
IEEE Communications Magazine • March 2000152

A Programmable Router Architecture
Supporting Control Plane Extensibility

0163-6804/00/$10.00 © 2000 IEEE

ABSTRACT

The Internet is evolving from an infra-
structure that provides basic communication ser-
vices into a more sophisticated infrastructure
that supports a wide range of electronic services
such as virtual reality games and rich multimedia
retrieval services. However, this evolution is hap-
pening only slowly, in part because the commu-
nication infrastructure is too rigid. In this article
we present a programmable router architecture
in which the control plane functionality of the
router can be extended dynamically through the
use of delegates. Delegates can control the behav-
ior of the router through a well-defined control
interface, allowing service providers and third-
party software vendors to implement customized
traffic control policies or protocols. We describe
Darwin, a system that implements such an archi-
tecture. We emphasize the runtime environment
the system provides for delegate execution and
the programming interface the system exports to
support delegates. We demonstrate the advan-
tages of using this system with two delegate
examples.

INTRODUCTION
The Internet has evolved from a basic bitway
pipe to a more sophisticated infrastructure that
supports electronic services. The services today
are fairly primitive and typically related to col-
lecting information over the Web. Richer ser-
vices such as high-quality videoconferencing,
virtual reality games, and distributed simulation
have been promised. Progress is slow in part
because the infrastructure is inflexible. Routers
are closed boxes that execute a restricted set of
vendor software. Compute and storage servers
are typically dedicated to supporting one type of
service. An alternate architecture is to have an
open infrastructure in which specific services can
be installed and instantiated on demand, much
like what we do on a PC today. One of the
advantages of this approach is that it allows a
larger community of people to develop services,
which spurs innovation. We use some examples
to motivate this approach.

The first class of examples addresses the cus-
tomization of traffic control and management.
Today, the range of traffic management options
is fairly limited. While switches and routers
increasingly have some support for packet clas-

sification and scheduling, these capabilities are
often only used in simple ways, such as to filter
out certain types of traffic, to do some simple
prioritization of flows, or to implement stan-
dardized QoS mechanisms such as differentiated
services. One could envision that users could
employ these mechanisms to handle their traffic
in specific ways. For example, one service
provider could implement gold/silver/bronze ser-
vice differentiation in a proprietary way, while
another service provider implements communi-
cation services with stronger guarantees. Simi-
larly, one could envision deploying a virtual
private network (VPN) service, in which VPNs
can use different traffic control policies or con-
trol protocols.

The second class of examples consists of
value-added services, that is, services that require
not only communication, but also data process-
ing and access to storage. Examples include
videoconferencing with video transcoding and
mixing support, customized Web searching ser-
vices, and application-specific multicast. While it
is possible to deliver these services using a set of
dedicated servers, it would be more efficient if
services could be deployed dynamically on
servers leased on an as needed basis. This would
allow the service to adapt to the demands and
locations of customers. Value-added services can
also benefit from customized traffic management
support. For example, a virtual reality game ser-
vice provider may want to handle control, audio,
and video traffic flows in different ways. This
may require customized traffic control policies
on the router.

As long as routers are closed boxes shipped
with a set of standard protocols, it is unlikely
that these examples will be realized. The above
examples can best be supported by a pro-
grammable network infrastructure. Such a net-
work will allow computing, storage, and
communication resources to be allocated and
programmed to deliver a specific service. Stan-
dards (e.g., ODBC, POSIX) exist to use storage
servers (Web, file systems, databases) and com-
pute servers. Routers (i.e., communication
servers), however, are not programmable today.
In this article we present a router architecture in
which the control plane functionality of the
router can be extended using delegates, code seg-
ments that implement customized traffic control
policies or protocols. Delegates can affect how
the router treats the packets belonging to a spe-

Jun Gao, Peter Steenkiste, Eduardo Takahashi, and Allan Fisher, Carnegie Mellon University

ACTIVE, PROGRAMMABLE, AND
MOBILE CODE NETWORKING

IEEE Communications Magazine • March 2000 153

cific user through the router control interface
(RCI). With this architecture, a broader commu-
nity (e.g., third-party software vendors or value-
added service providers) can develop
applications for routers.

The remainder of the article is organized as
follows. We first define a programmable network
architecture. We describe Darwin, a specific
instance of the above architecture. We present
two examples of how delegates can be applied to
address a variety of resource management and
traffic control problems, and discuss security
issues raised by the use of delegates. Finally, we
present related work and conclude the article.

A PROGRAMMABLE
NETWORK ARCHITECTURE

We first characterize the network programmabil-
ity requirements and introduce the concept of a
delegate. We then present a programmable net-
work architecture that can support delegates.

NETWORK PROGRAMMABILITY
We can distinguish between two types of opera-
tions on data flows inside the network. The first
class involves manipulation of the data in the
packets, such as video transcoding, compression,
or encryption. Since most routers do not have
significant general-purpose processing power,
this type of processing will typically take place
on compute servers (e.g., workstation clusters
inside the network infrastructure). The second
class of operations on data flows changes how
the data is forwarded, but typically does not
require processing or even looking at the body
of packets. Examples include tunneling, rerout-
ing, selective packet dropping, and changing the
bandwidth allocation of a flow. The nature of
these operations is such that they are best exe-
cuted on routers or switches.

We call the code segments that perform these
tasks delegates since they represent the owner of
the data flows inside the network. Data dele-
gates perform data processing operations and
execute on compute servers or specially designed
routers. Control delegates execute on routers
and are involved in the control of data flows.
This simple classification of delegates is some-
what artificial since some delegates may fall in
between these two classes. Nevertheless, the dis-
tinction is important because the two classes of
delegates impose very different requirements on
the system on which they run. Control delegates
require an environment that provides a rich set
of mechanisms to control data flows, while data
delegates must run on a platform with substan-
tial computational power.

While nobody is likely to argue against the
use of data delegates on compute servers for
data processing, the need for control delegates
is less obvious. One could imagine routers with
fixed functionality, similar to today’s routers,
where users can control how their traffic flows
are handled by passing parameters to the
routers using a signaling protocol. The exam-
ples discussed previously provide some reasons
that directly executing code (i.e., control dele-
gates) on the routers may be a more effective

way to customize traffic control and manage-
ment. A first reason is that control delegates
can respond much more quickly to changes in
the traffic conditions; it would take an entity at
the edge of the network at least one and more
likely several round-trip times before it could
first observe and then respond to a change in
the network. Second, it seems impractical to
identify all possible user requirements a priori
so that they can be addressed by the default
router software; an architecture based on dele-
gates is more flexible and extensible. Finally,
supporting customization by extending router
functionality may often be a more natural and
thus less error-prone solution. For example, if a
service provider wants to use a routing protocol
that is optimized for its traffic, doing so from
the edges of the network is likely to be unnec-
essarily complicated.

ROUTER ARCHITECTURE
Figure 1 presents a node architecture through
which delegates can be added to a router. The
architecture shows a control plane (top part)
that executes control protocols such as routing
and signaling, and a data plane (bottom part)
responsible for packet forwarding. Control dele-
gates execute in a special runtime environment
that is part of the control plane. This design is
motivated by both the intended use of control
delegates (control and management of traffic
flows) and practical design considerations (we do
not want to add unnecessary complexity to the
data forwarding path, where speed and simplicity
are critical). On some routers it may also be pos-
sible to insert data delegates in the data for-
warding plane.

Control delegates can change how traffic is
handled in the data plane through the RCI. The
RCI provides a set of operations on flows,
sequences of packets with a semantic relationship
defined by applications and service providers.
Flows are defined on each router using a flow
spec, a list of constraints that fields in the packet
header must match for a packet to belong to the
flow. The classifier uses the flow specifications to
determine to which flow incoming packets belong.

■ Figure 1. Node architecture.

IEEE Communications Magazine • March 2000154

We can view the RCI as an instruction set that
operates on flows as a basic data type. A critical
design decision in the architecture is the defini-
tion of this interface (what functions should be
exported to the delegates). The RCI should be
broad enough to support both value-added services
and network management applications. However,
since the RCI will be used by control delegates on
routers, efficiency and security issues should also
be taken into account. We will elaborate on a spe-
cific implementation of the RCI later.

Most of the components in the proposed
router architecture can also be found in architec-
tures designed to support quality of service (QoS)
in the Internet. For example, the packet classifi-
cation and scheduling modules are present in the
Internet Engineering Task Force (IETF) inte-
grated services model and the more recent differ-
entiated services model. The difference lies in
this architecture providing programmability in
the control plane through the use of delegates
and the RCI programming interface.

DARWIN DELEGATES
We give a brief overview of the Darwin [1] sys-
tem, and describe the Darwin RCI and delegate
runtime environment.

DARWIN DELEGATE DESIGN
The Darwin project developed a set of customiz-
able resource management mechanisms. Cus-
tomizability allows applications and service
providers to tailor resource management, and
thus service quality, to fit their needs. Darwin
includes three mechanisms that operate on dif-
ferent timescales. A resource broker, called
Xena, selects resources that meet application
needs using application-specific metrics to opti-
mize resource utilization [2]. Delegates support
customizable runtime resource management, as
described above. Finally, Darwin uses a hierar-
chical packet scheduler that supports a wide
range of service disciplines [3]. The activities of

the three mechanisms are coordinated by a sig-
naling protocol called Beagle [4].

Darwin delegates are based on the architec-
ture outlined in the previous section, but the
architecture is extended in two ways. First, in
Darwin the classifier that identifies flows uses
not only the standard fields in the IP and trans-
port headers (IP addresses, port numbers, and
protocol identifier), but also an optional applica-
tion identifier. This allows services to define
flows based on their own semantics. An example
is layered video, where different layers are
tagged with different application identifiers. The
application identifier is stored in the packet as
an IP option, but other formats (e.g., the IPv6
flow ID) are also possible.

Second, Darwin manages resources in a hier-
archical fashion. This means that the resource
distribution of a link is represented by a resource
tree (the bottom part of Fig. 2), with the root
representing the link, leaf nodes actual data
flows, and interior node organizations services or
applications that control the flow or flow aggre-
gate corresponding to their children. Resource
allocation policies can be specified for both leaf
and interior nodes, so both per-flow QoS and
link sharing can be supported in the same frame-
work. This can be viewed as a “divide-and-con-
quer” approach to resource management. The
bandwidth of a link (root node) can be divided
across a set of organizations (children of the
root), each of which can manage its bandwidth
share by constructing an appropriate subtree.
Darwin uses the Hierarchical Fair Service Curve
scheduler [5], which has excellent isolation prop-
erties; changes in the structure or policies of one
subtree do not affect the way traffic controlled
by other subtrees is handled.

The combination of delegates (in the control
plane) and hierarchical resource management
(in the data plane) provides an excellent frame-
work for the customization of traffic control and
management. We emphasized earlier that one
use of delegates is to customize how a specific
set of flows is handled. This is achieved by asso-
ciating a delegate with a specific node in the
flow hierarchy(Fig. 2), so the delegate operates
only on flows associated with that node and its
subtree and cannot affect other flows. In other
words, the hierarchical scheduler provides the
isolation of network resources in the data plane,
and the matching hierarchical delegates provide
the isolation of traffic management and control
in the control plane.

THE ROUTER CONTROL INTERFACE
We describe five categories of functions that are
necessary for the RCI to support a broad spec-
trum of delegates:
• Flow manipulation methods: The RCI pre-

sents delegates with a flow-based program-
ming model. This class of methods allows
delegates to define and manage flows by
updating the classifier data structures. For
example, a flow defined with a flow specifi-
cation (a list of header fields) can be added
to the classifier through the add_flow call.
A handle corresponding to this flow is
returned. Operations on this flow, such as
specifying QoS parameters and rerouting,

■ Figure 2. Pairing customization in the control
and data plane.

The Darwin

project developed

a set of

customizable

resource

management

mechanisms.

Customizability

allows

applications and

service providers

to tailor resource

management,

and thus service

quality, to fit

their needs.

IEEE Communications Magazine • March 2000 155

are then performed using the handle. Meth-
ods for deleting and modifying flow specifi-
cations are also available.

• Resource management methods: Delegates
change how resources are allocated and dis-
tributed across flows by modifying states in
the scheduler through the RCI. The sched-
uler relies on its hierarchical resource tree
to schedule packets to meet each flow’s
QoS requirement. RCI methods of this cat-
egory include adding nodes to and deleting
nodes from the resource tree, modifying the
service parameters of a node, and retrieving
the resource hierarchy. The precise nature
of this class of functions depends on the
scheduler, and the functions in our imple-
mentation should be representative of most
hierarchical schedulers.

• Flow redirecting methods: As opposed to
the above class of methods, which have only
“local” meaning, the RCI methods in this
class have “global” meaning in that they
may affect the traffic distribution in the
network. For example, delegates use the
reroute method to route a flow’s packets
through a route other than the default to
avoid hot spots in the network. Packet tun-
neling and selective dropping methods are
also implemented. Methods of direct opera-
tion on the routing table can be used by
delegates that have superuser privileges.

• Traffic monitoring and queue management
methods: Delegates monitor network con-
gestion status by examining queue lengths.
The hierarchical scheduler implements a
fairly sophisticated queuing discipline, and
RCI exports basic queue management
methods to delegates. For example, the
method probe returns the queue size of a
flow. The method retrieve_data enables
delegates to retrieve bandwidth usage and
delay data of each flow.

• Support for delegate communication: Dele-
gates can set up communication channels to
coordinate activities with peers on other
routers and interact with the application on
endpoints. Messaging between them allows
delegates to gather global information so
that proper global actions may be taken,
such as rerouting for load balancing. Inter-
delegate communication is often applica-
tion-specific. We built the communication
channels between delegates in our examples
on top of standard communication methods.
The above five classes of functions are likely to

be appropriate for most routers. However, indi-
vidual routers may have additional functionality
on their data forwarding path and may allow del-
egates to control these functions. As an example,
on a router that supports random early detection
(RED), delegates may be able to change the
thresholds used to trigger early packet drops.
Clearly, an interface standard like management
information base (MIB) definitions for network
management would have to be extensible, so new
methods can be added as technology evolves.

DELEGATE IMPLEMENTATION
Darwin delegates are based on Java and use the
JDK1.2 Java virtual machine (JVM) from Sun

Microsystems. This environment gives us acceptable
performance, portability, and safety features inher-
ited from the language. Delegates are executed as
Java threads inside the virtual machine sandbox. A
delegate is characterized by its QoS requirement
(e.g., the amount of CPU and memory resources
needed) and runtime environment needed.

Experiments to measure the overhead of the
RCI calls from within the delegate runtime envi-
ronment showed minimal difference between
calls from Java delegates and calls from equiva-
lent C programs. That is a reasonable result since
RCI calls are actually implemented as native
methods. The overhead of most delegate calls in
an unloaded system is measured to be around 5
µs using machines in our testbed. As the system
load increases, the system call latency becomes
highly variable and unpredictable since our oper-
ating systems do not offer real-time guarantees.

Delegates are installed through the Darwin
signaling protocol, Beagle, using a multistep pro-
cess. First, the application or service provider
submits delegate Java bytecode, delegate
resource and runtime requirements, together
with a list of flow specifications to Beagle. Sec-
ond, Beagle transports this information to Bea-
gle daemons running on the relevant routers.
Third, each Beagle daemon performs local
admission control for both the flows and (if nec-
essary) any delegates. For delegates, this includes
verifying that the delegate runtime environment
has the required libraries to support the dele-
gate. At this point, Beagle should also verify that
the router has sufficient CPU and memory
resources to accommodate the delegate, but
since our environment (PC-based routers) can-
not explicitly manage these resources, this step is
not implemented. Finally, if admission control
succeeds, Beagle then sets up the flows by mak-
ing appropriate calls to the classifier and sched-
uler, passes the byte code to the delegate
runtime environment to start up the delegate,
and then passes the delegate a set of handles
identifying the flows for which it is responsible.
The interface used by Beagle to start delegates is
described in more detail elsewhere [4].

Delegates are a very focused application of
active networking [5]: they are installed asyn-
chronously from the rest of the data traffic by a
separate signaling protocol on a per-application
or per-service basis, and can operate only on the
flows with which they are associated.

EXAMPLES
The Darwin system has been implemented on
FreeBSD and NetBSD PC routers. Experiments
were performed to test the system on a local
testbed, shown in Fig. 3. The three routers,
shown in boxes, are Pentium II 266 MHz PCs
running the Darwin kernel, which is built on top
of FreeBSD 2.2.6. End systems m1–m9 are Digi-
tal Alpha 21064A 300 MHz workstations run-
ning Digital UNIX 4.0. All links are full-duplex
point-to-point Ethernet links configurable as
either 100 Mb/s or 10 Mb/s. Unless specified, the
links are configured as 100 Mb/s. In this section
we present two delegate examples to demon-
strate how application-specific services can be
added to the network through delegates to

In other words,

the hierarchical

scheduler

provides the

isolation of

network

resources in the

data plane, and

the matching

hierarchical

delegates provide

the isolation of

traffic

management and

control in the

control plane.

IEEE Communications Magazine • March 2000156

improve the quality of execution of these appli-
cations. For more examples and experimental
results, refer to [6] by the same authors.

DYNAMIC CONTROL OF
MJPEG VIDEO ENCODING

An approach to dealing with congestion in video
applications is to use a video transcoder to com-
press, or change the level of compression of, the
video stream depending on the available band-
width. We use both control and data delegates in
this example to illustrate how delegates can con-
trol compression levels for video quality opti-
mization via flow monitoring, flow redirection,
and inter-delegate communication. A control
delegate is set up on the router before the bot-
tleneck link on the route of the video applica-
tion. The control delegate alters the original
route the video stream will take by first redirect-
ing the flow to a data delegate which resides on
a compute server next to the router. The data
delegate functions as a transcoder in that it takes
in raw video and generates MJPEG frames using

different compression levels. The MJPEG frames
are then fed back to the bottleneck router, and
will only then be forwarded to the originally
intended receiver. The control delegate monitors
the bottleneck link’s congestion status. When
facing congestion, the control delegate directs
the data delegate to use a higher compression
level for less bandwidth usage. At other times,
when the control delegate sees abundant band-
width on the bottleneck link, it can prompt the
data delegate to deploy a lower compression
level for better video quality. This allows the
video flow to opportunistically take advantage of
available bandwidth.

In the experiment, an application consisting
of two MJPEG video streams and two bursty
data streams compete for network bandwidth
with other users, modeled as an unconstrained
UDP stream. All flows are directed over the 10
Mb/s Timberline–Maui link. The application
has 70 percent of the bandwidth, 20 for video
and 50 for data; the remaining 30 percent of
the link is for competing users. The applica-
tion’s data streams belong to a distributed fast
Fourier transform (FFT) computation. The
data traffic is very bursty, since FFT alternates
between compute phases, when there is no net-
work usage, and communication phases, when
the nodes exchange large data sets. An impor-
tant property of the hierarchical link sharing
scheduler is that the video flows have priority
to take bandwidth not used by the FFT flows.
This means that video quality can be improved
significantly during the compute phases of the
FFT, if the video can make use of the addition-
al bandwidth.

A control delegate is placed on router Tim-
berline, and a data delegate is installed on server
m9. The video traffic received by Timberline is
forwarded first to m9 for data processing; the
generated MJPEG frames are sent back to Tim-
berline. Timberline then sends these frames out
on the Timberline–Maui link. Figure 4 shows a
screen shot of the bandwidth used by the video
flows (light) and FFT (dark). During FFT bursts,
bandwidth is limited (20 percent of the link) and
video quality is low, but between FFT bursts the
video can use almost 70 percent of the link,
resulting in increased video quality. Figure 5
shows a histogram of the received frame quality.
We see that the majority of frames are received
with either maximum quality, 100 (received
when the FFT is in its computation phase), or
minimum quality, 0 (when FFT is in its commu-
nication phase). Frames received with other
quality settings reflect the ramp up and ramp
down behavior performed by the control dele-
gate as it tracks the available bandwidth.

LOAD-SENSITIVE FLOW REROUTING
Routing decisions in the Internet today are
mostly load-insensitive and application-indepen-
dent. While this results in simple and stable
routing protocols, it can also cause inefficient
use of network resources. Discovering a lightly
loaded route and using it to reroute an applica-
tion’s flow may significantly improve the applica-
tion’s performance. Similarly, in a client-server
scenario, there are times that one server is over-
loaded, and in the meantime, other servers are

■ Figure 3. The Darwin IP testbed topology.

■ Figure 4. Bandwidth sharing between video and FFT streams.

IEEE Communications Magazine • March 2000 157

idle. In this case, it would make sense to have a
mechanism inside the network to redirect some
requests to the lightly loaded servers to achieve
better overall performance.

By using the RCI, delegates can reroute a
flow’s packets or even redirect a flow to a differ-
ent destination. We will now use a simple exam-
ple to illustrate how flow rerouting can be done
using multiple delegates to improve the applica-
tion’s network throughput.

The example application has three TCP flows,
m9–m2, m9–m4, and m8–m6, which are shown
as flows 1, 2, and 3, respectively, in Fig. 3. The
application reserves 50 percent of the bandwidth
on links 1, 2, and 3. Delegates are installed on
each router to monitor and optimize the
throughput of these flows. By default, the route
for flows 1 and 2 passes routers Timberline and
Maui only (the shortest path). An alternative
route using all three routers is shown as a dotted
line in Fig. 3.

The delegate on Timberline uses the follow-
ing algorithm to reroute a flow when necessary:
periodically, the delegate retrieves bandwidth
usage of flows 1 and 2 from the data plane, and
queries the delegate on Whiteface to get the
available bandwidth for this application on link
3. When the available bandwidth on the path
consisting of links 2 and 3 is higher than the
bandwidth being used by an active flow (flow 1
or 2), the delegate will reroute flow 1’s packets
to link 2 to avoid the competition between flows
1 and 2. When the default route has higher avail-
able bandwidth, the delegate will then resume
Timberline’s default forwarding behavior.

In the experiment, the three flows are turned
on and off at different times; Fig. 6 shows the
throughput of these flows. Initially, only flow 1 is
active; it uses link 1, and its throughput is about
50 Mb/s. When flow 2 is turned on, flow 1’s
throughput drops dramatically due to sharing.
The delegate on Timberline then changes the
route of flow 1 to use Whiteface. Flow 1’s
throughput recovers back to about 50 Mb/s.
When flow 3 is turned on, flow 1’s throughput
again drops to about half because of the compe-
tition on link 3. When flow 2 ends, the available
bandwidth on link 1 (50 Mb/s) is higher than flow
1’s current throughput (about 25 Mb/s). Flow 1 is
routed with the default route, which uses link 1.
As can be seen, the throughput of flow 1 goes
back to about 50 Mb/s. In the meantime, flow 3
receives the full reservation on link 3, and its
throughput is improved to about 50 Mb/s. In
summary, with rerouting delegates help the appli-
cation’s flows adapt to the route that has larger
available bandwidth in a timely fashion.

DELEGATE SECURITY
The programmable nature of an active network
brings legitimate safety and security concerns.
The safety issues brought to the routers by dele-
gates include general code safety concerns, vari-
ous types of denial-of-service attacks, and privacy
and security concerns. In this section we focus
on security issues related to traffic management
and control. Examples of threats include unau-
thorized use of bandwidth allocated to other
flows and redirecting or dropping traffic belong-

ing to other users. We explain these problems by
examining three classes of increasingly more
powerful delegates.

The first class of delegates can control local
resource allocation only, that is, only modify the
classifier and scheduler states. The primary risks
are:
• A delegate manipulates traffic flows for

which it is not responsible.
• A delegate changes scheduler parameters

for resources belonging to other users.
Our solution is based on associating delegates
with specific flows and nodes in the resource
tree, as shown in Fig. 2. When Beagle sets up
flows and delegates, it provides the node operat-

■ Figure 5. Distribution of received JPEG quality.

■ Figure 6. Load-sensitive rerouting results.

IEEE Communications Magazine • March 2000158

ing system (OS) with information about what
flows and resources a delegate can control. The
node OS stores this information in the form of
an access control list. At runtime, for each RCI
call invoked by a delegate to manipulate flows or
access resources, the node OS checks whether
the call is permitted for this delegate by consult-
ing the access control list. While a simple all-or-
nothing access control mechanism is sufficient
for the examples considered so far, it is useful to
have finer-grained access control over the range
of actions a delegate can take. Resource man-
agement operations can be subdivided into more
levels, such as monitoring traffic only, modifying
the QoS parameters, and changing the structure
of a subtree (adding, deleting nodes). This is
similar to UNIX file system access control.

The second class of delegates can affect flow
forwarding by changing the states in the forward-
ing engine. We still have the above-mentioned
concerns: delegates manipulate flows that are not
theirs or change parameters associated with
other flows. The solution using access control
mechanisms can prevent a delegate from manip-
ulating other flows. However, a new set of prob-
lems comes into the picture even when a delegate
only operates on the flows it is in charge of: it
can use its own flows to pose potential threats to
other routers or end hosts in the network. For
example, a delegate can launch a denial-of-ser-
vice attack by redirecting its flows using tunnel-
ing to a victim server; a delegate can reroute its
flow to critical links to cause congestion; or IP
spoofing can occur if a delegate is allowed to add
arbitrary tunnel headers to its flows.

The key insight in addressing these new prob-
lems is to constrain the delegate’s actions within
the virtual network that corresponds to the service
being deployed. The virtual network consists of the
links and routers that will be used by this service.
Beagle reserves link resources and installs dele-
gates on these routers. Beagle has a global view
(the list of output inferfaces on the routers, the
client networks, etc.) of the virtual network for
each service. To make sure that the delegates
actions are within the virtual network, at setup
time Beagle passes its view to the node OS of indi-
vidual routers. With this information, the node OS
is then able to verify whether or not the actions to
be taken by delegates conform to the global view.

So far, we have assumed that all delegates are
installed by Beagle, and Beagle can be trusted to
provide the appropriate access control informa-
tion. In a richer delegate model, delegates can
create other delegates under certain conditions.
This would make it possible, for example, to
deploy a signaling protocol that can create dele-
gates as a delegate. This would allow the VPN
service to be used to create hierarchies of VPNs.
A similar but simpler example is that a delegate
is allowed to transfer authority to another dele-
gate. Supporting this model will require a richer
specification of the delegate authorities than in
the earlier models.

RELATED WORK
In an active or programmable network, the func-
tionality of the network can be extended on the
fly, either through the use of active packets that

carry the code which should be used to handle
the packet, or by dynamically installing exten-
sions on the routers [5]. The Darwin delegate
facility is based on active extensions for perfor-
mance and efficiency reasons. Many routing
functions are well suited to this style of invoca-
tion. The drawback of this approach is that there
is a higher cost associated with installing active
code (signaling protocol required)than with
active packets.

The Defense Advanced Research Projects
Agency (DARPA)-sponsored Active Net Node
OS working group defined an active node (AN)
architecture [7]. The AN architecture supports
an execution environment (EE) that can execute
active applications (AA), which can be either
active packets or extensions. The delegate run-
time environment can be viewed as an EE exe-
cuting in the control plane of the router. One
difference is that we have focused on the router
programming interface, which is not explicitly
present in the more general AN architecture.

The Active Reservation Protocol (ARP) pro-
ject [8] is developing a framework for fast imple-
mentation and dynamic deployment of complex
network control functions using an AN
approach. A similar programming interface,
called the protocol programming interface (PPI),
is defined for control plane protocols to control
the data forwarding path. Protocols in ARP are
networkwide: their actions are not restricted to
specific sets of flows. The Pronto [9] project pro-
vides a platform to support network programma-
bility. One difference from Darwin is that some
Pronto calls imply a stronger coupling between
data and the control plane. For example, Pronto
achieves frame dropping by having the control
plane identify the packets that should be
dropped, while Darwin relies on a classifier in
the data plane to identify those packets.

The IEEE P1520 working group [10] is work-
ing toward standardization of the interface for
programmable networks. Clearly, this effort is
similar to Darwin’s RCI, and we hope that some
of our results can feed into this process. We are
also looking at the broader question of how to
structure and build a system that uses this inter-
face effectively.

CONCLUSION
In this article we present a programmable net-
work architecture, in which the control plane
functionality of the router can be extended using
delegates, code segments that implement cus-
tomized traffic control policies or protocols. Del-
egates affect how routers treat the packets
belonging to a specific user through a well-
defined programming interface, the router con-
trol interface (RCI). This open architecture
offers opportunities to develop applications for
routers to a broader community, including third-
party software vendors and value-added service
providers.

The node architecture was implemented in
the Darwin system; we describe two of the many
delegate examples that were executed on our
testbed to demonstrate that a range of applica-
tions can receive benefits via such a system.
While the examples do not necessarily provide

The key insight to

address these

new problems is

to constrain the

delegate’s actions

within the “virtual

network” that

corresponds to

the service being

deployed. The

“virtual network”

consists of the

links and routers

that will be used

by this service.

IEEE Communications Magazine • March 2000 159

the optimal, or even a complete, solution to
these problems, they do illustrate that a rich set
of traffic control and management services can
easily be deployed through the system we built.
We plan to extend our work in the directions of
generalization of the architecture, performance
evaluation in wide area networks, and dealing
with delegate security issues.

REFERENCES
[1] P. Chandra et al., “Darwin: Resource Management for

Value-Added Customizable Network Service,” Proc. 6th
IEEE ICNP, Austin, TX, Oct. 1998, pp. 177–88.

[2] P. Chandra et al., "Network Support for Application-Ori-
ented Quality of Service," Proc. 6th IEEE/IFIP Int’l. Wksp.
Quality of Service, Napa, CA, May 1998, IEEE, pp. 187–95.

[3] I. Stoica, H. Zhang, and T. S. E. Ng, “A Hierarchical Fair
Service Curve Algorithm for Link-Sharing, Real-Time and
Priority Service,” Proc. SIGCOMM ‘97 Symp. Commun.
Architectures and Protocols, Cannes, France, Sept.
1997, pp. 249–62.

[4] P. Chandra, A. Fisher, and P. Steenkiste, “Beagle: A
Resource Allocation Protocol for an Application-Aware
Internet,” Tech. rep. CMU-CS-98-150, Carnegie Mellon
Univ., Aug. 1998.

[5] D. Tennenhouse and D. Wetherall, “Towards an Active
Network Architecture,” Comp. Commun. Rev., vol. 26,
No. 2, Apr. 1996, pp. 5–18.

[6] E. Takahashi et al., “A Programming Interface For Net-
work Resource Management,” Proc. 1999 IEEE OPEN-
ARCH, New York, NY, Mar. 1999, pp. 34–44.

[7] “Architectural Framework For Active Networks,” Aug. 1998;
available at http://www.cc.gatech.edu/projects/canes

[8] B. Braden, “Active Reservation Protocol (ARP),” Dec.
1998; abstract at http://www.isi.edu/div7/ARP

[9] G. Hjalmtysson, “The Pronto Platform — A Flexible
Toolkit for Programming Networks using a Commodity
Operating System,” to appear, OPENARCH 2000.

[10] J. Biswas et al., “The IEEE P1520 Standards Initiative
for Programmable Network Interfaces,” IEEE Commun.
Mag., vol. 36, no. 10, Oct. 1998, pp. 64–70.

BIOGRAPHY
JUN GAO (jun.gao@cs.cmu.edu) received B.S. degrees in
engineering physics and computer science from Tsinghua
University, Beijing, China, an M.S. degree in nuclear engi-
neering from the University of Virginia, and an M.S. degree
in computer science from Carnegie Mellon University, in
1995, 1997, and 1999, respectively. He is currently a third
year Ph.D. student in the Computer Science Department at
Carnegie Mellon University. His research interests include
QoS provisioning, resource and traffic management for the
Internet, and programmable and active networking.

PETER STEENKISTE (prs@cs.cmu.edu) is an associate professor
in the School of Computer Science and the Department of
Electrical and Computer Engineering at Carnegie Mellon
University. He received a B.S. degree in electrical engineer-
ing from the University of Ghent, Belgium, in 1982, and
M.S. and Ph.D. degrees in electrical engineering from Stan-
ford University in 1983 and 1987. His research interests are
in the areas of networking and distributed systems. More
information can be found at http://www.cs.cmu.edu/~prs.

EDUARDO S. C. TAKAHASHI (takahasi@cs.cmu.edu) received
the M.S. degree in Electrical and Computer Engineering
from Carnegie Mellon University in 1999, M.S. degree in
Electrical Engineering from Universidade de Sao Paulo,
Brazil, in 1995, and B.S. degree in Electrical Engineering
from Instituto Tecnologico de Aeronautica, Brazil, in 1989.
His areas of interest include mobile, active, ubiquitous,
wireless, pervasive networking, QoS provisioning, and
resource management.

ALLAN L. FISHER (alf@cs.cmu.edu) received an A.B. degree at
Princeton University in 1978, and a Ph.D. in computer sci-
ence from Carnegie Mellon University in 1984. He has been
on the faculty at Carnegie Mellon since then, conducting
research on high-performance computers and networks, as
well as establishing Carnegie Mellon’s undergraduate com-
puter science program. He is currently on leave while serv-
ing as president of Carnegie Technology Education, a
subsidiary of the university that provides online courses
and teaching support in software development to educa-
tional institutions worldwide.

The IEEE P1520

working group

is working

toward the

standardization of

the interface for

programmable

networks. Clearly,

this effort is

similar to

Darwin’s RCI,

and we hope that

some of our

results can feed

into this process.

