
An Access Control Architecture for
Programmable Routers

Jun Gao1 Peter Steenkiste1,2

1School of Computer Science
2Department of Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, PA 15213, USA
{jungao, prs}@cs.cmu.edu

Abstract— Programmable networks allow the router’s
functionality to be extended dynamically through the use of
active extensions. This flexible architecture facilitates the
deployment of new network protocols and services. How-
ever, the programmable nature of a network also raises se-
rious safety and security concerns. These concerns must be
addressed before programmable networks can be deployed.
One particular security question is how we can limit what re-
sources and data active extensions can access on the router.
While existing operating systems address this question for
end-points and servers, routers have been designed to per-
form a different task, namely forwarding packets, and the
existing OS solutions turn out to be inadequate for routers.
In this paper we look at how we can restrict active exten-
sions’ access to link bandwidth and data traffic. Our solu-
tion is based on access control lists that are used to check
all active extensions’ operations that may affect the use of
link bandwidth, or may involve access to user traffic. We
implemented these mechanisms in Darwin, an example of a
programmable network.

Keywords— Programmable networks, Active extensions,
Security, Access control

I. Introduction

Traditional network devices, such as routers in the In-
ternet are closed systems that implement a fixed set of
functions. Software that runs on a router is typically sup-
plied by the router vendor and the customer’s control over
routers is limited to managing built-in functions. This type
of router design slows down the deployment of new services
since all changes or extensions to the router functionality
have to be implemented by the vendors. An open router
architecture that can execute software from a wide range
of sources potentially allows much more rapid innovation.
For example, third-party software vendors can implement
diverse network Quality of Service (QoS) packages for ser-
vice providers with different requirements. Similarly, pro-
grammable routers allow the deployment of VPN service
that supports customized per-VPN QoS and network man-
agement [15]. We will call software modules that extend
router functionality “extensions”.
While a programmable router architecture increases flex-

ibility, it also raises safety and security concerns. Safety
centers around the question of how we can safely execute

This research was sponsored in part by the Defense Advanced Re-
search Project Agency and monitored by AFRL/IFGA, Rome NY
13441-4505, under contract F30602-99-1-0518.

extensions that may be faulty, e.g., they could cause the
router or router components to fail. These problems are
addressed by isolating the extension code from the rest of
system, either using runtime mechanisms (e.g., Java sand-
boxing, virtual memory) or compile time mechanisms (e.g.,
Proof carrying code [17]). In this paper we focus on security
issues, i.e., we want to prevent router extensions from dis-
rupting the network service received by other users, for ex-
ample by using their resources or by reading or writing their
data. This problem is similar to the problem addressed by
a traditional operating system, except that routers have
a very different task. Their primary responsibility is for-
warding and processing packets, not general-purpose data
processing, storage management, or user interface support.
This means that router operating systems face a different
set of security concerns.

In order to perform their tasks (e.g., implementing QoS,
selecting routes, or encrypting data), router extensions
must be able to control critical router resources such as
link bandwidth and access critical data structures such as
the routing table. Extensions must also be able to ma-
nipulate data traffic, e.g., dropping packets or modifying
packet contents. It is easy to see that without proper se-
curity mechanisms, extensions can use these operations to
harm other users. For example, malicious or faulty exten-
sions can “steal” bandwidth by making invalid reservations,
can corrupt the routing table, or can manipulate data traf-
fic that belongs to other users. In this paper, we present
a set of security mechanisms for programmable networks
that can prevent router extensions from affecting the per-
formance or traffic of other users. We focus on dealing
with threats that are router specific, e.g., unauthorized use
of link bandwidth or access to traffic. We will not deal
with more general challenges such as protecting memory
or CPU cycles, since these problems can be addressed us-
ing traditional operating system techniques.

The rest of the paper is organized as follows. In Sec-
tion II, we motivate the security problems by examining
the requirements of a programmable network and the ba-
sic operations within such a network. In Section III, we
present the design of our security system. We elaborate
on the access control mechanism on routers in Section IV
and we discuss the policy-based active extensions security

0-7803-7064-3/01/$10.00 (C) 2001 IEEE IEEE OPENARCH 2001

control in Section V. We describe our implementation in
Section VI. We present related work in Section VII and we
conclude in Section VIII.

II. Motivation

The functions of a typical router can be divided into two
planes, a control plane and a data plane. The data plane is
responsible for packet forwarding, while the control plane
supports protocols for routing, signaling, network manage-
ment, etc. In a programmable router it may be possible
to extend the functionality of the control plane, the data
plane, or both. It is easiest to add extensions to the con-
trol plane since control plane operations are less perfor-
mance critical. Control plane extensions can then modify
or monitor the packet processing in the data plane indi-
rectly through an interface that separates the two planes.
In contrast, router functionality can be extended more di-
rectly using data plane extensions. We distinguish two
types of data plane extensions. The first type of extensions
manipulates the data portion of the packets, e.g., video
transcoding, compression and encryption; these operations
typically require significant computing capabilities in the
data plane. The second type can change how packets are
forwarded or what kind of quality of service packets may
receive. These operations do not require payload process-
ing, so they are less expensive. While router functionality
can be extended on the fly using active packets or cap-
sules [22], we assume in this paper that active extensions
are explicitly installed using a signaling protocol.
An example of the above programmable router architec-

ture is the CMU Darwin system [5]. Control plane exten-
sions in Darwin are called delegates and they are installed
using the Beagle signaling protocol [6], [7]. Figure 1 depicts
the basic Darwin router architecture. Delegates execute
in the control plane and they can affect the forwarding
behavior of the router for specific flows by making calls
to the Router Control Interface (RCI) [21], [10]. Using
the RCI, delegate can control data plane components such
as packet classifiers, schedulers, monitoring modules, and
route lookup. Besides these standard components, the Dar-
win data plane also has packet processing modules (PPM).
PPMs can perform a wide range of operations on data
flows, e.g., selective packet dropping, flow redirection, tun-
neling, or payload data processing. PPMs are pre-installed
and delegates can specify what processing should be ap-
plied to specific flows. In a more flexible implementation,
additional modules could also be installed on the fly, i.e.,
the packet processing modules can be thought of as simple,
pre-installed data plane extensions 1.
The RCI consists of a set of methods that supports a

rich set of operations on flows, where a flow is defined as a
sequence of packets that belong together, as defined by a
flow spec [24], [5]. RCI methods fall in three categories [11],
[10]. The first category of methods enables delegates to
manipulate flows by updating the input or output classifier
data structures. For example, a delegate can identify a new

1Darwin is implemented in FreeBSD and NetBSD-based routers
that do not easily support on-the-fly data plane extensibility.

Routing

LookUp
ClassifierRoute

Output
Classifier
Input

Scheduler

Local Resource Manager

RCI

DelegatesSignalling

Other Signalling Entities

Other
Routing
Entities

Delegates
Other

Control Plane

Data Plane

PPM

Fig. 1. Darwin node architecture.

flow by providing a flow spec that characterizes the packets
in the flow. The delegate can then apply further processing
to this flow.
The second category of methods deals with the quality

of service flows receive, i.e., it controls packet scheduling.
Darwin uses a hierarchical scheduler [20], which means that
the bandwidth distribution across flows is controlled us-
ing a resource tree. The RCI methods allow delegates to
modify the resource trees for the output links (e.g., make,
modify, or terminate bandwidth reservations) and to as-
sociate flows with nodes in the tree to provide bandwidth
guarantees to a class of traffic.
The third category of RCI methods deals with more gen-

eral packet processing or monitoring operations, i.e., del-
egates can specify what processing should be applied to
specific flows by selecting a PPM and specifying appropri-
ate parameters the PPM may require.
The primitive methods of the RCI provide the building

blocks for delegates to build fairly sophisticated services.
For example, delegates can implement specialized routing
protocols or a customized network monitoring infrastruc-
ture. However, given their ability to access critical router
resources and affect data flows, delegates can pose seri-
ous threats to the programmable network and other users.
The threats range from risks local to one router to risks
that can span the whole network. For example, without
proper access control, a delegate can steal bandwidth for
its flows by either increasing its bandwidth reservation pa-
rameters, or by associating its flows with resource nodes
of other users. Alternatively, a malicious delegate can
reroute random flows to disrupt other users’ traffic, or is-
sue a Denial-of-Service (DoS) attack by tunneling flows to
a victim server or network segment.
Besides managing link bandwidth and controlling traf-

fic, delegates can also communicate with applications or
other delegates using standard, socket-based communica-
tion mechanisms. Communication further complicates the
way we want to control delegates’ access to bandwidth and
traffic. For instance, using inter-delegate communication,
a delegate may delegate certain traffic or bandwidth re-
lated tasks to other delegates. A specific example could be
a delegate that is in charge of flows belonging to a video
streaming application, and that may want to ask a special-

0-7803-7064-3/01/$10.00 (C) 2001 IEEE IEEE OPENARCH 2001

ized monitoring delegate to monitor specific subflows.
Even more intriguing scenarios unfold when we allow

delegates to create other delegates. A motivating exam-
ple is a network infrastructure that supports a number of
VPNs, where each VPN may want to deploy its own sig-
naling protocol that is different from the “standard” sig-
naling protocol used by the network. As mentioned above,
in Darwin-like programmable networks, we rely on the sig-
naling protocol to install extensions (i.e., delegates), which
means that if we want to dynamically install new signal-
ing protocols as delegates, these signaling delegates must
be able to install other delegates. These advanced opera-
tions make it even harder to keep track of what operations
delegates are allowed to perform.

III. Delegate Security Design

The security concerns for programmable routers raised
in the previous section center around the question of what
router resources a delegate should be able to access. There
are two types of resources that are unique to routers and
are not explicitly dealt with by traditional operating sys-
tems: (1) resources on the router, e.g., link bandwidth, and
routing tables; and (2) data traffic that is passing through
the router. To protect these resources from being mis-used
or mis-treated, the programmable router must be equipped
with proper access control mechanisms.

Signalling Delegates

RCI

RSM

Data Plane Resources

Control Plane

Data Plane

Other
Delegates

Policy Manager

Local Resource Manager

Other

Entities
Signalling

Access Control Manager

Fig. 2. Secure Node Architecture (some security unrelated compo-
nents are omitted).

It may seem to be conceptually straightforward to design
a security system that can limit access to these resources:
we merely need to add an extra layer of permission check-
ing whenever delegates access resources (Figure 2). That
is indeed the basic idea behind our security system design
and it is a simple and effective way of controlling delegates
that utilize primitive RCI methods. For example, consider
a monitoring delegate periodically examines the bandwidth
consumption of a particular flow. All the router needs to
do is to check whether the delegate has appropriate ac-
cess permissions for the flow. This approach is not only
simple, but also efficient, since the checking can be done
locally on the router. This is important, because one of

the fundamental reasons that delegates are set up to run
in the routers is that they can react to network conditions
much faster than the endpoints they represent, and if com-
mon operations must require extensive security checks by
a remote entity, delegates would become ineffective.
Unfortunately, not all the access control decisions can

be made locally and conveniently. Consider the scenario in
which we have a signaling delegate that makes bandwidth
reservations and creates delegates on behalf of a new user.
Clearly the router must decide whether the new user is al-
lowed to further allocate bandwidth and create other dele-
gates. This type of decision requires more extensive policy
checking, and it is not practical to have the necessary pol-
icy information stored on every router so that it can make
a decision locally. Instead, it is more appropriate to rely
on an external policy manager, that can be consulted by
all the routers in the administrative domain. This design
is similar to the policy-based admission control framework
developed for IP networks [23].

Router

Router

Router

Router

Policy
Manager

User

Fig. 3. System architecture.

Figure 3 shows the overall architecture of our security
design. The user is the entity that injects delegate code
into routers; it is also known as the Delegate Initiator (DI).
We designed a protocol for the User, Policy Manager (PM)
and Router to securely exchange security policy informa-
tion and delegate code. Routers enforce access control in
one of two ways. Simple, common operations that may
affect bandwidth use or may involve access to traffic are
checked by the Access Control Manager (ACM) based on a
set of access control lists (Figure 2). More complex opera-
tions are checked by a centralized PM. The Router Security
Manager (RSM) is responsible for executing these opera-
tions, after they are approved by the PM.
In the Darwin implementation of this architecture, the

ACM is responsible for checking all simple RCI calls, while
the RSM is responsible for the creation of delegates, which
involves setting up new access control lists. This sepa-
ration of local access checking and remote policy making
provides a good balance between the need for good dele-
gate performance and the desire for router simplicity. Most
of the delegate’s time-critical operations use the RCI and

0-7803-7064-3/01/$10.00 (C) 2001 IEEE IEEE OPENARCH 2001

they should be checked efficiently. More complex opera-
tions such as installing delegates are rare and less time
critical, so decisions can be made on a slower time scale.
In the next section, we describe in more detail how the

ACM protects bandwidth and traffic, while the interac-
tions between the DI, ACM, RSM, and PM are described
in Section V.

IV. Access Control Design

As observed earlier, delegates manipulate link bandwidth
or access data traffic by invoking primitive RCI methods.
This is similar to the scenario in a shared file system, where
users access directories and files via standardized file I/O
system calls. The analogy inspires the use of access control
lists (ACL) to protect the data plane resources. An ACL
typically consists of three parts: a principal, an object and
a permission string that defines what permission this prin-
cipal has on this object. The principals in this context are
delegates. We use different types of objects to represent the
abstract resources to be protected. For example, portions
of link bandwidth are represented by nodes in the resource
tree, while data traffic is classified into flows. A set of per-
mission bits are designed for each type of objects to define
the possible operations on these objects. When a delegate
has some permissions on an object, the corresponding bits
in the permission string will be turned on.
The key data structure in such a system is an access

control matrix, which is essentially a table, where each row
represents a principal, each column represents an object,
and each entry is the set of access rights for that principal
to that object. We use the following format to represent
each entry of the matrix:
[delegate-id, object-id, rights].
In this section, we present the design of two types of ACL

and we describe how they are used to protect the router’s
link bandwidth and user data traffic respectively.

A. Protecting Bandwidth

As we described in Section II, Darwin uses a hierarchical
packet scheduler since it allows both the support of link
sharing and finer grain bandwidth management. In par-
ticular, a hierarchical scheduler represents the division and
sharing of bandwidth on a link in the form of a hierarchi-
cal resource tree. Each node in the resource tree corre-
sponds to a portion of the bandwidth allocation and the
subtree rooted at that node specifies how that bandwidth
slice should be further partitioned. Hierarchical schedul-
ing can for example be used to distribute the bandwidth
of a link across a set of organizations, where within each
organization, bandwidth can be further distributed across
departments or applications. The hierarchical fair service
curve (HFSC) scheduler [20] used in Darwin has the attrac-
tive property that bandwidth allocation decisions made in
one subtree of the resource tree do not affect the QoS prop-
erties of traffic flows using other subtrees, i.e., there is a
good isolation between the subtrees, allowing them to be
managed independently.

Delegates perform bandwidth management by manipu-
lating the tree structure through RCI methods. For ex-
ample, a delegate can reserve bandwidth by adding a new
node to the tree via the call create node (parent node id,
QoS parameters)2. It is possible that a malicious delegate
can steal bandwidth by adding nodes to a part of the tree
that belongs to other users. It can also easily read, change
or even remove reservations made by others through other
manipulations of the resource tree. Thus, to protect link
bandwidth from being abused, a router must protect the
resource tree data structure.
Given the properties of hierarchical resource manage-

ment, it is natural to base the access control for bandwidth
on the resource tree. Specifically, we associate delegates
with one or more nodes in the resource tree (see Figure 4).
The implication is that a delegate is only allowed to make
bandwidth management decisions for the bandwidth allo-
cated to that node, i.e., it only controls the properties of
that node and its children.

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

Link

Org1

App1

Flow1

Org2

Delegates

Fig. 4. The association of delegates and resource nodes.

Each node in the resource tree is identified by a unique
node-id and represents a portion of the bandwidth. By
examining the RCI methods related to resource nodes, we
construct the following set of access rights to control dele-
gate operations on nodes.
• create (c)
The (c) permission on a node allows a delegate to create
new nodes rooted at this node. This means that the del-
egate can sub-divide the bandwidth that this node repre-
sents.
• modify (m)
The (m) permission on a node allows a delegate to modify
the bandwidth distribution across its children.
• delete (d)
The (d) permission on a node allows a delegate to delete
child nodes.
• retrieve (r)
The (r) permission on a node allows a delegate to retrieve
the subtree structure rooted at this node.

2For a complete list of RCI methods, refer to [11].

0-7803-7064-3/01/$10.00 (C) 2001 IEEE IEEE OPENARCH 2001

• monitor (n)
The (n) permission on a node allows a delegate to monitor
bandwidth usage of the node.
• use (u)
The (u) permission on a node allows delegate to use the
resource represented by this node to serve traffic flows for
QoS purposes. How specific flows can be served is described
later in the paper.
When a delegate is assigned (c) right on a node, (m),

(d) and (r) rights must also be assigned to it so that the
delegate can modify the bandwidth allocation to children
nodes. There are cases that a delegate may only own (m)
or (d) rights but not (c) rights on a node. For example, a
delegate may be allowed to redistribute bandwidth among
a node’s children, but it cannot add new children nodes
to the node. By maintaining these rights separately, the
access control mechanism is more flexible.

TABLE I
Example Access Control List for control of link bandwidth

delegate-id node-id access rights
11 3 cmdrnu
11 5 ----n-
12 4 -mdrn-
13 5 ----nu

Table I shows four example ACLs. Delegate 11 has access
rights on two nodes (3 and 5). It has the full control over
resource node 3: it can create/delete child nodes, modify
the resource distribution across the child nodes, monitor
the bandwidth usage of the node, and it can also use the
bandwidth to serve flows. On the other hand, Delegate 11
can only monitor the bandwidth usage of node 5. Delegate
12 can change the bandwidth distribution among the chil-
dren of node 4 and can monitor the bandwidth usage of
node 4, but it cannot use node 4’s resource to serve other
flows. Delegate 13 can monitor the bandwidth usage of
node 5 and can use node 5’s bandwidth to serve flows.

B. Protecting Traffic

In a flow-based programmable network like Darwin, as
mentioned in Section II, traffic is classified into flows based
on the filters installed in the classifiers of the router. Two
types of services can be provided to flows: (1) QoS pro-
visioning, e.g., bandwidth guarantees can be provided to
flows by using reserved resources; and (2) special traffic
treatment such as flow redirection and data transcoding.
By using the RCI primitives, delegates in Darwin can add
filters to identify flows, can assign flows to resource nodes
to receive bandwidth guarantees, and can associate flows
with packet processing modules for customized traffic treat-
ment.
However, without proper control over which traffic can

be accessed by which delegates, a malicious or faulty del-
egate can instruct the router to process traffic belonging
to other users, or it can arbitrarily redirect traffic to dis-
rupt the network. To prevent such security violations, a

router must (1) constrain what kind of filters a delegate
can install to control what traffic it can access, and (2)
control the services that can be applied to the traffic that
a delegate is responsible for. We first introduce the con-
cept of a filter envelop and then explain the access control
mechanisms that govern the processing of traffic.

B.1 Definition of Filter Envelop

Delegates access data traffic by installing filters into clas-
sifiers. We associate with each delegate a “filter envelop”,
that defines the set of filters that can be installed by a
delegate on a router and what operations the delegate can
perform on the traffic covered by each filter.
A traffic envelop consists of one or multiple envelop-spec

entries. Each envelop-spec entry has the following format:
[traffic-spec, access-rights],

where traffic-spec specifies a class of filters that can be
defined, and access-rights lists the operating permissions
for the traffic defined by those filters. We elaborate on the
definition of the traffic-spec in this section, while the access
rights are discussed in the next section.
The traffic-spec consists of the following fields: Source IP

address, Source IP address mask, Destination IP address,
Destination IP address mask, Source port, Destination
port, Protocol ID, and Application ID (IP option). The
IP address and mask together define the range of possible
IP addresses that can be used by a filter. For example: [
128.2.205.111, 255.255.255.255] defines a specific
IP end-host address and [128.2.0.0, 255.255.0.0]
defines an IP subnet address. The source/destination port
numbers can be specified as a set of discrete numbers, e.g.,
[7000, 9000], or it can be specified as a range of num-
bers, e.g., [1 - 1024], or it can be a mix of these two
formats: [80, 8080 - 8800]. Both the protocol ID and
Application ID fields are specified as a set of numbers, and
the set may contain one or multiple numbers, e.g., [6,
17]. For any field, a value of 0 means “Don’t Care”.
When a delegate creates a new filter, the router checks

whether this delegate is allowed to install such a filter based
on the envelop that is associated with the delegate. A filter
is defined by a filter-spec, which consists of the same set of
fields as in a traffic-spec, except that the port numbers,
protocol ID and application ID can only be specified as
a single number instead of a set of numbers. A delegate
can only create a filter if the filter-spec is “within” one of
the traffic-spec entries of the delegate’s filter envelop. By
“within” we mean:
• The source/destination IP address of the filter-spec
must match the corresponding address specified in the
traffic-spec using the longest prefix matching algorithm,
e.g., [128.2.205.111 255.255.255.255] matches [128.2.0.0
255.255.0.0].
• The port numbers must be within the set of allowable
ports, e.g., port 8080 is in the set of [80, 8080].
• The same rules apply to protocol ID and application ID.
• For a field specified with 0 in the traffic-spec, any value
of the same field in the filter-spec matches.

0-7803-7064-3/01/$10.00 (C) 2001 IEEE IEEE OPENARCH 2001

B.2 Access Rights for Traffic

The second component of each envelop-spec entry in the
filter envelop is the access rights field. It specifies what
operations a delegate can perform on a traffic flow, once it
has defined a filter for that flow. We distinguish between
QoS-related operations and packet processing operations.
Once a filter has been installed, the delegate can assign

this filter to a node in the resource tree. The data flow
that corresponds to this filter will then receive a specific
QoS, e.g., the bandwidth guarantees allocated to the node.
To perform this operation, the delegate must have the (q)
permission bit set, which represents the ability to provide
Quality of Service, in the access rights field of the envelop-
spec that covers the filter. Recall also that one of the access
rights on a resource node is (u), which means that the del-
egate can use the node to serve traffic flows. This means
that before a delegate can make a reservation, two condi-
tions must hold: (1) the filter for the traffic must conform
to an envelop-spec entry for which the delegate holds the
(q) permission, and (2) the delegate has (u) permission for
the resource tree node that represents the allocated band-
width.
A delegate can also enable packet processing for a traf-

fic flow by specifying that the flow should be processed by
a specific pre-installed packet processing module (PPM),
as described in Section II. This is done by instantiating
a specific PPM instance and assigning a filter to that in-
stance. By doing so, the flow corresponding to that fil-
ter will be processed according to the specification of the
PPM instance. For example, a delegate can create a PPM
instance that will tunnel packets to a specific IP address.
This is done by creating an instance of the tunneling PPM
and specifying the exit point of the tunnel as a parameter.
The range of packet processing operations that can be

performed is very large. Given this diversity, it is at this
point unclear what would be the best access rights abstrac-
tion to control the broad range of operations in a meaning-
ful way. As a first cut we categorize the possible packet
processing actions into the following groups:
1. Actions that have only local effects and do not change
the content of the packets being forwarded, e.g., selective
packet dropping, and DiffServ related modules. We use (l)
to represent this type of processing.
2. Actions that alter the packets, but do not affect the
normal forwarding of packets. This set of actions are often
relatively heavy weight, e.g., encryption, compression, or
special data transcoding. We use (a) to represent this type
of processing.
3. Actions that have network-wide effect, in that they can
change the normal packet forwarding. These actions in-
clude various redirecting methods, for instance, redirection
can be done by specifying a different output interface, or
by using IP-in-IP tunneling. We use (r) to represent this
type of processing.
Clearly, for some of these actions, it may not be suffi-

cient to limit only the action, but it may also be necessary
to limit the scope of the action. For example, for the tun-
neling action, we must be able to restrict where packets

are tunneled. This is done by including a parameter range
in the ACL as an additional parameter, and by checking
the parameters whenever a delegate creates a new packet
processing instance. Clearly, the type of the parameters,
and the precise nature of the checking will depend on the
processing module. This solution is not completely general,
but it is sufficient for the Darwin system, which supports
only pre-installed, trusted data plane extensions.

TABLE II
Example Access Control List for traffic protection

delegate-id traffic- access parameters
spec-id rights

11 1 l--
11 2 -a-
11 3 l-r if:fxp0
11 4 --r dest:128.2.205.111

Table II shows some example access control lists used to
control delegate 11. It can take “local” actions on flows
conforming to the traffic-spec 1; it can take “alter” actions
on flows conforming to the traffic-spec 2; it can take “local”
and “route” actions on flows conforming to the traffic-spec
3; and the outgoing link must be interface fxp0; it can take
“route” actions on flows conforming to the traffic-spec 4,
and the destination must be 128.2.205.111.

S
R1

R2

R3
D

Link 1

Link 2

Fig. 5. Example application network topology.

���
���
���
���

���
���
���
���

��
��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

1

2 3

D1

D2 D3

Delegates

Nodes
Resource

Audio Video

Fig. 6. Resource subtree on Link 1 and the association with delegates.

C. ACL Usage Example

We illustrate the usage of access control list with a sim-
plified video-conferencing example(Figure 5). The sender

0-7803-7064-3/01/$10.00 (C) 2001 IEEE IEEE OPENARCH 2001

S of the application streams audio and video data through
a simple network that consists of three routers, R1, R2 and
R3, to the receiver D. The normal route from S to D goes
through R1 and R3 only. Link 1 is the bottleneck link that
often gets congested. A certain amount of bandwidth on
Link 1 is allocated to this application represented by Node
1 in Figure 6. A delegate D1 is sent to router R1 to perform
dynamic resource adaptation.
D1 has full control of the bandwidth allocated to this

application, i.e., it has cmdrnu rights on Node 1. The
filter envelop assigned to D1 limits the traffic that it can
control. These traffic flows must have source address S,
destination D and their port numbers must be one of the
port numbers used by the audio or the video data. D1
can then subdivide the bandwidth by creating two nodes,
Node 2 and Node 3, for the audio data and video data
respectively. D1 allows delegate D2 to take charge of the
audio traffic and delegate D3 to be responsible for the video
traffic. D2 is assigned with ----nu rights on Node 2 and
--r right on the audio flow (defined by the audio ports).
D3 is assigned with cmdrnu rights on Node 3 and la- rights
on video flows (defined by the video ports).
When delegates and the access control lists are set up,

the sender can start sending data. When congestion oc-
curs on Link 1, D2 and D3 take proper measures to provide
gracefully degraded quality. For example, D2 can reroute
the audio traffic to Link 2, since it has “r” (route) right
on the audio flow. As a result, the receiver can still receive
sender’s voice while the video quality may be bad. With
“c” (create) right on Node 3, D3 can divide the bandwidth
devoted to the video stream among the different types of
video frames, e.g., B, P, I frames in MPEG. Since D3 has
“la” (local, alter) rights on video traffic, it can selectively
drop certain sub-flows or even perform other operations
such as transcoding or compression to provide the best
video quality possible. Other delegates in the system can-
not use the bandwidth allocated to the video-conferencing
application or manage its traffic since they do not have the
necessary access permissions.

V. External Policy Checking

In the previous section we described an access control
mechanism that can be used to protect link bandwidth and
data traffic on programmable routers. Using a set of access
control lists, the router can restrict the access of each dele-
gate in an efficient way by checking the parameters of each
RCI call. As described in Section III, for more complex
operations, specifically the creation of new delegates or the
transferring of access rights between delegates, we rely on
an external policy manager. These operations are more
complex because they require the creation of new access
control lists, or changes to existing access control lists. In
this section, we discuss how we can verify the correctness
of these operations, focusing on delegate creation. Other
operations such as the transfer of access rights can be han-
dled similarly. We first look at the case where an external
delegate initiator wants to create a delegate and we then
look at the case of local delegate creation on the router.

A. Policy Manager

We assume there is one Policy Manager (PM) operated
by a trusted authority within a domain. It has full control
and knowledge of the routers and links of this domain. A
network manager will typically be responsible for defining
the policy for delegates in the network using a policy defini-
tion language. Users within the domain must register with
the PM before trying to install delegates on the routers of
this domain.
The primary task of the PM is policy enforcement, i.e.,

assigning access permissions to delegates based on the pol-
icy specified by the network manager. Besides acting as a
policy server, the PM also serves as the authentication cen-
ter and session key distribution center in the security pro-
tocol we present below. The protocol allows policies and
delegate code segment to be transferred to routers securely
by guaranteeing message integrity and confidentiality, and
it also allows the PM and routers to authenticate users.

B. Access Policy Description

The PM decides on an access policy for a user based on
the identity of the user and the operations the delegate
would like to perform on the selected router. An access
policy must specify the following information:
1. The amount of resources, e.g., bandwidth, that can be
allocated to the delegate.
2. The filter envelop that defines the traffic that can be
accessed. For example, the PM may only allow a user’s
delegate to install filters that have a source address field
equal to the user’s host address. This way, the PM limits
the delegate to only access traffic that is initiated by the
original user.
3. Access rights that regulate operations on bandwidth.
For example, the PM may only allow a delegate to monitor
the bandwidth usage of a resource node and disallow other
operations on the node.
4. Control over traffic processing. The PM may specify
what type of processing modules can be applied to certain
flows. For the processing that has network-wide effect,
the PM must specify some extra parameters to prevent
network-wide security violations. For example, the PM
specifies the acceptable encapsulation source and destina-
tion addresses for tunneling. The PM determines this in-
formation based on the concept of a “virtual mesh”, which
identifies all the network resources a user is allowed to
use [5]. The idea is that users should only be allowed to
redirect traffic within their virtual mesh, so that they can-
not affect other parts of the network.

C. Access Policy Transfer

The communications between the users, PM and routers
(Figure 3) must be secure to ensure the security of the sys-
tem. We designed a secure communication protocol based
on Kerberos [19], [18] that allows (1) users to authenticate
with routers through the use of the Policy Manager; (2)
secure transportation of delegate code and corresponding
access policy information to routers.

0-7803-7064-3/01/$10.00 (C) 2001 IEEE IEEE OPENARCH 2001

C.1 Protocol Description

We use DI, delegate initiator, to represent the user who
wants to install a delegate. Suppose there are n DIs in the
domain, and we number them DI1, ..., DIn. We assume
that DIi shares a secret key with PM,KDIi . Suppose there
are m routers in the domain and they are numbered R1,
..., Rm. We assume Rj shares a secret key with PM, KRj

.
We examine the case of DIi installing a delegate on Rj .
The protocol contains the following message exchanges in
order.
1. DI → PM :

DIi, KDIi
(Rj , NDIi , L)

where: DIi is the identifier of delegate DIi; Rj is the iden-
tifier of target router Rj ; NDIi

is a random sequence num-
ber chosen by DIi as a nounce to prevent replay; and L
is a “proposal” that contains the list of resources that the
delegate to be installed will access on router Rj .
This message serves three purposes. First, this is the

way that DIi authenticates itself to the PM. Upon receiv-
ing this message, PM uses the key corresponding to DIi to
decrypt the second half of the message. If the message is
successfully decrypted, the PM is then sure about the au-
thenticity of the message and the freshness can be verified
with the nounce. Second, DIi uses this message to request
a session key to communicate with Rj ; Third, DIi requests
an access policy, i.e., the set of access permissions for the
delegate it is installing.
After receiving the above message, the PM executes the

following steps: (1) the PM creates a globally unique id
for the delegate to be installed DIijk, which means the kth
delegate DIi creates on Rj ; (2) the PM generates a session
key Kij for communication between DIi and Rj ; (3) the
PM produces an access policy, P , for this delegate based
on the identify of DIi and the proposal L. It then sends
the following reply message.
2. PM → DI:

KDIi
(Kij , Rj , DIijk, P, NDIi

+ 1),
KRj (Kij , DIi, DIijk, P, NDIi

+ 1)
This reply message has two parts. Part 1 is encrypted with
DIi’s secret key. DIi decrypts it to retrieve the session key,
the id for the delegate, the access policy and a nounce. Part
2 is encrypted with Rj ’s secret key; it contains the session
key, delegate id and the policy. DIijk and P together are
called a credential.
3. DI → R:

Kij(del − code, DIi, DIijk, P, NDIi + 1),
KRj

(Kij , DIi, DIijk, P, NDIi + 1)
This message also has two parts. The first part is the DI’s
id, the delegate code, the credential and the nounce en-
crypted with the session key. For performance concern,
the code part can be replaced with a message digest and
the code itself can be sent in clear message if no secrecy of
the code is required. An alternative to including the code
with the request is to replace it with a reference to a secure
code server. The second part is the same as the second part
in the previous message.
When Rj receives the message, it decrypts the second

part of the message to reveal the shared key Kij and the

credential for this delegate. At this stage, Rj believes that
this part of the message is from PM because PM is the only
other entity that knows KRj

. Rj uses key Kij to decrypt
the first part of the message. If successful, Rj now knows
that this message is from DIi, since it is the only party,
other than the PM, that knows Kij .
The DI identifiers and the sequence numbers in these

two message parts must match to prevent tampering and
replay attack.
4. R → DI:

Kij(confirm − msg, DIi, DIijk, NDIi
+ 2)

Rj sends this message to DIi to report the outcome of the
delegate installation: success or failure.

C.2 Router Security Manager

The Router Security Manager (RSM) is the entity on the
router that is the endpoint for the above protocol. Once
the RSM has verified that the delegate creation request
is valid, it will ask the delegate runtime environment to
create the delegate, it will set up the ACLs as specified in
the request, and it will pass the necessary handles (which
can identify flows and resource nodes) to the delegate so it
can perform its tasks. Any RCI call made by the delegate
can then be checked by the ACM based on the ACLs.

C.3 Protocol Discussion

From authentication and session key establishment point
of view, the above protocol is essentially the same as Ker-
beros V4: DI is equivalent to the client in Kerberos, Router
corresponds to the server, and the PM acts as the Ticket-
Granting Server(TGS). We do not have a separate Authen-
tication Server since we assume the shared key between ev-
ery DI and PM, and the key between every router and the
PM are established using an external mechanism. Analysis
of Kerberos’s correctness and effectiveness properties can
be directly applied to our protocol. This protocol can be
extended to support delegate installation in multiple do-
mains.
There are two ways to transport the access policies as-

signed to delegates to a router. Typically, users retrieve
policies from the PM, bundle them together with the del-
egate code segment or a reference to a secure code server,
and transfer the whole package to the router using the
above protocol. The advantage of this approach is that
it may be possible to optimize the policy checking on the
PM by combining the requests for multiple routers. Al-
ternatively, the router and the PM may interact directly.
This will for example be necessary to check the correctness
of a complex delegate action on the router, or if the PM
wants to revoke the access rights of a specific user. For
interactions between routers and the PM, a protocol such
as COPS [3] could be used.

D. Local Delegate Creation

In the first part of this section we discussed how an ex-
ternal delegate initiator can create a delegate. We now
briefly look at the case where a delegate on the router wants

0-7803-7064-3/01/$10.00 (C) 2001 IEEE IEEE OPENARCH 2001

to spawn a “child” delegate. There are two cases to con-
sider: (1) the child delegate will only access the resources
for which the parent delegate has permissions, for example,
a child delegate is created to monitor sub-flows; and (2) the
child delegate may need access to resources that the parent
delegate does not have access permissions for, for example
a signaling delegate creates a new delegate for a new user.
For case (1), the parent delegate can simply submit the

child delegate code, the description of the desired resources
to be accessed by the child delegate, along with its delegate
ID to the RSM. The RSM can make a local decision to
install the child delegate if and only if the child delegate’s
access profile is within the parent’s profile. The RSM then
generates a new unique delegate ID and updates the policy
database by adding appropriate access control entries for
the new delegate.
For case (2), since the child delegate needs to access re-

sources that the parent delegate does not currently have
permissions for, the RSM cannot make a local decision of
whether or not to accept the child delegate. Instead, the
RSM forwards the request to the remote PM. The RSM
will install the delegate only when it receives the PM’s ap-
proval. An alternative approach for this kind of delegate
creation is to let the parent delegate contacts the PM itself
for clearance of the request. In the takes, the role of the
parent delegate is similar to that of an external delegate
initiator.

VI. System Implementation

We implemented the described security mechanism in the
Darwin system [13]. The Darwin kernel implementation is
based on FreeBSD 3.4-R patched with the ALTQ frame-
work release 2.1 [8] for the output port packet classifica-
tion and scheduling. Darwin also supports several packet
processing modules, including tunneling, rerouting, VPN
encapsulation and encryption. DiffServ related modules
are under development in the research group.
The RSM is implemented in Java, and it currently sup-

ports the creation of delegates written in Java. The RSM
handles all external requests for bandwidth reservations
and delegate creation. If an incoming request contains a
request for bandwidth, RSM calls the local resource man-
ager (LRM) to reserve the necessary bandwidth for the
delegate (i.e., adding a node to the resource tree). If re-
quest includes a request for the creation of a delegate, the
RSM forwards the request to the delegate runtime environ-
ment. It then writes the access rights specified by the policy
manager into a policy file. The RSM keeps one file for each
interface that the delegate operates on. The file name con-
tains both the delegate’s ID and the interface name, e.g.,
del-policy.11021.fxp0, where 11021 is the delegate ID
and fxp0 is the interface that this delegate operates on.
This scheme allows the ACM to locate the access control
list from the right file quickly.
The policy description is in ASCII text format and con-

tains the following sections: filter envelop, which defines
the possible flows can be accessed and the permissions; and
the resource ACL, which lists the access permissions the

delegate has on resource nodes.
The RCI is implemented as a Java library that delegates

can call. This library simply forwards the RCI call to the
LRM (Figure 2), which is implemented as a user-level pro-
cess, called the admission control daemon (ACD). The RCI
library includes the delegate identifier in the request that it
forwards to the ACD. The Access Control Manager (ACM)
is implemented as part of the ACD, and it intercepts each
RCI call made by delegates. The ACM uses the delegate
identifier and the interface the delegate operating on to find
the proper policy file for access checking.
The implementation of the security protocol between

users, policy manager and routers is still work in progress.
It uses Java 2’s security packages to do key generation,
exchange, and message encryption and decryption.

VII. Related work

Several research groups have studied the security is-
sues in active and programmable networks. The DARPA-
sponsored Active Net Node OS working group proposed
a secure architecture [12] for active nets. Nodes in active
nets are active (AN) and support an execution environment
(EE) that can execute active applications (AA), which can
be active packets or active extensions. The secure archi-
tecture document highlights the components required in
such a system and focuses more on traditional notion of
security such as authentication, authorization, and cryp-
tography. The Seraphim project [4] implements a flexible
security architecture for active nets that can accommodate
a wide range of security policies on an active node. The
SANE project [2] addresses the active node security prob-
lem starting from a machine level, in which it guarantees
a node starts operation in a trusted state and guarantees
the system in a trusted state by applying dynamic integrity
checks at the system runtime. SQoSH [1] is an architecture
that incorporates SANE into the Piglet operating system to
provide controlled access to allocations of system resources
in an active network element.
Compared with the above systems, which generally

present fairly broad security frameworks, the work pre-
sented in this paper is more focused. We specifically looked
at the question of how to use access control lists to effi-
ciently protect two types of resources (bandwidth and data
traffic) that play a central role in routers, but that are typ-
ically not managed explicitly by traditional (endpoint) op-
erating systems. We also focus on networks that use active
extensions, while most of the above projects consider both
extensions and capsules.
A framework for policy-based admission control [23] in

IP networks that support Integrated Services or Differenti-
ated Services is proposed in the IETF. The basic question
it addresses is when admitting a request for resource from
a signaling protocol, the decision should be made based not
only on physical capacity but also on a policy. The frame-
work relies on a remote authority, Policy Decision Point
(PDP) to make policy decisions and a local entity, Policy
Enforcement Point (PEP) to enforce the PDP’s decision:
either reject or accept the request. When compared with

0-7803-7064-3/01/$10.00 (C) 2001 IEEE IEEE OPENARCH 2001

our programmable network system, in this framework, the
role of PDP is similar to PM, and the role of PEP is similar
to RSM. However both the PM and RSM are more powerful
since we are dealing with running active extensions rather
than a simple resource reservation request. PEP and PDP
communicates directly via a protocol called COPS [9], [14].
In our scheme, RSM has the ability to communicate with
PM directly for policies, but in most cases, users who send
delegates retrieve policies from PM and send them to RSM.
This results in a more efficient system in that it reduces the
labor of the RSM.
Java 2 [16] uses a scheme based on a Public Key Infras-

tructure (PKI) to allow a machine to authenticate foreign
code. While this design suits the web environment where
Java is targeting, we choose a shared private key scheme
for the authentication between users and routers. Shared
key system is in general more efficient than PKI especially
within a trusted domain, where each user is under the man-
agement of the system administrator. The choice of shared
key authentication also eliminates the non-trivial problems
related to public key distribution. In our system, we com-
bine the functionalities of authentication, key generation
with policy generation into one entity PM.

VIII. Conclusions

One of the fundamental concerns in programmable net-
works is that its programmability makes it subject to a
wide range of security attacks. Active extensions, or dele-
gates, can be dynamically injected into routers for execu-
tion. While these extensions can extend the router’s func-
tionality on the fly, e.g., to deploy new network protocols
or services, malicious or faulty extensions can pose serious
security threats to the routers. In this paper, we presented
a set of security mechanisms that limits the access of ex-
tensions to the router’s data plane resources.
The design is based on the observation that, unlike tra-

ditional operating systems, the unique resource access con-
cerns in a programmable router center around access to
link bandwidth and data traffic. The access policy that
defines the set of access permissions to router resources, is
assigned by a trusted policy manager (PM). The policy is
then transferred and stored on the router, on which the del-
egate will be running. Whenever a delegate accesses a re-
source, the router checks the set of access permissions, and
thus prevents any possible security violation. Our security
protocol between users, routers, and the policy manager
provides a secure channel for these entities to authenticate
and communicate with each other. We implemented the
security mechanisms in the Darwin system.

References
[1] D. Scott Alexander, William A. Arbaugh, Angelos D. Keromytis,

Steve Muir, and Jonathan M. Smith. Secure Quality of Ser-
vice Handling: SQoSH. IEEE Communications Magazine,
38(4):106–112, April 2000.

[2] D. Scott Alexander, William A. Arbaugh, Angelos D. Keromytis,
and Jonathan M. Smith. A Secure Active Network Architecture:
Realization in SwitchWare. IEEE Network Special Issue on Ac-
tive and Controllable Networks, 12(3):37–45, May/June 1998.

[3] J. Boyle, R. Cohen, D. Durham, S. Herzog, R. Rajan, and A. Sas-
try. The COPS (Common Open Policy Service) Protocol. IETF
Request for Comments 2748, January 2000.

[4] R. H. Campbell, Z. Liu, M. D. Mickunas, P. Naldurg, and S. Yi.
Seraphim: Dynamic Interoperable Security Architecture for Ac-
tive Networks. In Proceedings of OPENARCH 2000, Tel Aviv,
Israel, March 2000.

[5] Prashant Chandra, Allan Fisher, Corey Kosak, T. S. Eugene Ng,
Peter Steenkiste, Eduardo Takahashi, and Hui Zhang. Darwin:
Customizable Resource Management for Value-Added Network
Services. In Sixth International Conference on Network Pro-
tocols, pages 177–188, Austin, October 1998. IEEE Computer
Society.

[6] Prashant Chandra, Allan Fisher, and Peter Steenkiste. Beagle:
A resource allocation protocol for an application-aware internet.
Technical Report CMU-CS-98-150, Carnegie Mellon University,
August 1998.

[7] Prashant Chandra, Allan Fisher, and Peter Steenkiste. A Sig-
naling Protocol for Structured Resource Allocation. In IEEE
INFOCOM’99, pages 522–533, New York, March 1999. IEEE.

[8] Kenjiro Cho. AltQ Framework.
http://www.csl.sony.co.jp/person/kjc/software.html.

[9] D. Durham and et. al. The cops protocol, January 2000. Request
for Comments 2748.

[10] Jun Gao, Peter Steenkiste, Eduardo Takahashi, and Allan
Fisher. A Programmable Router Architecture Supporting Con-
trol Plane Extensibility. IEEE Communications Magazine,
38(3):152–159, March 2000.

[11] Jun Gao, Peter Steenkiste, Eduardo Takahashi, and Allan
Fisher. A Programmable Router Architecture Supporting Con-
trol Plane Extensibility. CMU technical report, CMU-CS-00-
109, March 2000.

[12] DARPA AN Security Working Group. Security Architecture for
Active Nets. ftp://ftp.tislabs.com/pub/activenets/secarch2.ps,
July 1998.

[13] The Darwin group. Darwin code release.
http://www.cs.cmu.edu/∼darwin.

[14] S. Herzog and et. al. Cops usage for RSVP, January 2000. Re-
quest for Comments 2749.

[15] Keng Lim, Jun Gao, Eugene Ng, Prashant Chandra, Peter
Steenkiste, and Hui Zhang. Customizable Virtual Private Net-
work Service with QoS. Carnegie Mellon University, To appear
in Computer Networks.

[16] Sun Microsystems. The Source for Java(TM) Techonology.
http://www.javasoft.com/.

[17] George Necula and Peter Lee. Safe Kernel Extensions Without
Run-Time Checking. In Proceedings 2nd Symposium on Op-
erating Systems Design and Implementation (OSDI’96), pages
229–243. Usenix, October 1996.

[18] B. C. Neuman and T. Ts’o. Kerberos: An Authentication Ser-
vice for Computer Networks. IEEE Communications Magazine,
32:33–38, Sepetember 1994.

[19] J. G. Steiner, B. C. Neuman, and J. I. Schiller. Kerberos: An
Authentication Service for Open Network Systems. In Proceed-
ings of Winter USENIX Conference, pages 191–201, 1988.

[20] Ion Stoica, Hui Zhang, and T. S. Eugene Ng. A Hierarchical
Fair Service Curve Algorithm for Link-Sharing, Real-Time and
Priority Service. In Proceedings of the SIGCOMM ’97 Sym-
posium on Communications Architectures and Protocols, pages
249–262, Cannes, September 1997. ACM.

[21] Eduardo Takahashi, Peter Steenkiste, Jun Gao, and Allan
Fisher. A Programming Interface for Network Resource Man-
agement. In 1999 IEEE Open Architectures and Network Pro-
gramming (OPENARCH’99), pages 34–44, New York, March
1999. IEEE.

[22] David Tennenhouse and David Wetherall. Towards and ac-
tive network architecture. Computer Communication Review,
26(2):5–18, April 1996.

[23] R. Yavatkar, D. Pendarakis, and R. Guerin. A framework for
policy-based admission control, January 2000. Request for Com-
ments 2753.

[24] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala.
RSVP: A New Resource Reservation Protocol. IEEE Commu-
nications Magazine, 31(9):8–18, September 1993.

0-7803-7064-3/01/$10.00 (C) 2001 IEEE IEEE OPENARCH 2001

