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Abstract—Distributed Hash Tables (DHTs) provide a scalable
and robust building block for content discovery in distributed
applications such as Peer-to-Peer (P2P) systems. However, the
basic DHT put/get API only supports simple exact queries.
In this paper, we present a DHT-based system that efficiently
supports similarity queries on multidimensional datasets. Our
system embeds a logical kd-tree into the DHT’s identifier space
to form a distributed indexing structure, the distributed kd-tree
(DKDT). We avoid creating bottlenecks, which are typical in tree-
based systems, by relying on fully distributed protocols for tree
management and data registrations and queries. We propose tree
compressing and node shrinking techniques to efficiently support
applications with high dimensionality datasets. Simulation results
using both synthetic and real data show the effectiveness of our
system.

I. INTRODUCTION

In recent years, many large scale peer-to-peer (P2P) ap-
plications have emerged as an alternative to the traditional
client-server based systems. P2P systems allow many users to
share vast amount of data in a distributed fashion. In many
such applications, the data is distributed in a k-dimensional
space, Rk. For example, in a traffic monitoring system, the
location of sensors and cameras may be represented using 3-d
GPS coordinates. In a network resource monitoring system, a
network node may represent its location as a multidimensional
coordinate computed using services such as GNP [1]. As
another example, in a music sharing system, each user may
contribute a set of mp3 songs to share with others. The
system represents each song using a multidimensional feature
vector that captures the key properties of the song. In these
applications, similarity queries are very useful, e.g., a user
may issue a query to find songs that are “similar to a given
song” [2]. The system would return one or more songs with
feature vectors close to the query song’s vector.

Formally, given k > 0 dimensions d1, d2, ..., dk, a set of
data points S = {pi ∈ Rk|i = 1, n} in the k-dimensional
space, and a query q (a k-dimension vector), the similarity
search problem is to find p ∈ S that is closest to q in the
k-dimensional space, i.e.,

dist(p, q) = mini=1,ndist(pi, q).

The dist function can be defined using any Minkowski metric
such as L1 (Manhattan) or L2 (Euclidean). Similarity search is
also known as nearest neighbor search (NN). A generalization

of the NN search is to find K nearest neighbors, known as a
KNN search.

Supporting similarity searches on large datasets in a
distributed fashion is challenging. Distributed Hash Tables
(DHTs) [3] have emerged as a scalable and robust building
block for P2P systems. A P2P system uses a DHT to form
and manage an overlay network consisting of all participating
nodes in a fully distributed fashion. Routing within such a
network is efficient. For example, in Chord [4], the number of
hops between any two nodes is logarithmic of the size of the
network. However, the basic DHT layer only provides a simple
put/get interface, and as a result, applications are limited to
searches based on an exact match between the registered
and queried name. While researchers have developed efficient
algorithms to support range searches [5], [6], conducting
similarity searches on large multidimensional datasets in a
DHT remains a hard problem [7]. Range searches on DHTs
are typically based on a distributed tree that partitions a 1-d
dataset at different levels of granularity. Simply extending this
approach to higher dimensions fails because both the size of
the indexing data structure and the number of nodes that has
to be visited during an NN search increases rapidly with the
dimensionality [8].

In this paper, we present a DHT-based system that efficiently
supports similarity queries on multidimensional datasets. By
building on top of a DHT, our system naturally supports
multiple applications with different dimensions and data distri-
butions within the same P2P network. We leverage established
spatial database access techniques [9] and propose a novel
approach to embed a kd-tree onto the DHT’s identifier space
to form a distributed indexing structure, called a distributed
kd-tree or DKDT. The management of the DKDT, data
registrations and query processing are all handled in a dis-
tributed fashion to avoid bottlenecks. We incorporate a number
of optimizations to address the challenges raised by high
dimensionality. In particular, we propose tree compression
techniques to ensure that the size of DKDT does not grow with
the dimensionality and we introduce a virtual node shrinking
mechanism that allows queries to quickly identify nodes that
do not have relevant data.

The rest of the paper is organized as follows. In Sections II
and III we describe the protocols for building and maintaining
the DKDT, and for supporting registrations and queries. We
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present optimizations based on virtual node shrinking for high
dimensional datasets in Section IV and present a simulation-
based evaluation in Section V. We discuss related work and
summarize in Sections VI and VII.

II. DISTRIBUTED KD-TREE

The distributed kd-tree (DKDT) is formed by embedding a
logical space-partitioned kd-tree into the overlay network. To
avoid terminology confusion, we refer to a node in the logical
kd-tree as a cell, and each cell is mapped onto one physical
node in the network.

A. DHT-based System Architecture

Nodes in the P2P system are organized into an overlay
network using a DHT such as Chord [4], which has good
scalability and robustness properties. After joining the system,
each node is assigned a globally unique ID as its overlay
network address, consisting of a unique numerical key in an
m-bit key space. The DHT layer is responsible for delivering
messages to nodes based on its key. For example, Chord will
deliver a message with key X to the node with the largest ID
smaller than X in the numerical key space.

Nodes can use the system to share data or to issue queries
using two operations that utilize the DHT’s basic put/get
interface. Registrations allow a node to register a piece of
data under a key; that data is subsequently stored on the
node responsible for that key. Queries allow nodes to retrieve
data previously registered. Upon receiving a query, a node
examines the set of data it has and returns the data points
that match the search criteria. In this paper, each data point
has k dimensions, and queries are nearest neighbor searches
specified by k-dimensional vectors.

B. Kd-tree Embedding
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Fig. 1. (a) The locations of 5 data points in a 2-d space. (b) The logical kd-
tree with bucket size = 1. Squares denote empty cells. Left child corresponds
to the space that has smaller value than the division line.

We first review the basics of a space partitioned kd-tree data
structure. Suppose data points in a given application are in a
k-dimension space, and the range of each dimension is well-
known in the system (Figure 1 is a 2-d example). A cell, C,
in the kd-tree corresponds to a k-dimensional hyper-rectangle,
which is defined by a vector that specifies its range along each
dimension:

VC = {d1 : [v1
min, v1

max), ..., dk : [vk
min, vk

max)}.

Each cell has at most two children, and it uses its discrimi-
nating dimension, di, to create the children. In space partition-
ing, the division value used to create children is the middle
point along the discriminating dimension: (vi

min + vi
max)/2.

The left child occupies the half space whose value along the
discriminating dimension is less than the division value. We
assume a default ordering of the discriminating dimensions,
and a child’s discriminating dimension is the dimension next
to its parent’s in the ordering. The partitioning stops when
certain criteria is met, e.g., the number of data points within
a cell becomes less than or equal to a given bucket size, or
the size of the leaf cell is smaller than a given size.

The DKDT is instantiated by mapping the logical kd-
tree onto the DHT-based overlay network. By separating the
application from the DHT layer, our system can use any DHT,
although DHTs that use a 1-d key space, such as Chord [4] or
Pastry [10], are the easiest to use. Note that the application’s
data may have an arbitrary number of dimensions. To map a
cell C onto the overlay network, we apply a system-wide hash
function H to the cell’s vector

H(VC) → NVC
. (1)

The result of the hashing, NVC
is an m − bit value in the

DHT’s 1-d key space. The actual node in the DHT network
corresponding to this DKDT cell has an ID that is numerically
closest to NVC

. For simplicity, we also refer to this node as
NVC

. As a result, given a vector or a hyper-rectangle for a data
registration or query, an end-point can determine the DKDT
node that is responsible for the cell.

C. Tree construction with compact splitting

The DKDT is built in a top-down fashion, starting with
the root node, whose cell covers the whole space. A data
point is registered with the leaf node that covers it in the
DKDT (the detailed registration algorithm will be presented in
Section III-A). Each node maintains a threshold Treg , e.g.,the
total number of data points it can store. If Treg is crossed, it
must split itself to create two children. With space partitioning,
empty cells (squares in Figure 1(b)) and thus cells with only
one useful child may be created, since not every partitioning
separates the data. This can create a tree that has a large height,
which is undesirable since it incurs high overhead to maintain
the tree. To address this, we introduce a distributed compact
splitting mechanism to ensure that the two child nodes that
are created always inherit part of the data from their parent.

Compact splitting involves three steps (Figure 2). First, the
node divides its cell along its discriminating dimension to
create two child cells. It then examines its data points and if
all the points belong to only one child cell, the node continues
to divide that cell recursively until both cells contain data
points. Second, the parent sends the data to the two DHT
nodes that correspond to the two child cells. This in effect
grows the DKDT downwards. Note however, that the union
of the two child cells may be much smaller than the parent
cell. For example, in Figure 2 the node who owns the left half
of the space creates two small cells that divide data points 1
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and 2. Its size is much larger than the cell in the top left corner
that covers 1 and 2. In the final step, the parent node captures
the data distribution more accurately by replacing its own cell
with the union of the two child cells.
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Fig. 2. (a) Five data points in a 2-d space. (b) Tree created without compact
splitting. (c) The final DKDT. Each circle denotes a physical node in the DHT.
Each black rectangle close to a node is its corresponding cell.

Compact splitting avoids creating single-child branches. It is
done in a distributed fashion, i.e. splitting decisions are made
locally by the parent. By eliminating single branches, it can be
shown that the total number of nodes in the DKDT is O(L),
where L is the number of leaves, and L = N/Treg , where N
is the total number of data points in the system [11].

D. Distributed tree maintenance

In a centralized system, registrations and queries involve
traversing the kd-tree from the root. In the DKDT, sending all
registrations and queries to the root node which then forwards
them down the tree creates two problems: (1) the root node
will quickly become a bottleneck; (2) registrations and queries
may result in long network delays. To ensure efficiency, we
extended the idea proposed in [5] and provide each node in the
DKDT with a snapshot of the current tree shape. Endpoints can
use this information to register and query the DKDT without
traversing it.

1) The tree maintenance protocol (TMP): Each node main-
tains a local database, called the Tree Information Base (TIB),
which contains the cell vectors corresponding to each node.
There are two types of periodic messages to establish the TIB
(See an example in Figure 3(a)).

First, each node sends a path refreshing (PR) message to its
parent; it learns the identity of its packets when it was created
via splitting. The PR message carries the part of its TIB that
corresponds to the subtree rooted at this node. In particular, the
PR message from a leaf node would just contain its own cell.
A node waits for the PR message from both its children. If one
or both messages do not arrive within a preset time, the parent
assumes the child(ren) has left (or crashed); we discuss how
this case is handled below. After receiving the PR messages,
the node updates its TIB based on the information in these
messages. It then sends its own PR message up to its parent.
The PR messages propagate to the root eventually. After one
iteration of PR messages, each node has an up-to-date view
its subtree and the root has information on the full tree.

Second, once the root node receives PR messages from its
children, it sends Path Refreshing Reply (PRR) messages to

its children. A PRR message to a child includes the part of the
TIB that is not received from that child. For example, the root
will send its left child what it receives from its right child,
and an internal node will send to its left child what it receives
from its parent, and its right child. Upon receiving a PRR
message, a node updates the corresponding part of its TIB,
and then sends its own PRR message. After the completion of
one round of PR/PRR exchange, each node has an up-to-date
view of the current tree shape.
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Fig. 3. Example illustrating the TMP: (a) Normal message exchange. (b)
After nodes 3 and 5 left. (c) Branch coalescing. (d) DKDT after coalescing.

2) Handling node departure: Nodes depart from the tree
when they leave the DHT or crash. When a leaf node leaves,
the DKDT may end up with branches that have only one node.
For example, Figure 3(b) shows the messages when nodes
hosting data point 3 and 5 leave: the right half of the DKDT
becomes a single branch. To reduce the tree height, we extend
the basic protocol to eliminate nodes that have only one child
with the following rule:

After the TIB is established, a node will send a PR message
only to its lowest ancestor that has two children.

A node knows who that ancestor is by examining its
TIB. With this rule, if a node (except the root) has only
one child, e.g., the two middle nodes in the right branch
in Figure 3(c), it will not receive PR messages in the next
round and thus it will not send a new PR message of its
own. Subsequently, since a node only sends PRR messages
to nodes from which it receives a PR message before, these
nodes will stop receiving PRR messages. By skipping nodes
we achieve branch coalescing, i.e., paths are compressed and
in a way that is consistent with the compact splitting algorithm
(Figure 3(d)).

When an internal node departs, the PR and PRR messages
destined to it will be delivered by the DHT layer to another
node in the system whose ID is now the closest to the key
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identifier in these messages. This new node becomes part of
the DKDT and takes over the cell originally managed by the
departed node.

The TMP is lightweight for the following reasons. First,
the frequency of the message exchange can be set relatively
low, since the tree structure generally does not change often.
Second, the maintenance message size is small. Generally,
messages include incremental changes in the tree shape; the
full tree information is only sent to a node by its parent when
it joins the DKDT. Finally, each node only needs to send its
dimensions, not its data points.

III. ENDPOINT ALGORITHMS

With the TIB established on nodes in the DKDT, endpoints
can carry out registrations and queries efficiently in a dis-
tributed fashion. A node is referred to as an endpoint if it has
data points to register (e.g., to share a new song), or needs to
issue a query. An endpoint may or may not be in the DKDT,
but it has its own node ID and can thus reach any other node
in the network via the DHT layer.

A. Registration

To register a data point, p : {d1 = v1, d2 = v2, ..., dk = vk},
the registering node must find the lowest node in the DKDT
that covers this data point. This is done by probing rather than
traversing the tree.

For any data point, there exists exactly one path in the
logical tree; each cell along that path covers the data point. The
registering node first locally computes the path and then issues
a probe message to a random node within this path. If the
probed node is not in the DKDT, e.g., being skipped, it returns
NULL. Since the ordering of the cells in the path is known to
the registering node, it conducts a binary search along the path
between the probed node and the root until it hits a node in
the DKDT. This node determines the lowest covering node in
the path by examining its TIB and then returns the dimensions
of the following nodes: the covering node P , and if P is not
a leaf, its two children Cl and Cr. Based on this information,
the registering node can now complete the registration.

If the covering node P is a leaf node, the registering node
sends the data point to P . P will enter the data point in its
database and if the threshold Treg is crossed, it will initiate
a compact splitting operation as discussed above. Otherwise,
the new data point falls in a space that it not covered by a leaf
node. Since P is a non-leaf and neither of its children covers p,
a new leaf will have to be created. In addition, a new internal
node must be introduced to maintain the DKDT’s compact
property. The algorithm depends on the configuration between
the new data point p, and the three nodes, P,Cl, and Cr. There
are three cases (Figure 4 shows an example): (1) Cl and Cr

belong to two different half planes and p belongs to one of
the half planes. (2) Cl and Cr belong to the same half plane
and p belongs to the other half plane; (3) Cl and Cr belong
to same half plane as p. The rule for adding the new internal
node is that it must be the lowest common ancestor that covers
either p and a child (case (1) and (3)) or the two children (case

(2)). For example for case (1) shown in Figure 4(1), p and Cr

are in the same half plane and the new cell, C ′
r, is the right

half plane, which is the lowest common ancestor that covers
p and Cr. The registering node registers p with the new leaf
node and then “grafts” the new leaf node and internal node
to the DKDT. For example, in Figure 4(1), it informs Cr that
its new parent is C ′

r and informs C ′
r its parent is P . Once the

new nodes are added, they will start to send and receive TMP
messages.
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Fig. 4. Registration when the covering node is not a leaf. The new data
point is 5, P is the covering node, and Cl and Cr are its children. The center
and right figures show the DKDTs before 5’s arrival and after registration.

The cost of registering a data point includes both probing
and the actual data registration. The number of probing mes-
sages is logarithmic in the tree path length, which is relatively
small given a reasonable tree size. The probing result can be
cached for future registrations, thus further reducing the cost.
Registration requires one network message and in some cases
a few grafting messages.

B. Query

A node may issue a similarity query, which is specified as
a k-dimensional vector q : {d1 = v1, d2 = v2, ..., dk = vk}.
Resolving the query involves the following steps.

First, the querying node must determine the lowest node
that covers the query point. Similar to registration, this is
done by probing, using the query vector as the data point. The
probed node checks its TIB and returns the covering node’s
cell dimension and (if it is an internal node) the list of leaf
nodes in its subtree. In the example in Figure 5, the node
that contains data point 5, N5, is returned. Upon receiving the
return message, the querying node enqueues these leaf nodes
in a priority queue sorted in ascending order based on the
distances from the query to each of these leaf nodes.
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Second, the querying node sends the query to the first node
in the priority queue (N5 in Figure 5). The node receiving
the query does the following: (1) In its local database, it finds
the data point p′ that is closest to q; assume the distance q-p′

is r. (2) It checks its TIB to determine a list of leaf nodes
whose distance to q is less than r (N4 and N1 which contains
data points 4 and 1 respectively in Figure 5), since they may
contain a data point closer to q. Finally, it returns p′ along
with this list to the querying node.

Third, based on this information, the querying node uses p′

as the first candidate nearest neighbor, and adds the nodes from
the list to its priority queue. The querying node then dequeues
a node from the queue and sends it the query q. Nodes
that receive q return the closest point in their database, and
the querying node updates its candidate neighbor whenever a
closer data point is found. The process stops when the nearest
neighbor found so far is closer to q than the next node in the
queue. In Figure 5, after data point 4 is found, the process
stops. N1 will not be queried, since its distance is larger than
the distance between q and data point 4.
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Fig. 5. Example of a query: (a) 5 is the first candidate neighbor and 4 is
the NN. (b) DKDT with enqueued nodes filled in.

The algorithm presented above can be generalized to find
K nearest neighbors (KNN) by changing the third step to
maintain K candidate neighbors. The algorithm stops when
the next node on the queue has a distance to q that is larger
than the distance of the Kth candidate neighbor.

The query cost is determined by the number of nodes the
querying node must visit. It is shown in [12] that O(log N)
query time is achievable in the expected case for a centralized
kd-tree, where N is the number of data points. Since the
distributed algorithm follows the centralized kd-tree algorithm,
the expected number of query messages needed to resolve an
NN query is also O(log N). Furthermore, since the number of
DKDT leaf nodes L = O( N

Treg
), the query cost is O(log N) =

O(log L). However, we must note that the constant factor
hidden in the asymptotic bound contains 2k, so the query cost
increases rapidly with the dimensionality k. We discuss how
we handle this next.

IV. VIRTUAL NODE SHRINKING

Nearest neighbor search based on a kd-tree works well for
low dimensionality data, since the internal nodes can quickly
cut down the search space. However, the performance of tree-

based indexing schemes degrades as dimensionality increases.
This is known as the curse of dimensionality.

In a DKDT, whether a query will be sent to a leaf node
is determined by the query’s distance to the node, i.e., the
boundaries of the cell, which is used as an approximation
for the distance to data points within the cell. This may be
a bad approximation, especially when the cell contains large
empty spaces, as is common with high dimensionality data.
Consequentially, many (if not all) leaf nodes may appear in
the query’s candidate list even though their data points are far
away from the query. Figure 6 shows an example. The four
inner squares denote leaf nodes in a DKDT and query q is
covered by the node that contains data point 5. The candidate
list for q includes the other 3 leaf nodes since the circle around
it intersects with all of them. However, the two leaf nodes on
the left do not have relevant data points and should ideally not
be visited.

To reduce the number of nodes to be visited, we propose
a virtual shrinking mechanism, where based on the type of
queries a node receives and the data distribution within its
cell, the node “reduces” its cell size to more accurately reflect
the type of data points it has. This way, future queries may be
able to avoid visiting this node.
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Fig. 6. Virtual node shrinking example: (a) Without shrinking. (b) Shrinking
by creating sub-trees. Dotted boxes denote sub-tree cells.

The virtual shrinking on a node occurs when the following
criteria are met: (1) the node receives frequent candidate
queries; and (2) the candidate queries’ hyper-spheres often do
not intersect with any of the data points on the node. If these
conditions are met, the node shrinks its cell to represent its
data more accurately, and propagates this information in the
TMP messages. During the second step of query resolution,
the covering node can now often reduce the number of nodes
on the candidate list by using the distance from the query to
the finer cell representation of each leaf node. In Figure 6(a),
the criteria are met for the two left nodes, but not for the lower
right node, since data point 4 is within the circle.

There are many ways to shrink a cell, e.g., creating a
minimum bounding rectangle (MBR [13]) or further splitting
data within a cell to create an internal tree. In Figure 6(b), the
two left nodes create virtual trees within themselves. In this
example, q’s candidate list will not include the top left node,
since the distance from q to either of its two smaller sub-tree
cells is larger than the first neighbor 5’s distance.
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Virtual shrinking requires a new data structure that must be
propagated up the tree, thus increasing the overhead of the
TMP. To minimize the overhead, we leverage ideas from the
VA-file approach [8], in which a node uses a small number of
bits, bi, (e.g.,bi = 2 − 4) along each dimension to divide its
cell and creates a grid (Figure 7). The VA-file representation
of the cell is the list of hypercubes that contain data point
and each hypercube is represented using kbi bits. The VA-file
representation of the cell is then used in the TMP messages.
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Fig. 7. Virtual shrinking using a VA-file representation: (a) Divide the 2-d
space using 2 bits. (b) Cell representation before and after shrinking.

V. EVALUATION

We evaluate the DKDT mechanisms in an event-driven
simulator [14]. We use both synthetic datasets and a real
dataset to drive the simulation. Each synthetic dataset has
100,000 data points with a fixed number of dimensions. The
data may follow one of two distributions. In the uniform
distribution, each data points is placed randomly in the k-d
space. In the clustered distribution, 500 cluster centers are
generated uniformly, then for each cluster center, 200 data
points are uniformly placed within a given radius to the center.
The real dataset consists of 5000 30-d feature vectors extracted
from a set of assorted mp3 files [2]. For the synthetic dataset
we generate 5000 random queries while we use the feature
vectors also as queries for the music dataset. We set up an
overlay network with 20,000 nodes and we set the Treg on
each node to be 100. The sender of a data point or query is
picked randomly among all nodes.

A. Query performance

We examine query performance in terms of the number
of messages needed to resolve a nearest neighbor query. In
the experiments, we first inject the registration load to the
system before we issue the queries. We do not use virtual
node shrinking. Figure 8 shows the distribution of the number
of query messages needed for each query for uniform datasets
with different dimensionality. The DKDTs for the different
scenarios all have about 1500 leaf nodes. A naive algorithm
to resolve a similarity query would have to visit all the leaf
nodes.

For low dimensionality, e.g., k = 2, 3, the system is very
efficient: queries need to visit fewer than 10 nodes to find the
nearest neighbor. Even for higher dimensionality performance
is still very good. For example for k < 6, over 90% of the
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queries need fewer than 20 messages. The performance starts
to degrade for large k. When k = 12, over 40% queries need
to visit 100 or more leaves in the system. This shows the
limitation of the kd-tree. The performance for the clustered
dataset shows similar trend as the uniform dataset. More
evaluation results can be found in [11].

We conclude that the DKDT effectively cuts down the
search space and supports efficient similarity queries, espe-
cially when the dimensionality is low.

B. DKDT maintenance cost

We now evaluate the tree maintenance overhead. A major
advantage of the DKDT is that in each round of message
exchange, the number of messages sent and received is con-
stant and independent of the data/query distribution or the
dimensionality. In particular, a node receives at most two PR
messages, one PRR message, and sends one PR message and
two PRR messages. This is important as it avoids the typical
problem that nodes higher up in the tree get overloaded.

From the system’s standpoint, the overhead of the DKDT
maintenance is determined by the size and height of the tree.
First, we examine the number of hops a PR/PRR message
must traverse, i.e. the height of the tree. Figure 9 compares
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two scenarios, with and without compact splitting, for the
clustered datasets. For both k = 6 and 12, the average number
of hops with compact splitting is 11 (the two curves essentially
overlap) and it is independent of the number of dimensions.
In contrast, without compact splitting the number of hops
increases rapidly with the dimensionality. Compact splitting
also reduces the size of the tree. With compact splitting, there
are 1956 internal nodes and 1957 leaf nodes in the DKDT for
k = 6, while the numbers are 1974 and 1975 for k = 12.
Without compact splitting, the DKDTs have the same number
of leaves, but there are many more internal nodes: 8445 and
15917 for k = 6 and 12 respectively.

In summary, the DKDT maintenance overhead is small and
the compact splitting construction algorithm ensures a DKDT
of a manageable size.

C. Effectiveness of virtual shrinking

We now examine how virtual shrinking impacts system
performance under high dimensionality. Figure 10 shows the
query performance for synthetic datasets with both random and
clustered distributions with k = 12; “2 bits” means we use 2
bits to divide cells along each dimension. The improvement
for the clustered dataset is significant: the average number of
query messages drops from 124 to 14. The improvement for
the uniform dataset is smaller: the average drops from 125
to 64. The results confirmed our design: when data points
are clustered, there are a lot of empty spaces that can be
removed through virtual shrinking, thus cutting down a query’s
search space. With a uniform distribution, empty spaces will
be smaller, thus reducing the impact of virtual shrinking.

We also ran tests with the mp3 dataset, which has fewer
data points (5000) but higher dimensionality (k = 30), so the
dataset is sparse (5000 << 230). Using the same threshold
(100), its DKDT has 119 leaf nodes. Figure 11 shows that
without virtual shrinking, the system degrades to an exhaustive
search for most of the queries: about 80% of the queries need
to visit more than 80% of the leaf nodes to find the nearest
neighbor. With virtual shrinking, the performance improves
significantly as we use more bits to divide the space within a
node. In particular, when we use 4 bits, the average number
of query messages is less than 10. This experiment shows that
with high dimensionality, cells are often sparsely populated
and eliminating the empty space through virtual shrinking
can significantly reduce query cost. The extra amount of data
carried in the TMP due to virtual shrinking is tolerable. In this
experiment, for a 30-d space and using 4 bits per dimension,
the extra amount of data in the PR message for a node with
100 data points is 100 · 30 · 4/8 = 1500 bytes.

In summary, virtual shrinking is useful in improving
the query performance for realistic clustered and high-
dimensionality datasets. We note that virtual shrinking is a
useful optimization for many realistic datasets even though
it is not a complete solution for the curse of dimensionality
problem.
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VI. RELATED WORK

Similarity queries have been studied thoroughly by the
database community. Gaede et al. [9] provides a comprehen-
sive survey of these work. We leverage these results and build
our system on top of a distributed kd-tree [15]. The DKDT
shape resembles a BD-tree [16].

Supporting complex queries in a DHT-based system was
proposed as an open question in [7]. Since then, a lot of
research has been done in this domain. In [5], a DHT-based
system that supports efficient range queries was proposed. The
system is built on top of a distributed 1-d Range Search Tree.
[6] proposed a similar structure for range queries. We extend
these ideas, and build our system around kd-tree to support
similarity searches in multi-dimensional datasets.

Several systems have used multi-dimensional DHTs such
as CAN [17] to support complex queries. pSearch [18] is an
information retrieval system and is the closest to our work.
The main limitation of pSearch is that the dimensionality of the
application data is tied to the dimensionality of the underlying
CAN, which limits its use by applications with different
dimensionalities. In addition, pSearch relies on heuristics to
find nearest neighbors, if there is no exact match to the query.
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In our DKDT-based approach, the application dimensionality
is independent of the underlying DHT, so one DKDT can
support applications of any dimensionality, and the kd-tree is
generally more efficient in finding nearest neighbors.

Though DHTs have been shown to be a scalable and robust
building block for large scale P2P systems, the difficulty of
using it natively to support complex queries has prompted
some recent work [19], [20], [21] to build non-DHT P2P
systems to support nearest neighbor queries. These systems
also build distributed data structures similar to kd-tree to
ensure query efficiency. Node IDs are assigned based on
the data distribution in the multi-dimensional space and the
overlay network is constructed based on the node IDs using,
for example, SkipGraphs [22]. A problem with this approach
is that if the data distribution changes, node IDs must be
reassigned and the routing infrastructure must be reorganized.
This approach also makes it difficult to support different
applications using the same overlay P2P network, since the ID
assignment of one application may not be useful for others.
For example, when users share both audio and video data, both
the dimensionality and distribution of the two datasets is likely
to differ substantially. In our system, message routing and
application data are completely separated and the DKDTs for
different applications are managed independently, so different
applications can efficiently coexist in the same P2P network.

To deal with the curse of dimensionality, locality sensitive
hashing (LSH) has been proposed and it has been shown
to support approximate nearest neighbor (ANN) queries effi-
ciently [23]. In [24], LSH functions are used for range queries
in relational databases built on top of DHTs. We can also use
LSH in our system to improve the performance of similarity
queries when query results do not need to be exact. However,
using LSH requires the selection of a set of parameters based
on the type of data; this becomes a non-trivial task in a
distributed environment.

VII. CONCLUSIONS

In this paper we introduced a DHT-based P2P system that
efficiently supports similarity searches. The system is centered
around a distributed kd-tree (DKDT) that is the result of
embedding a logical kd-tree into the DHT’s identifier space.
Both data registrations and queries, and the management of
the DKDT are carried out in a fully distributed fashion. Our
compact splitting techniques ensure that the DKDT remains
manageable as dimensionality increases. We proposed an
adaptive node shrinking mechanism to mitigate the effects of
the curse of dimensionality. Our system decouples application
data from the P2P overlay network and as such we can
support multiple applications on the same DHT. Extensive
simulations show that our system works well both for low
dimensionality datasets and, with virtual node splitting, for
high dimensionality datasets.
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