A Programming Interface For
Network Resource Management

Eduardo Takahashif, Peter Steenkiste?, Jun Gao*, and Allan Fisher?
tDepartment of Electrical and Computer Engineering, { School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, USA

Email: {takahasi, prs, jungao, alf}Qcs.cmu.edu

Abstract— The deployment of advanced network services
such as virtual reality games, distributed simulation, and
video conferencing, will require sophisticated resource man-
agement support. The reason is that the quality of the
delivered service will depend both on what resources are
allocated to the user, and how these resources are man-
aged at runtime. This problem is challenging because the
definition of Quality of Service (QoS) is in general user spe-
cific, so hardwired resource management mechanisms will
not be sufficient. To address the runtime resource man-
agement problem, we introduce the concept of a delegate, a
code segment that applications or service providers inject
into the network to assist in the management of the net-
work resources that are allocated to them. This approach
allows users to tailor runtime resource management to best
meet their specific needs. Moreover, since delegates exe-
cute inside the network, they can easily collect information
on changing network conditions, and can quickly adapt the
resource allocations for the flows they are responsible for.

Delegates have been implemented in the CMU Darwin
system, which provides an integrated set of customizable re-
source management mechanisms in support of sophisticated
network services. In this paper we present the design of the
delegate runtime system, focusing on the programming in-
terface that delegates use to monitor the network and mod-
ify resource use. We describe how delegates are supported
in Darwin, and we show how delegates can be used to deal
with a number of problems such as congestion control for
video streaming, tracking down non-adaptive sources, and
balancing traffic load.

I. INTRODUCTION

Advanced services networks have become a very active
area of networking research in recent years. These re-
search efforts cover a broad spectrum of topics, ranging
from per-flow service definitions like IntServ [6], [15] to ser-
vice frameworks like Xbind [19], but they share the overall
goal of evolving the Internet service model from a basic
bitway pipe model to a sophisticated infrastructure capa-
ble of supporting complex advanced services, such as intel-
ligent caching, video/audio transcoding and mixing, and
virtual reality games. These services will combine tra-
ditional communication resources (link bandwidth) with
storage and computation resources. The design of such
a service-oriented network poses new challenges in several
areas, such as resource discovery, resource management,
service composition, and security. In this paper, we fo-
cus on the resource management architecture for such a
network. Resource management plays a central role be-
cause what resources are allocated to an application, and

how these resources are managed, will have a strong im-
pact on the quality of the delivered service, and the effi-
ciency with which it is realized. In particular, we focus on
mechanisms that support application-customized, runtime
resource management.

Resource management activities can be classified as
startup or runtime operations. Startup activities typically
happen when users join or leave the network, and they
are executed relatively infrequently. Examples include the
allocation of a set of resources in response to a request
from a new application, or changes in the provisioning
of network resources to accommodate a new organization.
Several groups have developed and implemented resource
management architectures that support startup activities
in service oriented networks. They typically rely on re-
source brokers [9], [23] and a signaling protocol [7], [10] to
identify and allocate resources.

Runtime activities, in contrast, take place on a shorter
time scale and are more incremental in nature. For ex-
ample, a video streaming application may adjust its frame
rate based on network feedback, or a distributed simulation
may add a node to accommodate increased computational
requirements. Traditionally, fine grain, runtime activities
are driven by the endpoints, but in a service-oriented net-
work, most of the functionality is provided inside the net-
work. Moreover, future networks will deploy mechanisms
to directly control network resource, e.g. low level QoS
support, but using these mechanisms effectively will re-
quire knowledge about how resources are used inside the
network. Both arguments suggest that restricting runtime
resource management to the endpoints may not be suffi-
cient.

In this paper we introduce a mechanism for applications
and service providers to inject into the network code seg-
ments that are directly involved in or affect the resource
management decisions for the traffic belonging to that user.
The motivation for this approach is that advanced services
and applications will have service-specific notions of Qual-
ity of Service (QoS) that would be difficult to capture in any
fixed QoS framework. Therefore, service providers must be
able to influence how “their” resources are managed based
on their own notion of service quality, and this is most
directly achieved by having them provide code that imple-
ments their policies. We call these code segments delegates

34

since they represent the interests of the users inside the net-
work. Delegates have been implemented in the CMU Daur-
win system [8], which provides customizable resource man-
agement for value-added services. Several delegates have
been developed, dealing with problems such as congestion
control for video streaming, tracking down non-adaptive
sources, and balancing traffic load.

In the remainder of the paper we first motivate the
concept of delegates (Section II). We then define a gen-
eral architecture for delegates and describe how delegates
have been implemented in the Darwin system (Sections III
and IV). In Section V we present four examples of how
delegates can be applied to address a variety of resource
management problems. We discuss related work in Sec-
tion VI, and summarize in Section VII.

II. MOTIVATION

An mmportant requirement for the successful deployment
of sophisticated value-added services is appropriate re-
source management support so that services can identify,
allocate, and manage the resources they need to meet their
specific quality of service goals. The networking commu-
nity has developed several mechanisms, per-flow QoS and
link sharing, that begin to address these needs. Research in
per-flow QoS has resulted in the definition of service classes
with either strict mathematical guarantees, e.g. guaran-
teed service [26], or weaker guarantees, e.g. controlled
load [34] and differentiated service [12]. Strict guarantees
are needed for some real-time applications and can sim-
plify development of many other applications by making
network behavior more predictable, but they can be expen-
sive to support. Weaker guarantees can be supported more
efficiently, but service is less predictable, and applications
will in general still have to adapt to network conditions
within some service window. Link sharing[17] is similar to
per-flow QoS, but resource guarantees are provided for a
large set of flows belonging to an organization instead of a
single flow.

These mechanisms, however, address only part of the
problem. Advanced applications will have many flows that
use a variety of resources in the network, and an important
question is how low-level per-flow QoS mechanisms can be
used to implement complex application-level definitions of
service quality. In this paper, we focus on the runtime com-
ponent of this problem; a resource allocation architecture
that optimizes application-specific quality of service crite-
ria is presented elsewhere [9]. Runtime resource manage-
ment policies are needed in a number of situations. First,
the availability of networking resources may change, forc-
ing the application to change how it uses resources; this
is especially important for applications that use best effort
service or weak guarantees. Alternatively, the application
may have to change its resource usage because its require-
ments have changed. Similarly, link sharing mechanisms
will have to be controlled through resource management
policies that are appropriate for user organizations.

Responsibility for adapting resource use has traditionally
been pushed to the end points. One of the main motiva-

35

tions for this design is that it simplifies the core of the
network. However, both network applications and the net-
work itself are changing rapidly. Applications are becom-
ing more complex (combining many end-points and flows)
and sophisticated (actively involved in resource allocation
and use). The network provides mechanisms for explicit re-
source control and is delivering more sophisticated services.
As aresult of these changes, having some resource manage-
ment policies implemented by entities inside the network
could have several advantages:

+ Strategically placed entities in the network can more
easily collect all the information that is needed to make
resource management decisions. For example, they
could monitor how all flows belonging to a user are
using a congested link. An endpoint typically has in-
formation only on the flows it generates or receives.

+ Entities in the network have immediate access to rel-
evant information and can more quickly respond to
changes. Adaptation policies implemented at end-
points have to deal with at least one round-trip time
worth of delay.

o Endpoints of course have to be involved in runtime
adaptation. However, entities in the network can give
specific feedback that may help in adapting. With-
out explicit feedback endpoints have to rely purely on
implicit feedback, i.e. packet loss or measured delay;
implicit feedback is often hard to interpret and often
offers incomplete information.

Motivated by these potential benefits, Darwin provides
explicit support for the implementation of application-
or service-specific runtime management policies inside the
network, as described in the remainder of this paper.

III. DELEGATE ARCHITECTURE

We describe the delegate runtime environment, focusing
on the programming interface that delegates use to perform
customized runtime resource management. Since delegates
use this interface to control the router’s behavior, we refer
to it as Router Control Interface, or RCI.

A. High level description

The most direct way of having applications and service
providers involved in runtime resource management is to
have them provide code that implements their adaptation
policies. We use the term “delegate” for code segments
that applications or service providers can inject into the
network to implement customized resource management
management of their data flows.

Delegates can broadly be classified as data or control
delegates. Data delegates can be used to implement data
manipulation operations such as video transcoding, com-
pression, or encryption. We expect that data delegates
will typically reside in compute servers (e.g. workstation
clusters that are co-located with routers), although sim-
ple operations could potentially be supported on specially
designed routers. Control delegates, on the other hand,
perform resource management tasks that do not require
processing or even looking at the body of packets, such

Flow

Control and
Data plane
of router

Delegate

Fig. 1. Delegate network model

as changing bandwidth allocations, selective packet drop-
ping, or rerouting. Control delegates are part of the con-
trol plane, i.e. they execute on the control processor of
routers or switches. While this partitioning into control
and data delegates is somewhat artificial, e.g. some dele-
gates could look at some of the data and fall in between
these two classes, it adequately covers all the examples we
have looked at so far. In this paper we focus on control
delegates.

Users
Other Signaling Entlties

Applications
Other Delegates

- LacalResourceManager

Fig. 2. Node architecture

Control delegates execute on designated routers and can
monitor the network status and affect resource manage-
ment on those routers. The network model that forms the
basis for the router control interface that delegates use is
illustrated in Figure 1. The traffic in the network is viewed
as a set of flows, a sequence of packets with a semantic
relationship defined by applications and service providers.
Flows are defined on each router using a flow spec [7], i.e.
a list of constraints that fields in the packet header must
match for that packet to belong to the flow. A packet clas-
sifier in the data plane of the router (shown in white in
Figure 1) determines what flow each incoming packet be-
longs to (Figure 2). The delegates live in the control plane
(shown in grey in Figure 1) and can monitor and change
resource use in the data plane on a per-flow basis.

Our distinction between control and data delegates is
in part driven by our desire to achieve good performance
using today’s routers. Complex data manipulation opear-

36

ations are moved to compute servers, so the router data
plane remains simple: it only has to perform classification
and scheduling. In contrast, activities in the control plane
happen on a coarser time scale, so there is more room in
the control plane for customization and intelligent decision
making using control delegates. However, even on different
router architectures, e.g. routers that can support expen-
sive data manipulation, the distinction will be useful, since
the two types of delegates need different RCIs, and raise
different performance and security concerns.

Delegates can be viewed as an application of active net-
works {28]: network users can add functionality to the net-
work. It is however a very focused application: delegate
operations are restricted to traffic management. As is the
case with active networking in general, delegates raise sig-
nificant safety and security concerns, although the focused
nature of delegates simplify the problem. Delegates are in
general untrusted, so the router has to ensure that they
cannot corrupt state in the router or cause other problems.
This can be achieved through a variety of runtime mech-
anisms (e.g. building a “sandbox” that restricts what the
delegate can access) and compile time mechanisms (e.g.
proof carrying code [24]). A related issue is that of secu-
rity. At setup time, the router has to make sure that the
delegate is being provided by a legitimate user, and at run-
time, the local resource manager has to make sure that the
delegate acts only on flows that it is allowed to manage.

A critical design decision for delegates is the definition
of the router control interface, i.e. the RCI that delegates
use to interact with the environment. If the RCI is too
restrictive, it will limit the usefulness of delegates, while
too much freedom can make the system less efficient. The
remainder of this section focuses on the RCI. The defini-
tion of the RCI is driven by the need to support resource
management and it includes functions in three categories:

¢+ Collecting information: Delegates can monitor net-

work status, waiting for events such as congestion con-
ditions or hardware failures, or just keeping track of
traffic patterns and flow distributions. Querying out-
put queue sizes, checking for connectivity, or retriev-
ing bandwidth usage are methods that can be used to
collect information local to a delegate.

+ Resource management actions: Delegates can

change how resources are distributed across flows:

Service Providers

Classifier
B Scheduler

Fig. 3. Darwin components

splitting and merging flows, changing their resource
allocation and sharing rules. For instance, a subset of
a flow may be isolated through a flow split, and assign-
ing no resources to that subset implements a selective
packet dropping mechanism. Delegates can also affect
routing, for example to reroute a flow inside the ap-
plication’s traffic for load balancing reasons. Another
example is to direct a flow to a data delegate on a
compute server that will, for example, perform data
compression to reduce bandwidth usage.

+ Delegate communication: Delegates can send and
receive messages to coordinate activities with peers
on other routers and to interact with the application
on endpoints. Messaging between delegates allows the
system to both gather global knowledge and perform
global actions, as in the case of rerouting for load bal-
ancing. Interaction with applications on end-points
increases the flexibility of the system, as adaptation
to network events typically involves the sources.

We expect that most routers will support the calls de-
scribed above. However, individual routers may have addi-
tional functionality on their data forwarding path and they
may allow delegates to control these functions by calls to
the router control interface. For example, on a router that
supports RED, delegates may be able to change the thresh-
olds used to trigger early packet drops. Other routers may
have algorithms to track down non-conformant flows and
may allow delegates to get access to this information; we
will give an example using this functionality in Section V.

IV. DELEGATES IN DARWIN

We give a brief overview of Darwin and describe how
Darwin delegates are implemented.

A. Darwin System Architecture

The Darwin project is developing a set of customiz-
able resource management mechanisms. Customizability
allows applications and service providers to tailor resource
management, and thus service quality, to fit their needs.
Darwin includes three mechanisms that operate on differ-
ent time scales. A resource broker, called Xena, selects
resources that meet application needs using application-
specified metrics to optimize resource use [9]. Delegates
support customizable runtime resource management, as de-
scribed above. Finally, Darwin uses a hierarchical packet
scheduler that supports a wide range of policies and in-
tegrates per-flow QoS and link sharing in a single frame-
work [27]. The activities of the three mechanisms are co-
ordinated by a signaling protocol called Beagle [10].

Figure 3 shows how the Darwin components work to-
gether. Applications (1) running on end-points can submit
requests for service (2) to a resource broker (Xena). The
resource broker identifies the resources needed to satisfy
the request, and passes this information (3) to a signaling
protocol, Beagle (4), which allocates the resources. For
each resource, Beagle interacts with a local resource man-
ager (LRM) to acquire and set up the resource. The local
resource manager modifies local state, such as that of the
packet classifier and scheduler shown in the figure, so that
the new application will receive the appropriate level of
service. The signaling protocol also sets up delegates.

The Darwin architecture is similar in many ways to tra-
ditional resource management structures. For example,
the resource management mechanisms for the Internet that
have been defined in the IETF in the last few years rely on
QoS routing [31], [18] (resource brokers), RSVP [36] (sig-
naling similar to Beagle), and local resource managers that
set up packet classifiers and schedulers. The more recent
proposals for differentiated service [25] require similar enti-
ties. The proposals differ in the specific responsibilities of

37

the entities. Delegates are unique to Darwin: most other
resource management architectures do not address runtirne
resource management, and rely exclusively on endpoints to
perform this function.

B. Darwin network model

The delegate router control interface is based on flow-
oriented network model, where the definition of a flow may
be network specific. The definition of flows used in Darwin
differs from the definition used in the IETF IntServ working
group in two ways.

First, the Darwin scheduler supports hierarchical re-
source management. This means that the resource dis-
tribution of the link is represented by a resource tree (Fig-
ure 4}, with the root representing the link, leaf nodes actual
data flows, and interior nodes organizations, services or
applications that control the flow or flow aggregates corre-
sponding to their children. Resource allocation policies can
be specified for both leaf and interior nodes, so both per-
flow QoS and link sharing can be supported. This means
that the flows observed by delegates will be organized as
a hierarchy. We sometimes refer to the resources belong-
ing to an organization, i.e. the corresponding nodes for all
resource trees in the network, as a virtual network.

Second, the classifier considers not only fields in the layer
3 and 4 header, but also an application ID. This allows
applications to define flows based on application semantics.
In the current implementation, the application identifier is
stored in the packet as an IP option. Other formats, e.g.
the IPv6 flow ID, are possible.

155 Mbps

Fig. 4. Example resource tree

C. Delegate runtime environment

Our current framework for delegates is based on Java and
uses the Kaffe Java virtual machine [33], capable of just-in-
time (JIT) compilation and available for many platforms.
This environment gives us acceptable performance, porta-
bility, and safety features inherited from the language. Del-
egates are executed as Java threads inside the virtual ma-
chine “sandbox.” Measurements of runtime performance
show just around 50% slowdown when comparing the exe-
cution time of equivalent Java and C code in our environ-
ment. Currently, delegates can run with different static pri-

38

ority levels, although a more controlled environment with
real-time execution guarantees is desirable.

The RCI that gives users access to resource management
functions and event notification is implemented as a set of
native methods that call the local resource manager, which
runs in the kernel. Experiments to measure the overhead
of the RCI calls from within the delegate runtime environ-
ment showed minimal difference between calls from Java
delegates and calls from equivalent C programs. That is a
reasonable result since Java API calls are actually native
methods, with a thin layer of indirection. More significant
than the language employed in the runtime environment is
the architectural decision of implementing it on user space.
Experiments with machines in our testbed showed an over-
head of around 5 microseconds in responding to system
calls in an unloaded system. As the system load increases
(e.g. with packet forwarding) the system call latency be-
comes highly variable and unpredictable since our operat-
ing systems do not offer real-time guarantees.

Table I presents the methods that implement the RCI
to the packet classifier, scheduler and router. Communica-
tion was built on top of standard java.net classes. While
this environment is sufficient for experimentation, it is not
complete. It needs support for authentication and mecha-
nisms to monitor and limit the amount of resources used
by delegates. We also expect the RCI to evolve over time.

D. Delegate set up

Setting up a delegate involves a number of steps. First,
we have to verify that the router has sufficient CPU and
memory resources to support the delegate. The delegate
may also need specific libraries or APIs that may or may
not be available on all routers. Verifying that these condi-
tions are met is a form of admission control, similar to what
is done for bandwidth on link resources. Second, the dele-
gate code has to be transferred to the router and installed.
Finally, the delegate runtime environment has to be initial-
ized. For example, the delegate has to be told what flows
it is responsible for and has to be given authorization using
the Beagle signaling protocol [10].

Beagle was designed to allocate network resources for
structured applications. The resource needs of the appli-
cation are specified in the form of a mesh that specifies the
communication requirements plus the control and data del-
egates and their requirements. Delegates are characterized
by their QoS requirements, runtime environment needed
(e.g., Java, Perl, VisualBasic script, etc.). Runtime type
identifies the native library requirements of the delegate
(e.g., JDK 1.0.2, WinSock 2.1, etc.). In addition to del-
egate QoS and runtime requirements, the delegate setup
message also contains a list of flow descriptors, which iden-
tify flows to be manipulated by the delegate at the execu-
tion node. At the execution node, when a delegate setup
message arrives, Beagle locates the appropriate runtime en-
vironment, instantiates the delegate and passes its handles
to the local resource manager reservation state for all flows
that are requested. Using these handles, the delegate can
interact directly with the local resource manager to per-

TABLE I
RCI CALLS AVAILABLE TO THE DELEGATE

| Methods | Description
add Add node in scheduler hierarchy
del Delete node from scheduler hierarchy
set Change param. on scheduler queue
dsc._on Activate selective discard in classifier
dsc_off Deactivate selective discard in classifier
probe Read scheduler queue state
reqMonitor Request async. cong. notification
retrieve Retrieve scheduler hierarchy
getrt Get next hop’s IP address for a specified destination
chgrt Change the routing table entry for a specified destination
mmode_on Turn on the monitor mode to monitor bandwidth and delay
mmode of f Turn off the monitor mode
getdata Retrieve bandwidth usage and delay data recorded in the kernel

form resource management for the flows during runtime.

V. EXAMPLES

We briefly describe the Darwin testbed, and present four
examples of how delegates can be used to perform cus-
tomized runtime resource management.

A. Testbed

Link 3
100 Mhps

Fig. 5. Darwin IP testbed topology

The Darwin system has been implemented on a testbed
of PCs, and throughout the paper we show the results of a
variety of experiments conducted on a controlled testbed.
The topology of the testbed is shown in Figure 5. The
three routers are Pentium II 266 MHz PCs. Timberline
and Whiteface are running NetBSD 1.2D and Maui is run-
ning FreeBSD 2.2.5. The end systems m1 through m9 are
Digital Alpha 21064A 300 MHz workstations running Dig-
ital Unix 4.0. All links are full-duplex point-to-point Eth-
ernet links configurable as either 100 Mbps or 10 Mbps.
Unless specified, the links are configured as 100 Mbps in
the experiments presented in this Section.

39

Frame Rate (fps)
) o
1 il

(8]

[IS U

Shared Reservation Sel. Drop A. Sel. Drop

Fig. 6. Video quality under four scenarios

B. Selective packet dropping for MPEG video streams

MPEG video streams are very sensitive to random packet
loss because of dependencies between three different frame
types: I frames (intracoded) are self contained, P frames
(predictive) uses a previous I or P frame for motion com-
pensation and thus depend on this previous frame, and B
frames (bidirectional-predictive) use (and thus depend on)
previous and subsequent I or P frames. Because of these
inter-frame dependencies, losing I frames is extremely dam-
aging, while B frames are the least critical. In this exam-
ple, we will show how delegates can be used to selectively
protect the most critical frames during congestion.

To create congestion, we direct three flows over the
Timberline-Maui link of the testbed: two MPEG video
streams and one unconstrained UDP stream. Both video
sources send at a rate of 30 frames/second, and our per-
formance metric is the rate of correctly received frames.
Figure 6 compares the performance of four scenarios. In
the first scenario, the video and data packets are treated
the same, and the random packet losses result in a very
low frame rate, as expected. In the second case, the video
streams share a bandwidth reservation equal to the sum of

the average video bandwidths. This improves performance,
but the video streams are bursty, and random packet loss
during peak transfers results in less than a third of the
frames being received correctly. In the third scenario, we
also place a delegate on Timberline. The delegate monitors
the length of queue used by video streams using the probe
call. If the queue grows beyond a threshold, it instructs
the packet classifier to identify and drop B frames. This is
done by setting up the B frames as a separate flow using the
add call (B frames are marked with an application-specific
identifier), and then switching on selective discard for that
flow using the dsc.on call. Packet dropping is switched off
when the queue size drops below a second threshold. Fig-
ure 6 shows that is quite effective: the frame rate rough.y
doubles.

While delegates provide an elegant way of selectively
dropping B frames, the same effect could be achieved by
associating different priorities with different frame types.
In scenario four we use a delegate to implement a more
sophisticated customized drop policy. In scenario three, ei-
ther all or none of the B frames are dropped. By dropping
the B frames of only a subset of the video streams, we can
achieve finer grain congestion control. The advantage of
having a delegate control selective packet dropping is that
choice of delegates that should be degraded first can be
customized. Scenario four in Figure 6 shows the resulis
for a simple “time sharing” policy, where every few sec-
onds the delegate switches the stream that has B frames
dropped. This improves performance by another 10-20%.
Policies that differentiate between flows could similarly be
implemented.

C. Dynamic control of MJPEG video encoding

An alternative to selective frame dropping for dealing
with congestion is to use a video transcoder to compress,
or change the level of compression, of the video stream. It
is still possible to dynamically optimize video quality, as in
the previous example, by using a control delegate to control
the level of compression, as we illustrate in this example.

In this experiment, an application consisting of two
MJPEG video streams and two bursty data streams is
competing for network bandwidth with other users, mod-
eled as an unconstrained UDP stream. All flows are di-
rected over the 10 Mbps Timberline-Maui link. The ap-
plication has 70% of the bandwidth, 20% for video and
50% for data, and the remaining 30% is for the competing
users. The application data streams belong to a distributed
FFT computation. Since FFT alternates between compute
phases, when there is no communication, and communica-
tion phases, when the nodes exchange large data sets, the
data traffic 1s very bursty. An important property of the
hierarchical link-sharing scheduler used in this experiment
is that the video flows have priority on taking bandwidth
not used by the FFT flows. This means that video quality
can be improved significantly during the compute phases
of the FFT, if the video can make use of the additional
bandwidth.

This can be achieved by having a control delegate on

Timberline monitor the FFT traffic, and adjust the level
of compression of a transcoder (a data delegate) executing
on the server m9. The transcoder takes in raw video and
generates MJPEG. This allows the video flows to oppor-
tunistically take advantage of available bandwidth. Fig-
ure 7 shows a screen shot of the bandwidth used by the
video flows (light grey) and FFT (dark grey). During FFT
bursts, bandwidth is limited (20% of the link) and video
quality is low, but between FFT bursts the video can use
almost 70% of the link, resulting in increased video quality.
Figure 8 shows a histogram of the received frame quality.
We see that the majority of frames are received with ei-
ther maximum quality of 100 (received when the FFT is
in its computation phase) or with the minimum quality of
0 (when FFT is in its communication phase). Frames re-
ceived with other quality settings reflect the ramp up and
ramp down behavior performed by the control delegate as
it tracks the available bandwidth.

Fig. 7. Bandwidth sharing between video and FFT streams.

500F

Number of Received Frames
g
g

0oLl 0a00

0 10 20 30 40 50 60 70
JPEG Compression Quatity Parameter

100

Fig. 8. Distribution of received JPEG quality.

D. Selective dropping of non-adaptive flows

Applications that do not use appropriate end-to-end con-
gestion control are an increasing problem in the Internet.
These applications do not back off when there is conges-
tion, or they back off less aggressively than users that use
correct TCP implementations, and as a result, they get an
unfair share of the network bandwidth. We will refer to

40

such flows as non-conformant. In response to this prob-
lem, researchers have developed a variety of mechanisms
that try to protect conformant flows from non-conformant
flows. These include Fair Queueing scheduling strategies
that try to distribute bandwidth equally, and algorithms
such as RED [16] and FRED [20] that, in case of conges-
tion, try to selectively drop the packets of non-conformant
flows.

While, once deployed, these mechanisms will improve the
fairness of bandwidth distribution at the bottleneck link,
they address only part of the problem since they are de-
signed to work locally. The problem is that non-conformant
flows still consume (and probably waste) bandwidth up-
stream from the congested link. Upstream routers may not
respond to the non-conformant flow, for example because
they have no support for detecting non-conformant flows,
or because the flow cannot be detected (e.g. because of
aggregation in a core router), or because the flow appears
to be conformant (e.g. does not cause congestion). This
problem can be addressed by having routers propagate in-
formation on the non-conformant flows upstream along the
path of those flows. This approach can also deal with de-
nial of service attacks on servers: the server can report the
attack to the router it is attached to, and the network can
then track down, and selectively drop, that flow potentially
all the way to the source.

We implemented a simple version of this solution using
delegates. A delegate locally monitors the congestion sta-
tus and tries to identify non-conformant flows among the
flows it is responsible for. In our implementation, a flow is
considered to be non-conformant if its queue is overflowing
for an extended period of time; more sophisticated mecha-
nisms would be needed in a production version of the sys-
tem. Once a “bad” flow has been identified, the delegate
enables selective packet dropping for the flow, and sends
the flow’s descriptor to a peer delegate on the upstream
router. When a delegate receives a report of a ”bad” flow,
it verifies that the flow indeed has a high bandwidth and
enables selective packet dropping, if possible, and forwards
the message to the upstream router. Clearly, many alter-
native policies could be implemented; for example, only a
certain percentage of the packets could be dropped to re-
duce its bandwidth instead of dropping all packets as in
our implementation.

We conducted two experiments to show the effective-
ness of these delegates. In the first experiment, two
TCP streams (m2-m4 and m3-m4) compete with a non-
conformant UDP stream (m5-m4). The bottleneck link is
Maui-m4. Throughputs of the TCP flows under different
conditions are shown in Figure 9(a). In the first case, the
UDP stream is switched off, and the two TCP flows share
the link bandwidth evenly. In Experiment 2, the UDP flow
is present in the background and the TCP flows’ perfor-
mance 1s greatly reduced because of the UDP flow. In Ex-
periment 3, the delegates are running on all three routers.
The UDP flow from mb to m4 does not cause congestion
on the link between Whiteface and Maui, and therefore the
delegate on Whiteface does not react. However, there is

41

congestion on the Maui-m4 link, and Timberline correctly
identifies the UDP flow as non-conformant. It then informs
the delegate on Whiteface through the delegate communi-
cation channel. Both routers then drop the UDP flow’s
packets, and as a result, the two TCP flows recover their
throughputs to about the same level as in Experiment 1.

35
30 4
7 25
a,
2
i)
% Zm3-md
£15 1
3
£ 10
£
5 <
0 .
1 2 3
Experiment
(a) TCP versus UDP
80
70 1
3 60 4
2
@
£ 501
= © 005 KB
g 21kB
£ 30
E
£ 20
S
10 4
0 . ,
1 2 3

Condition

(b) FFT versus UDP

Fig. 9. Conformant TCP and FFT competing with non-conformant
UDP

In the second experiment, a bursty but conformant (us-
ing TCP) distributed FFT computation has to compete
with a non-conformant UDP stream. The FFT uses nodes
m2, m3 and m4, and the UDP stream uses nodes mb and
m4, as before. In Figure 9(b), we show how the FFT com-
munication time is affected by the UDP flow under different
conditions. We present results for two FFT data sizes, 0.5K
and 1K. As a base case, in Experiment 1, the UDP flow is
idle. In Experiment 2, the UDP flow is active and as a
result, the FF'T communication times are dramatically in-
creased. Finally, in Experiment 3 we deploy the delegates,
which correctly identify the UDP flow and drop its pack-
ets. This reduces the communication times for the FFT
compared to Experiment 2.

E. Load-sensitive flow rerouting

Routing decisions in the Internet today are mostly load-
insensitive and application-independent; in other words,
the path taken by a packet does not depend on the load in
the network or the application the packet belongs to. While

this results in simple and stable routing protocols, it can
also cause inefficient use of network resources. For example,
in a client-server scenario, to handle multiple clients’ re-
quests, it may be necessary to have multiple servers. How-
ever, there are times that one server is overloaded by re-
quests from clients for various reasons, and other servers
are idle. In this case, it would make sense to redirect some
requests to the lightly-loaded servers to achieve better over-
all performance. With the mechanisms described in Sec-
tion III, i.e., collecting information, communication with
peer delegates and abilities of changing network resources,
delegates are good candidates for this kind of task. Since
delegates are considered part of an application, delegates
should reroute only the flows that belong to one applica-
tion.

We use a simple experiment to illustrate how delegates
can balance an application’s load by rerouting. The exam-
ple application has multiple flows that use a virtual net-
work that has 50% of the bandwidth reserved on each of
the three links between the routers. Flows originate from
either m8 or m9 and the resource trees on Link 1, 2 and
3 are shown in Figure 10. On Link 1, Node 1 corresponds
to this application and Node 2 corresponds to some other
competing application. Node 3 corresponds to one specific
flow of this application, m9 to m2. Node 4 corresponds to
another flow of this application, m9 to m4, and is drawn in
dotted lines, meaning this flow is not known to the sched-
uler and it will be classified to Node 1. On Link 2, Node
1 and Node 3 are the same as on Link 1, but there are no
other applications that have reserved resources. On Link
3, Node 1 again corresponds to our application, and Node
2 represents some other competing application. Nodes 3
and 4 correspond to a flow from m9 to m2 and a flow from
m38 to m6 respectively, and they are drawn in dotted lines,
meaning that they do not have individual reservations.

‘D A>
/ v
‘.

(a) (b) (c)

Fig. 10. Resource trees used in the experiment in Section 5.5. (a)
Resource tree on Link 1 (b) Resource tree on Link 2 (c) Resource
tree on Link 3

The delegate on Timberline is responsible for one par-
ticular flow, m9 to m2, of this application. It knows the
bandwidth usage by this flow on Links 1 and 2 by directly
monitoring them, and it queries the delegate on White-
face to get the available bandwidth for this application on
Link 3. Initially, the route for flow m9 to m2 passes router
Timberline and Maui only (the shortest path). Since the
application has a 50% reservation, this flow gets about 50
Mbps throughput. When another flow, m9 to m4, which
belongs to this application joins, they share the bandwidth
reserved by the application, i.e, each gets about 25 Mbps.

42

At this time, the delegate on Timberline knows that 50
Mbps are available on Link 2 and, by querying the delegate
on Whiteface, it understands that the available bandwidth
for this application on Link 3 is 50 Mbps. The minimum
of these two numbers is larger than what flow m9 to m2
is using, so the delegate on Timberline makes the decision
to reroute flow m9 to m2 through Whiteface. Later, when
another flow, m8 to m6, which also belongs to the applica-
tion starts, flow m9 to m2 still goes through Whiteface until
flow m9 to m4 finishes, making more bandwidth available
on Link 1. At that time, the delegate changes the route for
flow m9 to m2 back to its initial route.

The results are shown in Figure 11. The series annotated
with “Node 3, Link 17 and “Node 3, Link 2” show the
throughput of flow m9 to m2 when it passes only Link 1,
and when it passes Links 2 and 3 respectively. “Node 4,
Link 1” represents the throughput of low m9 to m4 and
“Node 1, Link 3” represents the throughput of flow m8 to
m6. We can see that flow m9 to m2 adapts to the link that
has larger available bandwidth in a timely fashion.

70

Throughtput (Mbps)

100

150 200

Time (sec)

250 300 350

—a— Node 4, Link 1 —o—Node 3, Link 1
—o0—Node 3, Link 2 --.-0... Node 1, Link 3

Fig. 11. Load-sensitive rerouting results

VI. RELATED WORK

There has recently been a lot of work as part of the
Xbind [19], [35] and TINA [14], [29] efforts to define a
service-oriented architecture for telecommunication net-
works. There are several differences between them and
Darwin. First, services envisioned by Xbind and TINA
are mostly telecommunications-oriented. Darwin and del-
egates target a broader set of services. Second, while the
focus of both TINA and Xbind is on developing an open
object-oriented programming model for rapid creation and
deployment of services, the focus of Darwin is on devel-
oping specific resource management mechanisms that can
be customized to meet service-specific needs. While Xbind
and TINA have so far primarily been used as a develop-
ment framework for traditional ATM and telecommunica-

tion network management mechanisms, they could poten-
tially also be used as a basis for the development of cus-
tomizable resource management mechanisms.

Over the past decade much work has gone into defining
QoS models and designing associated resource management
mechanisms for both ATM and IP networks [11], [15], [30].
This has resulted in specific QoS service models both for
ATM [2] and IP [6], [34], [26]. This has also resulted in the
development of QoS routing protocols [4], [22], [21], [31]
and signaling protocols [3], [4], [36]. A closely related issue
being investigated in the IP community is link sharing [17],
the problem of how organizations can share network re-
sources in a preset way, while allowing the flexibility of
distributing unused bandwidth to other users. Both Dar-
win and the delegate mechanisms build on this research.
Darwin provides resource management mechanisms that
support application-level notion of resource management
and quality of service that are built on top of these mech-
anisms. Delegates, specifically, provide runtime support
that complements the above startup mechanisms.

The idea of “active networks” has recently attracted a
lot of attention. In an active network, packets carry code
that can change the behavior of the network [28]. The
delegate mechanism is closely related to the concept of
active networks, in that code specific to an application
can be dynamically loaded onto and executed by network
nodes. Similar facilities are provided by several experimen-
tal active networks, notably ANTS[32], SwitchWare[1] and
NetScript[13].

The design of the Darwin delegate facility is distin-
guished primarily by its concern for runtime efficiency.
Rather than requiring the invocation of custom code for
each packet, or even each packet in a designated flow, del-
egates can arrange to be invoked asynchronously by events
on the network node or by a periodic clock. As the ex-
amples of this paper show, many traffic-related functions
are well-suited to this style of invocation. Further, dele-
gates are installed by the Beagle signaling facility, rather
than inline with data. For short-lived, “datagram-like” ap-
plications, this suggests that Darwin delegates may be less
efficient than, for example, code groups in ANTS. However,
for structured applications that involve many flows, i.e. for
the services that we expect to create the greatest demand
for runtime management, Beagle’s globally planned signal-
ing methods can be significantly more efficient.

Reseachers at USC-ISI are developing a similar program-
ming interface for routers in the Active Reservation Proto-
col (ARP) project(5]. Their interface is called the Protocol
Programming Interface (PPI) and it is currently used by
control-plane protocols, e.g. routing and reservation pro-
tocols. In the design of the delegate RCI, we have investi-
gated a broader set of applications and protocols.

VII. CONCLUSION

In this paper we introduced the concept of a delegate, a
code segment that applications or service providers inject
into the network to assist in the runtime management of
the network resources that are allocated to them. Our del-

43

egate architecture was driven by two requirements. First,
users should be able to tailor runtime resource management
so they can optimize their notion of quality of service. Sec-
ond, since delegates execute inside the network, they can
quickly respond to changes in the network conditions. We
described the programming interface that delegates can use
to monitor the network conditions, e.g. queue status and
bandwidth of the flows they are responsible for, and to
modify resource use, e.g. changing reservations, selective
packet dropping or rerouting. '

Delegates have been implemented in the CMU Darwin
system, and we described a number of delegates address-
ing problems such as congestion control for video stream-
ing, tracking down non-conformant traffic sources, and bal-
ancing of traffic load. While some delegates operate in a
purely local fashion, others require coordinated actions by
delegates running on multiple routers. While none of the
examples provides necessarily the best, or even a complete,
solution to these problems, they do illustrate that our pro-
gramming interface is rich enough to support a broad range
of resource management actions. Future research will com-
pare the benefits of being able to make customized resource
management decisions inside the network, with the addi-
tional complexity delegates introduce.

ACKNOWLEDGEMENTS

This research was sponsored by the Defense Advanced
Research Projects Agency monitored by Naval Command,
Control and Ocean Surveillance Center (NCCOSC) under
contract number N66001-96-C-8528.

REFERENCES

D. S. Alexander, W. A. Arbaugh, M. W. Hicks, P. Kakkar, A. D.
Keromytis, J. T. Moore, C. A. Gunder, S. M. Nettles, and J. M.
Smith. The SwitchWare active network architecture. IEEE Net-
work, May/June 1998.

ATM Forum Traffic Management Specification Version 4.0, Oc-
tober 1995. ATM Forum/95-0013R8.

ATM User-Network Interface Specification. Version 4.0, 1996.
ATM Forum document.

Private Network-Network Interface Specification Version 1.0,
March 1996. ATM Forum document - af-pnni-0055.000.

Bob Braden. Active Reservation Protocol (ARP), December
1998. Abstract at URL http://www.isi.edu/div7/ARP/.

R. Braden, D. Clark, and S. Shenker. Integrated services in the
internet architecture: an overview, June 1994. Internet RFC
1633.

R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin.
Resource Reservation Protocol (RSVP) — Version 1 Functional
Specification, September 1997. IETF RFC 2205.

Prashant Chandra, Allan Fisher, Corey Kosak, T.S. Eugene Ng,
Peter Steenkiste, Eduardo Takahashi, and Hui Zhang. Darwin:
Resource Management for Value-Added Customizable Network
Services. In Proceedings of the Sizth International Conference
on Network Protocols, Austin, October 1998. IEEE.

Prashant Chandra, Allan Fisher, Corey Kosak, and Peter
Steenkiste. Network Support for Application-Oriented Quality of
Service. In Proceedings Sizth IEEE/IFIP International Work-
shop on Quality of Service, pages 187-195, Napa, May 1998.
IEEE.

Prashant Chandra, Allan Fisher, and Peter Steenkiste. Beagle:
A resource allocation protocol for an application-aware internet.
Technical Report CMU-CS-98-150, Carnegie Mellon University,
August 1998,

D. Clark, S. Shenker, and L. Zhang. Supporting real-time appli-
cations in an integrated services packet network: Architecture

(1]

(2]
(3]

(8]

(0

f10]

(11]

[12]

[13)

[14]

(16]

{17

(18]

(19]

[20]

(21]

(22]

[23]

(24]

[28]

(29]
[30]

and mechanism. In Proceedings of ACM SIGCOMM’92, pages
14-26, Baltimore, Maryland, August 1992.

D. Clark and J. Wroclawski. An approach to service allocation
in the internet, July 1997. Internet draft, draft-clark-diff-sve-
alloc-00.txt, work in progress.

S. da Silva, D. Florissi, and Y. Yemini. Composing active services
in NetScript. In DARPA Active Networks Workshop, March
1998.

F. Dupuy, C. Nilsson, and Y. Inoue. The tina consor-
tium: Toward networking telecommunications informatior. ser-
vices. IEEE Communications Magazine, 33(11):78-83, Novem-
ber 1995.

D. Ferrari and D. Verma. A scheme for real-time channel es-
tablishment in wide-area networks. IEEE Journal on Sel:=cted
Areas in Communications, 8(3):368-379, April 1990.

Sally Floyd and Van Jacobson. Random early detection gate-
ways for congestion avoidance. IEEE/ACM Transactions on
Networking, 1(4):397-413, August 1993.

Sally Floyd and Van Jacobson. Link-sharing and resource man-
agement models for packet networks. JEEE/ACM Transactions
on Networking, 3(4):365-386, August 1995.

R. Guerin, D. Williams, T. Przygienda, S. Kamat, and A. Orda.
QoS Routing Mechanisms and OSPF Extensions. IETF Internet
Draft jdraft-guerin-qos-routing-ospf-03.txt;, March 1998. Work
in progress.

A. Lazar, Koon-Seng Lim, and F. Marconcini. Realizing a foun-
dation for programmability of atm networks with the binding
architecture. J[EEE Journal on Selected Areas in Communica-
tion, 14(7):1214-1227, September 1996.

Dong Lin and Robert Morris. Dynamics of Random Early De-
tection. In Proceedings of the SIGCOMM 97 Symposium on
Communications Architectures and Protocols, pages 127-137,
Cannes, August 1997. ACM.

Qingming Ma and Peter Steenkiste. On path selection for traffic
with bandwidth guarantees. In Fifth IEEE International Con-
ference on Network Protocols, pages 191-202, Atlanta, October
1997. IEEE.

Qingming Ma and Peter Steenkiste. Quality of service routing
for traffic with performance guarantees. In IFIP International
Workshop on Quality of Service, pages 115126, New York, May
1997. IFIP.

Klara Nahrstedt and Jonathan M. Smith. The QoS Broker.
IEEE Multimedia, 2(1):53-67, Spring 1995.

George Necula and Peter Lee. Safe Kernel Extensions Without
Run-Time Checking. In Proceedings 2nd Symposium on Op-
erating Systems Design and Implementation (OSDI’96), pages
229-243. Usenix, October 1996.

K. Nichols, L. Zhang, and V. Jacobson. A Two-bit Differentiated
Services Architecture for the Internet, November 1997. Internet
draft, draft-nichols-diff-svc-arch-00.txt, Work in progress.

S. Shenker, C. Partridge, and R. Guerin. Specification of guar-
anteed quality of service, September 1997. IETF RFC 2212.
Ion Stoica, Hui Zhang, and T. S. Eugene Ng. A Hierarchical
Fair Service Curve Algorithm for Link-Sharing, Real-Time and
Priority Service. In Proceedings of the SIGCOMM ’97 Sym-
posium on Communications Architectures and Protocols, pages
249-262, Cannes, September 1997. ACM.

David Tennenhouse and David Wetherall. Towards and ac-
tive network architecture. Computer Communication Review,
26{2):5~-18, April 1996.

Tina consortium. http://www.tinac.com.

J. S. Turner. New directions in communications (or which way
to the information age?). IEEE Communications Magazine,
24(10):8-15, October 1986.

Z. Wang and J. Crowcroft. Quality-of-Service Routing for Sup-
porting Multimedia Applications. IEEE JSAC, 14(7):1288-1234,
September 1996.

D. J. Wetherall, J. V. Guttag, and D. L. Tennenhouse. ANTS:
A toolkit for building and dynamically deploying network pro-
tocols. In JEEE OPENARCH 98, April 1998.

Tim Wilkinson. KAFFE - A virtual machine to run Java code.
http://www.kaffe.org/.

J. Wroclawski. Specification of the Controlled-Load Network
Element Service, September 1997. IETF RFC 2211.

Project X-Bind. http://comet.ctr.columbia.edu/xbind.

L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala.
RSVP: A New Resource Reservation Protocol. TEEE Commu-
nications Magazine, 31(9):8-18, September 1993.

44

