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Design and Evaluation of a Distributed
Scalable Content Discovery System

Jun Gao and Peter Steenkiste, Senior Member, IEEE

Abstract—A content discovery system (CDS) allows nodes in
the system to discover contents published by some other nodes
in the system. Existing CDS systems have difficulties in achieving
both scalability and rich functionality. In this paper, we present
the design and evaluation of a distributed and scalable CDS. Our
system uses rendezvous points (RPs) for content registration and
query resolution, and can accommodate frequent updates from dy-
namic contents. Contents stored in our system can be searched via
subset matching. We propose a novel mechanism that uses load bal-
ancing matrices (LBMs) to dynamically balance both registration
and query load across nodes in the system to maintain high system
throughput even under skewed load. Our system utilizes existing
distributed hash table (DHT) mechanisms for CDS overlay net-
work management and routing. We validate our system’s scala-
bility and load balancing properties using extensive simulation.

Index Terms—Content discovery system (CDS), load balancing,
rendezvous points (RPs).

I. INTRODUCTION

CONTENT discovery system (CDS) is a distributed

system that enables the discovery of contents. Nodes in
such a system form an overlay network, the CDS network. A
node in the system can publish and provide contents, issue
queries looking for contents, store contents or contents’ meta-
data published by other nodes, and resolve other nodes’ queries.
There exists a wide spectrum of distributed applications that
either themselves are CDS systems or use a CDS as one of
their major components. Some examples are service discovery
services, peer-to-peer (P2P) object sharing systems, sensor
networks, and publication-subscription (pub/sub) systems.

We illustrate the type of applications we are targeting with
the following example. Consider a nationwide highway traffic
monitoring service, where devices such as cameras and sensors
are installed along the roadside of highways or mounted on pa-
trol cars, to monitor traffic status, road, and weather conditions.
These devices must frequently send updates to the system to
accurately reflect the current status of the highways. In this ex-
ample, “content” refers to the description of a device and the
CDS must be able to answer a large range of user queries, for in-
stance, “What is the speed at Fort Pitt Tunnel?,” “Find a camera
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on Mt. Washington that overlooks the city and can accept new
connections for live images,” “Identify the highway sections to
the airport that are icy (so that a driver can avoid them).” This
example represents a large category of applications that pose the
following challenges when designing a CDS system.

* Contents stored in the CDS must be searchable. A node
can locate contents without having to use their canonical
names. Instead, it should be able to do so by specifying
a combination of attributes and values that describe the
contents.

* The CDS must be able to handle frequent updates of dy-
namic contents. The description, or “name” of a piece
of content may change over time. For example, when a
camera observes a different speed, it must change its de-
scription and announce it to the CDS system.

* The CDS must scale with both the registration and query
load. By scalability we mean that as the load (e.g., the
registration and query rate) to the system increases, the
performance of the CDS, such as throughput and response
time, must not degrade significantly before the system as
a whole reaches its capacity.

The primary task of a CDS is to efficiently locate the set of
contents that matches a client’s query. Existing CDS systems
have difficulties in achieving both rich functionality and scala-
bility. At one end, they may be able to scale to the Internet level
but offer limited functionality, e.g., they support exact content
name lookup ([1]-[4]) only, or the search of strictly hierarchical
content names [5], or they consider static contents only, e.g.,
search engines [6]. At the other end, they may offer powerful
functionality such as the searching of general content names,
but are not scalable [7].

In this paper, we present the design, implementation and
evaluation of a distributed CDS that meets the above challenges.
Content names in our system are represented by attribute-value
pairs for searchability. We achieve scalability through the use
of rendezvous points (RPs). The RP-based scheme avoids
network-wide message flooding at both registration and query
time. We design a novel mechanism that uses load balancing
matrices (LBMs) to dynamically balance both registration and
query load in the system to improve the system’s throughput
under skewed load.

The rest of the paper is organized as follows. In Section II, we
present the CDS system architecture. In Section III, we present
the basic RP-based CDS design. We present our distributed load
balancing mechanism in Section IV. Section V describes the
evaluation methodology and we present simulation results in
Section VI. We discuss related work in Section VII and conclude
in Section VIII.
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Fig. 1. CDS node architecture.

Camera ID = 5562

Camera Type = Q-cam

Highway Number = I-279
Exit Number = 4

City = Pittsburgh
Speed Measured = 45MPH
Road Condition = dry

Connection availability = yes

Fig. 2. An example of content name.

II. SYSTEM ARCHITECTURE

Nodes participating in the CDS connect to each other in a
P2P fashion to form a CDS overlay network. Fig. 1 shows the
software architecture on a node. The CDS layer is designed as
a common communication layer on which higher level applica-
tions, such as service discovery and file sharing, can be built.
The CDS layer is in turn built on top of a scalable distributed
hash table (DHT), such as Chord [1], CAN [2], Pastry [3], and
Tapestry [4].

A. AV-Pair Based Content Naming Scheme

To provide content searchability, applications built on top
of the CDS layer use a flexible attribute-value based naming
scheme, similar to what is used in [8] and [9]. Contents are
represented using attribute-value pairs (AV-pairs). For example,
in a service discovery system, a device may be described with
attributes such as Type, Location, and Model, etc. In multi-
media applications, such as the P2P music file sharing system
described in [10], to enable content-based search, attributes in-
clude not only manually configured ones such as Artist and
Song Name, but also features extracted from the audio signals,
such as Tempo and Strength.

We refer to the collection of the AV-pairs as the “content
name,” or “content description.” In our terminology, “content
discovery” means the discovery of the “content name,” not the
actual content. We consider mechanisms such as contacting the
device or retrieving the actual file after the “content discovery”
step as a separate function. An AV-pair takes the form of {a; =
v; }, or {a;v;} for short, where a; is an attribute and v; is its
value. A content name that consists of n AV-pairs is represented
as CN : {ajv1, agus, ..., a,v, }. Languages such as XML may
be used to describe content names. Fig. 2 is an example name
for a highway monitoring camera.

Content names may consist of both orthogonal attributes and
dependent attributes. Orthogonal attributes exist independently
of each other, whereas a dependent attribute relies on the pres-
ence of some other attribute. For instance, the Exit Number

attribute is meaningful only when the name also contains the
Highway Number attribute. An attribute may be dynamic, e.g.,
the Speed Measured attribute, in that it may take on different
values at different times. When the value changes, the content
name changes.

A query is also comprised of a set of AV-pairs, e.g.,
Q : {aivi,a9v9,...,amvm} contains m AV-pairs. The
matched content name must simultaneously satisfy all the
AV-pairs present in the query. In our current system, we
consider equality matching only. Content names registered in
the CDS are searched via subset matching. More specifically, a
content name matches a query as long as the set of AV-pairs in
the query is a subset of the set of AV-pairs in the content name.
The AV-pairs in the query that are not in the content name are
treated as “don’t care.” The number of nonempty subsets of
a content name that consists of n AV-pairs is 2" — 1, which
means it can match 2" — 1 different queries.

B. DHT-Based Overlay Substrate

The CDS system uses the DHT layer [11] for two purposes:
1) constructing and managing the overlay network and 2) deliv-
ering messages within the overlay network.

In a DHT, each node is assigned a node ID as its overlay
network address and it is responsible for a contiguous region in
an m-bit address space. The node ID may be obtained locally,
e.g., by applying a system-wide hash function to some local
information such as the node’s IP address. Overlay networks
built using DHT are structured in that node IDs encode overlay
network topological information: The node ID determines the
set of nodes that this node will be neighboring with, and which
next hop node to use when forwarding a message in the overlay
network. DHT-based systems are scalable by keeping both
the number of routing table entries on a node and the number
of overlay hops between any two nodes small, e.g., both are
O(log N..) in Chord [1], where N, is the number of nodes in
the network.

The CDS system uses the DHT layer to forward its messages
within the overlay network. Communication is based on node
IDs. When the DHT layer receives a tuple {nodeID, message}
from the CDS layer, it will subsequently forward message to
the node that corresponds to nodeID. The DHT layer does not
dictate how CDS chooses the nodeID for message.

C. CDS Functionality

The API that the CDS layer provides to the application
layer must include at least the following two methods:
register(content name) and locate_contents(query).
Once it receives a data item, a content name or a query, from the
application layer, the CDS must determine the set of nodes it
should send the data item to. In our architecture, this translates
to computing a set of node IDs.

In choosing the set of nodes, the primary goal is to meet the
scalability and content searchability requirements. In a central-
ized system, names and queries are sent to one central location,
which constitutes the system’s single point-of-failure and bot-
tleneck. Approaches based on flooding the CDS network with
registrations or queries are not scalable due to the prohibitive
number of duplicated registration or query messages. In our
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Example registration and query processing with RP set.

Fig. 3.

system, we introduce an approach based on rendezvous points
(RPs). In this scheme, a content name is registered only with a
small set of nodes in the system, the RPs; thus, the full dupli-
cation of content names at all nodes is avoided. Queries are di-
rectly sent to the proper RPs for resolution and no network-wide
searching is needed. The term “rendezvous” is used because the
RPs are where queries and the matched names meet.

III. BAsic CDS DESIGN

We now present the basic RP-based CDS design.

A. Registration With RP Set

To register a content name, the provider node must first de-
termine the set of nodes that should receive this name. It does
this by applying a system-wide hash function H to each AV-pair
in the content name. For example, given content name CN; :
{ayv1, asvs, ..., a,v,}, which has n AV-pairs, the provider
computes the following:

'H(aivi) = NZL = 1,...,71.

The node whose ID is either equal to or numerically closest
to IN; will become the ith RP node. These nodes (n of them
assuming no hash collision) form the RP set for this content
name. The complete content name is then sent to each of the
n nodes (Fig. 3), which results in n replications of the name.
From an RP node’s point of view, it becomes a specialized node
for the AV-pairs that are mapped onto it, e.g., N7 contains all
the names in the system that have {a;v1} in them. For a de-
pendent AV-pair, we apply the hash function to it and all of its
parent AV-pairs together. In this paper, we focus on orthogonal
AV-pairs; the same mechanisms can be directly applied to de-
pendent AV-pairs.

Hashing each AV-pair individually has the following prop-
erties. First, it yields an RP set of size n for a name that has n
AV-pairs, thus requiring O(n) messages per registration. In real-
world applications, n is typically a small number (e.g., <50),
and registration can be done efficiently. Second, it guarantees

system correctness, in that, any query that is a subset of a con-
tent name, e.g., the query @ : {a;v1 }, which contains only one
of CNy’s AV-pair, can discover CN; by going to node V7. As a
comparison, registering with all nodes corresponding to all the
2™ — 1 subsets of the content name would also ensure correct-
ness, but requires an exponential number of registration mes-
sages. Third, from the system’s point of view, hashing attribute
and value together to determine the set of RP nodes rather than
hashing attribute alone provides a natural way of spreading reg-
istrations to more nodes in the system.

An RP node stores the names it received in a local database
and maintains them in a soft state fashion. As such, names auto-
matically expire after a certain time period and must be period-
ically refreshed. This provides protection against certain types
of failures. For example, when an RP node leaves or crashes,
the refresh messages will automatically restore a lost content
name at a node that is alive. Also, when a name contains dy-
namic attributes, the refresh messages may register the name at
a different set of RPs when their values change.

B. Query Resolution

To resolve queries, clients must determine the set of RPs
that may contain matching content names. Since all content
names that contain the pair {a;v;} are stored in the node N;(=
H(a;v;)), query Q : {ajv1, azvs,...,anvy} can be sent to
any one of the m RP nodes, N1, ..., N, (Fig. 3). Given these
m candidate RP nodes, the client may pick one node randomly
and send one query message to that node. Once an RP node re-
ceives a query, it simply goes through its name database, and
determines the set of names that match the query by comparing
each name’s AV-pair list with that of the query’s. No commu-
nication between nodes is needed, and query resolution is done
efficiently.

An alternative to having queries fully resolved at one RP node
is to have a client send its query to multiple nodes, each of which
resolves the query partially and returns any matches. The client
then performs a “join” operation to determine the final set of
matched names. While this approach reduces the computation
load on resolver nodes, it adds potentially significant communi-
cation overhead due to large sets of partial matches to the net-
work and client. Given that exact matching for AV-pairs is a
relatively lightweight operation, it is more efficient to do the
complete matching on the selected RP node.

C. Load Balancing Property

In the basic RP-based design, AV-pairs are used as the argu-
ment by the hash function and are mapped onto nodes. How-
ever, the registration and query loads observed on each node are
determined by the AV-pair distributions in content names and
queries. The basic design performs well when the distributions
are even, in which case the distribution of load in the system
should be even.

In real-world applications, these distributions are likely to
be skewed as some AV-pairs are common or significantly more
popular than others. For instance, it has been observed that
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the popularity of keyword search strings! in both traditional
web searches [12] and Gnutella P2P networks [13] follows a
Zipf-like distribution. This type of skewed distribution implies
that some nodes in the CDS system may be overloaded, while
others are underutilized. More specifically, consider the case
where the number of names that contain {a;v; }, Ng,,, follows
a Zipf distribution

Naww, = N k- = ()
A

fori =1... N4, where Ny is the number of different AV-pairs
in the system. k and « are two parameters, where « is close to
1. Ny is the total number of names in the system and ¢ is the
rank of AV-pair {a;v; } in terms of its frequency of occurring in
names; ¢ = 1 corresponds to the AV-pair that is contained in the
most number of names. As an example, suppose an application
has Ny = 10° names, and £ = 0.5, « = 1. Half of the 10°
names would contain the most popular AV-pair, which would
be sent to one node. In the meantime, for nodes that correspond
to AV-pairs ranked from 103 to 104, each would receive fewer
than 50 names. Clearly, a few nodes would be swamped by reg-
istrations, while the majority of the nodes in the system would
be rarely used.

IV. SYSTEM WITH LOAD BALANCING

We next present a distributed load balancing solution that al-
lows the CDS to dynamically discover and utilize lightly loaded
nodes to share the registration and query load on heavily loaded
nodes.

A. Load Balancing Matrix (LBM)

For a popular AV-pair, the CDS system uses a set of nodes
instead of one node to share the registration and query load.
This set of nodes is organized into a logical matrix, the load
balancing matrix (LBM). Fig. 4 shows the layout of the matrix
for AV-pair {a;v;}. Each node in the matrix has a column and
row index, (p,r), and node IDs are determined by applying the
hash function H to the AV-pair, and the column and row indices
together

Ni(prr) — H(aivi7p7 T)'

IKeyword-based search is a special case of AV-pair-based search, where at-
tributes are omitted.

CN:{alvl, a2v2, a3v3}

LBM for {a2v2}

@O
W
ejele

LBM for {a3v3)
LBM for {alvl}

Fig. 5. Registration with LBMs.

Each column in the matrix stores one subset, or partition of the
content names that contain {a;v; }. Nodes in the same column
are replicas of each other: they host the same set of names.

The matrix dynamically expands or shrinks along its two di-
mensions depending on the load it receives. It starts with one
node when the registration and query load are low; this corre-
sponds to the basic system. New partitions are added to the ma-
trix when the registration load of the pair {a;v;} increases, and
new replicas are added when the query load increases. Matrices
may end up in different shapes. For example, a matrix may have
only one row, when only the registration load is high, or one
column, when only the query load is high. Each matrix uses a
node, called the head node, with ID N° = H(au;,0,0),
to store its current size and to coordinate the expansion and
shrinking of the matrix.

To expand matrices, each node in the system maintains three
thresholds: Ty, the maximum number of content names a node
can hold, T}.g, the maximum rate of registration it can sustain,
and T, the maximum query rate the node can sustain. Three
corresponding low thresholds are also set for shrinking purpose.
Note that a node may belong to multiple matrices when multiple
AV-pairs are mapped onto it and the thresholds are used to regu-
late the aggregated load from all of these pairs. In the following
discussions, for simplicity, we assume all nodes are homoge-
neous in that they have the same computation power and net-
work connectivity.

B. Operations With LBM

We first describe the registration and query operations when
LBMs are present in the system.

1) Registration: In the basic system, a content provider reg-
isters its content name with each RP node that corresponds to
one of the AV-pairs in the name. In contrast, with LBMs, the
provider must register its content name with one column of
nodes in each matrix that corresponds to an AV-pair (Fig. 5).

The pseudocode for registration is listed in Fig. 6. To reg-
ister with matrix LBM;, the content provider must first discover
its size: the number of partitions P and the number of replicas
R. It can do so in several ways. First, it may be able to re-
trieve the size from the pair’s corresponding head node (line 4
in Fig. 6). Second, in case the head node is down or becomes
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L register(name) {
2: foreach AVpair a;v; in name {
3 Nfum — H(a;v;,0,0);
4: (P, R) « rctric‘:veJnatrix_size(Ni(O’o),aiv,-);
5: p « generate_random._number(1, P);
6: foreach r in [1, R] {
7 N‘,(p’r) — Hla;vi, p,7);
8: send_to(N#", name);
9: }
10: }

11:}

Fig. 6. Algorithm for content providers to register with LBM.

a bottleneck, the provider may find out the matrix size by di-
rectly sending probe messages to nodes that are potentially in
the matrix. For example, to discover P, the provider may first
estimate a maximum number Py and probe a node in the Fyth
partition, e.g., N,L»(Po’l). Node ]\T,L.(PO’1 can determine whether
it belongs to LBM; by checking its database to see if it has
seen {a;v; } before. Since partitions are indexed contiguously,
the current number of partitions can be efficiently discovered in
O(log Py) steps via binary probing between partition 1 and Fj.
Third, content providers may cache an AV-pair’s matrix size and
use it without rediscovering it. This is useful when refreshing a
previously registered name.

Once the size of the matrix is found, the content provider
selects a random partition between 1 and P and computes the
node IDs in the partition. It then registers with each of them.
Since the partition within the matrix is randomly selected, the
registration load within the matrix is distributed evenly.

2) Query Resolution: Similar to the basic system, clients
can issue a query to the matrix that corresponds to any AV-pair
in the query. The cost of resolving a query is determined by the
number of partitions in the selected matrix. If the query contains
only one AV-pair, it would be sent to the matrix corresponding
to that pair. When this matrix has a lot of partitions, the client
can contact a small subset of the partitions to receive enough
matches. The client may then refine its query by adding more
AV-pairs. In fact, this is the behavior of Internet users when
using a search service. A study conducted in [12] shows that
71.5% of the searches found in one large web cache contains
more than two keywords.

In our system, when multiple AV-pairs are present, we use a
two-pass query optimization algorithm to determine which pair
a client should use for its query. First, the client probes the sizes
of all the matrices corresponding to each AV-pair in the query
using one of the mechanisms presented above and then selects
the one with the fewest partitions. In practice, since the matrix
sizes can be cached, the cost of the probing phase is amortized
when the client issues many queries.

Once a matrix is selected, the client must send the query to
all the partitions in the matrix, if it needs to collect all possible
matches. In reality, sending to a subset of the partitions may
return the client sufficient number of results. Since nodes in the
same column are replicas of each other, the query needs only
to be sent to one node in each column and the client chooses

a random node to ensure the query load is distributed evenly
within a matrix.

C. Matrix Management

In this section, we present the matrix expansion and shrinking
mechanisms. When a matrix receives high load, it must expand
itself quickly to accommodate the excessive load. When the load
decreases, the matrix should shrink itself to reduce registration
and query cost. We use a multiplicative approach to expand the
matrix by doubling the number of partitions or replicas when
the existing matrix is saturated by registration or query load. To
ensure a stable system, matrix shrinking is done linearly, i.e., we
decrease the number of partitions or replicas by one at a time.

We describe the detailed expansion and shrinking mecha-
nisms using matrix LBM; as an example. LBM; corresponds
to {a;v; }, and its head node is Ni(o,o)_ Suppose there are cur-
rently P; partitions and R; replicas in LBM;.

1) Partition Expansion: New partitions are added to LBM;
when the existing partitions in the matrix receive high registra-
tion load. We define the expansion region (ER) as the set of par-
titions that are last added to the matrix. The expansion mecha-
nism works as follows.

* When the registration load on a node in the matrix reaches
the threshold TN or T, it will send an INC_P request to
the head node Ni(o,o)'

* The head node doubles the number of partitions to 2F;,
upon receiving the first such request from a node in the
current ER. It ignores requests from non-ER partitions and
from other ER partitions that may arrive later.

* The head node then informs nodes with partition index
from P; 4+ 1 to 2P; that they are now in the matrix and
will be responsible for {a;v;}. Partitions P; 4+ 1 to 2P;
become the new ER.

When a new content name that contains {a;v;} comes up,
the registering node will discover LBM; has 2 P; partitions, and
then select one to register this name. Hence, the registration load
is shared by the expanded matrix.

The head node acts upon only one request from the ER and
suppresses others to avoid unnecessary expansion. The reason is
that the head node expands the matrix only when the following
two conditions are met: 1) the load is distributed evenly among
all partitions and 2) the load on any partition reaches threshold.
In the expansion algorithm, we use a request from an ER par-
tition as the signal of when the above conditions are satisfied,
since the load observed on the non-ER partitions do not reflect
the average when the new partitions are being added.

The multiplicative increase of P; allows the number of parti-
tions grow quickly, and as such the system can quickly tune it-
self to accommodate high load. The direct cost of this approach
is minimal, since “adding a partition” does not actually involve
any copying of data over the network.

2) Partition Shrinking: A matrix decreases the number of
partitions when possible, since more partitions means more
query messages are needed for a query that is sent to this ma-
trix. Suppose LBM; now has P/ partitions, and before the last
expansion, it has P; partitions. P; is also equal to the number
of partitions in the ER immediately after the last expansion.
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* When any node in the last partition of the matrix observes
a low registration rate or a low number of content names,
it will issue a DEC_P request to the head node.

* The head node again acts on only one such request: it sends
a SHRINK_P command to all the nodes in the last partition
and asks them to transfer their names containing ,{ a;v; } to
the nodes in partition P — P;. For example, N, ;Pf 1) sends
its names to Ni(PiLPi’l).

» After all the transferring are confirmed successful, the
head node will inform nodes in partition P, that they are
removed from the matrix. Now partition P/ — 1 becomes
the last partition, and the head node decreases the size by
1, P/ — P! — 1. Correspondingly, the size of the current
ER is also reduced by 1.

When all the partitions in the current ER are removed, and the
number of partitions drop back to P;, the head node informs the
partitions from [P; /2] through P; to become the new ER. By
collapsing the matrix one partition at a time, we try to keep the
matrix load balanced and the linear decrease prevents the matrix
from oscillating.

3) Replication Expansion: New replicas are added to the
matrix when the query load to the matrix increases, similar to
how partitions are added. The expansion region here refers to
the replicas that are last added. When a node in the ER observes
its query rate reaches T, it will send an INC_R request to the
head node. Upon receiving such a message, the head node is-
sues a DUPLICATE command to each node in the last row of the
ER, asking them to replicate themselves.

The replication is also done multiplicatively to allow the ma-
trix expand to a large size to accommodate query load. A node
that receives the DUPLICATE message sends a copy of the names
corresponding to {a;v; } inits database to the newly added nodes
in its column. For example, node Ni(l’R7) will send its names to
nodes N,L-<1’R’+1) through Ni(l’ZR’). The head node doubles R;
when all the replicas are in place, and the nodes in row R; + 1
to row 2R; become the new ER.

4) Replication Shrinking: More replicas in the matrix
means providers must register with more nodes. Thus, matrices
should shrink along the R dimension when the query load
to this matrix drops. The replication shrinking mechanism
is similar to the partition shrinking mechanism, but no data
transfer is needed. When any node in the last row observes a
low query rate, it will issue a DEC_R request to the head node.
When it receives such a request, the head node will send a
SHRINK_R command to all the nodes in the last row so that they
can remove themselves from the matrix. The head node then
decreases the number of replicas by 1.

The shrinking mechanism is important specially under “flash-
crowd” type of load: when an AV-pair becomes popular due to
for example a current event, its corresponding matrix will repli-
cate quickly to accommodate the sudden surge of load. When
clients lose interest in this pair, the matrix will shrink and even-
tually may become just one row.

5) Head Node Mechanisms: The primary job of the head
node is to coordinate the matrix expansion and shrinking.
The expansion and shrinking requests may come to the head
node in an arbitrary order. While a matrix is in a dynamic

state, i.e., expanding or shrinking, if the corresponding head
node receives additional requests, it will buffer these requests
and process them when the current operation completes.
By serializing the operations, we ensure data consistency
within the matrix.

A head node is only responsible for its own matrix, and dif-
ferent matrices will likely have different head nodes, which are
distributed across the network. Therefore, head nodes will not
become the bottleneck of the system. However, when a head
node leaves or crashes, vital information about its matrix, such
as the size will be lost. To prevent this from happening, live
nodes in the matrix send infrequent messages with their indices
(p,r) to the head node. Due to the routing properties of DHT, a
new node whose ID is close to the old head node’s ID will re-
ceive these messages and become the new head node. It can then
recover the matrix’s size based on the information it receives. In
fact, the matrix expansion or shrinking requests will also reach
the new head node and they can be used to recover the matrix’s
dimensions as well.

D. System Properties With LBM

When LBMs are deployed in the system, both the registration
and query cost are higher than in the basic system. To register
a name that has n pairs, the number of registration messages
needed is

where R; is the number of replicas in matrix LBM;. R; = 1
when LBM; has no extra replicas. M,. is determined by the
number of replicas each matrix has, and does not depend on the
number of partitions.

To resolve a query that has m pairs, when using the query
optimization mechanism, the number of query messages needed
excluding the probing messages, is

M, = min(F;)

where ¢« = 1,...,m, and P; is the number of partitions in ma-
trix LBM;. The query cost is not affected by the number of
replicas in these matrices, but depends solely on the number of
partitions.

The benefits of the query optimization algorithm are two-
fold. First, it will likely keep the number of query messages low
by avoiding matrices that have large P. Second, by reducing the
number of query messages, it also indirectly reduces the number
of registration messages required in the system. By avoiding
matrices that have large P, the query load on these matrices is
reduced; thus, it naturally limits the R-dimension expansion of
these matrices. A matrix with a smaller R means that names
mapped onto this matrix require fewer registration messages.
Conversely, for matrices that have small P, even if they have a
large R due to many queries, from the system’s point of view, it
will not greatly affect the average number of registration mes-
sages needed: small P implies only a small number of content
providers will be affected by having to send more messages.
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V. EVALUATION METHODOLOGY

In this section, we describe our simulator implementation and
the evaluation methodology.

A. Simulator Implementation

We developed an event-driven simulator to evaluate the CDS
system. Each node uses a first-come-first-serve queue to process
registrations and queries with exponentially distributed service
rates. A node measures the registration and query rates it ob-
serves using a sliding window of a certain number of recently
received registrations or queries. In the simulation, we use a
window size of 20. Matrix size discovery is done by probing
head nodes.

The simulator assumes the existence of a DHT-based overlay
mechanism for routing and forwarding and it uses a 24-bit name
space for node IDs and the hashed values of AV-pairs. Node IDs
are assigned in such a way that each node covers an equal slot
in the entire name space to ensure an even mapping of hashed
values onto nodes. In practice, this can be achieved by using
techniques such as assigning multiple “virtual” node IDs to one
node [1]. The hash function used by the CDS system must gen-
erate values uniformly distributed in the name space and be in-
sensitive to the input. In our implementation, we use the cryp-
tographic function SHA-1 as the system-wide hash function.

The simulator uses an exponential distribution with a mean
value of 50 ms [1] to model the one-way network delay be-
tween any two nodes. In DHT systems such as Pastry [3], by
employing proximity metric into the routing rules, the overlay
delay between two nodes can be limited to within 1.4 times of
the physical network delay. In our simulation, we conservatively
set the average overlay delay between two overlay nodes to be
twice of the physical network delay between them, which re-
sults in a mean of 100 ms.

B. Experiment Setup

In the experiments we conducted, we assume that each node
has approximately 500 kb/s available link bandwidth (DSL
level) dedicated to content name registrations and queries.
Corresponding to this bandwidth, assuming a 1000-byte reg-
istration packets size and a 250-byte query packet size, each
node sets up a threshold of T;eg = 50 reg/s as the maximum
sustainable registration rate and 7, = 200 ¢/s as the maximum
sustainable query rate. Tcn is set to be 4000. When a node
observes that one of these thresholds is reached, it will issue a
matrix expansion request to the corresponding head node. In
our experiments, 1, is always reached before Ton. To enable
us to study the effectiveness of the load balancing mechanism,
the maximum number of partitions and replicas a matrix can
use are configurable in the simulator. The matrix will stop
expanding along a dimension if that dimension reaches its
maximum value. In our experiments, we focus on how the
system behaves when load increases. The load distribution does
not change within each simulation run and the matrix shrinking
mechanism is not triggered.

The processing of registrations and queries on a node is ex-
ponentially distributed with a mean rate of 1000 reg(query)/s,
which can easily be achieved by modern PCs on a database with

a size on the order of 10° entries. With these assumptions, a
node’s performance is limited by its available link bandwidth.

To register a name, registration messages are sent to the RP
nodes corresponding to the name’s AV-pairs concurrently. Upon
receiving a registration, the RP node either inserts the name into
its local database and replies the registering node with a success,
or rejects the name and replies with a failure. A registration may
fail at a node for two reasons: 1) the registration rate this node
observes ryode €xceeds the set threshold, i.e., rpode > Tregs
or the number of names it is hosting exceeds Tcn and 2) the
corresponding matrix is in a dynamic state such as expanding.
For instance, a node has sent a replica to a new node, but the
success of the replication has not been confirmed, and during
this time period, any registrations arrive at the replicating node
will be rejected and result in a failure. The registration succeeds
when all the pairs registered successfully.

Similarly, a query is sent to one RP node in each partition of
the chosen LBM concurrently. The RP node rejects the query if
the query rate this node observes gy,040 €xceeds the set query rate
threshold, i.e., gnode > T, by replying to the query node with
a failure message. Otherwise, it accepts the query, examines its
database and sends the querying node the set of content names
that match the query. Note that the set may be empty. From the
querying node’s point of view, a query succeeds when all the
corresponding RP nodes accept the query.

We evaluate the CDS system using the following metrics: the
registration and query success rates and the registration and
query response times. The success rate is defined as the per-
centage of successful registrations or queries in one simulation
run. Since the system throughput equals to the product of the
system load (registration or query rate) and the success rate, the
success rate is used as an indicator of the system’s throughput:
the throughput increases as load increases, if the success rate re-
mains high. For a successful registration or query, we define the
response time as the time between when the last reply message
is received and when the registration or query messages (probe
messages, when we must probe the matrix size) are first sent.

C. Workload

In the following experiments, we consider a CDS network
that has 10000 (NV.) nodes. There exists 50 attributes in the
system, each of which can take on 200 values; this results in
10000 (V) distinct AV-pairs. On average, each node is respon-
sible for 1 (= N4/N.) AV-pair.

We generate two sets of content names for registration and
one set of queries as workload to drive the simulations. Each
name dataset contains 100 000 names and each name is com-
prised of n = 20 AV-pairs. The AV-pair distributions in names
are shown in Fig. 7. In the uniform dataset, each AV-pair is
equally likely to appear in a name, and on average each AV-pair
occurs in about 200 names. The uniform dataset is primarily
used for comparison. In the skewed case, some AV-pairs are as-
signed higher weights, and the overall distribution of AV-pairs
is Zipf-like, as it is close to a straight line in the log-log plot
(o ~ 0.88). The top five most popular AV-pairs are contained in
about 24 000 names. The query dataset (Fig. 8) contains 99 473
queries and is generated based on a Zipf distribution with k£ =
0.5 and a = 1 in equation (1). The number of AV-pairs in a
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query ranges from one to ten and on average each query con-
sists of four AV-pairs. The most popular AV-pair occurs in about
50000 queries. The sender of a name or a query is selected ran-
domly from the nodes in the system and both the arrival times
for names and queries are modeled with a Poisson distribution.

VI. SIMULATION RESULTS

We conducted extensive simulations to evaluate the properties
of the CDS system. We show the system’s performance with
regard to registration load in Sections VI-A and VI-B and query
load in Section VI-C. We analyze the load balancing behavior
in Section VI-D. Finally, we study the cost introduced by LBMs
in Section VI-E.

A. Registration Success Rate

We first examine how the system behaves as the registration
rate increases. For each experiment, we inject either the skewed
dataset or the uniform dataset into the system with a certain ar-
rival rate 7'ystem- Each experiment is carried out with a different
configuration of P value, the maximum number of partitions a
matrix may use.
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Fig. 9. Registration success rate comparison.

Fig. 9 compares the success rate in these experiments after
all the matrices stop expanding. We observe that for a given P
value, when the registration rate is low, the registrations succeed
on the existing set of partitions, and the success rate is 100%. As
load increases, the success rate starts to drop, because without
further expanding, nodes in the matrices become saturated and
start to reject registrations. By increasing P, for the same regis-
tration load, the success rate is improved significantly. As load
is further increased, all curves eventually drop.

For the uniform dataset, since AV-pairs are distributed evenly
in content names, registration load is distributed fairly evenly
among nodes in the system. Compared with the skewed load, to
maintain the same success rate, fewer partitions are needed for
the same registration load. The basic system (P = 1) performs
well until 7system reaches 2000 reg/s, and after that the success
rate drops quickly to near 0%. The reason is that the hash func-
tion may map multiple AV-pairs onto the same node, and when
T'system 1NCTEASES, Tegistration rate on such nodes will reach Teq
earlier than others, and cause registration failures.

We study the data points corresponding to the highest reg-
istration load, where Tsystem = 10* reg/s. In these experi-
ments, since there are no queries and, thus, no replications in
the system, each name is registered at n = 20 nodes, the av-
erage registration rate observed on a node is

Tsystem *

Thode = . " — 90 reg/s.

The success rate under this registration load is 76% for the
uniform load with P = 32 and 68% for the skewed load with
P = 200. What it means is that on average each node in the
system operates at 40% of its link capacity while maintaining a
fairly high success rate. These experiments show that the system
can be scaled to near its capacity even for skewed load: the load
balancing mechanism effectively spreads the excessive load to
underutilized nodes in the system.

B. Effectiveness of Partitions

To better understand the effectiveness of adding partitions
on improving the registration success rate, we conducted an-
other series of experiments. We inject the skewed content name
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dataset into the system with a fixed arrival rate of 7gystem =
5000 reg/s. We vary the configured P value in each experiment,
and for each P we run the experiment twice: 1) during the initial
run, as names arrive, partitions are created when needed and 2)
the same dataset is sent to the system again in the stable state,
when all the partitions have been created, and no new partitions
are added.

The number of partitions needed, P;, for a pair {a;v;} can be
analytically computed as follows:

P = Ta;v; _ Tsystem * Pi
= =
Treg Treg

2)

where r,,,, is the arrival rate of {a,;v; } and p; is the pair’s prob-
ability of occurring in names. In the skewed name dataset, for
the top five most popular pairs, p; = 0.24. With rgystem =
5000 reg/s and Tye; = 50 reg/s, from (2), we know to ac-
commodate names that contain these pairs, each of the corre-
sponding matrices needs at least P = 24 partitions.

Fig. 10 shows the success rate of registrations, under different
P value. To interpret the figure, we first classify registration
failures into four types.

1) Capacity failure. Failures due to not having enough par-
titions allocated to a matrix to accommodate a pair’s reg-
istration load.

2) Compulsory failure. In the simulation, it takes one RTT to
add new partitions to a matrix, and registrations arriving
during that time period are rejected.

3) Conflict failure. Since multiple AV-pairs may be mapped
onto one node, a registration may fail at a node because
some other pair introduces high registration load there.

4) Statistical failure. Failures due to statistical variations,
e.g., failures caused by bursty arrival of registrations of
the same pair on one node.

In Fig. 10, when P < 20, the success rate is very low pri-
marily due to the large number of capacity and conflict failures
caused by the popular pairs. In particular, P = 1 corresponds to
our basic system and the poor performance shows that using one
RP node for each AV-pair can not handle highly skewed load.

100 fmmmmenpas S D 1
— B e

90 g
S
5 80 Ff 1
©
@ 70 i
Q
o
3
@ 60 - N i
fe
9] ~
= .
O 50 ) E

- »
40 T
Random |
Query Optimization <
30 L
1 10 100
Query rate (1000 g/s)
Fig. 11. Query success rate comparison.

When P = 32, the success rate is still below 50% though
seemingly there should be enough partitions. The failures come
mainly from conflicts: since we have 10000 distinct AV-pairs
and 10000 nodes, it is possible that two AV-pairs are mapped
onto the same node. As the system allows more partitions to
be used by a matrix, the conflict failures are overcome and the
success rate increases significantly. The reason is that when a
node observes high registration load caused by two different
pairs, it will prompt the expansion of both of their corresponding
matrices (at different times), thus reducing the load observed
by partitions within each of the two matrices. The gap between
the initial curve and the stable curve represents the percentage
of compulsory failures. When enough partitions are allowed,
the success rates in the stable run are substantially higher than
those in the initial run since there are no compulsory failures.
We observe that the success rate stays above 95% for P > 100
under this load.

In summary, by allowing the matrix to expand along the P
dimension, the system can successfully recruit lightly loaded
nodes to share concentrated registration load, thus increasing
the system success rate.

C. Query Success Rate

In this section, we study how the system scales as query load
increases. In the following experiments, we first inject into the
system the skewed name dataset with 7system = 2000 reg/s,
and then issue the Zipf queries with different arrival rate gsystem.
We run the simulation under two schemes: 1) random, where a
query is sent to a matrix that corresponds to a random pair in the
query and 2) using query optimization. In these experiments, a
matrix may replicate as many times as necessary.

Fig. 11 shows the query success rates. In the random scheme,
by selecting a random pair for each query, the system tries to
spread load to different matrices, and the success rate stays
above 90% for rates as high as 5000 q/s. However, when
@system 18 further increased, the success rate starts to drop
sharply. The reason is that since popular AV-pairs appear in
many queries and each query contains only a few pairs, it is
possible that many queries select the same AV-pair and are sent
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to the same matrix, which will cause compulsory failures and
the replication of these matrices.

In addition, in the workload, the pairs that are popular in
queries are also common in registrations, which means their cor-
responding matrices have many partitions. The time it takes to
replicate a large matrix is high, since the new replicas can be
used only after all the partitions replicate successfully. Queries
arriving during the replication time period are likely to be re-
jected, since they must be sent to the existing replicas, which
have already being saturated. This phenomenon is displayed
most clearly when the arrival rate is extremely high (gsystem >
50 000 q/s); in this scenario, all the queries arrive before a ma-
trix can complete two rounds of replications.

On the other hand, the query optimization mechanism suc-
cessfully spreads query load to matrices with few partitions.
This is specially important for high query load, where using the
load balancing mechanism alone is not effective. Fig. 11 shows
that even under the highest load, gsystem = 10° q/s, with query
optimization, by avoiding large matrices and, thus, long replica-
tion time, the system’s query success rate remains above 95%.
Most matrices do not need to replicate at all, and the largest ma-
trix replicated twice (R = 4).

D. Load Distribution

In this section, we evaluate the system’s load balancing prop-
erty by examining the name distribution and observed load on
nodes. We report results corresponding to registration load; the
results for query load are similar.

1) Content Name Distribution: Fig. 12 shows the cumula-
tive distribution function (CDF) of the final number of names on
nodes under four scenarios, corresponding to four experiments
in Fig. 9. The first three curves correspond to the experiments
where the skewed dataset is used with P = 200, and various
registration rates. The fourth curve is from the uniform dataset
with P = 32. Since the success rates are different in these ex-
periments, for comparison purpose, we normalize the number of
successfully registered names in each experiment to 10°. Thus,
on average each node should receive 200 names.

In our experiments, since Ty., is always reached before
Ten(= 4000), matrix expansions are, therefore, caused by
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the high registration rates observed on nodes, and not the high
number of names. At the end of each experiment, the average
registration rate on each node can be simply computed by
dividing the final number of names it has by the simulation
time. Thus, we use the number of names to represent the
registration load on a node.

With low registration rate, the system can accommodate the
registrations successfully using a small number of partitions for
each matrix, which means many nodes in the system may re-
ceive none or a small number of names. For example, when
Tsystem = 2000 reg/s, 21% of nodes receive no registrations.
In the mean time, some nodes in the system accumulate large
number of names, as exhibited by the long tail in the distribu-
tion. Note the maximum number of names on a node is still less
than Teon. As registration rate increases, names are spread to
more nodes, due to the expansion of matrices. In Fig. 12, when
Tsystem = 10* reg/s, we observe that the CDF grows very
quickly and no nodes receive more than twice of the average
number of names. A distribution that is “more vertical” repre-
sents a more load balanced system.

More quantitatively, we use the metric coefficient of variance
(CV) [14] to evaluate the load balancing property. In our context,
CV is defined as

o [ni]
CV[n;| =
where ¢ = 1,...,N., n; is the number of names node N;

holds, and o and F are the standard deviation and mean of
n;. A smaller CV indicates a more load balanced system. As
load increases, the load balancing mechanism successfully bal-
ances load across all nodes across the system. The CV decreases
from 1.242 to 0.369 as 7system increases from 2000 reg/s to
10* reg/s. As areference, when 7yygtem = 10* reg/s, the CV in
the skewed load case matches the CV(=0.366) in the uniform
load case.

2) Observed Load on RP Nodes: We now take a closer look
at the load distribution within different partitions of a matrix.
Fig. 13 shows the observed registration rate as time progresses
at three different partitions of a matrix that corresponds to one
of the most popular AV-pairs. In this experiment, the skewed
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name set with rgystemn = 2000 reg/s is used. Initially, there is
only one partition in the system, and it receives the entire regis-
tration load corresponding to this pair. The maximum observed
registration rate approaches 450 reg/s. As partitions are added
to the matrix to share the registration load, the rate observed by
the first partition begins to drop quickly, as shown in the figure.
The 16th and 32nd partitions are introduced around time 2000
and 3700 ms, respectively. Once all the partitions are in place, as
expected, the load on each partition stays under the set threshold
of Tyeg = 50 reg/s. In fact, since the load is shared by 32 par-
titions, each node observes about 15 reg/s.

E. Registration and Query Cost

In this section, we evaluate the system from content providers
and query issuers’ point of view: we examine the response
times, and the number of messages needed for registrations and
queries.

In this set of experiments, registrations and queries arrive si-
multaneously with the arrival rates of reystem = 1000 reg/s
and ¢system = 5000 q/s. The workload consists of about 17 000
skewed names and 83 000 Zipf queries. Instead of devoting its
full bandwidth to serve either registrations or queries, each node
allocates 50% of the bandwidth to queries and 50% to reg-
istrations. Correspondingly, the thresholds are set as follows:
Treg = 25 reg/s and T, = 100 q/s. We again run the simula-
tion under two schemes: random and with query optimization.

1) Matrix Size Distribution: As discussed in Section IV-D,
the sizes of the LBMs affect the cost of registrations and queries.
After each simulation run, we tally the sizes of all the matrices.
Fig. 14 is a three-dimensional (3-D) presentation of the distri-
bution. Each bar corresponds to the number of matrices that
have that particular size (P, R). Since there are 10000 distinct
AV-pairs in the system, there are 10000 LBMs in total. All the
results fall on the vertical planes that correspond to powers of
two, because the dimensions are increased multiplicatively and
there is no matrix shrinking in the experiments.

In the random scheme, 89.2% of the matrices have one par-
tition and one replica, (P = 1, R = 1). As we discussed
earlier, matrices that have large P may still get many queries,
which means they must replicate themselves frequently. Fig. 14
confirms our analysis in that some matrices with large P, e.g.,
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P = 32, also have a large R. The largest matrix has a size of
(P =32, R = 32).

In contrast, with query optimization, more matrices (94.3%)
have the minimal size, (P = 1, R = 1). In all the matrices, the
maximum number of replicas a matrix has is four. It is worth
noting that the matrix that has four replicas also has 32 parti-
tions. The explanation is that the AV-pair corresponding to this
matrix is also popular in queries. In particular, it appears fre-
quently by itself in queries, which makes query optimization
not applicable and replication necessary.

2) Registration Cost: Fig. 15 shows the CDFs of the number
of registration and query messages under the two schemes.

With query optimization, 77% of the content names need to
register with only 20 nodes because the corresponding matrices
have only one replica. The maximum number of registration
messages is 23 and the average is 20.3, i.e., a less than one mes-
sage increase over the minimal registration requirement of the
system. However, in the random case, 93% of the registrations
need more than 20 messages, which means they involve at least
one matrix that has multiple replicas, The average number of
registration messages goes up to 32.3 and the maximum is 88.

The two curves on the right side in Fig. 16 compare the regis-
tration response time of the two schemes. Sending more reg-
istration messages in the random scheme results in a longer
response time: the average is 901 ms, whereas the average is
859 ms in the optimization scheme.

Note that the average response time is greater than two
roundf-trip times (RTTs) (400 ms), which is how long it would
take to register one AV-pair (matrix size probing and the actual
registration). The main reason is that the response time is
computed only when all the 20 AV-pairs’ registrations are
confirmed. More formally, this is equivalent to sampling an
exponential distribution 20 times and take the maximum value
instead of the average value.

3) Query Cost: From query issuers’ point of view, using
query optimization, the average number of query messages (ex-
cluding the probing messages) is 2.7. This means on average a
query is sent to matrices that have less than three partitions. In
particular, from Fig. 15, we observe that 82% of the queries are
sent to matrices that have one partition and only 3.7% of queries
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use the maximum number (32) of partitions. In comparison, in
the random scheme, the average number of query messages is
13.8, only 36% of the queries are sent to matrices that have one
partition, and 36.8% of queries are sent to matrices that have 32
partitions.

The cost of query optimization is the larger number of
probing messages: instead of probing one matrix to get the size,
the querying node has to probe all the matrices corresponding
to the pairs in the query. This results in a slightly longer
average response time for the query optimization scheme (597
ms versus 594 ms). The two curves on the left in Fig. 16
compare the CDF of the response times with and without query
optimization. The CDF of the optimization scheme initially
lies on the right side of the random scheme, but it has a steeper
slope owing to a more uniform distribution. In practice, a query
initiator can cache the size of different matrices to reduce the
number of probing messages for its future queries.

In summary, by using query optimization, while the system is
accommodating high skewed load, both registration and query
costs are kept near the minimum cost as defined by the basic
RP-based system with no partitions and replications.

VII. RELATED WORK

There exist many systems that can be considered as CDS
systems, ranging from web search engines and directory ser-
vices to P2P file sharing systems. We classify these systems
based on how the content resolvers are organized and compare
them with our system. Centralized systems, such as Napster [15]
and Google [6], use a set of central servers to index contents
and resolve queries. These servers may become the bottleneck
as load increases, and form the single point-of-failure of the
system, thus making it vulnerable to censors and attacks such
as denial-of-service. Our CDS is distributed and uses a more ro-
bust overlay resolver network.

Content resolvers may be organized hierarchically into a tree
structure, e.g., in DNS [5] and SDS [16]. In general, these sys-
tems are designed for hierarchical content names, such as do-
main names and directories [17]. To prevent overloading re-
solvers high in the tree, DNS relies on caching to scale to the

Internet level and SDS uses bloom filter to reduce load propa-
gated up the tree. In contrast, our system is designed to handle
more general content names that do not necessarily have a hier-
archical nature.

Systems based on an unstructured general resolver network
such as INS [8], Siena [9], Gnutella [7], and Freenet [18] re-
quire flooding the network at either content registration time or
query resolution time. Hence, these systems do not scale with
the number of content names and queries. More recent systems
such as KaZaA [19] scale better by leveraging a two-tier infra-
structure and relying on “supernodes” to suppress the flooding.
In our system, we eliminate network-wide flooding at both reg-
istration and query time by establishing RPs.

A hash-based P2P system such as Chord [1], CAN [2], Pastry
[3], and Tapestry [4], uses a scalable protocol to form a self-or-
ganizing structured overlay network. While not directly sup-
porting general content searchability, these systems provide an
efficient solution to content name lookup by binding a com-
plete content name, such as a file name, to a specific node in the
system using a hash function. These systems relate to our work
in two ways. First, the DHT abstraction [11] in these mecha-
nisms provides the CDS system a scalable and robust substrate
for building the CDS overlay network and for routing CDS mes-
sages. Second, our CDS system extends the basic lookup func-
tionality and supports content searchability by using AV-pairs.

Several projects built systems on top of DHT to support
searchability. In [12], the focus is on efficient keyword-based
searching. Unlike our system, a query is sent to each node that
is responsible for one of the keywords in the query, and partially
matched results are first collected over the network and then
“join” operations are performed to get the final matches. Tech-
niques such as bloom filters and caching are used to reduce the
network bandwidth consumption. We avoid the transmission of
potentially large number of partially matched results by storing
complete content names (all keywords of a document in [12]’s
context) on RP nodes to allow full resolution locally.

Twine [20] is a resource discovery system built on top of
Chord. Resource descriptions are separated into “strands”
and then mapped onto nodes in the resolver overlay network,
similar to our basic system. A resolver that corresponds to a
random strand in the query is used to resolve the query. Twine
simply rejects registrations that correspond to a popular strand
once a threshold on the corresponding node is crossed. In our
system, we show query optimization is important to this type of
system’s performance and we use LBMs to deal with skewed
load distribution.

Load balancing using partitions and replicas can trace its
roots to early work in parallel databases, e.g., Gamma [21].
DDS [22] explores these ideas further in the domain of de-
signing backend for Internet services in a server cluster setting.
Upon receiving a request, the front end server selects a replica
within a partition to best serve the request. Our system works in
a P2P setting and the selection of which node serves a request
(query or registration) is done by the end points locally.

In the context of content distribution networks (CDNs), [23]
proposes schemes where a request redirector can select a server
replica from a dynamic list of servers to serve a URL request.
The selection is based on the load of the servers and the redi-
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rector may decide to grow the list of servers if the number of
requests increases. This scheme is similar to one dimension of
our load balancing mechanism, the replication expansion. How-
ever, in our system, the expansion is done in a distributed fashion
by using high local query load to indicate the need of expansion
and no centralized entity like the redirector is needed. In addi-
tion, we also consider load balancing for registration.

VIII. CONCLUSION

In this paper, we presented a distributed and scalable
approach to the content discovery problem. The RP-based
content registration and discovery mechanism allows the
CDS system to scale with the number of content names and
queries by avoiding network-wide flooding. AV-pair based
content representation coupled with subset matching allows
flexible searches. LBMs are deployed to improve the system’s
throughput by eliminating hot spots. Our approach is dis-
tributed in that nodes in the system can make load balancing
decisions based on their local load information. The even
distribution of registration and query load in LBMs is achieved
via hashing and requires no centralized control. Our extensive
simulation results validated the system’s scalability and load
balancing properties. In particular, our system scales to near
its operational capacity under extremely skewed load. Finally,
the extra cost introduced to registrations and queries by load
balancing remains low when the query optimization algorithm
is applied.
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