss

Fig. 5. The relationship between the deformation gradient (F̂) and the
first Piola-Kirchhoff stress (P̂) along a principal axis: (Red) St. Venant-
Kirchhoff model (blue) Rotated linear models with the same stiffness as
the StVK model at the boundaries (blue circles). Note that the element is
undeformed, compressed, and stretched when F̂ = 1, F̂ < 1 and F̂ > 1,
respectively.

izing the deformation selectively for largely deformed elements
only.

Selective Diagonalization

The key for selective diagonalization is to sort out largely deformed
elements in a short time. To see whether the element deformation
exceeds a given range of small deformation, checking the range
of the principal stretches, rather than obtaining the exact values
of them, is enough. If det F ≤ 0 for an element, this means that
the element has been inverted so that we need the diagonalization
process on that element. On the other hand, if det F > 0, we
need an additional step to decide whether the element undergoes
large deformation. Let [δL, δU] be a given small deformation range
where we do not need the diagonalization process. First note that
the solutions of the characteristic equation, det(λI − F T F) = 0,
correspond to the square of the principal stretches. For elements
with small deformation, solutions to this equation must lie between
δ2
L and δ2

U . Now, observe that the left-hand side of this equation is a
cubic polynomial in λ

f (λ) = λ3 + aλ2 + bλ + c, (6)

where a, b, and c are the coefficients of this polynomial. This cubic
polynomial will have three zeros, which all must lie between δ2

L

and δ2
U for the element to have small deformation. Finally, consider

the diagram in Figure 6. We can conclude that the element has a
small deformation, that is, that all of the solutions are in the range[
δ2
L, δ2

U

]
by satisfying

f
(
δ2
L

)
< 0, f

(
δ2
U

)
> 0, δ2

L < α, β < δ2
U , (7)

where α and β are the solutions of f ′(λ) = 0. If some of (7) are
not satisfied for an element, this means that the element has been
largely deformed and we need the diagonalization process for the
element. With given F and C = F T F , the check process requires
up to 37 multiplications per element in our implementation.

For every element we execute the determination process, and
then we follow the diagonalization technique by Irving et al. [2004]
for the largely deformed elements only. In the worst case, that is,
when every element is largely deformed, our approach could be

ACM Transactions on Graphics, Vol. 30, No. 5, Article 121, Publication date: October 2011.

121:6 • J. Kim and N. S. Pollard

α
βLδ

Uδ

2

2

Fig. 6. A cubic polynomial: If a cubic polynomial, f (λ) = λ3 + aλ2 +
bλ + c, satisfies (7), the zeros of the polynomial must be located between
δ2
L and δ2

U where 0 < δ2
L < δ2

U .

inefficient for its added determination process. However, in many
character motions only some part of the deformable body undergoes
large deformation.

The speedup by the selective diagonalization technique varies
depending on many factors such as the type of motions to be created,
the number of the finite elements, and the choice of SVD algorithm
for the diagonalization. It is clear that the technique can be more
effective when the number of finite elements is large so that most
of the computation time is spent in computing the elastic forces
inside the deformable bodies. Indeed, this technique results in a
speedup of a factor of 3 or more in the time required for the entire
physics simulation in some of our tests (Table V). Even for our low-
dimensional models, we found that the technique still works to some
extent (speedup from 10% to 70% depending on the simulation
setup). The effect of the technique will be discussed in detail in
Section 7.

4. REDUCED SYSTEM

In this section we explain our reduced model for deformable bodies.
We use a mesh embedding technique to reduce the complexity of the
mathematical model so that we can perform a fast low-resolution
volumetric simulation. We also consider a high-resolution charac-
ter surface in the formulation to handle the contact between the
character and the environment, and to capture correct mechani-
cal properties of the deformable body such as mass and elastic
forces.

4.1 Mesh Embedding

In order to capture the detailed physics of the deformable body with
a finite element method, a fine mesh structure fitting to the body’s
volumetric geometry can be used as in Shinar et al. [2008]. How-
ever, though the fine mesh gives high accuracy to the simulation,
the computation is too expensive to be applied to a fast simula-
tion system. Therefore we need to reduce the complexity of the
mathematical model to speed up the simulation.

Most techniques to reduce the system’s DOF within a finite ele-
ment framework can be roughly classified into two groups: modal
reduction and mesh embedding. Modal reduction is a very pop-
ular method to reduce the complexity of a finite element system.
It uses a linear subspace spanned by a small number of displace-
ment basis vectors to represent the deformation in the body. The
eigenmodes obtained from linear modal analysis would be the best
basis vectors for small deformation. For large deformation, how-
ever, they are not sufficient to capture the nonlinear deformation,
so many techniques have been suggested to choose a good defor-
mation basis set. See, for example, Barbič and James [2005] for
their choice of the basis vectors based on either modal derivatives
or user sketches. Though modal techniques have been widely used

in many real-time applications handling soft bodies such as surgery
simulators, it is still an open problem to handle the nonlinear con-
straints caused by a skeleton in the soft body within the linear
framework.

Mesh embedding, which is also called free-form deformation in
the literature, uses a relatively low-dimensional coarse volumetric
mesh enclosing the entire deformable body in order to represent the
behavior of the body. The location of every material point inside
the deformable body is determined by interpolating the positions
of the neighboring nodes in the mesh. Since the work by Faloutsos
et al.[1997], the mesh embedding technique has been widely used
to simulate soft bodies in graphics literature [Capell et al. 2002a;
Kharevych et al. 2009; Nesme et al. 2009].

We chose the mesh embedding to reduce the DOF of the de-
formable bodies in our simulation system not only because the
technique can reduce the system DOF without losing the fine ge-
ometry of the characters but also because the internal skeleton can
be handled more easily in the embedding mesh system compared
to the modal reduction. Capell et al.[2002a] presented an embed-
ding mesh framework to control soft body characters which have
an underlying skeleton made up of mesh nodes with known global
trajectories. In our formulation, however, the skeleton is considered
as an articulated rigid body system and the dynamics of the skeletal
system is fully considered in solving the equations of motion of
the whole system. Therefore, our method can simulate not only the
deformable body motions that result from a kinematically moving
skeleton, but also the motions of lifelike characters that are actuated
with internal motors in the skeleton. The complete system consist-
ing of a deformable body and a skeleton will be addressed later in
Section 5.

The position of a material point in the deformable body is deter-
mined from the nodal positions of the coarse mesh through interpo-
lation. We assume a linear relationship between the body point and
the nodes defined as

y =
∑

i

φi xi , (8)

where y ∈ �3 denotes the position of a body point, xi ∈ �3 rep-
resents the i-th nodal position, and φi = φi(y) ∈ � is a coefficient
which is associated to the i-th node at the point y and satisfies∑

i φi(y) = 1. Only neighboring nodes of the body point have
nonzero coefficients, and in the case of tetrahedral mesh, we choose
the four nodes of the tetrahedral element enclosing the material point
as the neighbors. In this case, (φ1(y), . . . , φ4(y)) is the barycen-
tric coordinates of the point y with respect to the nodal position
(x1, . . . , x4).

4.2 Mass Lumping

The mass matrix for the deformable body can be obtained from its
kinetic energy formula

T = 1

2

∫
V

ρ ẏT ẏ dV, (9)

where ρ denotes the material density at a body point y, and ẏ is
the velocity of the point. By substituting (8) to (9), one can get
T = 1

2 ẋT Mẋ where M denotes the mass matrix of the deformable
body and x is a concatenated position vector of the coarse mesh
nodes. The mass matrix can be obtained by mij = ∫

V ρ φi φj dV
where mij ·I denotes the 3 by 3 matrix component of M representing
the mass coupling between the i-th and j-th mesh nodes, and φi

and φj are the coefficients associated with nodes i and j as defined

ACM Transactions on Graphics, Vol. 30, No. 5, Article 121, Publication date: October 2011.

Fast Simulation of Skeleton-Driven Deformable Body Characters • 121:7

in (8). Though the mass matrix for the deformable body is sparse,
the cost for solving the equations of motion of the whole system,
including the deformable body and the skeleton, increases rapidly
as the number of mesh nodes increases. This is not only because
the mass matrix for the skeleton is always dense and dependent
on the pose but also because mass coupling between the soft body
and the skeleton also occurs when the soft body is attached to
the skeleton by fixing some nodes to the bones as illustrated in
Figure 9. No efficient linear-time solution for such a system is yet
known.1

Mass lumping is a common way to simplify the dynamics equa-
tions and speed up the computation by approximating the mass
matrix with a diagonal matrix. Using mass lumping for the soft
body allows a linear-time solution to the dynamics equations of
the entire system and this will be described in Section 5. Through
mass lumping, the continuously distributed mass in the deformable
body is modeled as a set of point masses located at the nodes.
Moreover, by merging the point masses of the fixed nodes into the
bones, the mass coupling between the soft body and skeleton can
also be simply treated within the skeletal dynamics without any
additional cost. Note that we will still fully consider the dense mass
matrix of the skeleton because it can be efficiently handled by exist-
ing linear-time algorithms such as Featherstone [1983] and Baraff
[1996].

The point mass of the i-th node is obtained by integrating an
effective material density over the mesh volume

mi =
∫

V
ρ φi dV, (10)

and it is same as the sum of the i-th row, or column, of the full mass
matrix, that is, mi = ∑

j mij .2 In the case of tetrahedral mesh, the
mass contribution of an element fully filled with a homogeneous
material to its four nodes is simply ρ v/4 where v is the undeformed
volume of the element [O’Brien and Hodgins 1999]. Because we
use a coarse mesh enclosing the deformable body, the mesh ele-
ments near the boundary of the body may not be fully filled with a
material. We obtain the mass contribution of such elements to their
nodes by computing (10), which will be explained in Section 4.3.
By lumping the mass of the soft body, the whole system including
the deformable body and its skeleton can be treated as a mechani-
cal system consisting of point mass particles and articulated rigid
bodies, which could be solved by any existing rigid-body dynamics
engines. We, however, use our own implementation of a recursive
dynamics algorithm in our simulation system for better performance
and a more flexible simulation setup, and this will be described in
Section 5.

1Let Ms be the mass matrix of the skeleton and [mij] = [Maa
d

Mab
d

Mab
d

Mbb
d

]
be the

mass matrix of the deformable body where the superscripts a and b denote
the terms corresponding to the free and fixed nodes, respectively. When
the fixed nodes are attached to the skeleton with hard constraints, that is,
xb = f (q) where q denotes joint coordinates of the skeleton and f (q) is
forward kinematics to the nodes, the mass matrix of the whole system can be

written as
[Maa

d
Mab

d
J

JT Mab
d

JT Mbb
d

J+Ms

]
where J = ∂f

∂q
. Because the mass matrix

is not constant (Ms and J are dependent on the skeleton pose), no efficient
linear-time solution exists yet.
2The lumped mass formulation can also be obtained from momentum as in
Sifakis et al. [2007]. Let P be the momentum of the deformable body and
mi be an effective lumped mass at the i-th node. Then, P = ∫

V ρ ẏ dV =∑
i mi ẋi , and substituting (8) for ẏ and differentiating both sides of the

equation with respect to ẋi will lead to (10).

4.3 Mechanical Properties near Boundary

Usually the coarse mesh elements near the fine surface of the soft
body are partially filled with a material. In most previous work using
mesh embedding, however, such elements are assumed fully filled
for simplicity at the cost of decreased accuracy. With the assumption
of fully filled elements, the lumped mass can be easily computed
from the undeformed volume of the elements, and the elastic force
can be obtained as explained in Section 3. Though such an approach
could be thought as a practical choice for graphics applications that
are generous with regard to the simulation accuracy, sometimes it
could lead to visible artifacts such as overly stiff behaviors of soft
thin bodies surrounded by coarse control lattices as pointed out in
Nesme et al. [2009].

Capturing the mechanical properties of a soft body as correctly
as possible in a coarse embedding mesh system has been explored
recently. Nesme et al. [2006] suggested spatial averaging of mass
and stiffness for coarse linear finite element models. They recently
extended it to consider material inhomogeneity through obtaining
a displacement map between coarse nodes and fine-level nodes by
solving a static equilibrium equation on the fine-level model, and fi-
nally obtaining the stiffness matrices of the coarse elements [Nesme
et al. 2009]. Partially filled coarse elements are handled in their
method by introducing hard constraints rigidly linking the discon-
nected coarse nodes to their neighboring fine nodes when solving
the equilibrium equation. Kharevych et al. [2009] also presented
a similar method for capturing material inhomogeneity within a
coarse mesh system, but in a different way, by finding an effective
linear elasticity tensor per each coarse element and a displacement
mapping between coarse nodes and fine nodes. However, because
the previous methods are based on a linear finite element framework,
they do not fit well in our simulation system, which uses nonlinear
finite elements. Wojtan and Turk [2008] presented a method for
capturing the correct mass of thin homogeneous materials within a
time-varying coarse mesh system, but they did not discuss elasticity
in the partially filled elements.

We have already discussed how to obtain the mass matrix of the
deformable body from its kinetic energy and how to effectively
approximate the mass property with a set of lumped nodal masses
in Section 4.2. To evaluate the volume integration in (10) numer-
ically, we discretize each element volume near the body surface
by randomly sampling points. We follow Rocchini and Cignoni
[2000] for generating random points in tetrahedral elements. For
each sample point, we check whether it is located inside of the body
or not, and if it is, the mass contributions of that point, ρφiv/ns ,
are added to the neighboring nodes where φi denotes the nodal
coordinates of the sample point, v is the volume of the element,
and ns is the number of sample points used for the element. We
also refer the reader to Rathod et al. [2005] for Gauss Legendre
quadrature formulas for computing numerical integration over a
tetrahedron.

Obtaining the particle masses correctly is not sufficient for both
accuracy and stability of the simulation. In fact, without considering
partially filled elements in calculating the elastic forces, the correct
mass computation could do more harm than good, especially with
regards to stability. Indeed, as shown in Figure 7 (right), the out-
ermost nodes may have very small masses so that the elastic force
computed from an assumption of fully filled elements, which is
much larger than the force that should be exerted on the node, could
lead to an unstable simulation. For example, a Fatman model with
only the mass treatment required a simulation step size nearly 10
times smaller for the simulation of the dancing motion shown in
Figure 1.

ACM Transactions on Graphics, Vol. 30, No. 5, Article 121, Publication date: October 2011.

121:8 • J. Kim and N. S. Pollard

Fig. 7. Mesh embedding and mass lumping: This 2D illustration shows two
different examples (middle, right) of coarse meshes enclosing a deformable
body (left) depicted as the solid green circle. The meshes are depicted as
the blue lines, and their corresponding lumped mass particles located at the
nodes are shown as the solid blue circles. The area of the circles represents
the mass of the particles and the deformable body, and the lumped masses
were computed by (10). Note that the sum of the lumped masses must be
equal to the mass of the deformable body.

Computing elastic forces while taking care of partially filled non-
linear elements is surprisingly simple, though, as far as we know, it
has not been clearly discussed in the literature. We assume that each
element has constant material properties such as Lamé parameters
for StVK material. The nonlinear strain tensor is constant for each
element as mentioned in Section 3.1, and the stress tensor is also
constant due to the constant material properties. Therefore, the elas-
tic potential for each element is proportional to the material volume
of the element. Because the elastic force is defined as the negative
partial derivative of the potential with respect to nodal position, the
forces acting on the nodes due to the partially filled element can be
obtained by

f̃ i = wfi, (11)

where fi is the elastic force computed by (3) with the assumption
of a fully filled element, and w denotes the ratio of the filled region
in the element to its volume. The volume ratio for each element
can be obtained as w = n∗

s /ns where n∗
s is the number of sample

points located inside the soft body and it can be counted during
the nodal mass calculation described before. Note that the nodal
masses and the volume ratio for each element can be precomputed
because they do not vary during simulation. We show the effec-
tiveness of our treatment of partially filled elements in Figure 8
where different soft body models with the same volumetric mesh
are compared. Without the treatment, all three models in the fig-
ure would have had the same deformation which is not physically
plausible.

5. SKELETON-DRIVEN DEFORMABLE BODY

So far we have chosen a coarse mesh structure with lumped mass
particles to reduce the model size. We also selected nonlinear fi-
nite elements with the selective diagonalization technique for better
handling of large deformation, and considered the fine geometry of
the body in calculating the particle masses and elastic forces for
better modeling accuracy. In this section, we complete our model-
ing and mathematical formulations for skeleton-driven deformable
body systems.

The skeleton consists of arbitrarily shaped rigid bones connected
with joints, and one of the bones is virtually connected to the ground
with a joint which is called the root joint. We assume that the
skeleton has a tree topology, and there is no other restriction in

Fig. 8. Effect of the treatment of partially filled elements on the simulation:
All three models have the same volumetric mesh (upper), but they deform
differently under the heavy load pressure due to our treatment of partially
filled elements (lower).

modeling of the articulated rigid body system such as the mass
properties of the bones and the types of joints. In this section we
will explain how to attach the deformable body to the skeleton,
consider damping and contact, and efficiently solve the equations
of motion of the entire system.

Fixed Nodes

One possible way to attach the deformable body to the skeleton
would be to use soft positional constraints as done by Lee et al.
[2009] in their quasistatic soft tissue simulation. Zero-length springs
are used to connect points in the soft body to their target position on
the bones. Such an approach allows flexibility in choosing the at-
tachment points, but the stiff constraint springs could cause a severe
time step restriction in the simulation. Though implicit integration
could alleviate the small step size problem, it requires building and
solving a huge matrix system which is neither positive-definite nor
symmetric, and this decreases the overall simulation speed.

Instead, we attach the deformable body to the skeleton by directly
fixing some of the coarse mesh nodes to the bones (Figure 9). The
simplest way to select the nodes to be fixed would be to choose
nodes located near the bones. However, if there are specific points
in the soft body to be fixed to bones, we must generate the em-
bedding coarse mesh in such a way that its nodes are placed on
those locations. In such a case, we first set the positions of nodes
and then generate mesh elements using a 3D Delaunay triangula-
tion. Because the Delaunay triangulation always results in a convex
mesh, we usually cut out some of the outer elements which do not
contain the soft body material. This cutting-out process, however, is
not really necessary because the empty elements will be automati-
cally excluded from the simulation by (11). The mass of each fixed
node is merged into the bone to which the node is attached, in order
to consider the mass coupling between the deformable body and
the skeleton in the skeleton dynamics. All the forces acting on the
fixed nodes such as the elastic forces are transmitted to the bones
and they affect the solution of the skeletal dynamics. The resulting
skeletal motions will also affect the secondary motions of the de-
formable body in the next time step through the updated fixed nodal
positions.

Damping

We need damping to attenuate jiggling in the deformable bod-
ies. The most common approach for this in the literature would

ACM Transactions on Graphics, Vol. 30, No. 5, Article 121, Publication date: October 2011.

Fast Simulation of Skeleton-Driven Deformable Body Characters • 121:9

0x 1x

2x 3x
4x

5x

6x

7x
8x

9x

10x

12x
11x

13x

14x

0q

2q1q

Fig. 9. A 2D illustration for skeleton-driven deformable body systems:
The shape of the deformable body is defined by the fine surface, but the
motions of it are represented by the coarse volumetric mesh enclosing
the surface. The deformable body is attached to the skeleton by fixing
some of the mesh nodes (black dots) to the bones, and overall motions
are driven by the skeleton. In this illustration, {q0, q1, q2} is the joint co-
ordinates of the skeleton where q0 denotes the coordinates of the virtual
root joint, and {x0, . . . , x14} represents the coordinates for the deformable
body.

be to use Rayleigh damping, which assumes that the damping
matrix is proportional to the mass and stiffness matrices. Apply-
ing Ralyleigh damping in our simulation system, however, is not
straightforward because the stiffness matrix for nonlinear finite
elements, which is not needed in our system, would have to be
constructed, and this would decrease the simulation speed. Per-
haps, it would be most elegant to consider the viscous term along
with the elastic forces in the finite element formulation as done
by O’Brien and Hodgins [1999], but this method requires to ad-
ditionally compute the strain rate and the viscous stress in each
element.

We want a simple and effective way of dissipating vibrations
in the deformable bodies. In addition, the damping forces must
be dependent on the relative velocity of the deformable body to
the underlying skeleton, rather than the global velocity, so that the
forces dampen the jiggling only and do not drag down the whole
body motion.

With these considerations in mind, we connect a damper to each
node, or mass particle, in the deformable body and attach the other
end of the damper to the particle’s reference bone which is usually
set to be the nearest bone from the undeformed position of the node.
The damping force fd acting on the particle is obtained by

fd = −c (ẋ − ṗ), (12)

where c is a damping coefficient proportional to the particle’s mass,
ẋ is the global velocity of the particle, and ṗ denotes the global
velocity of the point to which the damper is connected to the bone.
The body velocity ṗ is a nonlinear function of the skeletal pose and
the skeletal joint velocities, that is, it can be written as ṗ = J q̇
where J = J (q) is a pose-dependent Jacobian matrix and q̇ de-
notes the joint velocities. In our implementation, ṗ is obtained
efficiently when we update kinematic information of the skeleton
which will be discussed later in this section. Our damping model
fits well to our skeleton-driven deformable body systems, and as far
as we know, it has not been explicitly mentioned in the literature.
Note that the opposite force must also be transmitted to the refer-

ence bone because the other end of the damper is connected to the
bone.

Frictional Contact

We apply penalty-based contact normal forces and Coulomb friction
forces to the fine surface of the deformable body, not to the coarse
mesh. Because we use the coarse mesh in the simulation, we must
transform the contact forces acting on the fine surface to equivalent
forces acting on the coarse mesh nodes. The force transformation
can be obtained easily from the principle of virtual work as done in
Faloutsos et al. [1997]. Let X and Y be the vectors representing all of
the nodal positions of the coarse mesh and all of the vertex positions
on the surface, respectively, and they have a linear relationship δY =
J δX where J is a Jacobian matrix. Let Fs be the contact forces
acting on the surface vertices and Fv be the nodal forces equivalent
to the contact forces. From the principle of virtual work, we have
δY T Fs = δXT J T Fs = δXT Fv and this leads to Fv = J T Fs . More
specifically to our formulation, because we use a linear embedding
defined in (8), for each contact force acting on a surface vertex, f s ,
we can obtain its equivalent nodal forces acting on its neighboring
nodes with

f v
i = φif

s, (13)

where f v
i denotes the equivalent force acting on the i-th neighbor

node of the surface vertex, and φi is the corresponding coefficient
defined in (8). The total forces acting on the coarse mesh nodes
are obtained by summing the forces transformed from all contact
forces on the surface, and the computational cost for the force
transformation is linear to the number of contact points on the
surface. Note that the transformation can be applied to transform
any forces acting on the deformable body into equivalent nodal
forces.

Though we compute contact forces with respect to the vertices
on the fine surface of the soft body, penetration of the surface into
an obstacle will still occur because of the underlying penalty-based
contact mechanism. If nonpenetration is of utmost importance, a
projected vertex approach, in which the contact vertices are pro-
jected onto the obstacle’s surface and velocity impulses are applied
to those vertices, could also be used within our framework. How-
ever, because we use a low-dimensional coarse mesh to control the
surface, multiple contact vertices in an element could cause con-
flicting constraints. Applying the method to only the most deeply
penetrating vertex in each element would be a practical way to avoid
such a problem as is done in Wojtan and Turk [2008].

Equations of Motion

The dynamics of the free mass particles, the nodes which are not
fixed to the bones, can be simply written as

miẍi = fi, (14)

where mi is the mass of the i-th free particle, xi denotes the global
position of the i-th free particle, and fi represents all forces acting
on that particle which includes the elastic force, the damping force,
the equivalent contact force, and the gravity. Once all the forces
have been computed from the current state, the equation of motion
for each free particle can be solved independently from the other
particles and the skeleton.

The skeleton is an articulated rigid body system with a tree topol-
ogy. We use the relative joint coordinate system to represent the
degree of freedom of the skeleton system (Figure 9). The equations

ACM Transactions on Graphics, Vol. 30, No. 5, Article 121, Publication date: October 2011.

121:10 • J. Kim and N. S. Pollard

of motion of the skeleton can be written as

Mq̈ + b = τ, (15)

where q denotes the joint coordinates including the root joint coor-
dinates, τ is the torques, or forces, acting on the joints, M = M(q)
is the mass matrix of the skeleton, and b = b(q, q̇) denotes all the
other terms including the Coriolis and centrifugal forces, the force
by gravity, and the forces transmitted from the mass particles in
the deformable body. As we mentioned before, the rigid bodies,
or bones, in the skeleton contain the masses of the fixed particles.
The elastic forces and contact forces are directly transmitted to the
bones through the fixed nodes, and the damping forces acting on the
free nodes are also transmitted to the bones. We obtain the system
state at the next time step by solving the equations of motion, (14)
and (15), for any accelerations that are unknown and by integrating
the solution. The skeleton dynamics will affect the solution of the
deformable body at the next time step through the updated states
of the bones, more specifically, the updated positions of the fixed
nodes and the updated velocities of the points to which the dampers
are connected to the bones.

Solution of the Skeleton Dynamics

The dynamics equations for the skeleton shown in (15) can be solved
in various ways. We briefly discuss the following three common
scenarios for animated characters.

—Forward simulation with joint torques: If the joint torque τ in (15)
is known, we can compute the acceleration q̈ from the equations
of motion and this is called forward dynamics. To simulate lifelike
character motion driven by internal motor actuation only, we can
set the torque acting on the root joint to be always zero. This
choice leads to the following equations of motion

M

(
q̈a

q̈r

)
+ b =

(
τa

0

)
, (16)

where the subscripts “a” and “r” denote the active internal skele-
tal joints and the root joint respectively, and the boldfaced sym-
bols, here, the accelerations of the internal and root joints (1)
represent the unknown variables to be solved in the equations. To
execute the simulation by providing torques at the active joints,
we usually need a servo controller for each actuator to generate
a torque compensating for error in tracking a given desired joint
trajectory or to achieve other goals. Most of the physically-based
character simulations in the literature lie in this category, and a
freefall simulation can also be regarded as its special case when
τa = 0 or τa = Kqa with a spring element in the joint. We refer
readers to Shinar et al. [2008] as an example of such simulation
for a skeleton-driven deformable body character. In our exam-
ples with the fish and starfish characters shown in Figures 2, 3,
and 10, we generated the landing motions with the free-falling
simulation.

—Forward simulation with prescribed joint trajectories: We may
also define a simulation by prescribing the acceleration of the
active joints in some cases, for example, when the reference joint
trajectory for the active joints has been given.

M

(
q̈a

q̈r

)
+ b =

(
τa

0

)
(17)

In this case, the acceleration of the active joints becomes the com-
mand input of the simulation, and the acceleration of the passive
root joint (and, if needed, the torques acting on the active joints
as well) will be obtained by solving the equations of motion.

Fig. 10. A jump turn of a starfish character: In order to mimic a lifelike self-
propelling motion, we ran the two-way simulation by giving joint commands
on the active skeletal joints only. The root joint was set to be passive and
no external forces except contact forces were applied to the simulation. See
Section 7 for how to control the starfish character to make the jump turn.

Because the prescribed joints follow the given trajectory kine-
matically or exactly, such joints do not need servo controllers,
but they will lose compliance. Note that, though the active joints
in the skeleton are kinematically following the reference trajec-
tory, the global skeletal motion is obtained after integrating the
root joint acceleration which is computed from the skeletal dy-
namics. We mainly used this type of simulation to create realistic
motions for self-propelled characters. Examples can be seen in
Figures 2, 3, and 10. (See Section 7 for a description of how we
set the acceleration of the active joints.) Because the resulting
global motion can be regarded as a function of a given active
joint trajectory, this approach has also been applied to find opti-
mal joint trajectories for ballistic characters [Albro et al. 2000;
Sulejmanpašić and Popović 2005].

—Simulation of secondary motion of the passive deformable
body with a fully prescribed skeletal motion: Another common
scenario for physically-based animation would be obtaining
the secondary motion of a soft elastic body that is driven by a
given global skeletal motion as done in Capell et al. [2002a]. In
this case, we do not need to solve the equations of motion for
the skeleton (15) because we already know the global motion
of the skeleton. (If needed, we can compute the joint torques
with the given joint acceleration from the equations and this is
called inverse dynamics.) Instead, at every time step, the global
positions and velocities of the fixed nodes attached to the bones
must be updated using kinematics. The state of the deformable
body at the next time step is then obtained by integrating the
solution of the particle dynamics (14). Note that, in this case,
the secondary motions of the soft body do not affect skeletal
motions (one-way simulation). We obtained the jiggling soft
body motion of Fatman shown in Figure 1 in this way.

In general, the command input on a joint can be either torque
or acceleration during the simulation and the command type does
not have to be same for all joints. The equations of motion can be
rewritten as

M

(
q̈u

q̈v

)
+ b =

(
τu

τv

)
, (18)

where the subscript “u” is for the acceleration-prescribed joints and
the subscript “v” is for the joints with given, or known, torques. We
can compute (τu, q̈v) with known (q̈u, τv) from the equations and
we call this hybrid dynamics.3 The second scenario with prescribed

3We follow Featherstone [1987] for the terminology. The term “hybrid
dynamics” used in this article differs from the concepts with similar names
such as the hybrid control for nonsmooth dynamical systems in control
community [Grossman et al. 1993], the hybrid control by mixing kinematic
and dynamic controls in computer graphics such as Zordan and Hodgins

ACM Transactions on Graphics, Vol. 30, No. 5, Article 121, Publication date: October 2011.

Fast Simulation of Skeleton-Driven Deformable Body Characters • 121:11

Table I. Recursive Hybrid Dynamics
initialization {

V̇ground = (0
−g

)
}
while (forward recursion) {

Tλ(i),i = function of qi

Vi = Ad
T −1
λ(i),i

Vλ(i) + Si q̇i

ηi = adVi
Si q̇i + Ṡi q̇i

}
while (backward recursion) {

Ĵi = Ji + ∑
k∈μ(i) Ad∗

T −1
i,k

�kAd
T −1
i,k

Bi = −ad∗
Vi

JiVi − F ext
i + ∑

k∈μ(i) Ad∗
T −1
i,k

βk

if (i ∈ P) {
�i = Ĵi

βi = Bi + Ĵi (ηi + Si q̈i)
} else {

�i = (ST
i ĴiSi)−1

�i = Ĵi − ĴiSi�iS
T
i Ĵi

βi = Bi + Ĵi

{
ηi + Si�i

(
τi − ST

i

(
Ĵiηi + Bi

))}
}

}
while (forward recursion) {

if (i ∈ P) {
V̇i = Ad

T −1
λ(i),i

V̇λ(i) + Si q̈i + ηi

Fi = Ĵi V̇i + Bi

τi = ST
i Fi

} else {
q̈i = �i

{
τi − ST

i Ĵi

(
Ad

T −1
λ(i),i

V̇λ(i) + ηi

) − ST
i Bi

}
V̇i = Ad

T −1
λ(i),i

V̇λ(i) + Si q̈i + ηi

Fi = Ĵi V̇i + Bi

}
}

joint trajectories described earlier is one common application of
hybrid dynamics and see also, for example, Lee et al. [2009] for
applying hybrid dynamics to a biomechanical upper body simula-
tion. Note that hybrid dynamics is a generalization of traditional
forward and inverse dynamics, that is, they can be regarded as
the extreme cases of hybrid dynamics when all of the joints have
given, or known, torques and when all of the joints are acceleration-
prescribed respectively.

One possible solution for hybrid dynamics is to rearrange (15)
and solve it with a direct matrix inversion. For example, the ac-
celerations of the unprescribed joints can be obtained by q̈v =
M−1

vv (τv − bv − Mvuq̈u) where M = [
Muu Muv
Mvu Mvv

]
, b = (

bu
bv

)
, and

q = (
qu
qv

)
. The method, however, is not efficient for a complex sys-

tem because it requires building the mass matrix and inverting the
submatrix corresponding to the unprescribed joints, which leads to
an O(n2) + O(n3

v) algorithm where n and nv denote the number
of all coordinates and the number of unprescribed coordinates, re-
spectively. When the DOF of the deformable body are small due
to use of a coarse embedding mesh, the relative cost of the skeletal
dynamics could be especially high. In this situation in particular, an
efficient algorithm for the skeletal dynamics is required for a fast
simulation system.

We use a linear-time hybrid dynamics algorithm which was orig-
inally introduced by Featherstone [1987]. We follow a geometric

[2002], and the hybrid simulation for deformable solids combining a mesh-
based method and a point-based method such as Sifakis et al. [2007].

Surface vertex
posi�on

Fixed node
posi�on

Elas�c forces

Damping forces

Par�cle
dynamics

Skeleton
dynamics

Integra�on

20

Upda�ng kinema�cs Compu�ng forces Solving dynamics

Bone
posi�on & velocity

Contact forces

Fig. 11. Simulation flow.

formulation for robot dynamics by Park et al. [1995] to obtain a
clean and efficient algorithm which is shown in Table I for com-
pleteness. The notation used in the algorithm is summarized in
Table II and we also refer the reader to Murray et al. [1994] for a
detailed mathematical background. Our hybrid dynamics algorithm
is so general that it can consider a range of single and multiple DOF
joints efficiently, and it can handle any arbitrary set of active and
passive joints in a unified manner. The hybrid dynamics algorithm
consists of three recursions: two forward and one backward recur-
sions where “forward” means the computation is repeated for each
bone in the skeleton from the base bone connected to the ground by
a root joint, to the end bones, and “backward” means the opposite
direction.

(1) Forward recursion. Updates kinematic information such as the
global position and velocity of each bone.

(2) Backward recursion. Updates the articulated body inertia and
bias force of each bone.

(3) Forward recursion. Calculates either the acceleration or torque
on each joint depending on whether the joint is torque-specified
or acceleration-prescribed.

Because the hybrid dynamics algorithm is a generalized version of
the traditional forward and inverse dynamics algorithms, we can
apply it to various kinds of simulation scenarios by properly setting
the joints to be either acceleration-prescribed or torque-specified
according to the problem.

The relative computational cost of the skeletal dynamics depends
on the complexity of the character model. For example, the cost of
the skeletal dynamics accounts for about 40% of the total simulation
cost when we use a coarse volumetric mesh for the deformable
starfish body (Figure 13, upper left), but it decreases to less than
1% in case of a very fine mesh model (Figure 13, lower right). See
Table III for the costs of the various simulation components.

Simulation

The simulation flow for a skeleton-driven deformable body system
consists of four major steps (Figure 11).

(1) Updating kinematics. The global positions and velocities of
the bones are obtained by executing the first forward recursion
step of the hybrid dynamics algorithm in Table I. From the
positions and velocities of the bones, we compute the positions
and velocities of the points located on the bones such as the
fixed nodes and the points where the dampers are connected to
the bones. Finally, the positions and velocities of the surface
vertices on the deformable body are updated by using (8).

ACM Transactions on Graphics, Vol. 30, No. 5, Article 121, Publication date: October 2011.

121:12 • J. Kim and N. S. Pollard

Table II. Notation in Table I
Symbol Meaning Type
λ(i) Index of the parent body of body i

μ(i) Index set of the child bodies of body i

{i} Coordinate frame attached to body i

joint i Joint connecting body i and its parent
body

P Index set of prescribed joints
qi Coordinates of joint i �ni

τi Torque(or force) acting on joint i �ni

Tλ(i),i Homogeneous transform from {λ(i)} to
{i}

SE(3)

Vi Generalized velocity of body i, viewed in
{i}

se(3) or �6

V̇i Component-wise time derivative of Vi se(3) or �6

Si Jacobian of Tλ(i),i , i.e., T −1
λ(i),i Ṫλ(i),i =

Si q̇i

�6×ni

Ji Generalized inertia of body i, viewed in
{i}

�6×6

Fi Generalized force transmitted to body i

from its parent through the connecting
joint i, viewed in {i}

dse(3) or �6

F ext
i Generalized external force acting on body

i from environment, viewed in {i}
dse(3) or �6

Ĵi , Bi Articulated inertia of body i and corre-
sponding bias force

�6×6, �6

ηi , βi Temporary variables for efficient compu-
tation

�6, �6

g Magnitude and direction of gravity �3

AdT AdT =
[

R 0
[p]R R

]
where T =

(R, p) ∈ SE(3), R ∈ SO(3), p ∈ �3 and
[·] denotes the skew-symmetric matrix
representation of a 3-dimensional vector.

�6×6

adV adV =
[

[w] 0
[v] [w]

]
where V = (w, v) ∈

se(3) or �6

�6×6

Ad∗
T Ad∗

T = (AdT)T �6×6

ad∗
V ad∗

V = (adV)T �6×6

(2) Computing forces. After collision detection, penalty forces and
Coulomb friction forces are applied to the penetrating vertices
on the surface. Then, the frictional contact forces are trans-
formed into equivalent nodal forces by using (13). Elastic forces
acting on the nodes are obtained as explained in Sections 3 and
4.3. Damping forces acting on the free nodes are computed by
using (12).

(3) Solving the equations of motion. The accelerations of the free
nodes are computed from (14). The accelerations of the torque-
specified joints in the skeleton are obtained by executing the
second (backward) and third (forward) recursions in the hybrid
dynamics algorithm. The forces transmitted from the nodes to
the bones are handled as the external forces in the backward
recursion step, and the joint input such as torques or accelera-
tions, are considered in the last forward recursion step.

(4) Integration. The system state, which consists of the position and
velocity of the free nodes and the displacement and velocity
of the skeletal joints, at the next time step is computed by
integrating the accelerations obtained by solving the equations
of motion.

We used the mixed Euler integrator, which is also known as
the symplectic Euler method [Stern and Desbrun 2006], for our
experiments. The integrator updates the system velocity with the
acceleration obtained by solving the equations of motion, and then
updates the system displacement using the updated velocity. The
mixed Euler integrator is as easy to implement as the explicit Euler
integrator, but it has much better stability so that we can choose a
reasonable step size for integration. See Section 8 for a discussion
on the choice of the integrator.

In our simulation system, there are a few important factors which
help the entire simulation to be fast and to have better stability. First
of all, using the coarse mesh significantly decreases the computa-
tional cost per each time step by reducing the DOF of the physics
model and allows larger step size because of the enlarged element
size. The mesh embedding leads to speedup factors of up to orders
of magnitude. Second, the stiffness of each nonlinear element is
always maintained within given boundaries due to the diagonal-
ization technique, and this makes the simulation stable even when
the skeletal motion causes large element deformation. Third, by us-
ing the hybrid dynamics algorithm, the skeleton-driven deformable
body character can trace a given reference skeletal motion without
relying on a servo controller which could make the whole system
very stiff and the simulation unstable. Finally, the computational
cost per step size increases linearly as the model size grows, which
is favorable for complex characters such as Fatman in Figure 1.

As explained before, our skeleton-driven deformable body sys-
tem uses fixed nodes to attach the soft body to the skeleton. Because
the fixed nodes in the volumetric mesh are firmly attached to the
skeletal links, the finite elements located near the joints may expe-
rience unrealistically large deformation, such as element inversion,
depending on the underlying skeletal motion, especially when the
mesh is very coarse (e.g., Figure 4). Though our simulation system
handles such elements well so that they usually do not cause critical
problems such as instability, the character surface obtained by in-
terpolating the mesh nodes may have undesirable scars at moments
of large deformation, and this could degrade the overall animation
quality. If such an artifact is problematic, the user may wish to use
a denser volumetric mesh even with the additional computational
cost required due to the increased model complexity. For example,
if we wanted to make the creases shown in Figure 4 smaller, we
would have to use a denser volumetric mesh for the worm character.
Actually, for the Fatman model (Figure 15), we have already used a
relatively complex volumetric mesh compared to the other models
because the human skeleton is more complicated than the others,
and the output quality demanded for such a human-like character
is generally very high. In such cases with a relatively large number
of finite elements, we need an additional speedup for achieving fast
simulation at interactive rates. We address this issue by implement-
ing parallel computation on the GPU, which will be discussed in
the next section.

6. PARALLEL COMPUTING

The simulation speed can be increased further by carrying out many
calculations simultaneously. However, there are limits in the amount
of speedup that can be obtained using parallelization. In this section
we explain our parallel implementation of the algorithms presented
in this article and discuss the issues limiting computational perfor-
mance.

In the skeleton-driven deformable body system, many parts of
the computation are parallelizable such as the elastic force compu-
tation and solving the equations of motion of the particle system.
The overall performance, however, significantly depends on the

ACM Transactions on Graphics, Vol. 30, No. 5, Article 121, Publication date: October 2011.

Fast Simulation of Skeleton-Driven Deformable Body Characters • 121:13

Table III. Speedup by Parallel Computing
coarse moderate fine very fine

Complexity of vol. mesh (Starfish) GPU CPU GPU CPU GPU CPU GPU CPU

Calc. time
per time step

(msec)

Update fixed nodes and surf. 0.117 0.094 0.130 0.103 0.130 0.117 0.159 0.175
Transform contact forcesa 0.300 0.047 0.106 0.048 0.075 0.053 0.061 0.075
Compute elastic forces 0.123 0.088 0.252 1.558 0.355 4.105 0.945 17.611
Compute damping forces 0.011 0.002 0.016 0.042 0.019 0.088 0.044 0.319
Solve particle dynamics 0.009 0.003 0.013 0.031 0.014 0.069 0.030 0.248
Transmit nodal forces to bones 0.061 0.003 0.067 0.063 0.072 0.134 0.106 0.503
Solve skeleton dynamics (CPU) 0.118
Update skeleton kinematics (CPU) 0.049
Collision detection (CPU) 0.034
Total computation time (msec) 0.823 0.437 0.784 2.047 0.865 4.767 1.547 19.132

Speedup by parallel computing on GPU 0.5× 2.6× 5.5× 12.4×
Simulation

(free falling)
Step size for integrationb (msec) 3.0 1.0 0.5 0.2
Calc. time for 1 sec simul. (sec) 0.27 0.15 0.78 2.05 1.73 9.53 7.73 95.66

Model info.

Total DOF 260 3365 7262 26741
Num. of nodes in vol. mesh 78 1113 2412 8905
Num. of elements in vol. mesh 200 3428 9014 37573
Num. of nodes in surf. mesh 1162
DOF of skeleton (num. of bones) 26 (16)

The speedup gained from parallel computation depends on the complexity of the model. This table shows the relationship between the speedup ratio and the
complexity of the volumetric mesh in the starfish character. We used four volumetric mesh models (coarse, moderate, fine, very fine) shown in Figure 13 for
the comparison.
aThe calculation time for contact force transformation on our GPU implementation decreases as volume mesh complexity increases, and this is because we
used the same surface model in the experiment. More specifically, the average number of surface nodes corresponding to each volumetric node decreases as
volume mesh complexity increases in our experimental setup.
bFor comparison purpose, the step sizes for integration shown here are maximum values with which a free-fall simulation becomes stable. The test was
performed on a desktop machine with a 2.8GHz Intel Core2 Quad CPU and NVIDIA GeForce GTX 280 GPU.

Memory
(nodal posi�ons)

Threads
(elements)

Memory
(temporal)

Memory
(elas�c forces

on nodes)

Threads
(nodes)

Coalesced
wri�ng

Coalesced
wri�ng

Memory
(elas�c forces

on nodes)

Memory
(nodal posi�ons)

Threads
(elements)

Fig. 12. Parallel computation of elastic forces: In the task, the input is
the nodal positions and the output is the elastic forces acting on the nodes.
(Left) An ideal parallel structure for computing the elastic forces acting
the nodes. However, this cannot be realized because of concurrent memory
access during writing. (Right) Our implementation consists of two parallel
processes to avoid the concurrent memory accessing problem and to achieve
coalesced memory access in writing.

computational structure, so we need to design the parallel structure
carefully to get a maximum speedup. Figure 12 shows an example
of our computational structure for elastic forces where the inputs are
the nodal positions and the outputs are the elastic forces acting on
the nodes. Because we compute the nonlinear strain and stress per
element as explained in Section 3, the calculation can be parallelized
at the element level (Figure 12, left). In this case, however, because
we need to sum up the elastic forces exerted by adjacent elements
to obtain the net elastic force acting on each node, multiple threads

running in parallel at the element level may access the same memory
address assigned to nodal force for summation of the elastic forces.
Such concurrent memory access for writing may cause unexpected
problems such as data loss. In our implementation we avoided the
problem by splitting the task into two parallel processes (the elastic
force computation at the element level and the force summation at
the node level) and using a temporary memory space for the data
flow between the two processes (Figure 12, right). There is another
issue related to the speed of memory access that must be considered
when designing the structure. Because we need a large memory
space for saving information related to the elements and the nodes,
we use a global memory region in which large chunks of memory
can be allocated but the memory accessing is slow in general. The
global memory can be accessed most efficiently when the access
pattern has been specially designed in a coalesced way, and if it is
not coalesced, the memory access could be extremely slow espe-
cially for writing. It would be most desirable to design processes to
always have coalesced memory access for both reading and writing,
but this is impossible because the sizes of input and output data are
different so that at least one of the reading and writing accesses
cannot be coalesced. Because the noncoalesced memory access is
more critical in writing than reading, we designed the structure
of our parallel computation to have a coalesced memory access for
writing to increase the overall performance (Figure 12, right). Using
this methodology we parallelize the following.

—Updating the positions of the surface vertices. We use a single
parallel process running at the vertex level to obtain the position
of each vertex from neighboring nodal positions.

—Computing the nodal forces equivalent to the surface contact
forces acting on the vertices. We use two parallel processes for
this task. The first process runs at the vertex level, and for each

ACM Transactions on Graphics, Vol. 30, No. 5, Article 121, Publication date: October 2011.

121:14 • J. Kim and N. S. Pollard

vertex, it computes forces acting on the neighboring nodes that
are equivalent to the contact force at the vertex. The second
process runs at the node level, and for each node, it sums up the
forces acting on the node which have been computed by the first
process.

—Computing the elastic forces acting on the nodes (described be-
fore and shown in Figure 12).

—Computing the damping forces acting on the nodes, and calculat-
ing the forces and moments to be transmitted to the bones in the
skeleton. We designed two parallel processes to accomplish the
task. The first process runs at the node level. If the node is a free
particle, it first computes the damping force acting on the node.
Then, the process computes the force and moment to be transmit-
ted to the skeleton for each node. We transmit the damping forces
acting on the free particles to their reference bones, and the con-
tact and elastic forces on the fixed particles to the bones to which
the nodes are attached. The forces and moments to be transmitted
to the bones are computed with respect to a local frame attached
to each bone. The second process runs at the bone level, and for
each bone, it sums up the forces and moments transmitted from
the neighboring free nodes and the fixed nodes attached to the
bone. The net force and moment acting on each bone will be sent
to the CPU memory for the solution of the skeleton dynamics.

—Solving the equations of motion for the particle system. A sin-
gle process runs at the node level for the task. For each node, it
calculates the nodal acceleration using the forces (contact, elas-
tic, damping, and the gravitational forces) and obtains the nodal
velocity and position in the next time-step with the mixed Euler
integration.

In our implementation, we chose the CUDA architecture from
NVIDIA to execute the massive computation for the deformable
body in parallel on the GPU (Graphics Processing Unit) because
of its easy integration with other nonparallelizable C/C++ modules.
In some parallelized tasks with noncoalesced memory reading, we
texture a specific global memory range for caching to reduce the
memory access time for reading. We use traditional serial comput-
ing on CPU (Central Processing Unit) for the other computations
such as solving the skeleton dynamics, where the equations of mo-
tion for the bones are highly coupled by the joints. A point-triangle
collision detection algorithm running on CPU is used in our current
simulation system. Though the simple collision detection works
well for our test models, it could become a critical computational
bottleneck when the number of vertices on the surface model is
very large. Using parallelized collision detection algorithms, such
as Govindaraju et al. [2003] and Zhang and Kim [2007], would be
a good choice for such a case.

In the case of the dancing Fatmat example shown in Figure 1,
the parallel computation speeded up the simulation about 10 times
faster than the CPU-only implementation, and in our experiments
we were able to achieve a speedup of a factor of up to 12 through
parallel computation. The speedup ratio depends on the complexity
of the model such as the number of elements, nodes, and bones, and
for comparison purpose, we show the computation times for four
different models of a starfish character in Table III, where we used
different model complexities for the volumetric mesh while using
the same surface and skeleton models (Figure 13). If the volumet-
ric mesh is too coarse, the parallel computation may decrease the
simulation speed because the profits gained from the parallelism
are less than the overhead such as relatively low clock speed and
slow memory access in the GPU. The speedup gained from parallel
computation increases as the complexity of the volumetric mesh
grows, which is expected because a model with more nodes and

Fig. 13. Starfish models with different complexity of the volumetric mesh
used in Table III (coarse, moderate, fine, very fine): The coarse mesh (upper
left) was designed manually while the others (moderate, fine, very fine) were
generated using NETGEN [1997]. In the coarse mesh model, we assumed
that the elastic material fills only the inside of the surface so the nodal mass
and the element volume ratio were obtained as described in Section 4.3.
For the other models, however, their elements were assumed fully filled
with the material for convenience sake in modeling. See Figure 15 for more
information on the surface mesh and the skeleton of the starfish character.

elements can have more room to be accelerated by parallel com-
putation. However, increasing model complexity, especially in the
volumetric mesh of the deformable body, requires us to use a smaller
step size for integration due to the small element size, and this leads
the overall simulation speed to become slow. Therefore, the model
reduction as well as our engineering decisions to effectively support
such a reduced model (Sections 3, 4, and 5) are still necessary to
achieve a fast simulation speed even in the parallel computing case.

It might be possible to additionally increase the speed by op-
timizing the parallel computing structure, but the gain would be
limited because the data flow between the different size of spaces
inherently causes inefficiency in memory access for parallel com-
putation (Figure 14). See, for example, de Farias et al. [2008] and
Comas et al. [2008] for parallel computation of deformable bodies
(without skeletons) where they achieved a few tens of speedup, and
as far as we know, there is no previous work on parallel computing
for skeleton-driven deformable body simulation.

7. RESULTS

Various kinds of simulations have been tested in our system with the
three-dimensional skeleton-driven deformable body models shown
in Figure 15. The simulations with all the test models can run in
real time or near real time on a desktop machine with 2.8 GHz
Intel Core2 Quad CPU and NVIDIA GeForce GTX 280 GPU. See
Table IV for detailed information on the simulation speed for the
test models.

In order to create physically plausible motions of the self-
propelling starfish, fish, and worm characters in Figures 2, 3, and 10,
we used only internal forces, that is, the torque or acceleration for
the active skeletal joints, to drive the overall character motions.
The secondary motions of the deformable bodies and the passive
root joints were obtained through two-way simulation where the
soft body motion affects the global skeleton motion and vice versa,
and no intentional external forces were used in the simulation. To
obtain desired character motions given the underactuated nature of

ACM Transactions on Graphics, Vol. 30, No. 5, Article 121, Publication date: October 2011.

Fast Simulation of Skeleton-Driven Deformable Body Characters • 121:15

Table IV. Simulation Speed
Model Calc. time (sec) for 1sec simul.a h (msec)e dof sdof vnodes velems snodes

Fatman 1.33b (GPU)c 0.5 4887 60 2121 8619 34362f

Starfish 0.49d (CPU) 1.0 260 26 78 200 1162
Fish 0.50 (CPU) 1.0 258 9 107 415 958

Worm 0.57 (CPU) 1.0 543 9 224 714 262
This table shows the calculation time for running a 1 sec simulation with the test models in Figure 15, corresponding step size
for integration, and model information such as total DOFs of the models (dof), the DOFs of the skeletons (sdof), the numbers of
the nodes (vnodes) and elements (velems) in the coarse volumetric mesh, and the number of nodes (snodes) in the fine surface
mesh. The test was performed on a desktop machine with a 2.8GHz Intel Core2 Quad CPU and NVIDIA GeForce GTX 280
GPU. (a) The averaged computation times were measured in the simulations for the dancing Fatman (Figure 1, 60 sec), the
jump-turning starfish (Figure 10, 2 sec), the jumping fish (Figure 3 (upper), 4 sec) and the rolling worm (Figure 3 (lower), 4 sec)
with the step sizes shown in the table, and the corresponding animations are shown in the accompanying video. The data only
accounts for the computation times for the open-loop physics simulation with given input commands (e.g., the accelerations
or torques of the active joints in two-way simulation), and does not include the cost for computing the commands in case of
using a high level controller to guide the simulation in a desired way. High quality rendering, which was done in off-line, is
not also considered in the calculation times. If needed to control the characters interactively during the simulation, we used a
simple mesh grid rending, as shown in Figure 15, which is updated at about 60 frames per second. (b) The average computation
time for running the same dancing Fatman simulation in our CPU only implementation was 13.24 sec per 1 sec simulation, so
we got an additional speedup of a factor of 10 by using parallel computation. (c) (GPU) and (CPU) denote the elapsed times
measured in our parallel implementation using GPU and our CPU only implementation respectively. (d) For reference, the
average calculation time for the example of the escaping starfish (Figure 2, 17 sec) was 0.94 sec per 1 sec simulation. In the
example, interaction between the character and the movable obstacle must be handled in the simulation, and in our test, more
than 40% of the calculation time was spent in collision checking with a simple point-triangle collision detection algorithm,
which could be improved by using an advanced collision detection algorithm. (e) The values shown here are the fixed step sizes
used in the simulations. For reference, we were able to double the step size for the worm and starfish examples, but we could
not double the step size for the Fatman and fish examples without driving the simulation into instability. (f) We did not perform
collision checking in the dancing Fatman simulation.

Surface ver�ces

Mesh elements

Mesh nodes

Bones

Parallel Computa�on

Data flow

Fig. 14. Data Flow in Parallel Computation: To implement parallel com-
putation for skeleton-driven deformable bodies, we need to handle data flow
between spaces with different sizes. For example, we need to implement two
tasks having data flow between the surface vertices and the mesh nodes –
(a) transformation of the contact forces on the surface vertices into the
equivalent nodal forces, and (b) updating the positions and velocities of the
surface vertices from the nodal positions. Such a data flow between differ-
ent spaces causes inefficiency in memory accessing and limits the overall
performance of parallel computation in our system.

the physics model, we generated appropriate motor commands on
the active skeletal joints with a combination of direct control and
keyframe control as presented in Kim and Pollard [2011]. Using
direct control one can interactively control the character with a
mouse drag. The mouse cursor is regarded as a desired trajectory of
a selected bone and, at every time step, the desired position will be
transformed into an optimal joint command (acceleration or torque)
which can make the character follow the user input trajectory as

closely as physically possible. For keyframe control, we interpolate
given keyframes, or keyposes, with a B-spline to obtain an active
joint trajectory and advance the simulation using hybrid dynamics.

To make the acrobatic jump motion of the fish character in
Figure 3(upper), we first guided the head with a mouse drag un-
der direct control in order to prepare the jump by bending the body.
Then, we used keyframe control to make a takeoff by giving a de-
sired final pose and the time for transition, and finally switched into
a free-fall simulation mode for landing where all of the skeletal
joints are set to be passive. In Figure 3(lower) we guided the left
end of the worm character with direct control and then switched
into keyframe control, providing a final pose of circular shape to
get a rolling motion. To make a jump turn of the starfish character in
Figure 10, we set desired position and orientation for the center part
of the skeleton in direct control, and switched into free-fall simu-
lation for landing. Note that all the motions of the self-propelling
characters were generated by internal forces only and no intentional
external forces, or the hand of God [van de Panne and Lamouret
1995], were used in the simulations.

An example of more complicated interaction between a character
and a changeable environment is shown in Figure 2 where a starfish
has been trapped and is trying to escape by attempting various trials
such as hitting the obstacle with a jump and lifting up the obstacle’s
edge with its arm. We used direct control to guide the character
motion to achieve these motions. Note that all interactions between
the character, the obstacle, and the ground are automatically handled
through the contact mechanism in the two-way simulation, and the
motor command on the character’s active joints, which is generated
by the direct controller, is the only input of the simulation system.

Our system can also handle one-way simulation within its uni-
fied framework by simply changing the property of the joints. For
example, when a global skeletal motion is given as in the case of
the dancing Fatman in Figure 1, we simply set all of the skeletal
joints to be prescribed, which means all the skeletal joints including

ACM Transactions on Graphics, Vol. 30, No. 5, Article 121, Publication date: October 2011.

121:16 • J. Kim and N. S. Pollard

Fig. 15. Test models. (Worm, fish, and starfish) The wire frames are the fine surfaces of the deformable bodies, and the solid meshes represent the embedding
coarse volumetric meshes. The nodes fixed to bones are depicted as black spheres while the others are red ones. (Fatman, left) The wire frame represents the
coarse volumetric mesh embedding the fine solid surface of the character. (Fatman, right) The character’s skeleton and the mass distribution in the deformable
body are shown. The mass particles (spheres) are located at the coarse mesh nodes and the size of the spheres are proportional to the mass. The particles fixed
to bones are colored black while the others are green. See Table IV for more information on the models.

the root joint will exactly follow the given trajectory and they will
not be affected by the secondary motions of the deformable body.
To create the dancing motion of the Fatman character, we drove
the skeleton using a captured human motion data, which had been
modified to fit the character’s skeleton. The jiggling motion of the
deformable body was obtained in almost real time in our system.

The effect of the selective diagonalization technique (Section 3.3)
on the simulation speedup is shown in Table V. As mentioned be-
fore, the technique is more effective when the number of finite ele-
ments is large. For example, when equipped with an existing general
SVD algorithm4, the selective diagonalization technique boosted the
simulation of the fine mesh starfish model shown in Figure 13 by a
factor of more than 3 in the time required for the entire dynamics
simulation, but resulted in a speedup of about 70% for the coarse
mesh starfish model. The effectiveness of the technique highly

4We tested with an SVD algorithm for m × n matrices obtained from Nu-
merical Recipes in C. For reference, it has been reported that an approximate
estimate of the computational cost of such an iterative SVD algorithm for
general m × n matrices is 4m2n + 8mn2 + 9n3 flops [Golub and Van Loan
1996].

Table V. Speedup by Selective Diagonalization
Model speedup factor

(type of motion) with SVDm×n with SVD3×3

Fatman (dancing) 1.44 1.19
Fish (escaping) 1.33 1.17
Worm (rolling) 1.43 1.23

coarse 1.68 1.16
Starfish moderate 3.31 1.67

(free-falling) fine 3.60 1.78
very fine 3.42 1.72

This table shows the effect of the selective diagonalization technique in
Section 3.3 on the simulation speedup. The speedup factor represents the
ratio of the elapsed simulation times without and with the technique. The
effectiveness of the technique varies depending on the type of motion,
complexity of the finite element model, and the choice of SVD algorithm for
the diagonalization of the element deformation. For example, the technique
boosted the simulation speed by a factor of more than 3 when we tested
with the finely meshed starfish model (shown in Figure 13), equipped with
an existing general SVD algorithm. On the other hand, the same technique
could only increase the computation speed by 16% when tested with the
coarsely meshed starfish model and a fast dedicated SVD algorithm. See
the footnotes 4 and 5 for the SVD algorithms we tested with.

ACM Transactions on Graphics, Vol. 30, No. 5, Article 121, Publication date: October 2011.

Fast Simulation of Skeleton-Driven Deformable Body Characters • 121:17

depends on the choice of SVD algorithm for the diagonalization of
the element deformation. When we tested with our own implemen-
tation of a fast dedicated SVD algorithm5, which is about four times
faster than the general one, we obtained a speedup by a factor of 15%
to 80% depending on the model complexity and the type of motion.

8. CONCLUSION

We have introduced a fast physics simulation system for skeleton-
driven deformable body characters. Our approach can handle both
one-way and two-way simulations within a unified framework. We
can create physically plausible realistic character motions through
a two-way simulation where the skeleton with passive root joint,
the particle system representing the deformable body, and the envi-
ronment interact with each other in the solution of fully nonlinear
dynamics equations. Secondary jiggling motions of the deformable
body driven by a global skeletal motion can also be easily computed
through a one-way simulation.

The simulation speed in our system is fast enough to be used
with an interactive user interface system such as that shown in Kim
and Pollard [2011]. Most of the skeleton-driven deformable body
characters tested in the article can be simulated in real time. Also,
our formulation, which takes the fine character surface into account,
preserves the original mechanical properties of the deformable body
as much as possible even in the low-dimensional representation,
which will improve the physical fidelity of produced animations.

Detailed discussions on our engineering decisions for speed,
modeling accuracy, and stability have been presented in the arti-
cle. We chose an embedding mesh representation to reduce model
size. We use mass lumping for deformable bodies and a hybrid dy-
namics algorithm for skeletons to make the overall computation per
time step linear in the model size. We also implemented parallel
computation which is quite effective for complicated models like
our Fatman character. We use nonlinear finite elements for better
handling of large deformation in the simulation. Though we chose a
coarse volumetric mesh to represent the motions of the deformable
body for speedup, we also consider the fine surface of the charac-
ter to increase the modeling accuracy by capturing the mechanical
properties of the deformable body as correctly as possible and by
evaluating the contact forces directly at vertices of the fine surface
mesh. The element stiffness is maintained within given boundaries
by using our selective diagonalization technique, and this helps the
simulation to remain stable. If the trajectory of some or all of the
skeletal joints are given, we can drive the character using a hybrid
simulation with no servo controller for the prescribed joints, and
this also improves the stability of the simulation.

Our choices for fast fully dynamic simulation of skeleton-driven
deformable body characters includes nonlinear material and explicit
integration, and this is quite different from the usual choice for fast
elastic body simulation in computer graphics, that is, the combi-
nation of linear material and implicit, or semi-implicit, integration.
One of the main reasons for choosing a linear material in many exist-
ing techniques for elastic body simulation would be that it produces

5We also tested with our own implementation of a fast SVD algorithm for
3 × 3 matrices based on an efficient solution for eigenvalues of symmetric
3 × 3 matrices proposed in Smith [1961]. The SVD algorithm requires up
to 152 multiplications in the implementation. Though the solution for the
eigenvalues was originally intended for an application requiring moderate
accuracy and its numerical robustness has not been well investigated [Smith
1961], it suffices for our simulation examples. For reference, the diagonaliza-
tion in (4) requires an additional 25 multiplications (in our implementation)
to make sure that U and V are pure rotations.

a constant local stiffness matrix and this can lead to a Symmet-
ric Positive Definite (SPD) matrix system for implicit integration
which can be solved efficiently by, for example, conjugate gradient
iteration. However, in the case of our skeleton-driven deformable
body system, because the elastic forces in the soft body are non-
linearly dependent on the joint coordinates of the skeleton through
the (hard constrained) fixed nodes, the matrix system for implicit
integration is not SPD any more and is expensive to solve. More-
over, in order to build the matrix system for implicit integration, we
need to differentiate the fully nonlinear dynamics equations of the
skeleton as well as the elastic forces at every time step, which is also
computationally expensive. We chose explicit integration to avoid
such problems in our skeleton-driven deformable body simulation
system. Because explicit integration does not require local stiffness
matrices for the finite elements, we can choose nonlinear elements
to increase accuracy at very little cost. One demerit of explicit inte-
gration is that it requires very tiny step size when the finite elements
are small, and this could make the simulation speed extremely slow.
Mesh embedding, which is also one of our choices, addresses this
problem by reducing the number of nodes and elements in the vol-
umetric mesh of the deformable body and by making the element
size large enough to be used in explicit integration with a reasonable
step size.

Though the mixed Euler integrator we chose in our current im-
plementation works well in our experiments with a reasonable step
size, such an explicit integrator may limit the flexibility of our sys-
tem in choosing the simulation resolution, especially when the user
wants to play with a character having a small size but with a com-
plicated geometry and skeleton. In fact, a naı̈ve implementation
of an implicit or semi-implicit integrator can be easily added to
our simulation framework. However, as explained earlier, we need
to find a way to efficiently solve the non-SPD matrix system for
the implicit integration, which would be challenging future work.
Perhaps using parallel computation could be one possible way to
obtain a fast solution for such a nontrivial matrix system. Finding
an approximate but efficient solution would be another direction to
explore as Galoppo et al.[2007] did in their skin-layer deformation-
based method. Releasing the hard constraints to produce a SPD
system for implicit integration and enforcing the constraints later
using pre/poststabilization as in Shinar et al. [2008] would also be
an interesting extension.

In our current system we use barycentric coordinates to map
the fine character surface onto the coarse volumetric mesh repre-
sentation of the deformable body. Though this linear mapping is
simple to implement and fits nicely in our simulation system, it
creates a first-order discontinuity in the surface across the element
boundary which may degrade the quality of the output animation.
Currently we use a filter to smooth out the resulting artifacts when
we render the video in a commercial animation tool, but this is not
a fundamental solution to the problem because it will blur out fine
geometric detail on the character surface. One possible way to treat
the problem would be rerendering the surface for video produc-
tion with an optimized mapping rule minimizing discontinuity such
as the modified barycentric interpolation by Huang et al. [2008].
Such a manipulation of the simulated results, however, would break
physics in the character motions and this could also degrade the ani-
mation quality. It would be interesting future work to incorporate an
advanced mapping rule such as the harmonic coordinates by Joshi
et al. [2007] into the physics formulation to replace the barycentric
coordinates used in our current framework.

Volume preservation, which is not considered in our formulation,
can also be a critical issue in some particular applications such as
a surgery simulation involving highly incompressible soft bodies,

ACM Transactions on Graphics, Vol. 30, No. 5, Article 121, Publication date: October 2011.

121:18 • J. Kim and N. S. Pollard

so incorporating existing volume conservation techniques such as
that of Irving et al. [2007] in our formulation would also be a good
extension.

ACKNOWLEDGMENTS

The authors gratefully acknowledge Moshe Mahler for help with
Maya modeling and rendering. We also thank Sangil Park for pro-
viding motion-captured data for the dancing Fatman example, Jun-
sik Kim for advice on the implementation of the parallel compu-
tation, and the graphics group at Carnegie Mellon for their helpful
comments.

REFERENCES

ALBRO, J. V., SOHL, G. A., BOBROW, J. E., AND PARK, F. C. 2000. On the com-
putation of optimal high-dives. In Proceedings of the IEEE International
Conference on Robotics and Automation. IEEE, 3958–3963.

BARAFF, D. 1996. Linear-time dynamics using lagrange multipliers. In Pro-
ceedings of the 23rd Annual Conference on Computer Graphics and In-
teractive Techniques (SIGGRAPH’96). ACM, New York, 137–146.

BARAFF, D. AND WITKIN, A. 1998. Large steps in cloth simulation. In Pro-
ceedings of the 25th Annual Conference on Computer Graphics and In-
teractive Techniques (SIGGRAPH’98). ACM, New York, 43–54.

BARBIČ, J. AND JAMES, D. L. 2005. Real-time subspace integration for St.
Venant-Kirchhoff deformable models. ACM Trans. Graph 24, 3, 982–990.

BARGTEIL, A. W., WOJTAN, C., HODGINS, J. K., AND TURK, G. 2007. A
finite element method for animating large viscoplastic flow. ACM Trans.
Graphics. 26, 3.

BASAR, Y. AND WEICHERT, D. 2000. Nonlinear Continuum Mechanics of
Solids. Springer.

BONET, J. AND WOOD, R. D. 1997. Nonlinear Continuum Mechanics for
Finite Element Analysis. Cambridge University Press.

BRIDSON, R., FEDKIW, R., AND ANDERSON, J. 2002. Robust treatment of
collisions, contact and friction for cloth animation. ACM Trans. Graph-
ics. 21, 3.

BRO-NIELSEN, M. AND COTIN, S. 1996. Real-time volumetric deformable
models for surgery simulation using finite elements and condensation.
Comput. Graph. Forum. 57–66.

CAPELL, S., BURKHART, M., CURLESS, B., DUCHAMP, T., AND POPOVIĆ, Z.
2005. Physically based rigging for deformable characters. In Proceedings
of the ACM SIGGRAPH/Eurographics Symposium on Computer Anima-
tion (SCA’05). ACM, New York, 301–310.

CAPELL, S., GREEN, S., CURLESS, B., DUCHAMP, T., AND POPOVIĆ, Z.
2002a. Interactive skeleton-driven dynamic deformations. ACM Trans.
Graph. 21, 3.

CAPELL, S., GREEN, S., CURLESS, B., DUCHAMP, T., AND POPOVIĆ, Z. 2002b. A
multiresolution framework for dynamic deformations. In Proceedings of
the ACM SIGGRAPH/Eurographics Symposium on Computer Animation
(SCA’02). ACM, New York, 41–47.

CHOI, K.-J. AND KO, H.-S. 2002. Stable but responsive cloth. ACM Trans.
Graph. 21, 3.

CHOI, M. G. AND KO, H.-S. 2005. Modal warping: real-time simulation
of large rotational deformation and manipulation. IEEE Trans. Visual.
Comput. Graph. 11, 91–101.

COMAS, O., TAYLOR, Z. A., ALLARD, J., OURSELIN, S., COTIN, S., AND PASSEN-
GER, J. 2008. Efficient nonlinear fem for soft tissue modelling and its gpu
implementation within the open source framework sofa. In Proceedings of
the 4th International Symposium on Biomedical Simulation (ISBMS’08).
Springer-Verlag, Berlin, 28–39.

DE FARIAS, T. S. M., ALMEIDA, M. W. S., TEIXEIRA, J. M. X., TEICHRIEB, V.,
AND KELNER, J. 2008. A high performance massively parallel approach

for real time deformable body physics simulation. In Proceedings of
the 20th International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD’08). 45–52.

FALOUTSOS, P., VAN DE PANNE, M., AND TERZOPOULOS, D. 1997. Dynamic
free-form deformations for animation synthesis. IEEE Trans. Visual. Com-
put. Graph. 3, 3, 201–214.

FEATHERSTONE, R. 1983. The calculation of robot dynamics using
articulated-body inertias. Int. J. Robotics Res. 2, 1, 13–30.

FEATHERSTONE, R. 1987. Robot Dynamics Algorithms. Kluwer.

GALOPPO, N., OTADUY, M. A., MECKLENBURG, P., GROSS, M., AND LIN, M. C.
2006. Fast simulation of deformable models in contact using dynamic
deformation textures. In ACM SIGGRAPH / Eurographics Symposium
on Computer Animation, M.-P. Cani and J. O’Brien, Eds., Eurographics
Association, 73–82.

GALOPPO, N., OTADUY, M. A., TEKIN, S., GROSS, M., AND LIN, M. C. 2007.
Soft articulated characters with fast contact handling. Comput. Graph.
Forum 26, 3.

GOLUB, G. H. AND VAN LOAN, C. F. 1996. Matrix Computations 3rd Ed. The
Johns Hopkins University Press.

GOVINDARAJU, N. K., REDON, S., LIN, M. C., AND MANOCHA, D. 2003.
Cullide: interactive collision detection between complex models in
large environments using graphics hardware. In Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics hardware
(HWWS’03). Eurographics Association, 25–32.

GROSSMAN, R. L., NERODE, A., RAVN, A. P., AND RISCHEL, H., Eds. 1993.
Hybrid Systems. Lecture Notes in Computer Science, vol. 736, Springer.

HAUSER, K. K., SHEN, C., AND O’BRIEN, J. F. 2003. Interactive deformation
using modal analysis with constraints. In Proceedings of the Graphics In-
terface Conference. Canadian Human-Computer Commnication Society,
247–256.

HUANG, J., CHEN, L., LIU, X., AND BAO, H. 2008. Efficient mesh deforma-
tion using tetrahedron control mesh. In Proceedings of the 2008 ACM
Symposium on Solid and Physical Modeling (SPM’08). ACM, New York,
241–247.

IRVING, G., SCHROEDER, C., AND FEDKIW, R. 2007. Volume conserving finite
element simulations of deformable models. ACM Trans. Graph. 26, 3.

IRVING, G., TERAN, J., AND FEDKIW, R. 2004. Invertible finite elements for
robust simulation of large deformation. In Proceedings of the 2004 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation (SCA’04).
Eurographics Association, 131–140.

JAMES, D. L. AND PAI, D. K. 1999. ArtDefo-accurate real time deformable
objects. In Proceedings of the 26th Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH’99), A. Rockwood,
Ed., ACM Press, N.Y., 65–72.

JAMES, D. L. AND PAI, D. K. 2002. Dyrt: dynamic response textures for
real time deformation simulation with graphics hardware. ACM Trans.
Graph. 21, 3.

JOSHI, P., MEYER, M., DEROSE, T., GREEN, B., AND SANOCKI, T. 2007. Har-
monic coordinates for character articulation. ACM Trans. Graph. 26, 3.

KHAREVYCH, L., MULLEN, P., OWHADI, H., AND DESBRUN, M. 2009. Numer-
ical coarsening of inhomogeneous elastic materials. ACM Trans. Graph.
28, 3.

KIM, J. AND POLLARD, N. S. 2011. Direct control of simulated non-human
characters. IEEE Comput. Graph. Appl. 31, 4.

KIM, T. AND JAMES, D. 2009. Skipping steps in deformable simulation with
online model reduction. ACM Trans. Graph. 28, 5.

LEE, S.-H., SIFAKIS, E., AND TERZOPOULOS, D. 2009. Comprehensive biome-
chanical modeling and simulation of the upper body. ACM Trans.
Graph. 28, 4, 1–17.

ACM Transactions on Graphics, Vol. 30, No. 5, Article 121, Publication date: October 2011.

Fast Simulation of Skeleton-Driven Deformable Body Characters • 121:19

MÜLLER, M., DORSEY, J., MCMILLAN, L., JAGNOW, R., AND CUTLER, B.
2002. Stable real-time deformations. In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (SCA’02).
ACM, New York, 49–54.

MÜLLER, M. AND GROSS, M. 2004. Interactive virtual materials. In Proceed-
ings of Graphics Interface (GI’04). Canadian Human-Computer Commu-
nications Society, 239–246.

MURRAY, R. M., LI, Z., , AND SASTRY, S. S. 1994. A Mathematical Introduc-
tion to Robotic Manipulation. CRC Press.

NEALEN, A., MÜLLER, M., KEISER, R., BOXERMAN, E., AND CARLSON, M.
2006. Physically based deformable models in computer graphics. Comput.
Graph. Forum 25, 4, 809–836.

NESME, M., KRY, P. G., JEŘÁBKOVÁ, L., AND FAURE, F. 2009. Preserving
topology and elasticity for embedded deformable models. ACM Trans.
Graph. 28, 3.

NESME, M., PAYAN, Y., AND FAURE, F. 2006. Animating shapes at arbitrary
resolution with non-uniform stiffness. In Proceedings of the Eurographics
Workshop in Virtual Reality Interaction and Physical Simulation (VRI-
PHYS). Eurographics.

O’BRIEN, J. F., BARGTEIL, A. W., AND HODGINS, J. K. 2002. Graphical mod-
eling and animation of ductile fracture. ACM Trans. Graph. 21, 3.

O’BRIEN, J. F. AND HODGINS, J. K. 1999. Graphical modeling and animation
of brittle fracture. In Proceedings of the 26th Annual Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH’99). 137–
146.

PARK, F. C., BOBROW, J. E., AND PLOEN, S. R. 1995. A lie group formulation
of robot dynamics. Int. J. Robotics Res. 14, 6, 609–618.

PENTLAND, A. AND WILLIAMS, J. 1989. Good vibrations: modal dynamics for
graphics and animation. In Proceedings of the 16th Annual Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH’89). ACM,
New York, 215–222.

RATHOD, H. T., VENKATESUDU, B., AND NAGARAJA, K. V. 2005. Gauss legen-
dre quadrature formulas over a tetrahedron. Numer. Math. Part. Diff. Eqs.
22, 1, 197–219.

ROCCHINI, C. AND CIGNONI, P. 2000. Generating random points in a tetrahe-
dron. J. Graph. Tools 5, 4, 9–12.

SCHÖBERL, J. 1997. NETGEN: An advancing front 2D/3D-mesh generator
based on abstract rules. Comput. Visual Sci. 1, 41–52.

SEDERBERG, T. W. AND PARRY, S. R. 1986. Free-form deformation of solid
geometric models. SIGGRAPH Comput. Graph. 20, 4, 151–160.

SHI, X., ZHOU, K., TONG, Y., DESBRUN, M., BAO, H., AND GUO, B. 2008.
Example-based dynamic skinning in real time. ACM Trans. Graph. 27, 3.

SHINAR, T., SCHROEDER, C., AND FEDKIW, R. 2008. Two-way coupling
of rigid and deformable bodies. In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (SCA’08).
ACM.

SIFAKIS, E., SHINAR, T., IRVING, G., AND FEDKIW, R. 2007. Hybrid
simulation of deformable solids. In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (SCA’07),
M. Gleicher and D. Thalmann, Eds., Eurographics Association, 81–
90.

SMITH, O. K. 1961. Eigenvalues of a symmetric 3 × 3 matrix. Commu.
ACM 4, 4, 168.

STERN, A. AND DESBRUN, M. 2006. Discrete geometric mechanics for vari-
ational time integrators. In ACM SIGGRAPH Courses. ACM, New York,
75–80.

SULEJMANPAŠIĆ, A. AND POPOVIĆ, J. 2005. Adaptation of performed ballistic
motion. ACM Trans. Graph. 24, 1, 165–179.

TERAN, J., BLEMKER, S., HING, V. N. T., AND FEDKIW, R. 2003. Finite volume
methods for the simulation of skeletal muscle. In Proceedings of the ACM
SIGGRAPH/Eurographics Symposium on Computer Animation (SCA’03).
Eurographics Association, 68–74.

TERAN, J., SIFAKIS, E., IRVING, G., AND FEDKIW, R. 2005. Robust quasistatic
finite elements and flesh simulation. In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (SCA’05).
ACM Press, New York, 181–190.

TERZOPOULOS, D., PLATT, J., BARR, A., AND FLEISCHER, K. 1987. Elastically
deformable models. In Proceedings of the 14th Annual Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH’87). ACM,
New York, 205–214.

TERZOPOULOS, D. AND WITKIN, A. 1988. Physically based models with rigid
and deformable components. IEEE Comput. Graphi. Appli. 8, 6, 41–
51.

TURNER, R. AND THALMANN, D. 1993. The elastic surface layer model for
animated character construction. In Proceedings of Computer Graphics
International Conference. Springer-Verlag, 399–412.

VAN DE PANNE, M. AND LAMOURET, A. 1995. Guided optimization for bal-
anced locomotion. In Proceedings of the Computer Animation and Sim-
ulation. D. Terzopoulos and D. Thalmann, Eds., Springer-Verlag, 165–
177.

WOJTAN, C. AND TURK, G. 2008. Fast viscoelastic behavior with thin features.
ACM Trans. Graph. 27, 3.

ZHANG, X. AND KIM, Y. J. 2007. Interactive collision detection for de-
formable models using streaming AABBs. IEEE Trans. Visual. Comput.
Graph. 13, 2, 318–329.

ZORDAN, V. B. AND HODGINS, J. K. 2002. Motion capture-driven simulations
that hit and react. In Proceedings of the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (SCA’02). ACM, New York, 89–
96.

Received January 2010; revised January 2011; accepted April 2011

ACM Transactions on Graphics, Vol. 30, No. 5, Article 121, Publication date: October 2011.

