
IEEE Network • January/February 200122

here is a flurry of activity in the networking community
developing advanced services networks. Although the
focus of these efforts varies widely from per-flow ser-
vice definitions like integrated services (IntServ) [1, 2]

to service frameworks like Xbind [3], they share the overall
goal of evolving the Internet service model from what is
essentially a basic bitway pipe to a sophisticated infrastructure
capable of supporting novel advanced services.

In this article we consider a network environment that com-
prises not only communication services, but storage and com-
putation resources as well. By packaging storage/computation
resources together with communication services, value-added
service providers will be able to support sophisticated services
such as intelligent caching, video/audio transcoding and mix-
ing, virtual private networking, virtual reality games, and data
mining. In such a service-oriented network, value-added ser-
vices can be composed in a hierarchical fashion: applications

invoke high-level service providers, which may in turn invoke
services from lower-level service providers. Providers in the
top of the hierarchy will typically integrate and add value to
lower-level services, while the lowest-level services will supply
basic communication and computational support. Since ser-
vices can be composed hierarchically, both applications and
service providers will be able to combine their own resources
with resources or services delivered by other service providers
to create a high-quality service for their clients. The design of
such a service-oriented network poses challenges in several
areas, such as resource discovery, resource management, ser-
vice composition, billing, and security. In this article we focus
on the resource management architecture and algorithms for
such a network.

Service-oriented networks have several important differences
from traditional networks that make existing network resource
management inadequate. First, while traditional communica-
tion-oriented network services are provided by switches and
links, value-added services will have to manage a broader set of
resources that includes computation, storage, and services from
other providers. Moreover, interdependencies between differ-

0890-8044/01/$10.00 © 2001 IEEE

Darwin:
Customizable Resource Management for

Value-Added Network Services
Prashant Chandra, Yang-hua Chu, Allan Fisher, Jun Gao, Corey Kosak, T. S. Eugene Ng, Peter

Steenkiste, Eduardo Takahashi, and Hui Zhang, Carnegie Mellon University

Abstract
The Internet is rapidly changing from a set of wires and switches that carry packets
into a sophisticated infrastructure that delivers a set of complex value-added services
to end users. Services can range from bit transport all the way up to distributed
value-added services like video teleconferencing, virtual private networking, data
mining, and distributed interactive simulations. Before such services can be support-
ed in a general and dynamic manner, we have to develop appropriate resource
management mechanisms. These resource management mechanisms must make it
possible to identify and allocate resources that meet service or application require-
ments, support both isolation and controlled dynamic sharing of resources across ser-
vices and applications sharing physical resources, and be customizable so services
and applications can tailor resource usage to optimize their performance. The Dar-
win project has developed a set of customizable resource management mechanisms
that support value-added services. In this article we present and motivate these mech-
anisms, describe their implementation in a prototype system, and describe the results
of a series of proof-of-concept experiments.

TT

This work was sponsored by the Defense Advanced Research Projects
Agency under contract N66001-96-C-8528.

IEEE Network • January/February 2001 23

ent types of resources can be exploited by value-added service
providers to achieve higher efficiency. For example, using com-
pression techniques, one can make trade-offs between network
bandwidth and CPU cycles. Furthermore, value-added services
are likely to have service-specific notions of quality of service
(QoS) that would be difficult to capture in any fixed framework
provided by the network. Therefore, the network must allow
service providers to make resource trade-offs based on their
own notion of QoS. Finally, the resources allocated to applica-
tions or providers will often not be reserved for their exclusive
use, but be shared dynamically with other applications and
providers for efficiency reasons. As a result, resource availabili-
ty will continuously evolve, and providers will have to be able to
make the above trade-offs not only at startup, but also on an
ongoing basis. The challenge is to accommodate service-specific
qualities of service and resource management policies for a
large number of service providers.

To support these new requirements, we argue that resource
management mechanisms should be flexible so that resource
management policies are customizable by applications and ser-
vice providers. We identify three dimensions along which this
customization is needed: space (which network resources are
needed), time (how the resources are applied over time), and
services (how the resources are shared among different ser-
vice providers and applications). Additionally, the mechanisms
along all three dimensions need to be integrated so that they
can leverage off one another.

The Darwin project has developed an integrated set of cus-
tomizable resource management tools that support value-
added electronic services. In this article we first outline and
motivate the Darwin architecture. We describe each of the
four components of the Darwin architecture in more detail,
and illustrate their operation using several proof-of-concept
experiments. We demonstrate the integrated operation of
Darwin, discuss related work, and then summarize.

Integrated Customizable Resource
Management
We discuss the requirements that complex value-added elec-
tronic services impose on the network infrastructure. We pro-
pose the virtual mesh as a core abstraction that captures these

requirements and derive the resource management support
needed to realize the virtual mesh abstraction. The next sec-
tion describes how Darwin addresses these resource manage-
ment requirements.

Service Requirements
Our focus is on complex value-added electronic services.
Complex means that the services involve multiple endpoints
and use a wide variety of data types with challenging timing
and synchronization constraints. Value-added means that the
services integrate low-level communication, computation,
and storage services, and provide high-level functionalities.
Examples include distributed simulation, interactive games,
and telepresence. For complex services, the definition of ser-
vice quality is service-specific, and hardwired QoS mecha-
nisms will not be able to adequately support such a diverse
set of services. Instead, we need a set of resource manage-
ment mechanisms that are customizable. Service providers
must be able to influence how their notion of QoS is mapped
onto low-level QoS mechanisms (e.g., IntServ or DiffServ),
and to tailor the selection and use of resources to fit their
specific needs.

We also expect electronic services to be structured in a
hierarchical fashion: value-added services are implemented in
terms of lower-level services. The motivation for this is reuse
of functionality and the need for specialization; for example,
providers will build on specialized service providers rather
than duplicating effort and expertise in those areas. Hierarchi-
cal services require support for hierarchical resource manage-
ment. While there has been some work in this area (e.g.,
research on link-sharing [4]), we need mechanisms that sup-
port a wide range of sharing policies and large dynamic hier-
archies [5, 6].

Virtual Meshes
In Darwin we use a virtual mesh, sometimes also called a vir-
tual network or supranet [7], as a core abstraction for resource
management in value-added service networks. A virtual mesh
is the set of resources allocated and managed in an integrated
fashion to meet the needs of service providers or applications.
A virtual mesh does not contain physical resources, but rather
slices of physical resources that are shared with other
providers. A key feature of virtual meshes is that providers

■ Figure 1. An example resource management hierarchy.

SCS

Seminar
video

Seminar
audio WEBDistributed

simulation

ECE FTP Telnet

Control Audio Video

Campus

60
Mb/s

10
Mb/s

30 Mb/s

40
Mb/s

100 Mb/s

CMU Guaranteed
service

Best-effort
service

Controlled
load serviceU.Pitt

55 Mb/s

155 Mb/s

Application endpoint

Bitway service
provider 1

Bitway service
provider 2

Value-added service provider 1

Value-added service provider 2
Bitway provider

Value-added provider 1 Value-added provider 2

IEEE Network • January/February 200124

can manage and control the resources in “their” virtual mesh
in a way that best fits their needs (i.e., customized manage-
ment). For example, they can specify which of their customers
may use virtual mesh resources and impose sharing policies
for those customers, similar to what they could do with physi-
cal resources. A virtual mesh should not be confused with a
virtual private network (VPN), which is a pure networking
concept. A VPN only contains link and router resources,
while meshes typically also have other resources, and people
expect VPNs to support specific protocols (e.g., for routing
and network management) that may not be present in all vir-
tual meshes.

Combining the notion of a virtual mesh with that of a ser-
vice hierarchy results in a hierarchy of virtual meshes. Focus-
ing on a specific resource (e.g., a link) reveals a resource
tree that captures how that resource is shared. Figure 1
shows the virtual meshes of two value-added service
providers and the resource tree for one of the links they
share. The root node represents the physical link resource;
the leaf nodes represent the finest granularity of virtual
resources, which can be individual flows or flow aggregates
(e.g., a best-effort traffic class). Interior nodes represent vir-
tual resources managed by entities such as service providers,
organizations, and applications. The set of edges connecting
a parent to its children specify how parent resources are
shared by the children.

Resource Management Requirements
There are several requirements for managing a hierarchy of
virtual meshes to support value-added services. These require-
ments can be organized into the following classes:
• Resource type and location: Services need to be able to allo-

cate and manage a rich set of resources (links, switch
capacity, storage capacity, compute resources, etc.) in virtu-
al meshes to meet their needs. Resources should be allocat-
ed in a coordinated way, since there are often dependencies
between resources, and there should be support for global
optimization of resource use.

• Resource sharing across services: Service providers will want
to reserve some resources so they can meet certain minimal
QoS requirements; at the same time, they will want to
dynamically share resources for efficiency. Mechanisms are
needed to isolate or dynamically share resources in a con-
trolled fashion across service providers and applications.

• Resource availability over time: Conditions in the network
and user requirements change over time. Services must be
able to quickly change how resources are used and allocat-
ed, so they can operate under a broad range of conditions.
Because of the broad diversity in services and since service

providers will want to differentiate themselves from their
competitors, there is a strong need for customization that cuts
across these three dimensions: providers will want to cus-

tomize which resources they allocate, how they share resources
with other service providers, and how they adapt their
resource use over time.

Darwin
The Darwin system comprises a set of integrated resource
management mechanisms that support value-added electronic
services. In this section we present the mechanisms and dis-
cuss how they work together.

Darwin Resource Management Mechanisms

The Darwin architecture consists of four resource manage-
ment mechanisms:
• High-level resource selection: This mechanism, sometimes

called a resource or service broker, performs global selection
of the resources based on a high-level application request,
typically using domain knowledge for optimization. Its tasks
include performing trade-offs between services (e.g., trading
computation for communication) according to the applica-
tion-selected value metric (e.g., maximizing QoS). It must
also perform coordinated allocations for interdependent
resources (e.g., since the amount of processor power required
by a software transcoder is proportional to the bandwidth of
video data flowing through it, these two allocations must be
correlated.) We must also be able to interconnect incompati-
ble services or endpoints, for example, by automatically
inserting a transcoder service between two otherwise incom-
patible videoconference participants. The Darwin system
contains an example broker called Xena.

• Runtime resource management: This mechanism injects
application- or service-specific dynamic behavior into the
network. Rather than performing runtime adaptation at
flow endpoints (where the information provided by network
feedback is potentially stale and inaccurate), it allows rapid
local runtime adaptation at the switching points in the net-
work’s interior in response to changes in network behavior.
Darwin runtime customization is based on control delegates,
Java code segments that execute on routers.

• Hierarchical scheduling: This mechanism provides isolation
and controlled sharing of individual resources among service
providers. For each physical resource, sharing and thus con-
tention exist at multiple levels: at the physical resource level
among multiple service providers, at the service provider
level among lower-level service providers, and at the applica-
tion level among individual flows. The hierarchical scheduler
allows various entities (resource owners, service providers,
applications) to independently specify different resource
sharing policies and ensure that all these policy requirements
are satisfied simultaneously. Darwin uses the Hierarchical
Fair Service Curve (H-FSC) scheduler.

•Low-level resource allocation: This
mechanism is a resource allocation
protocol that provides an interface
between Xena’s abstract view of the
network and low-level network
resources. It has to allocate real net-
work resources (bandwidth, buffers,
cycles, memory) while hiding the
details of network heterogeneity from
Xena. The Darwin resource allocation
protocol is called Beagle.
These mechanisms were chosen

because they cover the type/location, shar-
ing, and time requirements outlined
above. As shown in Table 1, hierarchical■ Table 1. Complementary nature of the Darwin mechanisms.

Xena Coarse Global, high-level Domain-specific optimizations

Delegates Medium Restricted, detailed Customized policies and actions

Hierarchical Fine Local, network-specific Network parameters
scheduler

Beagle Coordinates all other mechanisms

Mechanism Operations

Time scale Scope of information Customization
and actions

IEEE Network • January/February 2001 25

scheduling, delegates, and Xena handle resource management
on different time scales (packet forwarding times, round-trip
times, and seconds, respectively). The difference in time scale
impacts the complexity and scope of the decisions that can be
made by the mechanisms. Xena can perform sophisticated
resource optimization using global information on network sta-
tus and application requirements. On the other hand, the
scheduler can make only simple decisions using local informa-
tion. The flexibility of customization differs similarly across
the three mechanisms. The Beagle resource allocation proto-
col coordinates the activities of the mechanisms so they can
operate in an integrated fashion. Beagle is also responsible for
translating the high-level resource allocations into network-
specific requests.

The four Darwin mechanisms correspond directly to simple
operations on a virtual mesh. Xena identifies the resources
that make up a virtual mesh, while Beagle allocates the virtual
mesh resources by contacting individual resource managers.
The hierarchical scheduler enforces the boundaries between
different virtual meshes, while delegates do runtime manage-
ment for the resources inside the virtual mesh with which they
are associated.

Darwin System Architecture
Figure 2 shows how the components in the Darwin system
work together to manage network resources. Applications
(1) running on endpoints can submit requests for service (2)
to a resource broker (Xena). The resource broker identifies
the resources needed to satisfy the request, and passes this

information (3) to a signaling protocol, Beagle (4), which
allocates the resources. For each resource, Beagle interacts
with a local resource manager to acquire and set up the
resource. The local resource manager modifies local state,
such as that of the packet classifier and scheduler shown in
the figure, so that the new application will receive the appro-
priate level of service. The signaling protocol can also set up
delegates. Throughout this process, appropriate resource
authorizations must be made. Resource brokers have to
know which resource pools they are allowed to use, and the
signaling protocol and local resource managers must be able
to validate the resource allocation request and set up appro-
priate billing or charging.

Figure 2 also shows a more detailed view of the router
architecture. The bottom layer of the architecture corresponds
to the data plane. The focus in this component is on simplicity
and high throughput. The top layer corresponds to the control
plane. Activities in the control plane happen on a coarser
time scale; although there is only a limited set of resources
available to support control activities, there is more room in
the control plane for customization and intelligent decision
making. The local resource manager will in general execute
on a CPU close to the data path. Routing, signaling, and dele-
gates, on the other hand, are not as tightly coupled to the
data path, and could run on a separate processor.

The Darwin architecture is similar in many ways to tradi-
tional resource management structures. For example, the
resource management mechanisms for the Internet that have
been defined in the Internet Engineering Task Force (IETF)

■ Figure 2. Darwin node software architecture.

Other
routing entities

1
2

3

4

4

Service
providers

Comm

Library
Beagle

Hierarchical
LocalRM

Classifier
scheduler

Del

Classifier
scheduler

Del

Beagle

Hierarchical
LocalRM

Classifier
scheduler

Del

Appl

Comm

Library

Appl

Comm

Library

Appl

Comm

Library

Appl

Comm

Library

Appl

Xena

Hierarchical
LocalRM

Routing

Classifier SchedulerRoute
lookup

Applications
other delegates

Delegates

Xena Beagle

Beagle

Router control interface

Local resource manager
Beagle

IEEE Network • January/February 200126

in the last few years rely on QoS routing (resource brokers),
Resource Reservation Protocol (RSVP) [8] (signaling similar
to Beagle), and local resource managers that set up packet
classifiers and schedulers. The more recent proposals for Diff-
Serv [9] require similar entities. The specific responsibilities of
the entities differ, of course, in these proposals. In Darwin we
emphasize the need for customization of resource manage-
ment, hierarchical resource management (link sharing), and
support for resources including not only communication, but
also computation and storage.

The Darwin system has been implemented for PC-based
routers running the NetBSD and FreeBSD operating systems.
The code for the Darwin scheduler, the delegate runtime
environment, and the Beagle resource allocation protocol has
been released for use by the research community and is avail-
able from our Web site http://www.cs.cmu.edu/~darwin.

Darwin Usage
The Darwin resource management mechanisms can be used in
a variety of ways, but uses can roughly be classified into two
classes. The first class consists of applications that have been
modified to explicitly use some or all of the Darwin mecha-
nisms. For example, a videoconferencing application could
explicitly call a resource broker to select the set of resources
(e.g., transcoders, network bandwidth) that will optimize the
quality of the video conferencing session, and use Beagle to
allocate those resources and install delegates as needed. We
present an example of such an application later. Alternatively,
the Darwin mechanisms can be used by network services that
support end users indirectly; that is, end users and applica-
tions running on endpoints benefit from the Darwin mecha-
nisms without using Darwin directly. For example, Darwin can
be used to support rich VPN services [10] that allow network
managers to provide QoS guarantees for certain classes of
traffic without requiring modifications to the applications.

The Darwin mechanisms were designed to work together
effectively, and throughout this article we will assume that the
Darwin mechanisms are used in an integrated fashion. How-
ever, each mechanism can also be used in isolation. For exam-
ple, Beagle can be used to allocate network resources without
necessarily using Xena to select the resources, or for networks
that use schedulers other than the H-FSC scheduler. Similarly,
the H-FSC scheduler can be used to support bandwidth reser-
vations without needing the other Darwin mechanisms.

The next four sections describe Xena, delegates, hierarchi-
cal scheduling, and Beagle in more detail.

Xena: Selection of Resource Type and
Location
The process of allocating resources, by either an application or
a provider, has three components. The first is resource discov-
ery: locating available resources that can potentially be used to
meet application requirements. The second is solving an opti-
mization problem: identifying the resources needed to meet the
application requirements, while maximizing quality and/or mini-
mizing cost. Finally, the resources have to be allocated by con-
tacting the providers that own them. In our architecture, the
first two functions are performed by a service broker called
Xena, while the third function is performed by Beagle.

Xena Design
The application submits its resource request to Xena in the
form of an application input graph, an annotated graph
structure that specifies desired services (as nodes in the
graph) and the communication flows that connect them (as

edges). The annotations can vary in their level of abstrac-
tion from concrete specifications (place this node at network
address X) to more abstract directives (this node requires a
service of class S). These annotations are directly related to
the degree of control the application wishes to exert over
the allocation: a mesh with fewer (or more abstract) con-
straints presents more opportunities for optimization than a
highly specified one.

In the most constrained specification, the application speci-
fies the network addresses where the services should be placed,
the services themselves, and the QoS parameters for the flows
that connect them. In this style of specification, Xena’s opti-
mization opportunities are limited to coarse routing: selecting
communication service providers for the flows in the mesh. In a
less constrained specification, the application can leave the net-
work address of a service unspecified. This provides an addi-
tional degree of freedom: Xena now has the ability to place
nodes and route flows. In addition, the application can leave
the exact QoS parameters unspecified, but instead indicate the
flow’s semantic content. An example of a flow specification
might be Motion JPEG, with specific frame rate and quality
parameters. In addition to providing sufficient information to
maintain meaningful application semantics, this approach gives
Xena the opportunity to optimize cost or quality by inserting
semantics-preserving transformations to the mesh. For example,
when a Motion JPEG flow needs to cross a congested network
segment, Xena can insert a matched pair of transcoders at two
ends of the network segment. The first transcoder converts the
flow to a more bandwidth-efficient coding format (e.g., MPEG
or H.261) and then convert it back to JPEG on the far side.
Another optimization is the lowest-cost type unification: a
group of nodes receiving the same multicast flow (say, a video
stream) need to agree with the sender on the encoding used. If
there is no single encoding acceptable to all parties, Xena can
insert “type converter” nodes appropriately.

A feasible solution to the resource selection problem is one
that satisfies all the constraints based on service-specific
knowledge or application specification; for example, entities
at flow endpoints must agree with the type of data to be
exchanged. Given a set of feasible solutions, Xena evaluates
each according to the optimization criteria. In Xena, these
optimization criteria are encoded by an application-specified
objective function that maps candidate solutions to a numeric
value; this function is composed of a sum of terms, where
each term represents the “quality” of a particular layout
choice. This allows applications to define QoS in an applica-
tion-specific way. By using application-specific criteria to
guide resource selection, Xena in effect allows applications to
customize the definition of QoS.

Xena Implementation
Our current implementation of Xena includes the interfaces to
the other system entities (applications, service providers, and
Beagle), plus the solving engine and optimizations described
above. The application interface allows the specification of
requests that include nodes, flows, types, and transcoders. The
current Xena implementation does not have a general resource
discovery protocol. Instead, it offers a mechanism through which
services can register their availability and capabilities (i.e., a sim-
ple publish-subscribe mechanism). This information allows Xena
to build a coarse database of available communication and com-
putation resources, and an estimate of their current utilization.
Additionally, Xena maintains a database that maps service and
flow types (e.g., transcoding or transmitting MPEG of a certain
quality) to their effective resource requirements (e.g., CPU
cycles or megabits per second). Finally, there is a database that
contains the various semantics-preserving transformations (e.g.,

IEEE Network • January/February 2001 27

JPEG-to-MPEG) and how to instantiate them.
The resource optimization problem can be addressed in

many ways. In the first Xena implementation we express it as
a 0-1 integer programming problem and hand it to a solver
package [11] that generates a sequence of successively better
solutions at successively greater computation cost. More
specifically, the following variables encode the decisions Xena
has to make:

Service placement PService, Address 1 if Service is
placed at Address; 0 otherwise

Flow type FFlowId, ContentType 1 if FlowId is of
type ContentType; 0 otherwise

Service configurationCService, Configuration if Service is
configured according to Configuration; 0 otherwise

where the configuration of a service that receives and/or
transmits k flows is the k-tuple of the content types of those
flows, that is, Configuration = (ContentTypei)k.

Various requirements for semantically correct service deliv-
ery are expressed as constraints in the linear program. For
example, the constraint

specifies that a service should be placed on precisely one
node. As another example, the following constraint specifies
that the flow types which enter or leave a service should
match the configuration of the service:

"i, j, k, l : PServicei,Addressj|CServicei,Configurationk
Æ FFlow(Addressj, l),FlowType(Servicei,Configurationk, l),

where the functions Flow(a, l) and FlowType(s, c, l) extract the
lth flow and flow type from the node and service configura-
tion, respectively.

Besides the semantics of the service, the optimization
problem also has to consider the QoS being delivered. To do
this, we need a mathematical representation of QoS that is
flexible enough to be used to approximate the more subjec-
tive notion of QoS for diverse services. Our QoS definition
for value-added services has two parts. First, the user or bro-
ker can specify the minimum quality for different aspects of
the service; this will result in additional constraints in the
linear program. For example, the user could specify a mini-
mum acceptable video quality (frame rate, frame size, reso-
lution) of a Motion JPEG stream; this would be translated
by the broker in a constraint on the required bandwidth.
Second, the broker or user can specify how QoS can be
improved beyond the minimum QoS specified by the addi-
tional constraints. This is done by providing an optimization
functions of the form

By appropriately selecting the quality weights, brokers can
customize the definition of QoS to the user’s needs. For
example, assume that a service combines videoconferencing
(quality metric is video quality) and access to a set of remote
databases (quality metric is response time of queries). By
assigning more weight to the bandwidth for videoconferencing
than to the communication and computation resources allo-
cated for database access, we can specify that a user prefers
high-quality video over fast response time.

An alternative to specifying a quality function is to provide
a cost function,

This indicates that the user is not interested in improving ser-
vice quality beyond the minimal quality expressed by the QoS
constraints, but instead wants to minimize cost. Again, the
weights in the cost function can be chosen to reflect the con-
text of this particular service request.

Given the constraints derived from the semantics of the ser-
vice, the minimal quality constraints, and the quality/cost func-
tion to maximize/minimize, we can call a solver package to
perform the actual optimization, described in more detail else-
where [12]. An example of the use of Xena can be found later.

Resource Brokering Considerations
So far we have focused on the design and implementation of a
single broker module. Such a module can be deployed in dif-
ferent ways. For example, a broker could be linked into an
application as a library or deployed as a network service that
can be invoked by multiple applications. Clearly, in a large-
scale environment many brokers will be needed to provide
responsive service. Moreover, since brokers incorporate
domain knowledge, we envision the deployment of different
types of brokers specializing in different application domains
(e.g., videoconferencing, distributed games).

Since the optimization problem brokers have to solve is
generally NP-hard, an approach based on exact solutions is
only appropriate for small to medium-sized problems. Work is
in progress on defining heuristics that will make the problem
tractable. This approach will necessarily trade quality for per-
formance; our goal is to find high-quality (but not, in general,
optimal) solutions at a reasonable cost. To handle large
queries, we have to not only speed up individual brokers, but
also partition queries across multiple brokers. For example, to
handle a query that combines videoconferencing and distribut-
ed simulation tasks, it may be best to break it into two smaller
queries that are handed off to specialized brokers. Similarly, a
multisite query may be broken into WAN and LAN compo-
nents that are handled by brokers specializing in resource
selection for different administrative domains.

Customizable Runtime Resource
Management
In this section we discuss how delegates perform customized
runtime resource management and describe the delegate run-
time environment implemented in Darwin.

Delegates
We use the term delegate for a code segment that is sent by
applications or service providers to network nodes in order to
implement customized management of their data flows. Dele-
gates execute on designated routers, and can monitor network
status and adjust resource management on those routers
through the router control interface (RCI), as shown in Fig. 2.
Delegates are a focused application of active networking [13];
they allow users to add customized traffic management and
control functions to the network.

A critical design decision for delegates is the definition of
the RCI (i.e., the interface delegates use to interact with the
environment). Several design goals constrain the definition of
the RCI. First, it is highly desirable that the RCI be usable
across multiple platforms without being tightly tied to a spe-
cific model of resources. In the long run, standardized inter-
faces for use by control protocols will also be useful for
delegates. Second, the RCI should balance the flexibility of

minimize w cost vv
v

¥Â ().

maximize qualityw vv
v

Â ¥ ().

" =Âi PService Address
j

i j
: , 1

IEEE Network • January/February 200128

delegate actions with the increase in complexity and cost in
routers that support delegates. If the RCI is too restricted,
delegates may be rendered virtually useless, while too broad
an RCI may make it difficult to efficiently and safely support
delegates. Finally, the RCI must support efficient interactions
between delegates and the router core under a broad set of
conditions. For example, a delegate can detect congestion
events by either polling router state or arranging to be noti-
fied of events detected by the router core, whichever is more
appropriate and efficient for the delegate.

The RCI can be viewed as an instruction set that operates
on flows. We have identified the following classes of opera-
tions that should be available to delegates:
• Flow definition: A flow is a sequence of packets that belong

together and should be treated in the same way by the
router. Flows are defined by a flow descriptor. Darwin uses
the flow descriptor specified by the IETF IntServ specifica-
tion, although the flow spec can also include an application
identifier, which is implemented as an IP option.

• Resource management: Delegates can change flows’ QoS by
adjusting resource allocation and sharing rules. Moreover,
they can split or merge flows by adjusting packet classifica-
tion. Splitting allows different groups of packets in a flow to
be treated differently. For example, a delegate can imple-
ment selective packet dropping by splitting off a subflow
and marking it for discard. A delegate can also elect to
receive special control packets by splitting off a subflow and
marking it for delivery to itself.

• Flow redirection: Delegates can reroute flows and establish
tunnels. For example, a delegate might choose to reroute a
flow inside a virtual mesh for load balancing reasons, or to
direct a flow to a compute server that will perform data
manipulations such as compression or encryption.

• Monitor network status: This class of operations includes
probing of network state (queue occupancy, error flags,
etc.). It can also involve posting requests for notification of
a small set of specific events, such as crossing of a queue
occupancy threshold and occurrence of a failure condition.

• Communication: Communication is needed to coordinate
activities with peers on other routers or provide network
feedback to applications on endpoints.
A fundamental requirement is that potentially concurrent

activities by delegates and other network management and con-
trol functions maintain a consistent network state. Moreover,
we would like these activities to interact efficiently, without
complex locking protocols. The hierarchical resource manage-
ment used in Darwin addresses both requirements. A delegate
is associated with a node in the resource tree and is typically
only authorized to operate on the flows in “its” subtree, which
creates a notion of locality in the organization space. Once the
signaling protocol has set up a new flow (node) with an associ-
ated delegate, the delegate can operate in relative isolation.
Using the resource tree in Fig. 1 as an example, a delegate
associated with the SCS node could increase the share of band-
width available for distributed simulation without having to be
concerned about the rest of the system.

The use of delegates also raises significant safety and security
concerns. Delegates are in general untrusted, so the router has
to ensure that they cannot corrupt state in the router or cause
other problems. This can be achieved through a variety of run-
time mechanisms (e.g., building a “sandbox” that restricts what
the delegate can access) and compile time mechanisms. A relat-
ed issue is that of security. The two main threats are that dele-
gates affect the use of resources or the behavior of traffic flows
that are not under their control. To address this problem, we
fall back on the virtual mesh abstraction. Whenever a delegate
makes an RCI call, the Darwin kernel makes sure that the call

can only affect the use of resources or behavior of traffic flows
that are part of the virtual mesh with which the delegate is
associated. Access to resources is restricted by giving delegates
only access to certain nodes in the resource trees of the output
ports of the router (see next section). Access to traffic is limited
by making sure that the filter specification of an RCI call cov-
ers only a subset of the traffic which flows within the delegate’s
virtual mesh. These security checks are implemented through
the use of access control lists, similar to the access control lists
used to protect the contents of file systems. These access con-
trol lists are created by the local resource manager when a del-
egate is created.

Implementation
Our current framework for delegates is based on a “standard”
Java Virtual Machine (JVM). We use the JVM from Sun
Microsystems, which is available on many platforms, including
NetBSD and FreeBSD. This environment gives us acceptable
performance, portability, and safety features inherited from
the language. Delegates are executed as Java threads inside
the virtual machine sandbox. Delegates can run with different
static priorities, although a more controlled environment with
real-time execution guarantees is desirable.

The RCI is implemented as a set of native methods that
call the local resource manager, which runs in the kernel.
Communication among delegates and between delegates and
endpoints uses sockets, built on top of the standard java.net
classes. A more detailed description of delegates, including a
set of examples, can be found elsewhere [14].

Hierarchical Scheduling
The virtual mesh offers an elegant abstraction since it allows
the user to use and manage a set of resources as if they were
a dedicated infrastructure, even though the resources are part
of a larger shared infrastructure. However, the abstraction is
meaningless unless the network can guarantee that the service
provider or application will be able to use and control the
resources assigned to it. In Darwin, the resource isolation and
sharing needed to realize virtual meshes is implemented by
the H-FSC scheduler.

Scheduling Algorithm
As discussed earlier, from a resource management point of
view, a service-oriented network can be viewed as a hierar-
chy of virtual meshes, and each virtual mesh represents the
set of resources that are managed by an entity such as a
service provider or an application. For each individual
physical resource, sharing and thus contention exist at mul-
tiple levels: at the physical resource level among multiple
service providers, at the service provider level among
lower-level service providers or organizations, and at the
application level among individual flows. These relation-
ships can be represented by a resource tree: each node rep-
resents one entity (resource owner, service provider,
application), the slice of the virtual resource allocated to it,
the traffic aggregate supported by it, and the policy of man-
aging the virtual resource; each arc represents the virtual
resource owner/user relationships. An example of a
resource tree is shown in Fig. 1.

The ability to customize resource management policies
at all sharing levels for a resource is one of the key require-
ments and distinctive features of service-oriented networks.
The challenge is to design scheduling algorithms that can
simultaneously satisfy diverse policies set by different enti-
ties in the resource management tree. In Darwin we use

IEEE Network • January/February 2001 29

the H-FSC scheduling algorithm [6]. An important feature
of H-FSC is that entities sharing the resource at different
levels in the resource hierarchy can manage their share of
the resources independently. For example, in the resource
hierarchy shown in Fig. 1 the two service providers use rad-
ically different resource management policies: service
provider 2 supports the IETF Intserv QoS model (guaran-
teed and controlled load) for individual traffic streams,
while the more sophisticated service provider 1 supports
organization-based QoS, where the organizations and appli-
cations can specify the dynamic sharing relationship for
their traffic streams. Moreover, once the resource sharing
relationship between providers 1 and 2 is set up (weighted
sharing with 100 Mb/s and 55 Mb/s for each), the two
providers can independently change resource use without
affecting the QoS properties of traffic supported by the
other provider. For example, provider 1 can admit new
flows or change the resource allocation for existing flows
without having to coordinate with provider 2, as long as its
stability conditions are met.

Implementation
Besides the scheduler, the implementation of the H-FSC
scheduler in Darwin also needs a packet classifier and an API
for signaling protocols. The classifier classifies incoming data
packets to a specific flow and packet queue. This is done by
matching a packet’s header against a set of known flow
descriptors. To support traffic flows of various granularities,
we have devised a highly flexible classification scheme. Each
flow is described by a nine-parameter flow descriptor: source
IP address, source address prefix mask, destination IP address,
destination address prefix mask, protocol number, source port
number, destination port number, application-specific ID (car-
ried as an option in the IP header), and application-specific
ID prefix mask. For each parameter, zero denotes “don’t
care.” Using this scheme, flows of various granularity, such as
end-to-end TCP connections, aggregates of traffic between
networks (using network prefixes in the flow descriptors), and
HTTP, FTP, and TELNET services can be specified. With the
application-specific ID, we can even subdivide an end-to-end
traffic flow into application-specific subflows, such as the dif-
ferent frame types in an MPEG flow.

A control application programming interface (API) is
exported by the scheduler and classifier, and used to create
and manage data structures in the scheduler and classifier. It
is available to delegates and Beagle through the RCI, as dis-
cussed earlier.

The processing overhead associated with classification and
queuing in our implementation is fairly low. Classification
overhead is 3 ms/packet with caching on a 200 MHz Pentium
Pro system. Average queuing overhead is around 9 ms when
there are 1000 flows in the system. This low overhead allows
us to easily support an actual data speed of 100 Mb/s in our
prototype network testbed. A more detailed analysis of the
performance of the H-FSC implementation can be found in
[6] and some experimental results in [15].

The Beagle Resource Allocation Protocol
The Beagle resource allocation protocol provides support for
the customizable resource allocation model of Darwin. While
traditional signaling protocols such as RSVP [8] and ATM
private network-to-network interface (PNNI) operate on indi-
vidual flows, Beagle operates on virtual meshes. We will use
the application example in Fig. 3 to illustrate the various
tasks Beagle performs. The example is discussed in more
depth later.

Beagle Design

On the input side, Beagle interfaces with Xena to obtain the
virtual mesh specification generated by Xena. The virtual
mesh is described as a list of flows and delegates, plus resource
sharing specifications that describe how flows within a mesh
share resources among them. The example virtual mesh in
Fig. 3b shows two video flows and two distributed interactive
simulation flows. Each flow is specified by a flow descriptor,
described earlier, and information such as a tspec and a
flowspec object (used to characterize the properties of a traffic
flow and the corresponding reservation), as in the IETF
IntServ working group model. A delegate is characterized by
its resource requirements (CPU, memory, and storage), its
runtime environment, and a list of flows the delegate needs to
manipulate. The delegate runtime environment is character-
ized by a code type (e.g., Java, Active-X) and runtime type
(e.g., JDK 1.0.2, WinSock 2.1). The virtual mesh typically also
includes a number of designated routers that identify the
mesh core. In the example, Aspen and Timberline are the
designated routers.

After receiving a request, Beagle issues a sequence of flow
setup messages to the different nodes in the mesh, each speci-
fying the total resources needed on a link, plus a resource
sharing specification (described below). Since Beagle has
access to the resource specification for the full mesh, it has
many options for setting up the mesh. In [16] we compare a
traditional per-flow setup with a core-based setup, in which
the different segments of the core are set up in parallel, fol-
lowed by individual flow setups initiated by the senders or
receivers that rendezvous with the core in designated routers.
For meshes in which flows share resources in the core, core-
based setup is more efficient because it can allocate resources
for flow aggregates in the core.

On each node, Beagle passes a resource tree (Fig. 3c) to
the local resource manager to allocate resources for flows using
an interface similar to the one described earlier. Beagle also
establishes delegates onto switch nodes (for resource manage-
ment delegates), or computation and storage nodes (for data
processing delegates). For each delegate request, Beagle
locates the appropriate runtime environment, initializes the
local resource manager handles and flow reservation state,
and instantiates the delegate. The handles allow the delegate
to give resource management instructions to the local resource
manager for the flows associated with it.

Beagle requests have to identify the entity that invoked
Beagle. This allows the local resource manager to verify that
the Beagle request is valid (i.e., the caller is allowed to allo-
cate the resources, control the traffic, and create the delegates
specified in the request). The local resource manager will also
set up the access control lists for any delegates it creates so
the delegate’s actions can be verified during execution.
Authentication and authorization for Beagle requests are cur-
rently being implemented.

Resource Sharing
Beagle supports two forms of resource sharing: hierarchical
and temporal.

In the previous section we described how dynamic resource
sharing can be controlled and customized by specifying an
appropriate resource tree for each resource. This could be
achieved by having applications or Xena specify the resource
trees to Beagle so that it can install them on each node. There
are two problems with this approach. First, how one specifies
a resource tree is network-specific, and it is unrealistic to
expect applications and brokers to deal with this heterogene-
ity. Second, applications and brokers do not specify each phys-

IEEE Network • January/February 200130

ical link; instead, they use virtual links that may represent
entire subnets. Beagle uses the hierarchical grouping tree
abstraction to deal with both problems: it is an abstract repre-
sentation of the sharing hierarchy that can be mapped onto
each link by Beagle. Once Beagle knows the actual flows that
share a particular physical link in the network, Beagle prunes
the hierarchical grouping tree, eliminating flows which do not
exist at that link. To deal with network heterogeneity, interior
nodes in the hierarchical grouping tree have generic QoS ser-
vice types associated with them instead of network-specific
sharing specifications. The leaf nodes of the grouping tree
represent flows whose QoS requirements are expressed by
individual flowspecs. Service-specific rules describe how child
node flowspecs are aggregated into parent node flowspecs in
deriving a physical link resource tree from the grouping tree.
This involves converting flowspecs at each node into appropri-
ate low-level scheduler-specific parameters, such as a weight
for hierarchical weighted fair share schedulers or a service
curve for the H-FSC scheduler [6]. More details can be found
in [16]; Fig. 3b gives an example.

There are often resource sharing opportunities on time
scales larger than can be expressed in tspecs and flowspecs.
For example, a conferencing application may ensure that at
most two video streams are active at any time, or an applica-
tion may want to associate an aggregate bandwidth require-
ment for a group of best-effort flows. We will call this temporal
or sequential sharing (i.e., a set of flows share the same
resource over time). Applications and resource brokers can
specify this application-specific information by handing Beagle
temporal sharing objects that list sets of flow combinations
and their associated aggregate flowspecs. Beagle can then use
this information to reduce resource requirements for a group
of flows sharing a link. The temporal sharing object is similar
in spirit to the resource sharing approach used in the Tenet-2
scheme [17], and generalizes RSVP’s notion of resource reser-
vation styles. RSVP limits aggregation to flows within a multi-
cast session and restricts aggregation (e.g., least upper bound)
of flow specs, while in Beagle the arbitrary flows within an
application mesh can be grouped using any aggregate
flowspec. As an example, in Fig. 3b the distributed interactive

simulation application associates an
aggregate controlled load service
flowspec with the two simulation
flows.

The hierarchical grouping tree and
temporal sharing objects offer com-
plementary and orthogonal ways of
tailoring resource allocation within
the mesh. The example in Fig. 3b
shows the use of both sharing objects.
The resulting link resource subtrees
at links L1 and L2, assuming the use
of hierarchical weighted fair queuing
schedulers [5], are shown in Fig. 3c.

Implementation
A prototype of the Beagle resource
allocation protocol has been imple-
mented for FreeBSD and NetBSD
PC-based routers (Fig. 4). The imple-
mentation is based on the RSVP
implementation distributed by ISI
(available from
ftp://ftp.isi.edu/rsvp/release). Appli-
cations or Xena can invoke Beagle
through calls such as “create mesh”
or “extend mesh.” The API (shown
by the shaded portions in Fig. 4) is a
library compiled as part of the appli-
cation. It communicates with the
Beagle daemon through UNIX
domain sockets. The API also has a
callback mechanism used to asyn-
chronously notify applications about
various events such as setup
success/failure and incoming
requests. The Beagle daemon com-
municates with other Beagle dae-
mons using raw IP. The current
Beagle prototype includes support
for both temporal and hierarchical
sharing. On 200 MHz Pentium
routers running FreeBSD 2.2.5, the
Beagle throughput is about 425 flow
setups/s. This is comparable to con-
nection setup times reported for var-
ious asynchronous transfer mode■ Figure 3. Handling an application service request in Darwin.

S1 (MJPEG)

Aspen

Whiteface
Timberline

R1 (MJPEG)

R2 (MJPEG)Transcoder
S2 (UNC)

L2

L1
F3

F1

F2

F4

Xena

Beagle

Application
input graph

Virtual
application mesh

(a)

(b)

(c)

7

2

Video source
[MJPEG or UNC]

Video display
[MJPEG or UNC]

Beagle

Temporal
sharing

Individual
flowspecs

Local resource
manager

m2 m1

Video source
[UNC only]

Video display
[MJPEG or UNC]m6 m5

Simulation
[app-specific type]

Simulation
[app-specific type]? ?

Simulation
[app-specific type]

Simulation
[app-specific type]?

Flow

Flow
group

Aggregate
QoS Type

Aggregate
FlowSpec

F3 and F4 Controlled
load

(p, r, b)=
(10, 5, 128)

Video

Application

Simulation

Grouping tree

G

G

F1 F2

QoS type FlowSpec

F3 WFS W=10
F4 WFS W=10

F1 Guaranteed (p, r, b)=(1, 1, 0)
(R, S)=(1, 0)

F2 Guaranteed (p, r, b)=(1, 1, 0)
(R, S)=(1, 0)

WFS

F3 F4

Video

Application

Simulation

L2:Whiteface R1

G
5

G
11

F1 F2

F3

7

2

Video

Application

Simulation

L1:Timberline Whiteface

G
5

G
11 1010

F1 F2

WFS

F3 F4

m5
m4m6

m3

m7m2
m1

m8

IEEE Network • January/February 2001 31

(ATM) switches. However, we expect improvement in these
results by optimizing the implementation.

Darwin System Demonstration

In this section we present an example demonstrating how the
Darwin resource management mechanisms work together in
support of a remote collaboration application executing on a
testbed.

Darwin Testbed
The topology of the testbed is shown in Fig. 3b. The three
routers represented by rectangles are Pentium II 266 MHz
PCs running NetBSD 1.2D. End systems m1–m8 are Digital
Alpha 21064A 300 MHz workstations running Digital UNIX
4.0. All links are full-duplex point-to-point Ethernet links con-
figurable as either 100 Mb/s or 10 Mb/s.

The Application Scenario
Consider an application in which four scientists communicate
via a videoconferencing tool that uses motion JPEG coders,
and collaborate on a distributed simulation that runs over our
testbed. This scenario is shown in Fig. 3. In this case, the

videoconferencing consists of two uni-
cast video flows between desktop sys-
tems, and the distributed simulation
consists of a three-node distributed
fast Fourier transform (FFT), which
generates very bursty traffic.

Using our testbed (Fig. 3b), the
machines involved in the videoconfer-
ence are m1, m2, m5, and m6. Source
m2 can send either 8-bit uncompressed
video or Motion JPEG (MJPEG) com-
pressed video; source m6 can send
only uncompressed video. The users
do not care which nodes are used for
the distributed simulation, so they
leave it up to “the network” (more
specifically, Xena) to select the most
appropriate simulation servers. In this

section we use a combination of performance results and
screen shots of the running system to demonstrate the opera-
tion of Darwin.

Setup Using Xena and Beagle
Figure 3a shows the abstract resource mesh supplied to Xena.
Since the scientists are physically located at their machines, the
application provides to Xena specific network addresses for the
video endpoints, (m1, m2, m5, m6). The nodes are also anno-
tated by the requested service types (video source, video dis-
play). This flow specification describes only the connectivity
between the nodes; the flow’s exact QoS parameters are left
unspecified. For the distributed simulation, the application
does not specify which nodes should participate, so these
addresses will have to be supplied by Xena’s placement algo-
rithm.

We consider two scenarios under which Xena has to gener-
ate a virtual mesh layout for the given application input. In
the first abundant bandwidth scenario, bandwidth is plentiful
on all the links, but computational cycles are relatively scarce.
In the second scarce bandwidth scenario, the links are heavily
loaded, but computational resources are relatively abundant.
Xena accounts for these loads by adjusting the costs of vari-
ous resources. Costs are assigned according to the quantity of
the resource desired and its availability. For example, the cost
for raw video flows is higher than for MJPEG flows because

■ Figure 4. The Beagle prototype and Beagle API implementation.

Unix domain sockets Raw IP Raw IP

App

Beagle
messages

User

Kernel

Beagle API

API
messages

Host Router

Beagle
messages

Xena

Beagle
daemon

Beagle
daemon

■ Figure 5. The Xena virtual mesh layout in the abundant bandwidth scenario.

m3

Simulation (1)

8bpp (1) Simulation (1) 8bpp (1)

m5
imageDest (1)

Simulation (1)

Aspen

m1
imageDest (1)

m2
imageSource (1)

m8
simulation (5)

Whiteface
m4

simulation (5)
m6

imageSource (1)

Timberline

m7
simulation (5)

IEEE Network • January/February 200132

raw video requires more bandwidth; also, the cost for a given
quantity of some resource may be higher than otherwise if the
level of contention is high for that resource. Xena achieves
this latter effect by assigning an overlap penalty when more
than one service is assigned to the same endpoint.

Figures 5 and 6 show the virtual mesh layouts generated by
the running Xena prototype. In the abundant bandwidth sce-
nario, Xena selects uncompressed video encoding, which
requires more bandwidth but is computationally less expen-
sive. It places the simulation tasks on nodes m4, m7, and m8,
avoiding the video endpoints (m1, m2, m5, and m6). It also
places two simulation nodes (m4 and m7) on endpoints
attached to the same router, thus minimizing the use of link
bandwidth. In contrast, in the scarce bandwidth scenario,
Xena selects the less bandwidth-intensive MJPEG video
encoding to reduce the use of expensive
communication resources. To accom-
modate m2, which supports only uncom-
pressed video, it inserts a video
transcoder into the mesh at m4. The
transcoder is placed close to the video
source to minimize the use of expensive
link bandwidth. The transcoder is a
hardware MJPEG compressor that pro-
vides the ability to dynamically control
compression quality; note that higher-
quality video streams require more
bandwidth. In order to opportunistically
use available bandwidth, Xena also
instantiates a control delegate on tim-
berline which is responsible for moni-
toring the available bandwidth and
setting the compressor’s quality knob
appropriately. Xena distributes the sim-
ulation tasks on the remaining nodes
(m3, m7, and m8), thus avoiding the
overlap penalty for computations.

Once it has a solution, Xena gener-
ates a mesh specification similar to the
one shown in Fig. 3b. Beagle allocates
the resources as described above, and
also sets up the transcoder and the con-
trol delegate on timberline. Figure 7 is
a screen shot generated using the H-

FSC scheduler user interface program that shows the resource
sharing tree setup by Beagle for the timberline Æ whiteface
link. The application is the right subtree (root number 42),
and it uses separate subtrees for the video streams and FFT
data flows.

Execution
We present experimental results by executing the video and
FFT applications under three scenarios, one in the abundant
bandwidth scenario and two in the scarce bandwidth scenario.
In all experiments, 70 percent of the link bandwidth is allocat-
ed to the application, and the remainder is used by a UDP
cross-traffic flow.

In the abundant bandwidth scenario, all links are config-
ured to run at 100 Mb/s, and the UDP flow uses 30 Mb/s.

■ Figure 6. The Xena virtual mesh layout in the scarce bandwidth scenario.

Simulation (1)

MJPEG (5)MJPEG (5) 8bpp (15)

m5
imageDest (3)

Simulation (20)

Simulation (20)

Aspen

m1
imageDest (3)

m2
imageSource (3)

m8
simulation (5)

Whiteface
m6

imageSource (1)
m7

simulation (5)

m3
simulation (6)Timberline

m4
XenaFilter (-15)

■ Figure 7. The resource tree for the timberline Æ whiteface link.

Class Hierarchy

49

0

42

43

46 45

44

48 47

Add

Monitor on

Backlog on

Quit

Monitor GUI at de0

IEEE Network • January/February 2001 33

Both uncompressed video flows are allocated a
bandwidth of 18 Mb/s each (320 x 240 8-bit pixels
at 30 frames/s), and the remaining 34 Mb/s is allo-
cated to FFT flows. In this scenario, there is
enough bandwidth so both video streams can be
received without experiencing packet loss. This
scenario has the highest video quality.

In the scarce bandwidth scenario, the link
between timberline and whiteface is slowed down
to 10 Mb/s, and the UDP flow is allocated 3 Mb/s.
Each of the two MJPEG compressed video flows
crossing this link are guaranteed 1 Mb/s (i.e., the
bandwidth for the lowest setting of the JPEG com-
pression quality parameter), and the rest of the
bandwidth is allocated to FFT flows. Without a
control delegate, both video flows are guaranteed
only a minimum bandwidth of 1 Mb/s, and there-
fore the received video quality is the lowest. Using
a control delegate allows the video flows to oppor-
tunistically take advantage of available bandwidth
by adjusting quality on a dynamic basis. Figure 8
shows a histogram of the received frame quality.
The x-axis represents the video quality parameter
that is the input to the JPEG compression card.
As seen from the figure, the majority of the frames are
received with either maximum quality of 100 (received when
the FFT is in its computation phase) or minimum quality of 0
(when the FFT is in its communication phase). Frames
received with the other quality settings reflect the ramp up
and ramp down behavior of the control delegate as it tracks
the available bandwidth.

Figure 9 shows the bandwidth sharing within the example
application on the timberline Æ whiteface link under the
three experimental scenarios. In all plots, the dark grey por-
tion depicts the aggregate bandwidth used by the two FFT
flows and the light grey portion shows the aggregate band-
width used by the two video flows. We see that the FFTs
exhibit very bursty communication patterns. Figure 9a shows
the sharing in the abundant bandwidth case: there is ample
bandwidth available for both the video and FFT data streams.
Figure 9b shows the corresponding plot under the scarce
bandwidth scenario without using a control delegate. If the
video source tried to transmit at a high quality level during
FFT idle periods, it would not be able to adapt effectively
because it cannot learn about the excess bandwidth quickly
enough. As a result, it always sends at the lowest quality level,
even though the FFT is idle most of the time. Figure 9c shows
the sharing when a control delegate is used to control the

operation of the transcoder. The control delegate can quickly
detect the idle periods in the FFT communication patterns
and increase the MJPEG compression quality parameter
accordingly. This enables the transcoded video flow to oppor-
tunistically take advantage of available bandwidth.

Related Work
There has recently been a lot of work as part of the Xbind [3]
and TINA [18] efforts to define a service-oriented architecture
for telecommunications networks. There are several differences
between them and Darwin. First, services envisioned by Xbind
and TINA are mostly telecommunications-oriented. The value-
added services described in this article integrate computation,
storage, and communication resources. Second, the value-
added services in their context are usually restricted to the con-
trol plane (e.g., signaling). Darwin supports customized services
in the data plane (controlled sharing of resources, processing,
and storage) and the control plane (signaling and resource bro-
kering). Finally, while the focus of both TINA and Xbind is on
developing an open object-oriented programming model for
rapid creation and deployment of services, the focus of Darwin
is on developing specific resource management mechanisms
that can be customized to meet service-specific needs. While

■ Figure 8. A histogram showing the distribution of received JPEG quality.

0

N
um

be
r

of
 r

ec
ei

ve
d

fr
am

es

JPEG compression quality parameter

100

0

200

300

400

500

600

10 20 30 40 50 60 70 80 90 100

■ Figure 9. Bandwidth sharing within the example application: a) abundant bandwidth scenario; b) scarce bandwidth scenario without
the control delegate; c) scarce bandwidth scenario with the control delegate.

100

50

Sharing (%)

(a)

5160 1033 ms

100

50

Sharing (%)

(b)

16870 3375 ms

100

50

Sharing (%)

(c)

14950 2991 ms

IEEE Network • May/June 199934

Xbind and TINA have so far primarily been used as a devel-
opment framework for traditional ATM and telecommunica-
tions network management mechanisms, they could potentially
also be used as a basis for the development of customizable
resource management mechanisms.

Another very active area of research is the development
and deployment of “computational grids” [19, 20], distributed
pools of resources available for use by distributed applica-
tions. The vision underlying computational grids is similar to
that of Darwin, namely that the most effective way of satisfy-
ing diverse user needs is to provide an open programmable
infrastructure that users can customize for their use by
installing the appropriate software. The main difference
between Darwin and computational grids is the class of appli-
cations they have focused on (i.e., network-intensive vs. com-
pute-intensive applications). This has resulted in a very
different research agenda: managing and customizing the use
of network resources vs. compute and storage resources.

Over the past decade much work has gone into defining
QoS models and designing associated resource management
mechanisms for both ATM and IP networks [2]. This has
resulted in specific QoS service models for both ATM and IP
[21]. This has also resulted in the development of QoS routing
protocols and signaling protocols [8]. A closely related issue
being investigated in the IP community is link sharing [4], the
problem of how organizations can share network resources in
a preset way while allowing the flexibility of distributing
unused bandwidth to other users. Darwin differs from these
efforts in several aspects. First, while most of this work focus-
es on communication services, Darwin addresses both bitway
and value-added service providers. Second, most QoS models
only support QoS on a per-flow basis. Exceptions are the con-
cept of virtual path and virtual circuit in ATM, and the IP
DiffServ model [9], but these efforts are very restricted in
either the type of hierarchy they support or the number of
traffic aggregates for which QoS can be provided. In contrast,
Darwin uses virtual meshes to define service-specific QoS and
supports controlled resource sharing among dynamically
defined traffic aggregates of different granularities. Finally,
while these efforts provide resource management mechanisms
on the space, time, and organizational dimensions, the mecha-
nisms operate largely in an isolated and uncoordinated fash-
ion. On the other hand, Darwin takes an integrated view OF
resource management along these three dimensions.

While Darwin is primarily a networking project, guarantee-
ing end-to-end QoS properties also requires QoS support on
the endpoints. There has been a lot of research in real-time
operating systems [22]; in Darwin we assume that heavily
loaded endpoints (typically the servers) will have real-time
operating system support so they can give appropriate service
to users. A number of projects have also looked at the prob-
lem of providing end-to-end QoS guarantees [23, 24]. These
research efforts typically develop mechanisms that support
the precise QoS needs of specific application classes, while
Darwin has focused on creating an infrastructure in which
diverse services and applications with different QoS require-
ments can coexist.

Finally, active networks have recently attracted a lot of atten-
tion. In an active network, packets carry code that can change
the behavior of the network [13]. The Darwin project touches on
this concept in two ways. First, service delegates are an example
of active packets, although a very restricted one: delegates are
typically downloaded to a specific node at service invocation
time, and remain in action for the duration of the service. Sec-
ond, Darwin’s facilities for managing both computation and com-
munication resources via virtual meshes can help solve key
resource allocation problems faced by active networks.

Summary
We have designed a resource management system called Dar-
win for service-oriented networks that takes an integrated
view of resource management along space, time, and service
dimensions. The Darwin system consists of four interrelated
resource management mechanisms: resource brokers called
Xena, runtime resource management using delegates, H-FSC
hierarchical packet scheduling, and a resource allocation pro-
tocol called Beagle. The key property of all these mechanisms
is that they can be customized according to service-specific
needs. The first three mechanisms (Xena, delegates, and H-
FSC) operate on different time scales, which also influences
the complexity and scope of resource management decisions
they make, and thus their role in the system. While the Dar-
win mechanisms are most effective when they work together
in Darwin, each mechanism can also be used in a plug-and-
play fashion in more traditional QoS architectures (e.g., Bea-
gle for RSVP, Xena for resource brokers, and hierarchical
scheduling for traffic control). We have a proof-of-concept
implementation of the Darwin system and preliminary experi-
mental results to validate the architecture.

The Darwin prototype described in this article implements
the vision and demonstrates some of the possibilities, but
much work remains to be done. Future versions will be far
more scalable, in terms of both routing in large topologies and
aggregate processing of large numbers of flows. Security fea-
tures are currently rudimentary, and explicit authentication,
authorization, and encryption methods remain to be incorpo-
rated. Hierarchical resource management has been imple-
mented only for network components, and must be extended
to computation and storage resources. Finally, a number of
topics, while important to a complete network, are beyond the
scope of the current project: tools for service creation, mecha-
nisms for automated discovery of resources, and detailed
accounting of resource commitment and use.

References
[1] R. Braden, D. Clark and S. Shenker, “Integrated Services in the Internet

Architecture: An Overview,” Internet RFC 1633, June 1994.
[2] D. Ferrari and D. Verma, “A Scheme for Real-Time Channel Establishment in

Wide-Area Networks,” IEEE JSAC, vol. 8, no. 3, Apr. 1990, pp. 368–79.
[3] A. Lazar, K.-S. Lim and F. Marconcini, “Realizing a Foundation for Pro-

grammability of ATM Networks with the Binding Architecture,” IEEE JSAC,
vol. 14, no. 7, Sept. 1996, pp. 1214–27.

[4] S. Floyd and V. Jacobson, “Link-Sharing and Resource Management Models for
Packet Networks,” IEEE/ACM Trans. Net., Aug. 1995, vol. 3, no. 4, pp. 365–86.

[5] J. C. R. Bennett and H. Zhang, “Hierarchical Packet Fair Queuing Algo-
rithms,” Proc. SIGCOMM ’96 Symp. Commun. Architectures and Protocols,
Aug. 1996, Stanford, CA, pp. 143–56.

[6] I. Stoica, H. Zhang, and T. S. E. Ng, “A Hierarchical Fair Service Curve
Algorithm for Link-Sharing,” Real-Time and Priority Service, Proc. SIGCOMM
’97 Symp. Commun. Architectures and Protocols, Cannes, France, Sept.
1997, pp. 249–62.

[7] L. Delgrossi and D. Ferrari, “A Virtual Network Service for Integrated-Ser-
vices Internetworks,” Proc. 7th Int’l. Wksp. Network and OS Support for Dig-
ital Audio and Video, St. Louis, MO, May 1997, pp. 307–11.

[8] L. Zhang et al., “RSVP: A New Resource Reservation Protocol,” IEEE Com-
mun. Mag., vol. 31, no. 9, 1993, Sept. 1993 pp. 8–18.

[9] S. Blake et al., “An Architecture for Differentiated Service,” IETF RFC 2475,
Dec. 1998.

[10] K. Lim, “A Network Architecture for Virtual Private Networks with Quality of Ser-
vice,” Master’s thesis Info. Networking Inst., Carnegie Mellon Univ., Mar. 2000.

[11] M. Berkelaar, “lp_solve: A Mixed Integer Linear Program Solver,”
ftp://ftp.es.ele.tue.nl/pub/lp_solve/, Sept. 1997.

[12] P. Chandra et al., “Network Support for Application-Oriented Quality of Ser-
vice,” Proc. 6th IEEE/IFIP Int’l. Wksp. QoS, Napa, CA, May 1998, pp. 187–95.

[13] D. Tennenhouse and D. Wetherall, “Towards and Active Network Architec-
ture,” Comp. Commun. Rev., vol. 26, no. 2, Apr. 1996, pp. 5–18.

[14] J. Gao et al., “A Programmable Router Architecture Supporting Control Plane
Extensibility,” IEEE Commun. Mag., vol. 38, no. 3, Mar. 2000, pp. 152–59.

[15] P. Chandra et al., “Darwin: Customizable Resource Management for Value-
Added Network Services,” 6th Int’l. Conf. Network Protocols, Austin, TX,
Oct. 1998, pp. 177–88.

IEEE Network • May/June 1999 35

[16] P. Chandra, A. Fisher, and P. Steenkiste, “A Signaling Protocol for Struc-
tured Resource Allocation,” IEEE INFOCOM ’99, New York, NY, Mar. 1999,
pp. 522–33.

[17] A. Gupta, “Resource Sharing in Multi-party Realtime Communications,”
Proc. INFOCOM ’95, Boston, MA Apr. 1995, pp. 1230–37.

[18] F. Dupuy, C. Nilsson, and Y. Inoue, “The TINA Consortium: Toward Net-
working Telecommunications Information Services,” IEEE Commun. Mag.,
vol. 33, no. 11, Nov. 1995, pp. 78–83.

[19] I. Foster and C. Kesselman, “Globus: A Metacomputing Infrastructure Toolk-
it,” Int’l. J. Supercomp. Apps., 1997, vol. 11, no. 2, pp. 115–28.

[20] A. Grimshaw, W. Wulf and The Legion Team, “The Legion Vision of a
Worldwide Virtual Computer,” Commun. ACM, Jan. 1997, vol. 40, no. 1,
pp. 39–45.

[21] S. Shenker, C. Partridge, and R. Guerin, “Specification of Guaranteed
Quality of Service,” IETF RFC 2212, Sept. 1997.

[22] K. Nahrstedt and J. M. Smith, “A Service Kernel for Multimedia Endsta-
tions,” Multimedia: Adv. Teleservices and High-Speed Commun. Architec-
tures, vol. 2, no. 1, 1994, pp. 53–67.

[23] C. Lee et al., Proc. IEEE Real-Time Systems Symp., Dec. 1999, pp. 315–26.
[24] K. Nahrstedt, H.-H. Chu and S. Narayan “QoS-Aware Resource Manage-

ment for Distributed Multimedia Applications,” J. High-Speed Networks, Spe-
cial Issue on Multimedia Networking, vol. 8, no. 3–4, 1998, pp. 227–55.

Biographies
PRASHANT R. CHANDRA received his B.E in electronics engineering from Bangalore
University in 1991, M.S in computer engineering from West Virginia University
in 1994, and Ph.D. in computer engineering from Carnegie Mellon University in
2000. He is currently a network architect at Intel Corporation. His research inter-
ests are in the areas of programmable networks, signaling protocols, and traffic
engineering.

YANG-HUA CHU is a Ph.D. student in the Computer Science Department at
Carnegie Mellon University. He received B.S. and M.Eng. degrees from the Mas-
sachusetts Institute of Technology in 1996 and 1997, respectively. His research
interests are in multicast and content distribution.

ALLAN FISHER received a Ph.D. in computer science at Carnegie Mellon in 1984.
He was a Churchill Scholar at the University of Cambridge from 1978 to 1979.
He received the A.B. in chemistry from Princeton University in 1978. He has
been on the computer science faculty at Carnegie Mellon since 1984 and was
Associate Dean for Undergraduate Studies 1988–1998. He has researched and
published widely in the area of high-performance computing and networking.

JUN GAO received his B.S. degrees in engineering physics and computer science
in 1995 from Tsinghua University, Beijing, China, an M.S. degree in nuclear
engineering in 1997 from University of Virginia, and an M.S. degree in comput-
er science in 1999 from Carnegie Mellon University. He is currently a Ph.D. can-
didate in the Computer Science Department at Carnegie Mellon. His research
interests include network resource management mechanisms and customizable
Internet services.

COREY KOSAK received a B.A. in computer science from Harvard University in
1991 and an M.S. in computer science from Carnegie Mellon University in
1993. He is currently a Ph.D. candidate in computer science at Carnegie Mellon.
His research focuses on developing algorithms for high-quality resource alloca-
tion in advanced services networks.

T. S. EUGENE NG received his B.S. in computer engineering from the University of
Washington in 1995 and his M.S. in computer science from Carnegie Mellon Uni-
versity in 1998. He is currently a Ph.D. candidate in computer science at CMU. His
thesis research focuses on developing a third-party network service to enable con-
nectivity across Internet networks of heterogeneous address spaces, and perfor-
mance optimization techniques in a wide range of third-party network services.

PETER STEENKISTE (prs@cs.cmu.edu) is an associate professor in the School of
Computer Science and the Department of Electrical and Computer Engineering at
Carnegie Mellon University. He received the degree of Electrical Engineer from
the University of Gent in Belgium in 1982, and M.S. and Ph.D. degrees in elec-
trical engineering from Stanford University in 1983 and 1987. His research
interests are in the area of network support for electronic services.

EDUARDO S. C. TAKAHASHI received an M.S. degree in electrical and computer
engineering from Carnegie Mellon University in 1999, an M.S. degree in electri-
cal engineering from Universidade de Sao Paulo, Brazil, in 1995, and a B.S.
degree in electrical engineering from Instituto Tecnologico de Aeronautica,
Brazil, in 1989. His areas of interest include media streaming, resource manage-
ment, QoS provisioning, and wireless, mobile, active, and pervasive networking.

HUI ZHANG [M’95/ACM’95] is the Finmeccanica Associate Professor at the
School of Computer Science of Carnegie Mellon University. He received a B.S. in
computer science from Beijing University in 1988, an M.S. in computer engineer-
ing from Rensselaer Polytechnic Institute in 1989, and a Ph.D. in computer sci-
ence from the University of California at Berkeley in 1993. His research interests
are in scalable solutions for QoS and value-added services over the Internet. He
received the National Science Foundation CAREER Award in 1996 and the
Alfred Sloan Fellowship in 2000.

