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Abstract—Distributed Hash Tables (DHTSs) provide a scalable of the NN search is to find{ nearest neighbors, known as a
and robust building block for content discovery in distributed KNN search.

applications such as Peer-to-Peer (P2P) systems. Howevéne Supporting similarity searches on large datasets in a

basic DHT put/get API only supports simple exact queries. . . . . . o
In this paper, we present a DHT-based system that efficiently distributed fashion is challenging. Distributed Hash €&abl

supports similarity queries on multidimensional datasets Our  (DHTS) [3] have emerged as a scalable and robust building
system embeds a logical kd-tree into the DHT's identifier spee  block for P2P systems. A P2P system uses a DHT to form
to form a distributed indexing structure, the distributed k d-tree  gnd manage an overlay network consisting of all particigati

(DKDT). We avoid creating bottlenecks, which are typical intree- 0 4as in a fully distributed fashion. Routing within such a

based systems, by relying on fully distributed protocols fo tree . - .
management and data registrations and queries. We proposeee network is efficient. For example, in Chord [4], the number of

compressing and node shrinking techniques to efficiently aport ~ hops between any two nodes is logarithmic of the size of the
applications with high dimensionality datasets. Simulatbn results network. However, the basic DHT layer only provides a simple
using both synthetic and real data show the effectiveness olur  put/get interface, and as a result, applications are lanite
system. searches based on an exact match between the registered
and queried name. While researchers have developed efficien

algorithms to support range searches [5], [6], conducting
In recent years, many large scale peer-to-peer (P2P) @Rilarity searches on large multidimensional datasets in

plications have emerged as an alternative to the traditioRsyT remains a hard problem [7]. Range searches on DHTs
client-server based systems. P2P systems allow many wsergt typically based on a distributed tree that partitionsca 1
share vast amount of data in a distributed fashion. In magyaset at different levels of granularity. Simply exterglihis
such applications, the data is distributed ik-alimensional 4,hr0ach to higher dimensions fails because both the size of
space,R". For example, in a traffic monitoring system, thgnhe indexing data structure and the number of nodes that has
location of sensors and cameras may be represented usingid-e visited during an NN search increases rapidly with the
GPS coordinates. In a network resource monitoring SyStemdiﬁqensionality 8.
netwqu node may repres_ent its IO(_:ation as a multidimemgion |, this paper, we present a DHT-based system that efficiently
coordinate computed using services such as GNP [1]. &§pports similarity queries on multidimensional datasBis
another example, in a music sharing system, each user M@¥ding on top of a DHT, our system naturally supports
contribute a set ofmp3 songs to share with others. Theyiiple applications with different dimensions and daittrit
system represents each song using a multidimensionaréeagy,ijons within the same P2P network. We leverage estaldlishe
vector that captures the key properties of the song. In thegeytial database access techniques [9] and propose a novel
applications,similarity queries are very useful, e.g., & usergpproach to embed a kd-tree onto the DHT’s identifier space
may issue a query to find songs that are “similar to a giveg form a distributed indexing structure, called a distréal
song” [2]. The system would return one or more songs Wif4.tree or DKDT. The management of the DKDT, data
feature vectorslose to the query song’s vector. registrations and query processing are all handled in a dis-
Formally, givenk > 0 dimensionsdy, ds, ..., dx, & set of yihyted fashion to avoid bottlenecks. We incorporate alpem
data pointsS = {p; € R*|i = 1,n} in the k-dimensional of optimizations to address the challenges raised by high
space, and a query (a k-dimension vector), the similarity gimensjonality. In particular, we propose tree compressio
search problem is to fing € S that is closest ta; in the  techniques to ensure that the size of DKDT does not grow with
k-dimensional space, i.e., the dimensionality and we introduceviatual node shrinking
dist(p, q) = Min_y ndist(pi, q). mechanism that allows queries to quickly identify nodeg tha
do not have relevant data.
The dist function can be defined using any Minkowski metric The rest of the paper is organized as follows. In Sections Il
such asl; (Manhattan) o, (Euclidean). Similarity search is and 1l we describe the protocols for building and maintagni
also known as nearest neighbor search (NN). A generalizatibe DKDT, and for supporting registrations and queries. We

|I. INTRODUCTION



present optimizations based on virtual node shrinking fghh  Each cell has at most two children, and it useslitsrimi-
dimensional datasets in Section IV and present a simulatiorating dimension, d;, to create the children. In space partition-
based evaluation in Section V. We discuss related work amdy, the division value used to create children is the middle
summarize in Sections VI and VII. point along the discriminating dimensiotw!, ;,, + v’,..)/2.

The left child occupies the half space whose value along the

o ) _discriminating dimension is less than the division value W
The distributed kd-tree (DKDT) is formed by embedding g5sume a default ordering of the discriminating dimensions

logical space-partitioned kd-tree into the overlay newdio  anq 4 child's discriminating dimension is the dimensiontnex

avoid terminology confusion, we refer to a node in the 10icg, its parent's in the ordering. The partitioning stops when
kd-tree as ecell, and each cell is mapped onto one physic@tain criteria is met, e.g., the number of data points iwith

node in the network. a cell becomes less than or equal to a given bucket size, or
A. DHT-based System Architecture the size of the leaf cell is smaller than a given size.
The DKDT is instantiated by mapping the logical kd-

Nodes in the P2P system are organized into an overlag he DHT-based I K B ing th
network using a DHT such as Chord [4], which has goota e onto the -based overlay network. By separating the

o ; L lication from the DHT layer, our system can use any DHT,
scalability and robustness properties. After joining thetem, app
each node is assigned a globally unique ID as its overl hough DHTSs that use a 1-d key space, such as Cho_rd [4] or
network address, consisting of a uniqgue numerieglin an astry [10], are the eagest to use. Note.that the applicatio
m-bit key space. The DHT layer is responsible for deliverin ata may have an arbitrary number of dimensions. TO map a
messages to nodes based on its key. For example, Chord Wr | C onto the overlay network, we apply a system-wide hash

deliver a message with key X to the node with the largest | netion to the cell's vector

smaller than X in the numerical key space. _ _ H(Ve) — Ny, 1)
Nodes can use the system to share data or to issue queries

using two operations that utilize the DHT’s basic put/gethe result of the hashingVy.. is anm — bit value in the

interface. Registrations allow a node to register a piece ofPHT'S 1-d key space. The actual node in the DHT network

data under a key; that data is subsequently stored on gearesponding to this DKDT cell has an ID that is numerically

node responsible for that keQueries allow nodes to retrieve closest toNy,.. For simplicity, we also refer to this node as

data previously registered. Upon receiving a query, a nod&-- As aresult, given a vector or a hyper-rectangle for a data

examines the set of data it has and returns the data pofgistration or query, an end-point can determine the DKDT

that match the search criteria. In this paper, each data pdi@de that is responsible for the cell.

hask dimensions, and queries are nearest neighbor searcResyqa construction with compact splitting
specified byk-dimensional vectors.

II. DISTRIBUTED KD-TREE

. The DKDT is built in a top-down fashion, starting with
B. Kd-tree Embedding the root node, whose cell covers the whole space. A data
point is registered with the leaf node that covers it in the

y X 1\ DKDT (the detailed registration algorithm will be presehte
2 { Section Ill-A). Each node maintains a threshdld,, e.g. the
/ :

iy o5 total number of data points it can store. lf., is crossed, it

must split itself to create two children. With space paotitng,

®4 empty cells (squares in Figure 1(b)) and thus cells with only

, y ./ o \‘ one useful child may be created, since not every partitmpnin
1 2

3

separates the data. This can create a tree that has a laghé hei
3 4 which is undesirable since it incurs high overhead to mainta

the tree. To address this, we introduce a distribudampact
(@) (b) - . :

splitting mechanism to ensure that the two child nodes that

Fig. 1. (a) The locations of 5 data points in a 2-d space. (8 Bgical kd- are created always inherit part of the data from their parent
tree with bucket size = 1. Squares denote empty cells. Ldft cbrresponds Compact splitting involves three steps (Figure 2). Fitsg t
to the space that has smaller value than the division line. node divides its cell along its discriminating dimension to
create two child cells. It then examines its data points &nd i

We first review the basics of a space partitioned kd-tree da{} the points belong to only one child cell, the node corgisu

stru_cture._Suppose data points in a given apphcaﬂgn aee N0 divide that cell recursively until both cells contain aat
k-dimension space, and the range of each dimension is well-

: . . points. Second, the parent sends the data to the two DHT
known in the system (Figure 1 is a 2-d example). A céll, ; .
) ) . nodes that correspond to the two child cells. This in effect
in the kd-tree corresponds tokadimensional hyper-rectangle,

L . e rows the DKDT downwards. Note however, that the union
which is defined by a vector that specifies its range along e )
dimension: of the two child cells may be much smaller than the parent

cell. For example, in Figure 2 the node who owns the left half
Vo ={dy : [, 05 00), e dpe s 0808 ) of the space creates two small cells that divide data points 1

min’ “mazx min’ “mazx

x



and 2. Its size is much larger than the cell in the top left eornits children. A PRR message to a child includes the part of the
that covers 1 and 2. In the final step, the parent node captuféB that is not received from that child. For example, thetroo
the data distribution more accurately by replacing its owth ¢ will send its left child what it receives from its right chjld

with the union of the two child cells. and an internal node will send to its left child what it re@sv
from its parent, and its right child. Upon receiving a PRR
y « ﬂ message, a node updates the corresponding part of its TIB,
s D D and then sends its own PRR message. After the completion of
e 5 g D . one round of PR/PRR exchange, each node has an up-to-date
X 5 2 i
. 1 view of the current tree shape.
sl Y GB
3.
AN .
PRR

() (b) ©)

Fig. 2. (a) Five data points in a 2-d space. (b) Tree creatéitbwi compact
splitting. (c) The final DKDT. Each circle denotes a physicatie in the DHT.
Each black rectangle close to a node is its correspondirig cel

Compact splitting avoids creating single-child branclies.
done in a distributed fashion, i.e. splitting decisions rmade
locally by the parent. By eliminating single branches, i te
shown that the total number of nodes in the DKDTG$L),
whereL is the number of leaves, ad= N/T,.,, whereN
is the total number of data points in the system [11].

In
-

D. Distributed tree maintenance

B

In a centralized system, registrations and queries involve E 1
traversing the kd-tree from the root. In the DKDT, sendirg al
registrations and queries to the root node which then falwar (© )
them down the tree creates two problems: (1) the root node
will quickly become a bottleneck; (2) registrations and e Fig. 3. Example illustrating the TMP: (a) Normal messagehexge. (b)
may result in long network delays. To ensure efficiency, wgter nodes 3 and 5 left. (c) Branch coalescing. (d) DKDT aftealescing.
extended the idea proposed in [5] and provide each node in the
DKDT with a snapshot of the current tree shape. Endpoints car) Handling node departure: Nodes depart from the tree
use this information to register and query the DKDT withouhen they leave the DHT or crash. When a leaf node leaves,
traversing it. the DKDT may end up with branches that have only one node.
1) The tree maintenance protocol (TMP): Each node main- For example, Figure 3(b) shows the messages when nodes
tains a local database, called the Tree Information Bas®)(T| hosting data point 3 and 5 leave: the right half of the DKDT
which contains the cell vectors corresponding to each nod&comes a single branch. To reduce the tree height, we extend
There are two types of periodic messages to establish the & basic protocol to eliminate nodes that have only onelchil
(See an example in Figure 3(a)). with the following rule:
First, each node sends a path refreshing (PR) message to i#fter the TIB is established, a node will send a PR message
parent; it learns the identity of its packets when it was te@a only to its lowest ancestor that has two children.
via splitting. The PR message carries the part of its TIB thatA node knows who that ancestor is by examining its
corresponds to the subtree rooted at this node. In partitha TIB. With this rule, if a node (except the root) has only
PR message from a leaf node would just contain its own cedine child, e.g., the two middle nodes in the right branch
A node waits for the PR message from both its children. If orie Figure 3(c), it will not receive PR messages in the next
or both messages do not arrive within a preset time, the paregund and thus it will not send a new PR message of its
assumes the child(ren) has left (or crashed); we discuss hewn. Subsequently, since a node only sends PRR messages
this case is handled below. After receiving the PR messagtssnodes from which it receives a PR message before, these
the node updates its TIB based on the information in thesedes will stop receiving PRR messages. By skipping nodes
messages. It then sends its own PR message up to its pangatachievebranch coalescing, i.e., paths are compressed and
The PR messages propagate to the root eventually. After dné way that is consistent with the compact splitting althoni
iteration of PR messages, each node has an up-to-date viEigure 3(d)).
its subtree and the root has information on the full tree. When an internal node departs, the PR and PRR messages
Second, once the root node receives PR messages fromdéstined to it will be delivered by the DHT layer to another
children, it sends Path Refreshing Reply (PRR) messagestile in the system whose ID is now the closest to the key




identifier in these messages. This new node becomes par{d)). For example for case (1) shown in Figure 4¢1andC,

the DKDT and takes over the cell originally managed by thare in the same half plane and the new c€ll, is the right

departed node. half plane, which is the lowest common ancestor that covers
The TMP is lightweight for the following reasons. Firstp and C,.. The registering node registepswith the new leaf

the frequency of the message exchange can be set relativedge and then “grafts” the new leaf node and internal node

low, since the tree structure generally does not changa.oftéo the DKDT. For example, in Figure 4(1), it infornds. that

Second, the maintenance message size is small. Generébynew parent i€/ and informsC’. its parent isP. Once the

messages include incremental changes in the tree shape;niae nodes are added, they will start to send and receive TMP

full tree information is only sent to a node by its parent whemessages.

it joins the DKDT. Finally, each node only needs to send its

dimensions, not its data points. Y
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[1l. ENDPOINT ALGORITHMS ! °° Dﬁm ol x
With the TIB established on nodes in the DKDT, endpoints il o \43 1 5 [!
2

C
can carry out registrations and queries efficiently in a dis- * ' : \g
tributed fashion. A node is referred to as an endpoint if & ha
data points to register (e.g., to share a new song), or needs t @
issue a query. An endpoint may or may not be in the DKDT;,
but it has its own node ID and can thus reach any other nodg 2.
in the network via the DHT layer.
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A. Registration

To register a data poinp,: {d; = v1,ds = v, ...,dr, = Vi }, X D T
that covers this data point. This is done by probing rathanth |s P b
traversing the tree. o o . E

(& Q r
b o 4
logical tree; each cell along that path covers the data poire K 050 b 5 3¢ E
registering node first locally computes the path and tharess . ’ O/\) °
1 2

probed node is not in the DKDT, e.g., being skipped, it return 4 Regisrati hen th _ de is not a leat. Tite dat
NULL. Since the ordering of the cells in the path is known tg'2 % FSIiSyaton when e coverng node 1s no a eat. ae
the registering node, it conducts a binary search alongadhtie pand right figures show the DKDTs before 5's arrival and afsgistration.
between the probed node and the root until it hits a node in
the path by examining its TIB and then returns the dimensioaad the actual data registration. The number of probing mes-
of the following nodes: the covering node and if P is not sages is logarithmic in the tree path length, which is reddyi
the registering node can now complete the registration.  cached for future registrations, thus further reducingdbst.

If the covering nodeP is a leaf node, the registering nodeRegistration requires one network message and in some cases
database and if the threshdld., is crossed, it will initiate
a compact splitting operation as discussed above. Otherwis: QUerY
node. SinceP is a non-leaf and neither of its children covers a k-dimensional vectog : {dy = v1,d2 = va,...,dx, = v}
a new leaf will have to be created. In addition, a new internBesolving the query involves the following steps.
property. The algorithm depends on the configuration batwethat covers the query point. Similar to registration, trgs i
the new data point, and the three node®, C;, andC... There done by probing, using the query vector as the data point. The
belong to two different half planes andbelongs to one of cell dimension and (if it is an internal node) the list of leaf
the half planes. (21; and C,. belong to the same half planenodes in its subtree. In the example in Figure 5, the node
to same half plane gs The rule for adding the new internalreturn message, the querying node enqueues these leaf nodes
node is that it must be the lowest common ancestor that covarsa priority queue sorted in ascending order based on the

the registering node must find the lowest node in the DKDT, @
For any data point, there exists exactly one path in the

a probe message to a random node within this path. If the ®

oint is 5, P is the covering node, an{ andC',. are its children. The center
the DKDT. This node determines the lowest covering node in The cost of registering a data point includes both probing
a leaf, its two childrerC; andC,.. Based on this information, small given a reasonable tree size. The probing result can be
sends the data point t&. P will enter the data point in its a few grafting messages.
the new data point falls in a space that it not covered by a leafA node may issue a similarity query, which is specified as
node must be introduced to maintain the DKDT’s compact First, the querying node must determine the lowest node
are three cases (Figure 4 shows an example)C{1land C,. probed node checks its TIB and returns the covering node’s
andp belongs to the other half plane; (8} and C, belong that contains data point %s, is returned. Upon receiving the
eitherp and a child (case (1) and (3)) or the two children (cas#istances from the query to each of these leaf nodes.



Second, the querying node sends the query to the first ndiesed indexing schemes degrades as dimensionality iesteas
in the priority queue s in Figure 5). The node receiving This is known as the curse of dimensionality.
the query does the following: (1) In its local database, iddin In a DKDT, whether a query will be sent to a leaf node
the data poinp’ that is closest t@; assume the distanegep’ is determined by the query’s distance to the node, i.e., the
is r. (2) It checks its TIB to determine a list of leaf nodedoundaries of the cell, which is used as an approximation
whose distance tg is less tham (V4 and N; which contains for the distance to data points within the cell. This may be
data points 4 and 1 respectively in Figure 5), since they maybad approximation, especially when the cell containselarg
contain a data point closer t@ Finally, it returnsp’ along empty spaces, as is common with high dimensionality data.
with this list to the querying node. Consequentially, many (if not all) leaf nodes may appear in

Third, based on this information, the querying node ygesthe query’s candidate list even though their data pointdaare
as the first candidate nearest neighbor, and adds the nodes faway from the query. Figure 6 shows an example. The four
the list to its priority queue. The querying node then degseuinner squares denote leaf nodes in a DKDT and query
a node from the queue and sends it the queryNodes covered by the node that contains data point 5. The candidate
that receiveq return the closest point in their database, anlist for ¢ includes the other 3 leaf nodes since the circle around
the querying node updates its candidate neighbor whenevet iatersects with all of them. However, the two leaf nodes on
closer data point is found. The process stops when the rieatBs left do not have relevant data points and should idealty n
neighbor found so far is closer tpthan the next node in the be visited.
queue. In Figure 5, after data point 4 is found, the processTo reduce the number of nodes to be visited, we propose
stops.N; will not be queried, since its distance is larger thaf virtual shrinking mechanism, where based on the type of
the distance betweepand data point 4. queries a node receives and the data distribution within its

cell, the node “reduces” its cell size to more accuratelyenefl

y the type of data points it has. This way, future queries may be
3 e K\ able to avoid visiting this node.
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Fig. 5. Example of a query: (a) 5 is the first candidate neighba 4 is
the NN. (b) DKDT with enqueued nodes filled in. X X

a,
The algorithm presented above can be generalized to find @ ()

K nearest neighbors (KNN) by changing the third step t8g 6. virtual node shrinking example: (a) Without shrimisi (b) Shrinking
maintain K candidate neighbors. The algorithm stops whém creating sub-trees. Dotted boxes denote sub-tree cells.
the next node on the queue has a distance tioat is larger
than the distance of th&,, candidate neighbor. The virtual shrinking on a node occurs when the following
The query cost is determined by the number of nodes tReteria are met: (1) the node receives frequent candidate
querying node must visit. It is shown in [12] thak(log ') ~queries; and (2) the candidate queries’ hyper-spheres diie
query time is achievable in the expected case for a cerachliZ'0t intersect with any of the data points on the node. If these
kd-tree, whereN is the number of data points. Since th&onditions are met, the node shrinks its cell to represent it
distributed algorithm follows the centralized kd-treeithm, data more accurately, and propagates this informationen th
the expected number of query messages needed to resolvd M messages. During the second step of query resolution,
NN query is alsaO(log N). Furthermore, since the number ofh€ covering node can now often reduce the number of nodes
DKDT leaf nodesl. = O(-2-), the query cost i©(log N) = 0N the candidate list by using the distance from the query to
O(log L). However, we must note that the constant factdP€ f|r_1er _ceII representation of each leaf node. In Figurg, 6(a
hidden in the asymptotic bound contaitfs so the query cost the criteria are met for the two left nodes, but not for thedow

increases rapidly with the dimensionality We discuss how ght node, since data point 4 is within the circle. _
we handle this next. There are many ways to shrink a cell, e.g., creating a

minimum bounding rectangle (MBR [13]) or further splitting
data within a cell to create an internal tree. In Figure 6itig,
two left nodes create virtual trees within themselves. lis th

Nearest neighbor search based on a kd-tree works well tstample¢’s candidate list will not include the top left node,
low dimensionality data, since the internal nodes can dyicksince the distance from to either of its two smaller sub-tree
cut down the search space. However, the performance of treells is larger than the first neighbor 5’s distance.

IV. VIRTUAL NODE SHRINKING



Virtual shrinking requires a new data structure that must be 100
propagated up the tree, thus increasing the overhead of the
TMP. To minimize the overhead, we leverage ideas from the 80
VA-file approach [8], in which a node uses a small number of
bits, b;, (e.g.b; = 2 — 4) along each dimension to divide its
cell and creates a grid (Figure 7). The VA-file representatio
of the cell is the list of hypercubes that contain data point
and each hypercube is represented ugibygbits. The VA-file
representation of the cell is then used in the TMP messages.

(2]
o

CDF (%)

N
o
T

20 - . 2-d Uniform ——

Ymax Before Shrinking: |

11 2 6-d Uniform -

‘ (Xmin, Xmax) (Ymin, Ymax) ‘ ot : 12-d Uniform
10 * o’ 1 10 100 1000
After Shrinking: Number of query messages
01 ®4 (Xmin, Xmax) (Ymin, Ymax)
' ’ Fig. 8. Cumulative distribution of query cost for uniformtdsets.

00 . (00,10) (00,11) (11,00) (11,01) (10,1

Ymin 8
Xmi%o 01 10 11 Xmax 100
(a) (b)

80

Fig. 7. Virtual shrinking using a VA-file representation) @ivide the 2-d
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V. EVALUATION a0 L

We evaluate the DKDT mechanisms in an event-driven

simulator [14]. We use both synthetic datasets and a real 20f
dataset to drive the simulation. Each synthetic dataset has

6-d Clustered (Compact splitting) —— |
12-d Clustered (Compact splitting) -

100,000 data points with a fixed number of dimensions. The o LA . 12-d Glustered (w/o compact splitting)
data may follow one of two distributions. In the uniform 10 20 30 40 50 60 70
distribution, each data points is placed randomly in the k-d Number of hops

space. In the clustered distribution, 500 cluster centees a Fig. 9. CDF of TMP message hops for clustered datasets.

generated uniformly, then for each cluster center, 200 data

points are uniformly placed within a given radius to the eent

The real dataset consists of 5000 30-d feature vectorsotetta queries need fewer than 20 messages. The performance starts

from a set of assorted mp3 files [2]. For the synthetic datasetdegrade for largé. Whenk = 12, over 40% queries need

we generate 5000 random queries while we use the feattwevisit 100 or more leaves in the system. This shows the

vectors also as queries for the music dataset. We set upliafitation of the kd-tree. The performance for the clustere

overlay network with 20,000 nodes and we set #ig, on dataset shows similar trend as the uniform dataset. More

each node to be 100. The sender of a data point or queryigluation results can be found in [11].

picked randomly among all nodes. We conclude that the DKDT effectively cuts down the
search space and supports efficient similarity queriesg-esp

A. Query performance cially when the dimensionality is low.

We examine query performance in terms of the number ]
of messages needed to resolve a nearest neighbor quenyBIPKDT maintenance cost
the experiments, we first inject the registration load to the We now evaluate the tree maintenance overhead. A major
system before we issue the queries. We do not use virtaalvantage of the DKDT is that in each round of message
node shrinking. Figure 8 shows the distribution of the numbexchange, the number of messages sent and receivah-is
of query messages needed for each query for uniform datastést and independent of the data/query distribution or the
with different dimensionality. The DKDTs for the differentdimensionality. In particular, a node receives at most tWo P
scenarios all have about 1500 leaf nodes. A naive algorithmessages, one PRR message, and sends one PR message and
to resolve a similarity query would have to visit all the leafwo PRR messages. This is important as it avoids the typical
nodes. problem that nodes higher up in the tree get overloaded.

For low dimensionality, e.g.k = 2,3, the system is very  From the system’s standpoint, the overhead of the DKDT
efficient: queries need to visit fewer than 10 nodes to find tlmeaintenance is determined by the size and height of the tree.
nearest neighbor. Even for higher dimensionality perforoea First, we examine the number of hops a PR/PRR message
is still very good. For example fok < 6, over 90% of the must traverse, i.e. the height of the tree. Figure 9 compares



two scenarios, with and without compact splitting, for the 100 A
clustered datasets. For badth= 6 and 12, the average number
of hops with compact splitting is 11 (the two curves esséptia 80 |
overlap) and it is independent of the number of dimensions.
In contrast, without compact splitting the number of hops
increases rapidly with the dimensionality. Compact gSplitt
also reduces the size of the tree. With compact splittingreth
are 1956 internal nodes and 1957 leaf nodes in the DKDT for
k = 6, while the numbers are 1974 and 1975 for= 12.
Without compact splitting, the DKDTs have the same number 201 12-d Uniform ——
of leaves, but there are many more internal nodes: 8445 and 12-d Clustered -
15917 fork = 6 and 12 respectively. ol | 12qClusired2pis

. . 0 50 100 150 200 250 300 350 400 450 500
In summary, the DKDT maintenance overhead is small and

" . . Number of query messages
the compact splitting construction algorithm ensures a DKD
of a manageable size. Fig. 10. Effect of virtual shrinking on query performance.
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100 T T T
C. Effectiveness of virtual shrinking :

We now examine how virtual shrinking impacts system 8or

performance under high dimensionality. Figure 10 shows the
query performance for synthetic datasets with both randwain a 60 |
clustered distributions wittk = 12; “2 bits” means we use 2
bits to divide cells along each dimension. The improvement 20 L
for the clustered dataset is significant: the average numiber

guery messages drops from 124 to 14. The improvement for

CDF (%)

X X 20 | . .
the uniform dataset is smaller: the average drops from 125 aritual shrivking
to 64. The results confirmed our design: when data points //mﬂil Shrinking 4 bis
0 o L L L L
are clustered, the_re are a Io_t of empty spaces that can be 0 20 40 60 80 100 120
removed through virtual shrinking, thus cutting down a giser Number of query messages

search space. With a uniform distribution, empty spacek wil
be smaller, thus reducing the impact of virtual shrinking.
We also ran tests with the mp3 dataset, which has fewer
data points (5000) but higher dimensionality=€ 30), so the VI
dataset is spars&({00 << 23°). Using the same threshold
(100), its DKDT has 119 leaf nodes. Figure 11 shows that Similarity queries have been studied thoroughly by the
without virtual shrinking, the system degrades to an extiis database community. Gaede et al. [9] provides a comprehen-
search for most of the queries: about 80% of the queries nesie survey of these work. We leverage these results and buil
to visit more than 80% of the leaf nodes to find the nearestir system on top of a distributed kd-tree [15]. The DKDT
neighbor. With virtual shrinking, the performance impreveshape resembles a BD-tree [16].
significantly as we use more bits to divide the space within a Supporting complex queries in a DHT-based system was
node. In particular, when we use 4 bits, the average numlgoposed as an open question in [7]. Since then, a lot of
of query messages is less than 10. This experiment shows #akarch has been done in this domain. In [5], a DHT-based
with high dimensionality, cells are often sparsely popedat system that supports efficient range queries was proposed. T
and eliminating the empty space through virtual shrinkingystem is built on top of a distributed 1-d Range Search Tree.
can significantly reduce query cost. The extra amount of d46 proposed a similar structure for range queries. We ekten
carried in the TMP due to virtual shrinking is tolerable. lhist these ideas, and build our system around kd-tree to support
experiment, for a 30-d space and using 4 bits per dimensigimilarity searches in multi-dimensional datasets.
the extra amount of data in the PR message for a node withseveral systems have used multi-dimensional DHTs such
100 data points i200 - 30 - 4/8 = 1500 bytes. as CAN [17] to support complex queries. pSearch [18] is an
In summary, virtual shrinking is useful in improvinginformation retrieval system and is the closest to our work.
the query performance for realistic clustered and higfHhe main limitation of pSearch is that the dimensionalityhaf
dimensionality datasets. We note that virtual shrinkingais application data is tied to the dimensionality of the ungied
useful optimization for many realistic datasets even thou@AN, which limits its use by applications with different
it is not a complete solution for the curse of dimensionalitimensionalities. In addition, pSearch relies on hewssto
problem. find nearest neighbors, if there is no exact match to the query

Fig. 11. Virtual shrinking improves performance for the ngigaset.
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