
Quantum Spectrum Testing

Ryan O’Donnell∗ John Wright∗

January 20, 2015

Abstract

In this work, we study the problem of testing properties of the spectrum of a mixed quantum
state. Here one is given n copies of a mixed state ρ ∈ Cd×d and the goal is to distinguish (with
high probability) whether ρ’s spectrum satisfies some property P or whether it is at least ε-far
in `1-distance from satisfying P. This problem was promoted in the survey of Montanaro and
de Wolf [MdW13] under the name of testing unitarily invariant properties of mixed states. It
is the natural quantum analogue of the classical problem of testing symmetric properties of
probability distributions.

Unlike property testing probability distributions—where one generally hopes for algorithms
with sample complexity that is sublinear in the domain size—here the hope is for algorithms with
subquadratic copy complexity in the dimension d. This is because the (frequently rediscovered)
“empirical Young diagram (EYD) algorithm” [ARS88, KW01, HM02, CM06] can estimate the

spectrum of any mixed state up to ε-accuracy using only Õ(d2/ε2) copies. In this work, we show
that given a mixed state ρ ∈ Cd×d:

• Θ(d/ε2) copies are necessary and sufficient to test whether ρ is the maximally mixed
state, i.e., has spectrum ( 1

d , . . . ,
1
d ). This can be viewed as the quantum analogue of

Paninski [Pan08]’s sharp bounds for classical uniformity-testing.

• Θ(r2/ε) copies are necessary and sufficient to test with one-sided error whether ρ has
rank r, i.e., has at most r nonzero eigenvalues. For two-sided error, a lower bound of
Ω(r/ε) copies holds.

• Θ̃(r2) copies are necessary and sufficient to distinguish whether ρ is maximally mixed on
an r-dimensional or an (r+ 1)-dimensional subspace. More generally, for r vs. r+ ∆ (with

1 ≤ ∆ ≤ r), Θ̃(r2/∆) copies are necessary and sufficient.

• The EYD algorithm requires Ω(d2/ε2) copies to estimate the spectrum of ρ up to ε-
accuracy, nearly matching the known upper bound. In addition, we simplify part of the
proof of the Õ(d2/ε2) upper bound.

Our techniques involve the asymptotic representation theory of the symmetric group; in partic-
ular Kerov’s algebra of polynomial functions on Young diagrams.
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1 Introduction

A common scenario in quantum mechanics involves an experimental apparatus which outputs a
particle whose state is a random variable. For example, in a version of the the famous Stern–Gerlach
experiment by Phipps and Taylor [PT27], the experimental apparatus produced a hydrogen atom
whose electron was either in state

∣∣+1
2

〉
or
∣∣−1

2

〉
, each with probability 1

2 . More generally, one can
describe the output of such an apparatus as falling in an orthonormal set of states |Ψ1〉, . . . , |Ψd〉 ∈
Cd, distributed according to a probability distribution D = (p1, . . . , pd). Such an object is called
a mixed state and is often conveniently represented using the density matrix ρ =

∑
pi · |Ψi〉〈Ψi|.

The numbers p1, . . . , pd are called the spectrum of ρ.
Given such an apparatus, a fundamental task—known as quantum state tomography—is to

produce an estimate ρ̃ ∈ Cd×d which well-approximates ρ according to some distance measure
(typically, the trace distance). To do this, one repeatedly runs the apparatus to produce many
(say, n) independent copies of ρ and then one processes some measurement of ρ⊗n to produce
an estimate ρ̃. It is known [FGLE12, Footnote 2] that O(d4 log(d)/ε2) copies of ρ are sufficient to
output an estimate which is ε-close to ρ in the trace distance. Unfortunately, the quartic dependence
on d can be prohibitively large, even for quite reasonable values of d; further exacerbating this is
the fact that many quantum systems are formed as the tensor product of many smaller subsystems,
in which case d is exponential in the number of subsystems.

One potential way around this problem is to note that if our actual goal in producing ρ̃ is to
determine whether ρ satisfies some property (e.g., is maximally mixed, has low rank, etc.), then our
estimate ρ̃ may be giving us far more information than we need. Thus, we can possibly test whether
ρ has the property in question using a much smaller number of copies. This is the motivation behind
the model of property testing of mixed states, as promoted in the recent survey of Montanaro and
de Wolf [MdW13]. Formally, we have following definition:

Definition 1.1. A property of mixed states P is testable with f(d, ε) copies if for every d ≥ 2, ε > 0
there is an algorithm T which, when given f(d, ε) copies of a mixed state ρ ∈ Cd×d, behaves as
follows:

• If ρ satisfies P, then Pr[T accepts] ≥ 2/3. (“Completeness”)

• If ρ is ε-far in trace distance from all ρ′ satisfying P, then Pr[T rejects] ≥ 2/3. (“Soundness”)

The choice of probability 2/3 here is essentially arbitrary, and it can be amplified to 1 − δ at the
expense of increasing the number of copies by a factor of O(log(1/δ)).

As mixed states are the quantum analogue of probability distributions, this model can be seen
as the quantum analogue of the model of testing properties of probability distributions. We note
that the problem of testing properties of mixed states has also appeared in the area of quantum
algorithms. For example, the work of [CHW07] considers Graph Isomorphism algorithms which
output a mixed state ρ satisfying a certain property if and only if the input graphs are isomorphic.

In this work, we focus on the problem of testing so-called unitarily invariant properties. These
are properties P for which ρ satisfies P if and only if UρU † satisfies P for every unitary matrix U .
It is easy to see that whether a mixed state ρ has such a property depends only on ρ’s spectrum
(hence the name quantum spectrum testing). Many natural properties of mixed states are unitarily
invariant, such as being the maximally mixed state, having low rank, or having low von Neumann
entropy. (An example of a natural property which is not unitarily invariant is the property of being
equal to a fixed mixed state σ, so long as σ is not the maximally mixed state.) Though it is not
immediately apparent from the definitions (we will show this in Section 2.2), the model of testing
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properties of mixed states from Definition 1.1 is equivalent to the following definition in the case
that the property in question is unitarily invariant.

Definition 1.2. A property of spectra P is testable with f(d, ε) copies if for every d ≥ 2, ε > 0
there is an algorithm T which, when given f(d, ε) copies of a mixed state ρ ∈ Cd×d with spectrum
η = (η1, . . . , ηd), behaves as follows:

• If η satisfies P, then Pr[T accepts] ≥ 2/3.

• If η is ε-far in total variation distance from every η′ satisfying P, then Pr[T rejects] ≥ 2/3.

The main gain in using Definition 1.2 over Definition 1.1 is that we only have to reason about
a total variation distance involving η rather than a trace distance involving ρ, which is in general
a more complicated distance measure. We note that the spectrum of a matrix is more properly
thought of as an unordered multiset of eigenvalues rather than an ordered tuple, and therefore any
property of spectra P by necessity depends only on the multiset of values {η1, . . . , ηd} and not on
their ordering. Hence, quantum spectrum testing corresponds in the classical world to the model of
testing symmetric properties of probability distributions. As we will soon see, Definition 1.2 allows
us to show a formal correspondence between these two models.

1.1 Classical property testing of probability distributions

The topic of property testing was introduced by Rubinfeld and Sudan in [RS92, RS96] in the context
of testing algebraic properties of polynomials over finite fields. Since then, it has found applications
in a wide variety of areas, including testing properties of graphs and of Boolean functions. Over
the past fifteen years, an extremely successful branch of property testing, first explicitly defined
in [BFR+00, BFR+13], has focused on testing properties of discrete probability distributions. In
the model of testing properties of probability distributions, there is an unknown distribution D on
the set {1, . . . , d}, and the tester may draw a random word of length n from D⊗n; i.e., obtain a
sequence of n i.i.d. samples from D. Its goal is to decide whether D has some property P or is ε-far
from P in total variation distance, while minimizing n.

It is well known [DL01, pages 10 and 31] (cf. [Dia14, Slide 6]) that after taking n = Θ(d/ε2)
samples from D, the empirical distribution is ε-close to D with high probability. As a result, any
property of probability distributions is testable with a linear (in d) number of samples; thus research
in this area is directed at finding algorithms of sublinear sample complexity for various properties.
That such algorithms could exist is suggested by the following Birthday Paradox-based fact:

Fact 1.3. Θ(
√
r) samples are necessary and sufficient to distinguish between the cases when the

distribution is uniform on either r or 2r values. (The bound also holds for r vs. r′ when r′ > 2r.)

Setting r = d
2 , we see that this fact gives a sublinear algorithm for distinguishing between the

uniform distribution and a distribution that is uniform on exactly half of the elements of {1, . . . , d}.
This fact is also important as it immediately gives a lower bound of Ω(

√
d) for testing a variety of

natural problems, those for which Fact 1.3 appears as a special case.
Perhaps the most basic property of probability distributions one can test for is the property of

being equal to the uniform distribution, Unifd. A Ω(
√
d) lower bound follows directly from Fact 1.3.

On the other hand, a O(
√
d/ε4) upper bound was shown in the early work of [BFR+00, BFR+13]

using techniques of [GR11]. The correct sample complexity was finally pinned down by Paninski
in [Pan08], who showed matching upper and lower bounds:

Theorem 1.4 ([Pan08]). Θ(
√
d/ε2) samples are necessary and sufficient to test whether D is the

uniform distribution Unifd.
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This result was recently extended [VV14] to an O(
√
d/ε2) upper bound for testing equality to

any fixed distribution, improving on the previously known [BFF+01] upper bound of Õ(
√
d/ε4).

More precisely, [VV14] upper-bounds the sample complexity of testing equality to a fixed distribu-
tion D by O(f(D)/ε2), where f(D) is a certain norm which is maximized when D is the uniform
distribution. Thus the uniform distribution is the hardest fixed distribution to test equality to.

The property of being the uniform distribution falls within the class of symmetric properties of
probability distributions. These are the properties P for which D = (p1, . . . , pd) ∈ P if and only
if (pπ(1), . . . , pπ(d)) ∈ P for every permutation π. Other interesting symmetric properties include
having small entropy or small support size. Testing for small support size does not appear to
have been precisely addressed in the literature; however the following is easy to derive from known
results (in particular, the lower bound follows from the work of [VV11a]):

Theorem 1.5. To test (with ε a constant) whether a probability distribution has support size r,
O(r) samples are sufficient and Ω(r/ log(r)) samples are necessary.

Let us now relate this section back to the main topic of this paper. As we saw earlier, the spec-
trum of a mixed state can be thought of as a probability distribution on the numbers {1, . . . , d}
(indexing the associated eigenvectors); thus any property of mixed state spectra is simply a sym-
metric property of probability distributions. This correspondence allows us to directly compare
the difficulty of testing properties of mixed state spectra and of probability distributions. In fact,
the quantum case is always at least as difficult as the classical case; the reason is that the classical
problem is equivalent to the quantum problem under the promise that the n “samples” provided
are known orthogonal pure states, |1〉 , . . . , |d〉. Alternatively, in Sections 2.3.2 and Section 2.5 we
will observe the following purely classical characterization of quantum spectrum testing:

Fact 1.6. Let P be a symmetric property of probability distributions on {1, . . . , d}. Testing whether
the spectrum of a d-dimensional quantum mixed state satisfies P is equivalent to the following
classical testing problem: Test whether a probability distribution D satisfies P when one is not
allowed to see the whole random word w ∼ D⊗n, but only the following d statistics: the length of
the longest k-increasing subsequence of w, for each 1 ≤ k ≤ d. Here a k-increasing subsequence
means a disjoint union of k weakly increasing subsequences.

In light of the above remarks we record the following fact:

Fact 1.7. Let P be a symmetric property of probability distributions which requires f(d, ε) samples
to test classically. Then testing whether a mixed state’s spectrum satisfies P also requires at least
f(d, ε) copies of the mixed state.

Although quantum spectrum testing is at least as hard as testing symmetric properties of
probability distributions, there are some interesting nontrivial properties which have the same
complexity in both models (up to constant factors). For example, if P is the property of having
support size 1, then Θ(1/ε) samples/copies are necessary and sufficient to test P in both models
(see [MdW13] for the O(1/ε) quantum spectrum testing upper bound). In general, however, it is
known that spectrum testing can require an asymptotically higher complexity (at least in terms of
the parameter d).

We end this section by pointing out that a large portion of the property testing literature
concerning entropy and support size actually considers the problems of either computing these
values [Pan04, BDKR05, VV11a, VV11b] (within some tolerance) or distinguishing between the
cases when these values are either large or small [Val08] (often these problems have some added
guarantee on the probability distribution, such as all of its nonzero probabilities being sufficiently
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large). These problems, strictly speaking, do not fit within the above property testing framework.
In this work, when we consider the problem of testing a mixed state’s rank (the quantum analogue
of support size) we will be doing so explicitly within the property testing framework.

1.2 Related work

Returning to quantum spectrum testing, we would like to mention two prior lines of research that
are directly relevant. The first is an algorithm—which we call the empirical Young diagram (EYD)
algorithm—for learning the spectrum of an unknown mixed state. This algorithm is naturally sug-
gested by the early work of Alicki, Rudnicki, and Sadowski [ARS88] and was explicitly proposed by
Keyl and Werner [KW01]. Regarding its performance guarantee, Hayashi and Matsumoto [HM02]
gave explicit error bounds and a short proof, but their work contained some small calculational
errors, subsequently corrected by Christandl and Mitchison [CM06]. From the last of these it is
easy to deduce the following:

Theorem 1.8. The empirical Young diagram algorithm, when given O(d2/ε2 · ln(d/ε)) copies of a
mixed state ρ with spectrum η, outputs with high probability an estimate of η that is ε-close in total
variation distance.

We will give a description of this algorithm later in the paper; for now, suffice it to say that it
can be viewed as the quantum version of the natural classical algorithm for learning an unknown
distribution, viz., outputting the empirical distribution. The EYD algorithm gives a near-quadratic
improvement over known quantum state tomography algorithms for the problem of estimating a
mixed state’s spectrum.1 As a result, testing properties of quantum spectra is easy with a quadratic
number of copies, and so we hope for subquadratic algorithms.

The second result comes from the work of Childs et al. [CHW07]. It can be thought of as a
quantum analogue of Fact 1.3:

Theorem 1.9. Θ(r) copies of a state ρ are necessary and sufficient to distinguish between the cases
when ρ’s spectrum is uniform on either r or 2r values. (The bound also holds for r vs. cr when
c > 2 is an integer.)

Setting r = d
2 , Theorem 1.9 gives a linear lower bound of Ω(d) for various properties of spectra.

This is in contrast with property testing of probability distributions, in which sublinear algorithms
are the main goal, with the Birthday Paradox typically precluding sub-O(

√
d)-sample algorithms.

Finally, we mention that we may also obtain relevant results by applying Fact 1.7 to known
lower bounds for classical property testing of probability distributions. Though in general these
lower bounds are not tight, prior to our work this was (to our knowledge) the only way to produce
lower bounds for testing spectra with a dependence on ε.

1.3 Our results

We have four main results. The first concerns the property that Montanaro and de Wolf refer to
as Mixedness:

Theorem 1.10. Θ(d/ε2) copies are necessary and sufficient to test whether ρ ∈ Cd×d is the
maximally mixed state; i.e., whether its spectrum is η = (1/d, . . . , 1/d).

1One may note that the dependence on ε in Theorem 1.8 is slightly worse than that for full tomography; however,
we speculate that this is an artifact of the analysis and that O(d2/ε2) copies suffice for the EYD algorithm.
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This is the quantum analogue of Paninski’s Theorem 1.4. We also remark that given the way we
prove Theorem 1.10, Childs et al.’s Theorem 1.9 can be obtained as a very special case.

Our second result gives new bounds for testing whether a state has low rank.

Theorem 1.11. Θ(r2/ε) copies are necessary and sufficient to test whether ρ ∈ Cd×d has rank r
with one-sided error. With two-sided error, a lower bound of Ω(r/ε) holds.

We note that the copy complexity is independent of the ambient dimension d. Knowing that a
state is low rank can often make solving a given problem much simpler. For example, quantum
state tomography can be made more efficient when the state is known to be low-rank [FGLE12].
Compare this to Theorem 1.5.

Next, we extend Childs et al.’s Theorem 1.9 to r vs. r′ for any r + 1 ≤ r′ ≤ 2r. A qualitative
difference is seen when r′ = r + 1; namely, nearly quadratically many copies are necessary.

Theorem 1.12. Let 1 ≤ ∆ ≤ r. Then O(r2/∆) copies are sufficient to distinguish between the
cases when ρ’s spectrum is uniform on either r or r + ∆ eigenvalues; further, a nearly matching
lower bound of Ω̃(r2/∆) copies holds.

As above, we note that these bounds are independent of the ambient dimension d.
Our final results concern the EYD algorithm from Theorem 1.8. First, we give an arguably

simpler proof of Theorem 1.8. Next, we complement this with a lower bound showing that the
analysis of the EYD algorithm from Theorem 1.8 is tight up to logarithmic factors.

Theorem 1.13. If ρ ∈ Cd×d is the maximally mixed state, the algorithm from Theorem 1.8 fails
to give an ε-accurate estimate (with high probability) unless Ω(d2/ε2) copies are used.

To our knowledge, no such lower bound was known previously. We remark that it is an interesting
open question whether some other algorithm can estimate an unknown state’s spectrum from a
subquadratic number of copies.

1.4 Overview of our techniques

Following [ARS88, Har05, CM06, CHW07], we use techniques from representation theory of the
symmetric group Sn. A basic tool is Schur–Weyl duality, which decomposes the space (Cd)⊗n as

(Cd)⊗n
Sn×Ud∼=

⊕
λ`n

Pλ ⊗ Qdλ, (1)

where the subspace Pλ corresponds to the symmetric group, the subspace Qdλ corresponds to the
unitary group, and λ is a partition of n, thought of as a Young diagram. (Recall that a partition of n
is a tuple λ = (λ1, . . . , λ`) satisfying λ1 ≥ . . . ≥ λ` ≥ 0 and λ1+. . .+λ` = n.) In our testing problem,
the tester is provided with ρ⊗n, which is invariant under any permutation of the n coordinates,
and whether the tester accepts or rejects should be invariant under any unitary transformation
of ρ. This means that if we measure ρ⊗n in the Schur basis described in equation (6) below, we can
throw away the information from the permutation and unitary registers without losing any relevant
information. What is left is only the “irrep” label λ.

The end result is this: there is a sampling algorithm—referred to in [CHW07] as weak Schur
sampling—which, on input a mixed state ρ⊗n, outputs a random partition λ whose distribution
depends only on the spectrum of ρ. We will denote this distribution by SWn

ρ . Furthermore, an
argument which is essentially from [CHW07] (though see [MdW13, Lemma 19] for a full statement)
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shows that for any spectrum property P, there is an optimal tester in the model of Definition 1.2
whose operation is as follows: 1. Sample λ ∼ SWn

ρ . 2. Accept or reject based only on λ. We may
therefore proceed without loss of generality by analyzing only algorithms of this form. In particular,
this means we need not study study quantum measurements or algorithms per se; in principle it
suffices simply to understand the distribution SWn

ρ (which is equivalent to the distribution on
k-increasing subsequence lengths described in Fact 1.6).

In case ρ is the maximally mixed state, the distribution SWn
ρ has been fairly well studied,

starting with the works [TW01, Joh01, Bia01, Kup02] (see [Mél10a] for a recent, comprehensive
treatment). It is known as the Schur–Weyl distribution, and we denote it by SWn

d . (In the limit as
d→∞, it approaches the well-known Plancherel distribution.) The exact distribution on partitions
given by SWn

d is somewhat complicated and difficult to work with, and so various works have instead
sought to describe large-scale features of a “typical” λ ∼ SWn

d . For example, Biane [Bia01] showed
that, up to small fluctuations, the “shape” of the random Young diagram λ ∼ SWn

d tends toward

a certain limiting shape Ω which depends only on the ratio
√
n
d . Furthermore, Meliot [Mél10a]

has characterized these small fluctuations as being distributed according to a certain Gaussian
process. The second of these results borrows heavily from a proof of the analogous result by Kerov
(see [IO02]) for the Plancherel distribution, and we will give an overview his techniques below.

Kerov’s approach involves studying a certain space of symmetric polynomial functions on Young
diagrams. For example, if one is interested in showing that a random λ ∼ SWn

d tends to have some
coordinates which are much larger than the rest, then it would be natural to study “moments” of
the form

∑
i λ

k
i . However, the approach of Kerov would suggest studying the following “moments”

instead:

p∗k(λ) :=
∞∑
i=1

[(λi − i+ 1
2)k − (−i+ 1

2)k], for k ≥ 1.

The polynomial family (p∗k) inhabits (in fact, generates) the so-called algebra of polynomial func-
tions on the set of Young diagrams Λ∗ (also known as Kerov’s algebra of observables). There are
other important polynomial families within Λ∗—in addition to the p∗k polynomials, our work in-

volves the p̃k, ck, p
]
µ, and s∗µ polynomials—and each of these families sheds light on a different

aspect of the input partition λ. For example, though the p]µ(λ) polynomials don’t give any obvi-
ous information regarding the “shape” of λ, they are unique in that we can easily compute the
expectation Eλ∼SWn

ρ
[p]µ(λ)] for any mixed state ρ. There exist some methods for passing from one

polynomial family to another, and it is often the case that a problem most easily stated in terms
of one polynomial family is most easily solved in terms of another.

The main component of our work is lower bounds for quantum spectrum testing, and these
lower bounds generally have the following outline: 1. Reduce the problem to showing that a cer-
tain expression within the algebra of observables is small with high probability. 2. Use various
polynomial-estimation techniques developed by Kerov and others for proving concentration of said
expression. For example, roughly speaking the key component of the lower bound in Theorem 1.12
is showing that for n� r2, the expression

∞∑
k=2

(−1)kp∗k(λ)

k(r + 1
2)k

is typically very close to 0 when λ ∼ SWn
r . As another example, proving the lower bound in

Theorem 1.10 reduces to showing that when n� d/ε2, the expression∑
partitions µ of n

with at most d nonzeros

s∗µ(λ)sµ(+2ε,−2ε, . . . ,+2ε,−2ε)∏d
i=1

∏µi
j=1(d+ (j − i))
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is typically very close to 1 when λ ∼ SWn
d . Our upper bounds generally involve analyzing algorithms

which accept or reject based on simple statistics of the sampled λ ∼ SWn
d . For example, the

rank tester of Theorem 1.11 accepts if and only if the sampled λ has at most r nonzero parts,
and the uniformity tester of Theorem 1.10 accepts if and only if the “content polynomial” c1(λ)
is sufficiently small. As in the lower bounds, analyzing these algorithms uses techniques from
the algebra of observables, and we sometimes also require certain combinatorial interpretations
of the weak Schur sampling algorithm; e.g., its relationship with the Robinson–Schensted–Knuth
“bumping” algorithm.
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2 Preliminaries

2.1 Probabilistic distances

Given two discrete probability distributions D1 and D2 on a finite set Ω, the total variation distance
between them is

dTV(D1,D2) :=
1

2
·
∑
ω∈Ω

|D1(ω)−D2(ω)| .

We will also require some nonsymmetric “distances” between probability distributions. The chi-
squared distance is

dχ2(D1,D2) := E
ω∼D2

[(
D1(ω)

D2(ω)
− 1

)2
]
.

Further, if supp(D1) ⊆ supp(D2), then the Kullback–Leibler divergence is

dKL(D1,D2) := E
ω∼D1

[
ln

(
D1(ω)

D2(ω)

)]
.

To relate these quantities, Cauchy–Schwarz implies that dTV(D1,D2) ≤ 1
2

√
dχ2(D1,D2), and

Pinsker’s inequality states that dTV(D1,D2) ≤ 1√
2

√
dKL(D1,D2).

We would also like to introduce a “permutation-invariant” notion of total variation distance.
Suppose that the set Ω is naturally ordered; say, Ω = [d] := {1, 2, . . . , d}. We define

dsym
TV (D1,D2) := dTV(D↓1,D

↓
2) = min

π∈Sd
{dTV(D1,D2 ◦ π)}.

Here D↓i denotes the probability distribution on [d] given by rearranging Di’s probabilities in non-

increasing order, so D↓i (1) ≥ · · · ≥ D↓i (d). By virtue of the permutation-invariance, we may also
naturally extend this notation to the case when D1 and D2 are simply unordered multisets of
nonnegative numbers summing to 1.

A d-dimensional mixed quantum state is represented as a density matrix ρ ∈ Cd×d; i.e., a
positive semidefinite matrix with trace 1. We may write ρ using its spectral decomposition as

ρ =
d∑
i=1

ηi · |Ψi〉〈Ψi|,

9



where the |Ψi〉’s are orthornormal and the ηi’s are nonnegative reals satisfying η1 + · · · + ηd = 1.
Equivalently, ρ describes a probability distribution on pure states in which |Ψi〉 has probability ηi.
If σ is another d-dimensional mixed state with eigenvalues {λ1, . . . , λd} (thought of as a multiset),
we will use the notation

dsym
TV (ρ, σ) := dsym

TV ({η1, . . . , ηd}, {λ1, . . . , λd}).

We will now define trace distance, which is the standard notion of distance between two density
matrices. (The above nonstandard notion of distance will be related to the trace distance in
Proposition 2.2 below.) If M ∈ Cd×d is any Hermitian matrix with eigenvalues η1, . . . , ηd, the trace
norm of M is

‖M‖tr := tr
(√

M †M
)

=

d∑
i=1

|ηi|.

Given two density matrices ρ and σ, the trace distance between them is dtr(ρ, σ) := 1
2‖ρ − σ‖tr.

The trace distance is the standard generalization of the total variation distance to mixed states; for
example, it represents the maximum probability with which two mixed states can be distinguished
by a measurement [NC10, equation (9.22)]. This property makes it the natural choice of distance
for property testing of quantum states. We also have the following simple fact:

Fact 2.1. Suppose ρ and σ are diagonal density matrices with diagonal entries η = (η1, . . . , ηd)
and λ = (λ1, . . . , λd), respectively. Then dtr(ρ, σ) = dTV(η, λ).

2.2 Property testing

In the model of property testing, there is a set of objects O along with a distance measure dist :
O × O → R. A property P is a subset of O, and for an object o ∈ O, we define the distance of
o to P to be2

dist(o,P) := min
o′∈P
{dist(o, o′)}.

If dist(o,P) ≥ ε, then we say that o is ε-far from P. A testing algorithm T tests P if, given some
sort of “access” to o ∈ O (e.g., independent samples or queries), T accepts if o ∈ P and rejects if o is
ε-far from P. Generally, the aim is for T to be efficient according some measure, most typically the
number of accesses made to o. (On the other hand, T is generally allowed unlimited computational
power. Nevertheless, as we will see, all of the testers considered in this paper can be implemented
efficiently.)

We will instantiate property testing in the following natural settings:

(i) Properties of mixed states: O is the set of d-dimensional mixed states ρ, the tester gets
access to (unentangled) copies of ρ, and dist = dtr.

(ii) Unitarily invariant properties of mixed states: As above, but P must be unitarily
invariant; equivalently, whether or not ρ ∈ P only depends on the multiset of ρ’s eigenvalues.

(iii) Quantum spectrum testing: O is the set of d-dimensional mixed states, P must be
unitarily invariant, and dist(ρ, σ) = dsym

TV (ρ, σ).

2Formally, our sets O will always lie within some RN or CN , and we always require that P be a closed set. Thus
the “min” here is well-defined.
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(iv) Symmetric properties of probability distributions: O is the set of probability dis-
tributions D on [d], the tester gets i.i.d. draws from D, P is any symmetric property, and
dist = dTV.

Let us now establish some basic facts about these models. The simplest fact is that Model (ii) is
a special case of Model (i). Next, in Model (iv) it would be equivalent if we had chosen dist = dsym

TV ;
this is by virtue of the assumption that P is a symmetric (permutation-invariant) property of
distributions on [d]. Finally, we have the following important simplifying fact, whose proof is not
trivial:

Proposition 2.2. Models (ii) and (iii) are equivalent.

Proof. We need to show that if P is a unitarily invariant property of d-dimensional mixed states
then dtr(ρ,P) = dsym

TV (ρ,P) holds for all mixed states ρ. By performing a unitary transformation,
we may assume without loss of generality that ρ is a diagonal matrix with nonincreasing diagonal
entries (spectrum).

The easy direction of the proof is showing that dtr(ρ,P) ≤ dsym
TV (ρ,P). To see this, suppose

σ ∈ P achieves dsym
TV (ρ, σ) = ε. Let σ′ denote the diagonal density matrix whose diagonal entries

are the eigenvalues of σ arranged in nonincreasing order. Now σ′ is unitarily equivalent to σ, and
hence σ′ ∈ P as well. But dtr(ρ, σ

′) = ε by Fact 2.1 and we therefore conclude dtr(ρ,P) ≤ ε, as
needed.

The more interesting direction is showing that dsym
TV (ρ,P) ≤ dtr(ρ,P). The authors learned the

proof of this fact from Ashley Montanaro [Mon14]. Suppose that σ ∈ P achieves dtr(ρ, σ) = ε.
Since ‖ · ‖tr is a unitarily invariant norm, a theorem of Mirsky (see [HJ13, Corollary 7.4.9.3]) states
that

‖ρ− σ‖tr ≥ ‖ρ′ − σ′‖tr, (2)

where σ′ (respectively, ρ′) denotes the diagonal density matrix whose entries are the eigenvalues
of σ (respectively, ρ) arranged in nonincreasing order. We have ρ′ = ρ, and σ′ is again unitarily
equivalent to σ, implying σ′ ∈ P. But the left-hand side of (2) is 2ε, and the right-hand side is
2dTV(ρ′, σ′) (by Fact 2.1), which in turn equals 2dsym

TV (ρ, σ′). Thus dsym
TV (ρ,P) ≤ ε, as needed.

Finally, we remind the reader of Fact 1.7, which says that any quantum spectrum testing
problem (in either of the equivalent Models (ii) and (iii)) is at least as hard as the corresponding
classical problem in Model (iv).

2.3 Partitions and Young diagrams

A partition of n ≥ 1, denoted λ ` n, is a list of nonnegative integers λ = (λ1, λ2, . . . , λk) satisfying
λ1 ≥ λ2 ≥ . . . ≥ λk and λ1 + λ2 + . . . + λk = n. The length of the partition, denoted `(λ), is the
number of nonzero λi’s in λ. The partition’s size is n, and is also written as |λ|. Two partitions are
considered to be equivalent if they only differ in trailing zeros. For example, (4, 2) and (4, 2, 0, 0)
are equivalent. We write Par to denote the set of all partitions, of any size. For w ∈ N+ we will
use the notation mw(λ) to denote the number of parts i with λi = w. Finally, at one point we
will require the fairly elementary fact (see e.g. [Rom14, (1.15)]) that the number of partitions of n
is 2O(

√
n) (much more precise asymptotics are known [HR18]).

One way in which partitions arise is as cycle types of permutations π ∈ Sn. We say that π has
cycle type λ = (λ1, . . . , λk) ` n if π is the product of disjoint cycles of size λ1, λ2, . . . , λk. (Note
that π’s length-1 cycles are included.) The standard notation for this is ρ(π) = λ. However we
will use this notation extremely sparingly (and with warning) so as to preserve the symbol “ρ”
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(a) French notation. (b) Russian notation (in dashed lines). The marks on the hori-
zontal axis are integral x-values, and the heavy black line is the
curve λ(x).

Figure 1: Two ways of drawing the partition λ = (6, 4, 4, 3, 3).

for density matrices. In aid of this, we adopt the following convention: whenever a permutation π
appears in a place where a partition λ is expected, the meaning is that λ should be the cycle type
of π. We also use the following standard notation:

zλ :=
∏
w≥1

(wmw(λ) ·mw(λ)!).

When λ ` n, the quantity n!/zλ is the number of permutations in Sn of cycle type λ, so z−1
λ

represents the probability that a uniformly random permutation in Sn has cycle type λ.

It is standard to represent a partition λ ` n pictorially with a Young diagram; i.e., a certain
arrangement of n squares, called cells or boxes. There are several conventions for how to draw
Young diagrams: we will define the French notation, the Russian notation, and the Maya notation.
3

In the French notation, the Young diagram for λ = (λ1, . . . , λk) is drawn with left-justified
rows of cells: λ1 cells in the bottom row, λ2 cells on top of this, λ3 cells on top of this, etc. As
an example, the French notation for (6, 4, 4, 3, 3) is pictured in Figure 1a. We think of the French
diagram as consisting of unit squares sitting in R2

+, with bottom-left corner at the origin.
Given the French diagram, it’s natural to define the width of λ as λ1, and to refer to `(λ) as

its height. We can also define the conjugate partition of λ to be the partition λ′ ` n obtained
by reflecting the French diagram through the line y = x; i.e., exchanging rows and columns. For
example, the conjugate of λ = (6, 4, 4, 3, 3) is λ′ = (5, 5, 5, 3, 1, 1). Note that the height of λ is the
width of λ′, and vice versa; in particular, we sometimes prefer the notation λ′1 to `(λ).

We now define the Russian notation for λ. This is obtained from the French notation by first
rotating the diagram 45◦ counterclockwise about the origin, and then dilating by a factor of

√
2;

see Figure 1b. The purpose of the dilation is so that the corners of the boxes will have integer x-
and y-coordinates. The purpose of the rotation is so that conjugation corresponds to reflection in
the y-axis and so that the boundary of the diagram forms the graph of a function:

3We will not require the English notation, which is the reflection of the French notation across the horizontal axis.
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Definition 2.3. Given a partition λ drawn in Russian notation, its upper boundary forms the
graph of a function with domain [−λ′1, λ1] ⊆ R. We extend this function to have domain all of R
according to the function x 7→ |x|. We will use the notation λ : R→ R+ for this function, which we
remark is a continuous and piecewise linear curve. Any time we write λ(x), where λ is a partition
and x ∈ R, we are referring to this curve. See Figure 1b for an example.

Finally, we define the Maya notation. It contains no boxes; just a sequence of black and white
pebbles. However the Maya notation is typically drawn in conjunction with the Russian notation,
with the pebbles being located on the half-integer points Z+ 1

2 of the x-axis. In the Maya notation,
a black pebble is placed at all points directly below a “downward-sloping” segment in λ’s graph,
and a white pebble is placed at all points directly below an “upward-sloping” segment. (Thus all
sufficiently negative half-integer points have a black pebble and all sufficiently positive half-integer
points have a white pebble.) The notation also includes a vertical tick mark to denote the location
of the origin. A picture of the Russian and Maya notation for λ = (6, 4, 4, 3, 3) appears later in
Figure 4 (the reader consulting it now should ignore the red and green coloring, the dashed lines,
and the box labeled “d”). One can check that the sequence of pebbles uniquely identifies the
partition λ. It also uniquely determines the position of the origin mark, in that the number of
black pebbles to the right of the origin mark always equals the number of white pebbles to the
left of the origin mark. These numbers are both equal to d(λ), defined to be the number of cells
touching the y-axis in the Russian diagram. We make one more definition:

Definition 2.4. Given the Maya diagram of a partition λ, we may define its modified Frobenius
coordinates to be the half-integer values a∗1 > a∗2 > · · · a∗d > 0 and b∗1 > b∗2 > · · · > b∗d > 0 (for
d = d(λ)), where a∗i is the position of the ith rightmost black pebble and b∗i is the negative of the
position of the ith leftmost white pebble. One may check that, equivalently, a∗i = λi − i + 1

2 and
b∗i = λ′i − i + 1

2 . For example, if λ = (6, 4, 4, 3, 3), then a∗ = (11
2 ,

5
2 ,

3
2) and b∗ = (9

2 ,
7
2 ,

5
2). The

coordinates have the property that
∑

i(a
∗
i + b∗i ) = |λ|.

For a partition λ (drawn either in the French or Russian notation), we often use the symbol
“�” to denote a box in λ’s Young diagram. We write [λ] for the set of all boxes in the diagram.
Each box � ∈ [λ] is indexed by an ordered pair (i, j), where i is �’s row and j is �’s column. Note
that this indexing is slightly peculiar vis-a-vis the French notation, in which the center of � has
Cartesian coordinates (j − 1

2 , i−
1
2). We define the content of cell � to be c(�) := j − i. Note that

in the Russian diagram, the content of � is the x-coordinate of its center. We also define the hook
length h(�) of � via the French notation: it is the number of cells directly to the right or above �,
including � itself; equivalently, it is (λi − j) + (λ′j − i) + 1.

Having defined “content” for cells in a Young diagram, we may introduce some convenient
notation (essentially from [OO98b]) that generalizes the standard notions of “falling factorial power”
and “rising factorial power”. First, for z ∈ R and m ∈ N, recall the falling factorial power4

z↓m := z(z − 1)(z − 2) · · · (z −m+ 1)

and rising factorial power

z↑m := z(z + 1)(z + 2) · · · (z +m− 1).

We generalize this notation to the case of an arbitrary partition λ ` m:

z↓λ :=
∏
�∈[λ]

(z − c(�)) and z↑λ :=
∏
�∈[λ]

(z + c(�)).

4Or Pochhammer symbol, sometimes denoted (z)m or zm.
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2 3 3

2 2 3 3

3 3 4 5

5 6 6

6 7 8

1 1 1

Figure 2: A semistandard tableau of shape λ = (6, 4, 4, 3, 3) with alphabet [8].

2.3.1 Random words and Young diagrams, and symmetric polynomials

Definition 2.5. Let A be an alphabet ; i.e., a totally ordered set. Most often we consider A = [d].
A word is a finite sequence (a1, . . . , an) of elements from A. It is weakly increasing if a1 ≤ a2 ≤
· · · ≤ an and strongly (or strictly) increasing if a1 < a2 < · · · < an. If D is a probability distribution
on A we write D⊗n to denote the probability distribution on words of length n given by drawing
the letters independently from D.

Definition 2.6. Given a word a ∈ [d]n, there is an associated partition λ ` n of length at most d
called the sorted type (or histogram). It is defined as follows: λi is the frequency of the ith-most
frequent letter in a, for 1 ≤ i ≤ d. In other words, λ is the histogram of letter frequencies, sorted
into nonincreasing order. For example, the sorted type of (4, 1, 3, 4, 4, 4, 1, 4) ∈ [4]8 is (5, 2, 1, 0) ` 8.

Definition 2.7. Let x1, . . . , xd be indeterminates, typically standing for real numbers. For m ∈ N,
the mth power sum symmetric polynomial is pm(x) =

∑d
i=1 x

m
i . More generally, for a partition λ

we define pλ(x) =
∏`(λ)
i=1 pλi(x). By our conventions, if π ∈ Sn then pπ(x) denotes pλ(x), where

λ is the cycle type of π. If D = (η1, . . . , ηd) is a probability distribution on [d], there is a natural
interpretation of pπ(ηd, . . . , ηd): it is the probability that a random word a ∼ D⊗n is invariant
under the permutation π.

Definition 2.8. Let λ ` n, and think of its Young diagram in the French notation. If each cell is
filled with an element from some alphabet A, we call the result a Young tableau of shape λ. The
Young tableau is said to be semistandard if its entries are weakly increasing from left-to-right along
rows and are strongly increasing from bottom-to-top along columns. Figure 2 gives an example
semistandard tableau of shape (6, 4, 4, 3, 3). If the rows are in fact strongly increasing, the Young
tableau is called standard.

Definition 2.9. For reasons we will see later, the number of standard Young tableaus5 of shape
λ ` n over alphabet [n] is denoted dim(λ). It can be computed via the Hook-Length Formula of
Frame, Robinson, and Thrall [FRT54] (see also [Sta99, Corollary 7.21.6]):

dim(λ) =
n!∏

�∈[λ] h(�)
.

We will also consider counting semistandard tableaus, via the following definition:

5Often spelled “tableaux”.
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Definition 2.10. Let x1, . . . , xd be indeterminates, typically standing for real numbers. Given
λ ` n, the Schur polynomial sλ(x1, . . . , xd) is the degree-n homogeneous polynomial defined by∑

T x
T , where the sum is over all semistandard tableaus of shape λ over alphabet [d], and where

xT :=
d∏
i=1

x
(# of occurrences of letter i in T )
i .

The following formula from [Sta99, Corollary 7.21.4] thereby lets us count the number of such
tableaus:

sλ(1, 1, . . . , 1︸ ︷︷ ︸
d entries

) =
d↑λ∏

�∈[λ] h(�)
.

We record here a consequence of the above two formulas:

Proposition 2.11. Let λ be a partition and let d ∈ Z+. Then sλ(1, . . . , 1︸ ︷︷ ︸
d entries

) =
(dimλ)d↑λ

|λ|!
.

When `(λ) > d, there are no semistandard tableaus of shape λ over alphabet [d]. Thus, the
sum

∑
T x

T is the empty sum. This gives us the following fact about Schur polynomials:

Proposition 2.12. Consider the Schur polynomial sλ(x1, . . . , xd). If `(λ) > d then sλ ≡ 0.

Though it is not at all obvious from the definition, the Schur polynomials are symmetric. This
can be inferred from the following classical fact (see e.g. [Sta99, Theorem 7.15.1]), which expresses
them as the ratio of a skew-symmetric polynomial and the Vandermonde determinant:

Theorem 2.13. sλ(x1, . . . , xd) =
det
(
x
d+λj−j
i

)
ij

det
(
xd−ji

)
ij

.

We will actually not need this formula. Instead, we will next describe a combinatorial algorithm
which gives an interpretation for sλ(η1, . . . , ηd) when D = (η1, . . . , ηd) is a probability distribution.

2.3.2 The RSK algorithm

We now describe the Robinson–Schensted–Knuth (RSK) algorithm RSK(·), which takes as input a
word a ∈ An and outputs a partition λ = RSK(a) ` n. The relevance of RSK to quantum spectrum
testing is described at the end of this section. As there are many descriptions of the RSK algorithm
in the literature (see, e.g., [Knu70, Bay02, Dor05, Rom14]), we will be brief.

The RSK algorithm. Given as input a word a = (a1, . . . , an) over (ordered) alphabet A, the
RSK algorithm produces a sequence T0, . . . , Tn of semistandard tableaus over A, with Ti having
size i (and being thought of in French notation). Tableau Ti+1 is produced from tableau Ti via
the “insertion” of letter ai into the 1st row. The insertion algorithm for letter b into row j of
tableau T is as follows: Find the rightmost position in the jth row such that if b were placed there,
weak-increasingness along row j would be maintained. If this position is at the end of the row, the
insertion of b is complete. If instead it is at a cell that already contains some letter c (which will in
fact be the least c in row j with c > b) then c is “bumped up”. By this we mean that the insertion
algorithm is recursively applied to letter c and row j + 1 of T (which may be a newly created row,
in which the insertion will immediately terminate with c in its own row at the top of T ). In the
end, the output of the RSK algorithm is the Young diagram λ ` n given by the shape of Tn; i.e.,
RSK(a) is Tn with its cell entries erased.
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To get some feel for this algorithm, note that if the inserted word a is weakly increasing then
RSK(a) = (n) ` n. On the other hand, if a is strongly decreasing, the output will be RSK(a) =
(1, 1, . . . , 1) ` n. More generally, it is not hard to show that when RSK(a) = λ, the value λ1

is the length of the longest weakly increasing subsequence of a, and `(λ) = λ′1 is the length of
the longest strongly decreasing subsequence of a. Even more generally, we have the following
theorem of Greene [Gre74], completely characterizing the partition RSK(a) in terms of increasing
subsequences:

Theorem 2.14. Let RSK(a) = λ. Then for each k ≥ 1, the value λ1 + . . .+λk is the length of the
longest k-increasing subsequence in a (as defined in Fact 1.6).

Indeed, the RSK algorithm is most commonly used in the literature to study the length of the longest
increasing subsequence of a random permutation (equivalently, of a random word a ∼ X⊗n, where
X denotes the uniform distribution on the alphabet A = [0, 1]).

Let us note one immediate consequence of Greene’s theorem. (This consequence may also be
derived directly from the description of the RSK algorithm.)

Proposition 2.15. Given a ∈ [d]n, let RSK(a) = λ. Write ci(a) for the number of letter i’s in a.
Then λ majorizes c(a) := (c1(a), . . . , cd(a)).

To see why this is true, note that for each k ∈ [d], the all one’s, all two’s, . . . , and all k’s subsequences
together form a k-increasing subsequence of size c1(a) + . . . + ck(a), which by Theorem 2.14 is at
most λ1 + . . . + λk, giving the proposition. As c(a) is the histogram of a, this shows that we can
view RSK(a) as a “shifted histogram” of a in which cells are shifted towards the lower numbers.

Although Greene’s Theorem succinctly characterizes the output by the RSK algorithm, it is
important to retain the algorithm itself and even to consider an extension of it. Suppose that when
the RSK algorithm is applied to a we also form a standard tableau T ′ over alphabet [n], where T ′

has the same shape as Tn and each cell � in T ′ is labeled by the “time” at which � was created
in Tn. As noted by Knuth [Knu70], the word a is uniquely determined by the pair (Tn, T

′). As a
consequence of this and of previous formulas, it is not hard to verify the following important fact,
perhaps first observed by Its, Tracy, and Widom [ITW01, equation (2-1)]:

Proposition 2.16. Let a ∼ D⊗n, where D = (η1, . . . , ηd) is a probability distribution on [d]. Then
for each λ ` n,

Pr[RSK(a) = λ] = dim(λ) · sλ(η1, . . . , ηd).

By the symmetry of the Schur polynomials, this implies the surprising fact that the distribution
of RSK(a) is invariant to permutations of D.

Finally, we mention the connection between the RSK algorithm and quantum spectrum testing.
As we will eventually see in Section 2.6 (Remark 2.24), all of quantum spectrum testing can be
boiled down to classical testing of symmetric probability distributions D, with the following twist:
Rather than getting to see a random word a sampled from D⊗n, the tester only gets to see the
partition λ = RSK(a). In light of Greene’s Theorem 2.14, this statement is equivalent to Fact 1.6.

2.4 Representation theory, and the symmetric group

Herein we recall some basics of representation theory. We will mainly focus on C-representations of
finite groups G (though at one point we will want to consider representations of the unitary group).
We may therefore define a representation µ of G to be a group homomorphism from G into Ud, for
some d ∈ Z+. Here Ud denotes the group of d × d unitary matrices. The number d is also called
the dimension of the representation µ and is denoted dim(µ).
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Two representations µ1 and µ2 are said to be isomorphic if there is some unitary matrix U such
that Uµ1U

† = µ2. In this case we write µ1
∼= µ2. The direct sum of k representations µ1, . . . , µk

produces the representation µ given by block-diagonal matrices:

µ(g) :=


µ1(g) 0 . . . 0

0 µ2(g) . . . 0
...

...
. . .

...
0 0 . . . µk(g)

 (3)

for all g ∈ G. Equivalently, we may write

µ(g) :=
k∑
i=1

|i〉〈i| ⊗ µi(g). (4)

We will also write µ = µ1 ⊕ . . .⊕ µk to denote that µ is the direct sum of µ1, . . . , µk.
Let µ1 be a representation of the group G1 and µ2 be a representation of the group G2. Then

the tensor product of µ1 and µ2, denoted µ1 ⊗ µ2, is the representation defined by

(µ1 ⊗ µ2) (g, h) := (µ1(g))⊗ (µ2(h)),

where the right-hand side uses the ordinary matrix tensor product. We have dim(µ1 ⊗ µ2) =
dim(µ1) · dim(µ2).

In our setting, a representation µ ofG is said to be reducible if there are representations µ1 and µ2

such that µ ∼= µ1 ⊕ µ2. Otherwise it is irreducible, and is often called an irrep for brevity. Every
representation can be uniquely decomposed into a direct sum of irreps (up to isomorphism and
rearrangement of summands). Further, the set of all irreps of G (up to isomorphism), denoted Ĝ, is
finite. Indeed, if we define the regular representation ofG to be the |G|-dimensional representationR
given by R(g) =

∑
h∈G |gh〉 〈h|), then R’s decomposition into irreps contains every µ ∈ Ĝ, with µ

occurring dim(µ) times. As a consequence, we have the formula

|G| =
∑
µ∈Ĝ

(dimµ)2.

This fact leads to a natural probability distribution on irreps of G:

Definition 2.17. For a finite group G, the Plancherel distribution is the probability distribution
on irreps in which µ ∈ Ĝ has probability (dimµ)2/|G|.

For a group G and a representation µ, the character χµ is the function χµ : G→ C defined by

χµ(g) = tr(µ(g)),

for each g ∈ G. We have the following simple fact:

Fact 2.18. Let µ be a representation of G. Then χµ is a class function; i.e., it is constant on the
conjugacy classes of G.

We now recall some basics of Fourier analysis over an arbitrary finite group G (though we will
ultimately only need the case G = Sn). For f, g : G → C we define 〈f, g〉 = Eu∼G[f(u)g(u)].
Under this inner product, the characters (χµ)

µ∈Ĝ form an orthonormal basis for the space of class

functions f : G → C. For general f, g : G → C we define (f ∗ g)(u) = Ev∼G[f(v)g(v−1u)]; this
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includes a nonstandard normalization by 1
|G| . For a class function f and µ ∈ Ĝ we employ the

following “Fourier notation”: f̃(µ) = 〈f, χµ〉. (According to standard notation we would have

f̃(µ) = 1
|G|tr

(
f̂
)

). Then Fourier inversion is simply f =
∑

µ f̃(µ)χµ. Further, if g is another class

function we have the formula f̃ ∗ g(µ) = 1
dimµ f̃(µ)g̃(µ).

We close this section by specifically discussing the representation theory of the symmetric
group Sn. Two permutations π, σ ∈ Sn are conjugate within the group Sn if and only if they have
the same cycle type. As a result, the conjugacy classes of Sn can be identified with the partitions
of n. As it happens, the set Ŝn of irreps of the symmetric group can also be naturally identified
with the partitions of n. For λ ` n, we will use the notation pλ for the corresponding irrep of Sn.
(To avoid getting too far afield, we will not actually describe the representation pλ.) Recalling
Fact 2.18, we introduce the following notation:

Definition 2.19. Let λ ` n. We denote the character χpλ more simply as χλ. We remark that
χλ is known to take on only rational values; in particular, χλ = χλ. If µ ` n then we let χλ(µ)
denote χλ(π), where π ∈ Sn is any permutation with cycle type µ. This is well defined since χλ
is constant on the conjugacy classes of Sn. Finally, we also write dim(λ) for dim(pλ). It is well
known [Sag01, Theorem 2.6.5] that dim(λ) is equal to the number of standard Young tableaus of
shape λ over alphabet [n], explaining the notation from Definition 2.9.

Following Stanley [Sta99, Corollary 7.17.5], we can actually give a definition of the symmetric
group characters χµ in terms of the power sum and Schur polynomials:

Theorem 2.20. In the context of Fourier analysis over the group G = Sn, suppose µ ` n and
x ∈ Cd. Then p(·)(x) := π 7→ pπ(x) is a class function, and its Fourier coefficients are given by

p̃(·)(x)(µ) = sµ(x).

Although this can be taken as an implicit definition of the characters χµ, we will more often think
of the characters χµ as “known” and of Theorem 2.20 as letting us express the Schur polynomials
in terms of the power sum polynomials.

2.5 Weak Schur sampling

In this section we will introduce the weak Schur sampling algorithm. Our treatment of this topic
will heavily follow the treatments given in Aram Harrow’s thesis [Har05] and the paper [CHW07].

To motivate the algorithm let us briefly consider the classical problem of testing symmetric
properties of probability distributions on [d]. In this model, the tester obtains a random word
a = (a1, . . . ,an), where each letter ai is drawn independently from an unknown distribution D
on [d]. The tester wants to decide whether D satisfies a certain symmetric property P. Since
the samples a1, . . . ,an are independent, the tester could—without loss of generality—randomly
permute them according to any π ∈ Sn. Similarly, since the property P is symmetric, the tester
could—again, without loss of generality—simultaneously apply any permutation σ ∈ Sd to the
letters it sees. Roughly speaking, the tester can “factor out” the action of the group Sn×Sd. The
information that remains is precisely the sorted type λ ` n of a (recall Definition 2.6).6 Thus we
see that the task of analyzing property testing of symmetric probability distributions boils down to
the task of understanding the random partition λ ` n (of length at most d) induced as the sorted
type of a random word drawn from D⊗n.

6This partition carries the same information as the so-called “fingerprint” used in classical property litera-
ture [Bat01, Val08].
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A similar but more complicated state of affairs holds for quantum spectrum testing. In this
case, there is an unknown d-dimensional mixed state ρ, and the tester may measure n copies, ρ⊗n,
in an attempt to determine whether ρ satisfies a certain unitarily-invariant property P. As before,
the tester could (without loss of generality) randomly permute the copies according to any π ∈ Sn.
And in this quantum scenario, by the unitary-invariance of P, the tester could also (without loss
of generality) simultaneously apply any unitary U ∈ Ud to each copy. Weak Schur sampling refers
to the process of “factoring out” this action of Sn×Ud. What remains is again a random partition
λ ` n of length at most d, whose distribution depends only on the spectrum of ρ. (In fact, as
we will see later in Remark 2.24, the distribution of λ is precisely that of RSK(a) where a is a
random word chosen according to the probability distribution on [d] defined by ρ’s spectrum.) To
understand this situation more thoroughly, we will need to discuss representation theory in more
detail.7

As mentioned above, the groups Sn and Ud each have a natural, unitary action on the space (Cd)⊗n;
the associated representations P and Q (respectively) are defined on the standard basis vectors
|a1〉 ⊗ |a2〉 ⊗ · · · ⊗ |an〉 (for ai ∈ [d]) via

P(π) |a1〉 ⊗ |a2〉 ⊗ . . .⊗ |an〉 = |aπ−1(1)〉 ⊗ |aπ−1(2)〉 ⊗ . . .⊗ |aπ−1(n)〉,
Q(U) |a1〉 ⊗ |a2〉 ⊗ . . .⊗ |an〉 = (U |a1〉) ⊗ (U |a2〉) ⊗ . . .⊗ (U |an〉).

We know the irreps of Sn are indexed by partitions of n; thus, the representation P must decompose
as

P(π)
Sn∼=
⊕
λ`n

pλ(π)⊗ Imλ , (5)

with mλ denoting the number of copies of pλ in the decomposition. The representation Q also
decomposes into irreps of the group Ud. As it happens, these (infinitely many) irreps can also be
naturally identified with partitions; specifically, for each partition λ ∈ Par with length at most d,
there is an associated irrep qdλ ∈ Ûd. Furthermore, the theory of Schur–Weyl duality states that
there is significant joint structure to these two decompositions. This structure ultimately arises
because the two representations P and Q commute (i.e., P(π)Q(U) = Q(U)P(π) for all π ∈ Sn,
U ∈ Ud), and hence the simultaneous action PQ defined by PQ(π, U) := P(π)Q(U) is a representation
of the direct product group Sk × Ud.

Schur–Weyl duality. PQ
Sn×Ud∼=

⊕
λ`n

pλ ⊗ qdλ.

In particular, by taking U = id we see that mλ, the multiplicity of pλ in the decomposition of P, is
equal to dim(qdλ). Similarly, by taking π = id, we see that the multiplicity of qdλ in the decomposition
of Q is dim(λ) = dim(pλ).

To restate Schur–Weyl duality, there exists a certain dn × dn unitary matrix USchur such that

USchurP(π)Q(U)U †Schur =
∑
λ`n
|λ〉〈λ| ⊗ pλ(π)⊗ qdλ(U), (6)

for all π ∈ Sn, U ∈ Ud. We view USchur as a unitary linear transformation that performs a change
of basis, from the standard basis into the Schur basis. We may now state the weak Schur sampling
algorithm:

7In particular, we will go slightly beyond the framework from Section 2.4 by mentioning representations of the
unitary group, which is of course not a finite group.

19



Weak Schur sampling. Given ρ⊗n, where ρ is a d-dimensional mixed state, the weak Schur
sampling algorithm works as follows:

1. Measure ρ⊗n in the Schur basis, receiving basis state |λ〉 ⊗ |p〉 ⊗ |q〉.

2. Output λ, a partition of size n and length at most d.

We will write SWn
ρ for the distribution on partitions induced from ρ⊗n by the weak Schur

sampling algorithm. We will also use the shorthand

SWn
ρ (λ) := Pr

λ∼SWn
ρ

[λ = λ].

As we will state shortly, performing weak Schur sampling is without loss of generality in the
context of testing unitarily invariant properties. To see why, suppose ρ is a d-dimensional mixed
state, and consider the product mixed state ρ⊗n. Then it’s not too hard to show (using invariance
under P and Schur’s Lemma, see e.g. [Har05, equation (6.1)]) that when represented in the Schur
basis, it has a “trivial Sn register”:

Fact 2.21. We may write USchurρ
⊗nU †Schur =

∑
λ`n |λ〉〈λ| ⊗ I ⊗ R

ρ
λ, for some matrices Rρλ. Here,

for each λ we interpret I as the dim(λ)× dim(λ) identity matrix.

As a consequence, it makes sense that a testing algorithm may discard the Sn register. Now
in general, the “Ud register” Rρλ of ρ⊗n is not trivial, and thus it may seem like the tester is
losing information by discarding it. (Indeed, this potential loss is the source of the word “weak”
in the phrase “weak Schur sampling”.) However when testing unitarily invariant properties of ρ,
the state ρ⊗n should be treated no differently than the state Q(U)ρ⊗nQ(U †) = (UρU †)⊗n, for any
U ∈ Ud. In particular, a tester could average over all unitaries U , and this would cause the
resulting state to have trivial a Ud register in the Schur basis. This idea is formalized in the
next lemma, which shows that weak Schur sampling is an optimal quantum measurement for the
testing of unitarily invariant properties. The lemma, implicit in [CHW07], can be found with proof
in [MdW13, Lemma 19].

Lemma 2.22. Let P be a unitarily invariant property of d-dimensional mixed states. Assume there
exists a tester which uses n copies of the input state ρ, accepts all states ρ ∈ P with probability
at least 1 − δ, but accepts all states which are ε-far from P with probability at most 1 − f(ε) for
ε > 0. Then there exists a tester with the same parameters which consists of performing weak Schur
sampling on ρ⊗n and then classically postprocessing the results.

As a result of this lemma, we are able to focus exclusively on the weak Schur sampling algorithm in
this paper. One final remark: Although our quantum spectrum testing upper bounds are formally
only concerned with copy complexity, they can in fact also be implemented efficiently, by (quantum)
algorithms running in time poly(n, log d, log(1/ε)). This holds because the only expensive operation
is the computation of the Schur change-of-basis, and this can be done in poly(n, log d, log(1/ε)) time;
see [BCH05, Appendix A], [Har05, Section 8.1.1].

2.6 Understanding the weak Schur sampling distribution

There are a several ways to understand the probability distribution induced by weak Schur sampling
algorithm, each of which proves advantageous in different settings. Let us begin with a direct
calculation that expresses the probabilities in terms of the Schur polynomials. The following known
fact may be attributed to Alicki et al. [ARS88]; see [Aud06, equation (36)] for further discussion.
We will include a proof for the reader’s convenience.

20



Proposition 2.23. Let ρ be a d-dimensional density matrix with eigenvalues η1, η2, . . . , ηd. Then

SWn
ρ (λ) = dim(λ) · sλ(η1, η2, . . . , ηd).

In particular, SWn
ρ depends only on the spectrum of ρ.

Remark 2.24. As this is the exact same formula as in Proposition 2.16, we conclude that if D is
the probability distribution on [d] given by the spectrum of ρ (in any order), then

SWn
ρ (λ) = Pr

a∼D⊗n
[RSK(a) = λ].

This gives a completely “quantum-free” way of analyzing quantum spectrum testing, as mentioned
in Fact 1.6. Nevertheless, we will actually use this fact only occasionally (mainly via Theorem 2.14).
As we will see later, interpreting SWn

ρ via representation theory proves to be more powerful.

Proof of Proposition 2.23. By definition, SWn
ρ (λ) = tr(Πλρ

⊗n), where Πλ denotes the operator that
projects onto the subspace corresponding to λ in the Schur basis. It is a basic fact of representation
theory (following from orthogonality relations, see e.g. [CHW07, Equation (7)]) that from the
decomposition (5) of P we may deduce

Πλ = dim(λ) · E
π∼Sn

[
χpλ(π) · P(π)

]
= dim(λ) · E

π∼Sn
[χλ(π) · P(π)] .

Thus
SWn

ρ (λ) = dim(λ) · E
π∼Sn

[
χλ(π) · tr(P(π)ρ⊗n)

]
.

To compute the trace, we may assume by unitary invariance that ρ = diag(η1, . . . , ηd). Thus

ρ⊗n =
∑

words
(a1,...,an)∈[d]n

(
n∏
i=1

ηai

)
|a1, . . . , an〉 〈a1, . . . , an| .

Notice that if we let Dη denote the probability distribution on [d] in which Dη(a) = ηa, then the
coefficient

∏n
i=1 ηai above is D⊗nη (a1, . . . , an); i.e., the probability that a random length-n word

drawn i.i.d. from Dη is equal to (a1, . . . , an). From the definition of P(π) we further deduce

P(π)ρ⊗n =
∑

(a1,...,an)

D⊗nη (a1, . . . , an) |aπ−1(1), . . . , aπ−1(n)〉 〈a1, . . . , an| .

We immediately conclude that tr(P(π)ρ⊗n) is equal to the sum over all π-invariant words (a1, . . . , an)
of D⊗nη (a1, . . . , an). Recalling Definition 2.7, this is precisely given by the power sum polynomial
pπ(η1, . . . , ηd). Therefore

SWn
ρ (λ) = dim(λ) · E

π∼Sn
[χλ(π) · pπ(η1, . . . , ηd)] ,

and the proposition now follows from Theorem 2.20.

For the purposes of the testing lower bounds in this paper, the case of greatest interest to us is
when ρ = 1

dId×d is the maximally mixed d-dimensional state; i.e., the spectrum of ρ is the uniform
distribution Unifd = (1

d , . . . ,
1
d). This is also by far the most well-studied case in the literature:
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Definition 2.25. The Schur–Weyl distribution with parameters n and d, which we denote SWn
d ,

is the distribution on partitions λ ` n of length at most d given by SWn
ρ in the case that ρ is

the maximally mixed state of dimension d. Equivalently, it is the distribution of RSK(a), where
a ∼ [d]n is uniformly random.

Combining Proposition 2.23 and Proposition 2.11, together with the homogeneity of the Schur
polynomials, we obtain the following known formula (cf. [CHW07, equation (26)]):

Proposition 2.26. SWn
d (λ) =

(dimλ)2

n!
· d
↑λ

dn
.

Notice that if n is held fixed and d→∞, the fraction d↑λ

dn tends to 1 and we obtain the Plancherel
distribution (for Sn) on partitions described in Definition 2.17. This recovers the well-known fact
that the Plancherel distribution is obtained by running the RSK algorithm on a uniformly random
permutation (equivalently, a uniformly random word from [0, 1]n). We will write Planchn for this
distribution.

Remark 2.27. It is easy to see that SWn
d (λ) = 1

dn · dim(pλ) · dim(qdλ). From Remark 2.24, we see
that there are dim(pλ) · dim(qdλ) words a ∈ [d]n such that RSK(a) = λ.

2.7 Asymptotic theory of the symmetric group

For small n, the exact distribution on partitions of n given by the Plancherel or Schur–Weyl
distributions is not particularly easy to understand. As a result, a significant body of work has
been devoted to showing asymptotic properties of these distributions as n grows large.

Let us focus first on the Plancherel measure. Perhaps the most basic thing one could ask for is
the “typical” width and height of a diagram drawn from this distribution. Though either of these
values could be as large as n, Hammersly [Ham72] showed that both values tend to concentrate
around the same number c ·

√
n, for some constant c (later determined to be c = 2 [LS77, VK77]).

Therefore, in order to put partitions of different values of n on equal footing, we can define scaled
partitions as follows:

Definition 2.28. Let λ ` n and recall Definition 2.3. Then λ : R → R+ is defined as λ(x) :=
λ(
√
n · x)/

√
n, for all x.

Logan and Shepp [LS77] and Vershik and Kerov [VK77] independently proved the so-called “law
of large numbers” for the Plancherel distribution, showing that when λ ∼ Planchn and n → ∞,
the function λ converges to Ω(x), the curve defined as

Ω(x) :=

{
2
π (x arcsin x

2 +
√

4− x2), |x| ≤ 2,
|x| |x| ≥ 2.

This “ice cream cone”-shaped function is pictured in Figure 3 (c = 0 case). Though this curve is a
limiting shape rather than the Russian notation of any Young diagram, it is useful to think of it
as a continual analogue of a Young diagram, as per the following definition.

Definition 2.29. A continual diagram is a function f : R→ R satisfying (i) f is 1-Lipschitz and
(ii) f(x) = |x| when |x| is sufficiently large.

This definition originates in the paper of [Ker93a].
More recently, Kerov [Ker93b] showed a “central limit theorem” for the Plancherel measure,

characterizing the deviation of a random Young diagram from the curve Ω(x) by a certain Gaussian
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c = 0 c = 1/2

c = 1 c = 2

Figure 3: The Biane limiting curves Ωc. The c = 0 case corresponds to the function Ω(x).

process. A second proof of this result, also by Kerov, was given in the paper of Ivanov and
Olshanski [IO02]. Much of our work is based on the techniques of this paper.

Subsequent studies revealed that a similar state of affairs exists for the Schur–Weyl SWn
d dis-

tribution, though in this case the features of a “typical” λ ∼ SWn
d depend on the ratio c :=

√
n
d .

Biane [Bia01] extended the Plancherel law of large numbers to the Schur–Weyl distribution in the
case when c is a fixed constant and n, d → ∞. In this case, for a random λ ∼ SWn

d , the function
λ will approach a certain limiting curve Ωc, specified as follows:

Theorem 2.30 ([Bia01]). Fix an absolute constant c > 0 and assume n, d → ∞ with
√
n
d → c.

Then
Pr

λ∼SWn
d

[
‖λ− Ωc‖∞ ≥ ε

]
→ 0,

where Ωc is the continual diagram defined as follows:

Ω0(x) = Ω(x);

Ωc∈(0,1)(x) =

 2
π

(
x arcsin( x+c

2
√

1+cx
) + 1

c arccos(2+cx−c2
2
√

1+cx
) +

√
4−(x−c)2

2

)
if |x− c| ≤ 2,

|x| otherwise;

Ωc=1(x) =

{
x+1

2 + 1
π

(
(x− 1) arcsin(x−1

2 ) +
√

4− (x− 1)2
)

if |x− 1| ≤ 2,

|x| otherwise;

Ωc>1(x) =


x+ 2

c if x ∈ (−1
c , c− 2)

2
π

(
x arcsin( x+c

2
√

1+cx
) + 1

c arccos(2+cx−c2
2
√

1+cx
) +

√
4−(x−c)2

2

)
if |x− c| ≤ 2,

|x| otherwise.

These curves are pictured for various values of c in Figure 3 (which we have reproduced from [Mél10a]).
Meliot [Mél10a, Mél10b] has extended Kerov’s central limit theorem to the Schur–Weyl distribution,
characterizing the fluctuations of λ around the limiting curves given by Biane.
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One consequence is these results is that when n = o(d2), the function λ converges to the ice
cream cone curve Ω(x) from above. This fact is a manifestation of the discussion at the end of
Section 2.6 concerning SWn

d tending to Planchn as d→∞. Indeed, Childs et al. [CHW07] showed
that when n = o(d), the two distributions are statistically indistinguishable (from which the lower
bound in Theorem 1.9 follows via the triangle inequality dTV(SWn

r ,SWn
2r) ≤ dTV(SWn

r ,Planchn)+
dTV(Planchn, SWn

2r)).
We close this section by recording some simple concentration bounds on the width and length

of λ ∼ SWn
d . They are not as precise as what is suggested by the above limit theorems, but they

have the advantage of giving concrete error bounds. We follow a simple line of argument similar to
that in [Rom14, Lemma 1.5].

Proposition 2.31. Let λ ∼ SWn
d . For every B ∈ Z+ we have Pr[λ1 ≥ B] ≤

(
(1+B/d)e2n

B2

)B
. The

same bound holds for Pr[λ′1 ≥ B].

Proof. By Theorem 2.14, Pr[λ1 ≥ B] (respectively, Pr[λ′1 ≥ B]) is equal to the probability that a
uniformly random word from [d]n contains a weakly increasing (respectively, strongly increasing)
subsequence of length exactly B. As weakly increasing subsequences are more probable than
strongly increasing ones, it suffices to bound

Pr[λ1 ≥ B] ≤
(

(1 +B/d)e2n

B2

)B
.

Letting S denote the number of weakly increasing subsequences of length B in a random word we
have

Pr[λ1 ≥ B] ≤ E[S] =

(
n

B

)
· c
dB
,

where c is the number of words in [d]B which are weakly increasing. Evidently c also equals
the number of “weak d-compositions of B”, which [Sta11, Chapter 1.2] is

(
d−1+B
B

)
≤
(
d+B
B

)
. We

conclude

Pr[λ1 ≥ B] ≤
(
n

B

)
·
(
d+B
B

)
dB

≤

(
en
B

)B ( (1+B/d)ed
B

)B
dB

=

(
(1 +B/d)e2n

B2

)B
,

as needed.

2.8 Polynomial algebras

We have already discussed the power sum and Schur polynomials, which are elements of the C-
algebra Λ of symmetric polynomials in indeterminates x1, x2, . . . .

8 Important to our work will be
a closely related polynomial algebra Λ∗, the algebra of shifted symmetric polynomials, formally
introduced introduced in [OO98b]. This algebra consists of those polynomials which are symmetric
in the “shifted” indeterminates x̃i := xi − i + c, where c is any fixed constant. (The definition
does not depend on the constant c.) When we view the inputs to the shifted symmetric functions
x1, x2, . . . as the values λ1, λ2, . . . of a partition λ, the result is (isomorphic to) Kerov’s algebra
of polynomial functions on the set of Young diagrams, also known as the algebra of observables

8Strictly speaking, these are families of bounded-degree polynomials, one for each number of indeterminates,
which are stable in the sense that pλ(x1, . . . , xd, 0) = pλ(x1, . . . , xd), and similarly for sλ. See, e.g., [Mac95] for a
formal definition via projective limits.
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of diagrams. In a nutshell, the importance of this algebra is that, on one hand, it still contains
polynomials that are similar to “power sums” or “moments” of the λi’s; and, on the other hand, it
is easier to compute their expected value under SWn

ρ distributions.
We will need to study several families of observables/shifted symmetric polynomials, and their

relationships:

Definition 2.32. The following polynomials are known to be elements of Λ∗. (We describe the
first four as observables of Young diagrams.)

• For k ≥ 1,

p∗k(λ) :=

d(λ)∑
i=1

(
(a∗i )

k − (−b∗i )k
)

=
∞∑
i=1

(
(λi − i+ 1

2)k − (−i+ 1
2)k
)
.

These are the most basic polynomials on Young diagrams, giving the “moments” of the coordi-
nates. For more information on them see [IO02], where they are introduced (in equation (1.4))
under the notation pk(λ). We use the notation p∗k(λ) to distinguish them from the ordinary
power sum symmetric polynomials. It is obvious from the second definition above that the
p∗k polynomials are in Λ∗. In fact they are algebraically independent, and they generate Λ∗.

• For k ≥ 0, the kth content sum polynomial is ck(λ) :=
∑
�∈[λ] c(�)k. Although these polyno-

mials are quite natural, we will have little occasion to use them. The fact that they are in Λ∗

was proven in [KO94].

• For k ≥ 2,

p̃k(λ) := k(k − 1)

∫ ∞
−∞

xk−2σ(x) dx,

where σ(x) := 1
2(λ(x)−|x|). These polynomials were introduced and shown to be algebraically

independent generators of Λ∗ in [IO02, Section 2]. They can shown to be the “moments of
the local extrema of λ(x)”, and are also useful for studying continual diagrams. We use them

only briefly, to pass between the p∗k polynomials and p]k polynomials defined below.

• For λ ` n and µ ` k, the central characters are defined by

p]µ(λ) =

{
n↓k · χλ(µ∪1n−k)

dim(λ) if n ≥ k,
0 if n < k.

where µ ∪ 1n−k denotes the partition (µ, 1, 1, . . . , 1) ` n. In case µ = (k) we simply write

p]k(λ). Note that we are somewhat unexpectedly applying the character χλ to (an extension

of) µ, and not the other way around. The advantage of the p]µ polynomials is that, by virtue of
them being characters of the symmetric group (up to some normalizations), their expectations
under SWn

ρ can be easily calculated exactly, as we will see below. A disadvantage is that,
by virtue of them being characters of the symmetric group, explicit formulas for them are
famously quite complex [Las08, Fér10] (though in Section 2.8.1 we will mention a formula

that allows one to compute p]k for small k fairly easily). Wassermann [Was81, III.6] showed

that the p]k polynomials are in Λ∗, and in fact [VK81, KO94, OO98b] more generally the

polynomials p]µ form a linear basis of Λ∗.
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• For µ ` k, the shifted Schur polynomial in indeterminates x1, . . . , xd is

s∗µ(x1, . . . , xd) =
det
(

(xi − i+ d)↓(d+λj−j)
)
ij

det
(

(xi − i+ d)↓(d−j)
)
ij

if `(µ) ≤ d, else 0.

These polynomials are the shifted analogues of the Schur polynomials (cf. Theorem 2.13).
They were introduced by Okounkov and Olshanski [OO98b], and are similar to the earlier-
defined “factorial Schur functions” (see, e.g., [Mac95, I.3.20–21]), but with the advantage that
they are stable—i.e., s∗µ(x1, . . . , xd, 0) = s∗µ(x1, . . . , xd). They arise for us because they can
sometimes be used to express the ratio of two Schur functions (see the “Binomial Formula”
Theorem 4.6). To analyze them, we will use the following “shifted analogue” of Theorem 2.20,
proved in [OO98b, Theorem 8.1], [IK01, Theorem 9.1] (see also [Mél10b, p.25]):

Theorem 2.33. For µ ` k, let us think of the central character polynomial p]µ not as an
observable of Young diagrams (applied to λ1, . . . , λd) but as a shifted symmetric polynomial
in indeterminates x1, . . . , xd. In the context of Fourier analysis over the group G = Sk, for
each fixed x ∈ Cd we may think of p](·)(x) := π 7→ p]π(x) as a class function. Then its Fourier
coefficients are given by

p̃](·)(x)(µ) = s∗µ(x).

(Note that give the determinantal definition of the shifted Schur polynomials, one may alter-

natively take this Theorem as a definition of the shifted symmetric polynomials p]µ(x).)

As mentioned, the p]µ polynomials are especially important for us as because there is a simple
expression for their expectation under any Schur–Weyl distribution. This is the subject of our next
proposition.

Proposition 2.34. Let ρ be a d×d density matrix with eigenvalues η1, . . . , ηd, and let µ ` k. Then

E
λ∼SWn

ρ

[p]µ(λ)] = n↓k · pµ(η1, . . . , ηd).

Proof. It’s immediate from the definitions that both sides are 0 if n < k, so we assume n ≥ k.
Applying Proposition 2.23 and the definition of p]µ we obtain

E
λ∼SWn

ρ

[p]µ(λ)] = n↓k ·
∑
λ`n

sλ(η1, . . . , ηd) · χλ(µ ∪ 1n−k)

= n↓k · pµ∪1n−l(η1, . . . , ηd),

where the second equation is from Theorem 2.20. But pµ∪1n−l(η1, . . . , ηd) = pµ(η1, . . . , ηd), since
the two quantities differ only by factors of p1(η1, . . . , ηd) = η1 + · · ·+ ηd = 1.

Note that in the case of η1 = . . . = ηd = 1/d, we have that pµ(η1, . . . , ηd) = d`(µ)−k. This gives
us the following important corollary:

Corollary 2.35. Let µ ` k. Then E
λ∼SWn

d

[p]µ(λ)] = n↓k · d`(µ)−k.
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2.8.1 Working with the p]µ polynomials

As we will be working heavily with the p]µ polynomials, let us describe them further. We begin

with the simpler case of the p]k polynomials. Let us see how these polynomials can be written in
terms of the p∗k polynomials. From [Was81, III.6] (cf. [IO02, Proposition 3.3]) we have the following
identity using generating functions:

p]k = [tk+1]

−1

k

k∏
j=1

(1− (j − 1
2)t) · exp

 ∞∑
j=1

p∗j t
j

j
(1− (1− kt)−j)

 .

One may rewrite this (cf. [IO02, (3.3)]) as

p]k = [tk+1]

−1

k

k∏
j=1

(1− (j − 1
2)t) ·

∞∑
i=0

(−1)i

i!
Qk(t)

i

 , (7)

where

Qk(t) =
∞∑
m=1

Qk,mt
m+1, Qk,m = 1

1

(
m
0

)
kmp∗1 + 1

2

(
m
1

)
km−1p∗2 + 1

3

(
m
2

)
km−2p∗3 + · · ·+ 1

m

(
m
m−1

)
kp∗m. (8)

It follows that in (7) we may restrict the sum on i to the range between 0 and k+1
2 , and in (8) we

can restrict the sum on m to the range between 1 and k. We thereby obtain a relatively simple
finitary method for expressing p]k’s polynomials in terms of p∗j ’s. In particular, we can deduce

p]1 = p∗1, p]2 = p∗2, p]3 = p∗3 − 3
2(p∗1)2 + 5

4p
∗
1, p]4 = p∗4 − 4p∗2p

∗
1 + 11

2 p
∗
2. (9)

As observed in [IO02, Proposition 3.4], we can also deduce that in general,

p]k = p∗k +
{

polynomial in p∗1, . . . , p
∗
k−1 of gradation at most k − 1

}
, (10)

where gradation refers to the canonical grading in which
∏
i p
∗
λi

has gradation |λ|. We can of course
inductively invert this relationship, deducing that

p∗k = p]k +
{

polynomial in p]1, . . . , p
]
k−1 of gradation at most k − 1

}
. (11)

For example,

p∗1 = p]1, p∗2 = p]2, p∗3 = p]3 + 3
2(p]1)2 − 5

4p
]
1, p∗4 = p]4 + 4p]2p

]
1 − 11

2 p
]
2. (12)

Recall that the more general p]τ polynomials (for τ ∈ Par) are known to linearly generate the

algebra of observables. This means that any product p]µ1p
]
µ2 can be converted to a linear combi-

nation of p]τ ’s. In particular, if we applied this conversion in (12) we would get linear expressions

for the “low-degree moments of Young diagrams” (i.e., the p∗j ’s) in terms of p]τ ’s; we could then
compute the expectation of these, under any Schur–Weyl distribution, using Proposition 2.34.

We are therefore interested in the structure constants f τµ1µ2 of Λ∗ in the basis {p]τ}; i.e., the
numbers such that

p]µ1p
]
µ2 =

∑
τ∈Par

f τµ1µ2p
]
τ .

These were first determined by Ivanov and Kerov [IK01] in terms of the algebra of partial permu-
tations. We quote the following formulation from [IO02, Proposition 4.5]:
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Proposition 2.36. Let τ, µ1, µ2 ∈ Par. Fix a set R of cardinality |τ | and a permutation w : R→ R
of cycle type τ . Then

f τµ1µ2 =
zµ1zµ2
zτ

gτµ1µ2 ,

where gτµ1µ2 equals the number of quadruples (R1, w1, R2, w2) such that:

1. R1 ⊆ R, R2 ⊆ R, R1 ∪R2 = R;

2. |Ri| = |µi| and wi : Ri → Ri is a permutation of cycle type µi, for i = 1, 2;

3. w1w2 = w, where wi : R→ R denotes the natural extension of wi from Ri to the whole of R.

We present an equivalent formulation we have found to be more convenient. We omit its
straightforward combinatorial deduction from Proposition 2.36.

Corollary 2.37. Let

Ctr1r2 :=
r1!r2!

(t− r1)!(t− r2)!(r1 + r2 − t)!

if the positive integers r1, r2, t satisfy r1, r2 ≤ t ≤ r1 + r2, and let Ctr1r2 := 0 otherwise. Then for
µ ` r1, ν ` r2, τ ` t,

f τµν = Ctr1r2 · Pr
w1,w2

[w1w2 has cycle type τ ] ,

where w1 is a uniformly random permutation on {1, . . . , r1} of cycle type µ, and w2 is a uniformly
random permutation on {t− r2 + 1, . . . , t} of cycle type ν.

As very simple examples, we can compute

(p]1)2 = p](1,1) + p]1, p]2p
]
1 = p](2,1) + 2p]2, (p]2)2 = p](2,2) + 4p]3 + 2p](1,1). (13)

Substituting these into (9), we obtain the formulas

p∗1 = p]1, p∗2 = p]2, p∗3 = p]3 + 3
2p
]
(1,1) + 1

4p
]
1, p∗4 = p]4 + 4p](2,1) + 5

2p
]
2, (14)

which will be useful to us later.
Given the formula for the structure constants, it’s not hard to show that

p]µp
]
ν = p]µ∪ν +

{
linear combination of p]τ ’s with |τ | < |µ ∪ ν|

}
,

where µ ∪ ν denotes the partition formed by joining the parts of µ and ν and sorting them in
nonincreasing order (i.e., mw(µ∪ν) = mw(µ)+mw(ν)). In fact, we will require a stronger statement,
based on the following notion introduced in [IK01]:

Definition 2.38. For a partition λ ∈ Par, its weight is defined to be wt(λ) = |λ|+ `(λ).

Now Śniady [Śni06, Corollary 3.8] proved:

Proposition 2.39. p]µp
]
ν = p]µ∪ν +

{
linear combination of p]τ ’s with wt(τ) ≤ wt(µ) + wt(ν)− 2

}
.
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3 The empirical Young diagram algorithm

The empirical Young diagram (EYD) algorithm works as follows:

The EYD algorithm. Given ρ⊗n:

1. Sample λ ∼ SWn
ρ .

2. Output λ := (λ1/n, . . . ,λd/n).

This algorithm has, either implicitly or explicitly, arisen in several independent research threads.
The first was the work of Alicki, Rudnicki, and Sadowski [ARS88], who showed that if ρ has
eigenvalues η1 ≥ . . . ≥ ηd, then λ→ η as n→∞, and furthermore sketched a central limit theorem
for the fluctuations. Ten years later, Keyl and Werner [KW01] independently reproved the first part
of this result (and showed an “error rate” for the EYD algorithm which, for any fixed d, decreases
exponentially in n); they also explicitly suggested the EYD algorithm for spectrum estimation.
Further independent work, developing the research on the “Gaussian Unitary Ensemble” nature of
the fluctuations, was performed by Its–Tracy–Widom, Houdré and coauthors, and others [ITW01,
Lit08, HX13]

3.1 The upper bound

Following Keyl and Werner’s paper [KW01], a short, simplified proof of correctness containing
explicit error bounds was discovered in [HM02]. A small bug in their derivation was corrected
by [CM06], whose Corollary 1 states:

Theorem 3.1. Let ρ be a mixed state with eigenvalues η1 ≥ . . . ≥ ηd. Let S be any set of partitions
of n, and set dKL := minλ∈S dKL(λ, η). Then

Pr
λ∼SWn

ρ

[λ ∈ S] ≤ (n+ 1)d(d+1)/2 · e−n·dKL .

If we apply Theorem 3.1 with the set of partitions S = {λ ` n | dTV(λ, η) > ε} and use Pinsker’s
inequality, we get the following corollary:

Corollary 3.2. Let ρ be a mixed state with eigenvalues η1 ≥ . . . ≥ ηd. Then

Pr
λ∼SWn

ρ

[dTV(λ, η) > ε] ≤ (n+ 1)d(d+1)/2 · e−2nε2 .

In particular, O(d2/ε2) · log(d/ε) · log(1/δ) samples are sufficient to output an estimate λ satisfying
dTV(λ, η) ≤ ε with probability at least 1− δ.

This means that any unitarily invariant property of mixed states is testable with O(d2/ε2) · log(d/ε)
copies.

We now give a simplified proof of Theorem 3.1. This will largely follow the outline of the
proof found in [HM02, CM06], except we will reinterpret their majorizing step in light of the RSK
algorithm.

Proof of Theorem 3.1. Define the probability distribution D = (η1, . . . , ηd). For a fixed parti-
tion λ ∈ S, Remark 2.24 shows that upper-bounding SWn

ρ (λ) is equivalent to upper-bounding
Pra∼D⊗n [RSK(a) = λ]. By Proposition 2.15, RSK(a) = λ only if λ majorizes c(a).
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By Remark 2.27, there are exactly dim(pλ) · dim(qdλ) words a ∈ [d]n for which RSK(a) = λ. By
the majorizing step, the probability that such an a is drawn from D⊗n is∏

i

η
ci(a)
i ≤

∏
i

ηλii .

From this point on, the rest of the argument is as in [HM02, CM06]. Recall the well-known upper
bounds (cf. [Chr06, Equations (1.21) and (1.22)])

dim(pλ) ≤ n!∏
i λi!

, dim(qdλ) ≤ (n+ 1)d(d−1)/2.

Thus, we can upper-bound Pra∼D⊗n [RSK(a) = λ] by

(n+ 1)d(d−1)/2 · n!∏
i λi!
·
∏
i

ηλii ≤ (n+ 1)d(d−1)/2 · exp(−n · dKL(λ, η)).

To recover Theorem 3.1, we now union bound over all λ ∈ S, of which there are at most (n+1)d.

3.2 The lower bound

Our main result of this section is that Corollary 3.2 is nearly tight, even when ρ is the maximally
mixed state. In particular, we show the following lower bound:

Theorem 3.3. There is a δ > 0 such that for sufficiently small values of ε,

Pr
λ∼SWn

d

[dTV(λ,Unifd) > ε] ≥ δ

unless n = Ω(d2/ε2).

We will split the lower bound into two cases.

Theorem 3.4. For every constant C > 0, there are constants δ, ε > 0 such that

Pr
λ∼SWn

d

[dTV(λ,Unifd) > ε] ≥ δ

when n < Cd2 and d is sufficiently large.

Theorem 3.5. There are absolute constants C > 0 and 0 < δ < 1 such that

Pr
λ∼SWn

d

[dTV(λ,Unifd) > ε] ≥ δ

when n ≥ Cd2, unless n = Ω(d2/ε2).

To prove Theorem 3.3, let C and δ1 be the constants in Theorem 3.5. Apply Theorem 3.4 with
the value of C, and let δ2 and ε0 be the resulting constants. Set δ := min{δ1, δ2}. Then we see that
for all ε ≤ ε0,

Pr
λ∼SWn

d

[dTV(λ,Unifd)) > ε] ≥ δ

unless n = Ω(d2/ε2), giving Theorem 3.3.
Theorem 3.4 might appear somewhat superfluous, as Theorem 3.5 already proves the lower

bound for sufficiently large values of n (i.e., n ≥ Cd2), and intuitively having fewer copies of ρ
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shouldn’t improve the performance of the EYD algorithm. However, this intuition, though it may
be true in some approximate sense, is false in general: there are regimes of state estimation where
the performance of the EYD algorithm does not increase monotonically with the value of n. For
example, if n is a multiple of d, then when λ ∼ SWn

d , λ will equal Unifd with some nonzero
probability. On the other hand, a random λ ∼ SWn+1

d will never be uniform, because n+1 is not a
multiple of d. Thus, decreasing the value of n can sometimes help (according to some performance
metrics), and this shows why we need Theorem 3.4 to supplement Theorem 3.5.

The proof of Theorem 3.4 is quite technical, and we defer it to Section 7. Our proof of Theo-
rem 3.5 is simpler and appears below. It is a good illustration of the basic technique of using polyno-
mial functions on Young diagrams. The intuition behind the proof is as follows: By the (traceless)
Gaussian Unitary Ensemble fluctuations predicted in [ITW01], we expect that for λ ∼ SWn

d , the
empirical distribution λ will deviate from Unifd by roughly Θ(1/

√
n) in each coordinate. This will

yield total variation distance Θ(d/
√
n), necessitating n ≥ Ω(d2/ε2) to achieve dTV(λ,Unifd) ≤ ε.

Actually analyzing the precise rate of convergence to Gaussian fluctuations in terms of n is difficult,
and is overkill anyway; instead, we use the Fourth Moment Method to lower bound the fluctuations.

Proof of Theorem 3.5. Our goal is to show that for n ≥ 1010d2, with 1% probability over a random
λ ∼ SWn

d , at least d
200 coordinates i ∈ [d] satisfy∣∣∣λi − n

d

∣∣∣ ≥ √n
1000

.

When this event occurs,

dTV(λ,Unifd) =
1

2
·

d∑
i=1

∣∣∣∣λin − 1

d

∣∣∣∣ =
1

2
·

d∑
i=1

1

n
·
∣∣∣λi − n

d

∣∣∣
≥ 1

2
· d

200
· 1

n
·
√
n

1000
=

1

400000
· d√

n
,

which is bigger than ε unless n = Ω(d2/ε2). Showing this will prove Theorem 3.5 with the param-
eters C = 1010 and δ = .01.

To begin, let us define a family of polynomials.

Definition 3.6. Given k ≥ 1 and c ∈ R, we define p∗k,c(λ) :=
∑∞

i=1(λi − i− c)k − (−i− c)k.

This generalizes the definition of the p∗k polynomials, as p∗
k,− 1

2

= p∗k.

Fact 3.7. Let c ∈ R. Then

• p∗2,c = (−2c− 1)p]1 + p]2, and

• p∗4,c = (−4c3− 6c2− 4c− 1)p]1 + (6c2 + 6c+ 4)p]2 + (−6c− 3)p](1,1) + (−4c− 2)p]3 + 4p](2,1) + p]4.

Proof. By explicit computation, one can check that

p∗2,c = 2(−c− 1
2)p∗1 + p∗2, p∗4,c = 4(−c− 1

2)3p∗1 + 6(−c− 1
2)2p∗2 + 4(−c− 1

2)p∗3 + p∗4.

(Indeed, it’s not hard to show that in general, p∗k,c =
∑k

j=1

(
k
j

)
(−c − 1

2)k−jp∗j .) The claim now
follows from (14).
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For any c, these formulas allow us to compute the expected value of p∗2,c and p∗4,c over a random

λ ∼ SWn
d , by using Corollary 2.35. Furthermore, for any k and d,

∑d
i=1(−i − c)k is a constant

which doesn’t depend on λ. Combining these two facts allows us to compute average value over a
random λ ∼ SWn

d of
∑d

i=1(λi − i− c)k, for k = 2, 4. In particular, we are interested in computing
this expectation when c = n

d . Write Li := λi − i− n
d . Then

E
λ∼SWn

d

[
d∑
i=1

L2
i

]
= −n

d + nd+ d3

3 + d2

2 + d
6 ≥ −

n
d + nd ≥ 3nd

4 , (15)

where in the last step we used the fact that n/d ≤ nd/4 because d ≥ 2.
Similarly, as n ≥ 1010d2 ≥ d2, we can use the bound

E
λ∼SWn

d

[
d∑
i=1

L4
i

]
= 2n− d

30 −
4n
d2
− 6n

d3
+ 2nd2 + d5

5 + d3

3 + 3n2

d3
+ d4

2 + nd3 + 2n2d+ nd− 5n2

d + 4n
d

≤ 2n+ 2nd2 + d5

5 + d3

3 + 3n2

d3
+ d4

2 + nd3 + 2n2d+ nd+ 4n
d

≤ 6n2d,

where in the last step we have used only trivial bounds involving the facts that n ≥ d2 and d ≥ 2.
For a fixed λ, let L(λ) := {i ∈ [d] | |Li| ≥ 5

√
n}. Then

E
λ∼SWn

d

 ∑
i∈L(λ)

L2
i

 ≤ 1

25n
E

λ∼SWn
d

 ∑
i∈L(λ)

L4
i

 ≤ 1

25n
E

λ∼SWn
d

[
d∑
i=1

L4
i

]
≤ nd

4
.

Thus, by (15),

E
λ∼SWn

d

 ∑
i∈[d]\L(λ)

L2
i

 ≥ nd

2
.

Now define

M(λ) :=

{
i ∈ [d]

∣∣∣∣ √n200
≤ |Li| < 5

√
n

}
,

and let E be the event that |M(λ)| ≥ d/200. We claim that p = Pr[E ] ≥ 1/100. This is because if
p < 1/100, then

E
λ∼SWn

d

 ∑
i∈[d]\L(λ)

L2
i

 ≤ p · 25nd+ (1− p) ·
(

25nd

200
+

(
1− 1

200

)
· nd

2002

)
<
nd

2
,

which is a contradiction.
Now let us use the assumption that n ≥ 1010d2. Consider any coordinate i ∈ [d] satisfying

|Li| =
∣∣∣λi − i− n

d

∣∣∣ ≥ √n
200

.

By our assumption that n ≥ 1010d2, this implies that∣∣∣λi − n

d

∣∣∣ ≥ √n
1000

.

As a result, when E holds, which happens with at least 1% probability, there are at least d
200

coordinates i ∈ [d] such that ∣∣∣λi − n

d

∣∣∣ ≥ √n
1000

.

This completes the proof.
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4 A quantum Paninski theorem

In this section, we prove Theorem 1.10, that Θ(d/ε2) copies are necessary and sufficient to test
whether or not a given state ρ ∈ Cd×d is the maximally mixed state, i.e., has spectrum (1

d , . . . ,
1
d).

4.1 The upper bound

The upper bound for Theorem 1.10 will follow from our analysis of the following simple algorithm.

Mixedness Tester. Given ρ⊗n, where ρ is d-dimensional:

1. Sample λ ∼ SWn
ρ .

2. Accept if p]2(λ) ≤
(

1 + ε2

2

)
· n(n−1)

d . Reject otherwise.

We remark that the tester Childs et al. [CHW07] used to distinguish the maximally mixed states

of dimension d
2 and d also depended only on the magnitude of p]2(λ) = 2c1(λ); see [CHW07,

equations (49), (50)].

Theorem 4.1. The Mixedness Tester can test whether a state ρ ∈ Cd×d is the maximally mixed
state using n = O(d/ε2) copies of ρ.

Proof. We will run the Mixedness Tester with n = 100d/ε2. Both the “completeness” and the
“soundness” analysis will require the last identity from (13), namely

(p]2)2 = p](2,2) + 4p]3 + 2p](1,1). (16)

Completeness. Suppose first that ρ is the maximally mixed state, so that in fact λ ∼ SWn
d . We

compute the mean and variance of p]2(λ) using (16) and Corollary 2.35:

E
λ∼SWn

d

[p]2(λ)] =
n(n− 1)

d
, (17)

Var
λ∼SWn

d

[
p]2(λ)

]
= E
λ∼SWn

d

[
p]2(λ)2

]
−
(

E
λ∼SWn

d

[p]2(λ)]

)2

=
2n(n− 1)(d2 − 1)

d2
≤ 2n(n− 1). (18)

Thus by Chebyshev’s inequality,

Pr
λ∼SWn

d

[
p]2(λ) >

(
1 +

ε2

2

)
· n(n− 1)

d

]
≤ 8d2

n(n− 1)ε4
≤ 1

3
,

by our choice of n. Thus indeed when ρ is the maximally mixed state, the Mixedness Tester accepts
with probability at least 2/3.

Soundness. Suppose now that ρ is a density matrix whose spectrum η = (η1, . . . , ηd) satisfies
dsym

TV (η,Unifd) ≥ ε. Writing ηi = 1
d + ∆i, this means that

ε ≤ 1

2
·

d∑
i=1

|∆i| ≤
1

2

√√√√d ·
d∑
i=1

∆2
i ,
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using Cauchy–Schwarz; hence
d∑
i=1

∆2
i ≥

4ε2

d
. (19)

Using (16) and Proposition 2.34, we can calculate the difference between the mean of p]2(λ) and
the cutoff used by the Mixedness Tester as

E
λ∼SWn

ρ

[
p]2(λ)

]
− n(n− 1)

d
·
(

1 +
ε2

2

)
= n(n− 1)

(
d∑
i=1

η2
i −

1

d

(
1 +

ε2

2

))
.

= n(n− 1)

(
d∑
i=1

∆2
i −

ε2

2d

)

≥ n(n− 1)

2

d∑
i=1

∆2
i ,

where the last line follows from (19). Similarly, we can calculate the variance of p]2(λ) as

Var
λ∼SWn

ρ

[
p]2(λ)

]
= n(n− 1)

(
2 + 4n

(∑
η3
i −

(∑
η2
i

)2
)

+ 6
(∑

η2
i

)2
− 8

∑
η3
i

)
≤ n(n− 1)

(
8 + 4n

(∑
η3
i −

(∑
η2
i

)2
))

= n(n− 1)

(
8 + 4n

(
1

d

∑
∆2
i +

∑
∆3
i −

(∑
∆2
i

)2
))

≤ n(n− 1)
(

8 + 8n
(∑

∆2
i

))
.

Applying Chebyshev’s inequality gives us

Pr
λ∼SWn

ρ

[
p](2)(λ) <

(
1 +

ε2

2

)
· n(n− 1)

d

]
≤ 1

n(n− 1)
(∑d

i=1 ∆2
i

)2 ·

(
32 + 32n

(
d∑
i=1

∆2
i

))

≤ 4

n2 (ε2/d)2 +
16

n (ε2/d)
,

where the second step follows from (19). By our choice of n, this is at most 1/3. Thus, when ρ is
ε-far from the maximally mixed state, the Mixedness Tester rejects with probability at least 2/3,
as required.

4.2 The lower bound: overview

For almost all of the lower bound proof we will assume d is even. In the end we will indicate how
to obtain the lower bound when d is odd. For 0 ≤ ε ≤ 1

2 , let Pεd denote the probability distribution
on [d] in which

Pεd(j) =
1 + (−1)j−12ε

d
.

This is essentially the same probability distribution that Paninski [Pan08] studies in his lower
bound. As usual, we also identify Pεd with the diagonal density matrix having these entries; i.e.,

Pεd = diag

(
1 + 2ε

d
,
1− 2ε

d
,
1 + 2ε

d
,
1− 2ε

d
, . . . ,

1 + 2ε

d
,
1− 2ε

d

)
.
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Note that dsym
TV (Pεd,Unifd) = ε. We also remark that when ε = 1

2 , the distribution Pεd is the uniform

distribution on d
2 elements (the odd-numbered ones). As in [Pan08], it proves to be most convenient

to study the chi-squared distance between SWn
Pεd

and SWn
d ; our main theorem is the following:

Theorem 4.2. dχ2(SWn
Pεd
,SWn

d ) ≤ exp((4nε2/d)2)− 1.

Since this distance is small unless n = Ω(d/ε2), our lower bound is complete. More precisely:

Corollary 4.3. For even d, testing whether a d-dimensional mixed state ρ has the the property of
being the maximally mixed requires n ≥ .15d/ε2 copies.

Proof. In light of Lemma 2.22 we know that any ε-tester may as well make its testing decision
based on a draw λ ∼ SWn

ρ . Since dsym
TV (Pεd,Unifd) = ε, the tester must be able to distinguish a draw

from SWn
Pεd

and a draw from SWn
d with probability advantage 1/3; this is possible if and only if

dTV(SWn
Pεd
,SWn

d ) ≥ 1/3. But

dTV(SWn
Pεd
,SWn

d ) ≤ 1

2

√
dχ2(SWn

Pεd
,SWn

d ) ≤ 1

2

√
exp((4nε2/d)2)− 1 < 1/3.

if n < .15d/ε2.

We remark that by taking ε = 1
2 we exactly recover the lower bound from Theorem 1.9 due to

Childs et al. [CHW07].
There are two major steps in the proof of Theorem 4.2. The first major step will be proving

the following formula:

Theorem 4.4. Let x ∈ Rd satisfy x1 + · · ·+ xd = 0 . Then

E
λ∼SWn

d

[(
sλ(1 + x1, . . . , 1 + xd)

sλ(1, . . . , 1)
− 1

)2
]

=
∑
µ∈Par

0<`(µ)≤d

sµ(x)2

d↑µ · d|µ|
· n↓|µ|.

(The sum has only finitely many terms since n↓|µ| = 0 when |µ| > n.)

Once the above theorem is established, the following consequence is essentially immediate:

Corollary 4.5. Let x ∈ Rd satisfy x1 + · · · + xd = 0 and xi ≥ −1 for all i. We write Qx for the
probability distribution on [d] in which i has probability 1+xi

d . Then

dχ2(SWn
Qx , SWn

d ) =
∑
µ∈Par

0<`(µ)≤d

sµ(x)2

d↑µ · d|µ|
· n↓|µ|.

Proof. By definition, dχ2(SWn
Qx ,SWn

d ) is equal to

E
λ∼SWn

d

[(
SWn

Qx(λ)

SWn
d (λ)

− 1

)2
]

= E
λ∼SWn

d

(sλ(1+x1
d , . . . , 1+xd

d ) dim(λ)

sλ(1
d , . . . ,

1
d) dim(λ)

− 1

)2
 .

where we used Proposition 2.23. In turn, this equals the quantity on the left in Theorem 4.4 after
canceling the common factor of d−|λ| dimλ in the fraction (recall the homogeneity of the Schur
polynomials).
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Let us sketch the intuition of the proof once Theorem 4.4 is established. We are ultimately
interested in the case x = 2ε · c, where ε > 0 is thought of as “small” and c ∈ Rd satisfies
c1 + · · · + cd = 0; specifically, c = c± := (+1,−1,+1,−1, . . . ,+1,−1). For simplicity, let us write
ε instead of 2ε. Since sµ is homogeneous of degree |µ|, this means sµ(x)2 = sµ(c)2ε2|µ|. For the
sake of intuition, let us consider the summands in Theorem 4.4 when |µ| = k is “small”; i.e., the
coefficients on ε2k. For k = 1 we have only µ = (1), and the associated summand actually drops
out: this is because s(1)(x) = x1 + · · · + xd = 0. For k ≥ 2, the term n↓|µ| is asymptotically nk

and the denominator d|µ| · d↑µ is asymptotically d2k. It remains to analyze sµ(c±). This is the
second major step in the proof of Theorem 4.2: in Section 4.4 we establish an exact formula for it.
Naively one might expect |sµ(c±)| to scale like dk when |µ| = k; however, as we will see it scales
only like dk/2 (and will in fact be 0 whenever k is odd). Thus the summands with |µ| = k small

scale asymptotically as nk · ε2k
dk

, whence we get that dχ2(SWn
Qε·c±

, SWn
d ) is small if n� d

ε2
.

4.3 Proof of Theorem 4.4

To analyze the quantity in Theorem 4.4 we will require the so-called Binomial Formula. (It gener-
alizes the “usual” Binomial Formula, viz. (1 + x)` =

∑
m≥0 x

m`↓m/m!, in the case d = 1.)

Theorem 4.6. The following polynomial identity holds:

sλ(1 + x1, . . . , 1 + xd)

sλ(1, . . . , 1)
=
∑
µ∈Par
`(µ)≤d

sµ(x)

d↑µ
· s∗µ(λ).

(The sum is actually finite since we may include the restriction µ ⊆ λ due to the factor s∗µ(λ).)

In this form with the shifted Schur polynomials, the result appears in Okounkov and Olshanski’s
work [OO98b, Theorem 5.1] (see also [OO98a]). In a form involving factorial Schur polynomials it
dates back to Lascoux [Las78]; see [Mac95, Example I.3.10].

The µ = ∅ summand in Theorem 4.6 is always equal to 1; it follows that the quantity on the
left of Theorem 4.4 is

E
λ∼SWn

d

 ∑
0<`(µ)≤d

sµ(x)

d↑µ
· s∗µ(λ)

2 =
∑

0<`(µ),`(ν)≤d

sµ(x)sν(x)

d↑µd↑ν
E

λ∼SWn
d

[
s∗µ(λ)s∗ν(λ)

]
.

Therefore proving Theorem 4.4 reduces to proving

x1 + · · ·+xd = 0 =⇒
∑

0<`(µ),`(ν)≤d

sµ(x)sν(x)

d↑µd↑ν
E

λ∼SWn
d

[
s∗µ(λ)s∗ν(λ)

]
=

∑
0<`(µ)≤d

sµ(x)2

d↑µ · d|µ|
·n↓|µ|. (20)

This is the main difficult step of the proof; the surprising aspect here is that we only get a con-
tribution on the order of nk from the terms with |µ| = k, whereas naively one would expect n2k.
Showing that the nk+1, nk+2, . . . , n2k contributions “drop out” is the essence of the proof.

In aid of proving (20), it’s tempting to guess that E[s∗µ(λ)s∗ν(λ)] = 1{µ=ν} · d
↑µ

d|µ|
· n↓|µ|; however

such a statement is false. Instead, what is true is the following:

Theorem 4.7. Let x ∈ Rd satisfy x1+· · ·+xd = 0 and let µ ∈ Par satisfy |µ| = r1 and 0 < `(µ) ≤ d.
Assume r2 ≥ r1. Then∑

|ν|=r2
`(ν)≤d

sν(x)

d↑ν
E

λ∼SWn
d

[
s∗µ(λ)s∗ν(λ)

]
= 1{r2=r1} ·

sµ(x)

d|µ|
· n↓|µ|.
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To deduce (20) from Theorem 4.7, simply write∑
0<`(µ),`(ν)≤d

sµ(x)sν(x)

d↑µd↑ν
E

λ∼SWn
d

[
s∗µ(λ)s∗ν(λ)

]
=

∑
r1,r2>0

∑
|µ|=r1
`(µ)≤d

∑
|ν|=r2
`(ν)≤d

sµ(x)sν(x)

d↑µd↑ν
E

λ∼SWn
d

[
s∗µ(λ)s∗ν(λ)

]
.

Then use Theorem 4.7 when r2 ≥ r1 and use it with the roles of µ and ν reversed when r2 < r1.
As for the proof of Theorem 4.7 itself, the first step is to compute the expected product of

the shifted Schur polynomials. One possible approach for this might be to use the Littlewood–
Richardson rule for factorial Schur functions (see [MS99, Proposition 4.2] or [Mol09, Corollary 3.3])
to write s∗µs

∗
ν as a linear combination of s∗τ polynomials. Unfortunately, these Littlewood–Richardson

coefficients seem somewhat difficult to work with. Instead, we will expand the shifted Schur polyno-
mials in terms of the central characters and then multiply them via the known structure constants.
We do this in the below lemma, carried out for a generic Schur–Weyl distribution. In this lemma,
S(R) denotes the symmetric group acting on the finite set R.

Lemma 4.8. Let q = (q1, . . . , qd) be a probability distribution on [d] and let µ ` r1, ν ` r2. Then

E
λ∼SWn

q

[
s∗µ(λ)s∗ν(λ)

]
=

r1+r2∑
t=r1∨r2

Ctr1r2 · n
↓t · E

w1∼S(R1)
w2∼S(R2)

[χµ(w1)χν(w2)pw1w2(q)] .

Here, for each choice of t, we let R1, R2 denote (arbitrary but fixed) subsets of [t] having cardinality
r1, r2, respectively, with R1 ∪ R2 = [t]. (E.g., R1 = {1, . . . , r1}, R2 = {t − r2 + 1, . . . , t}.) Also,
w1 denotes the extension of w1 to St formed by letting w1 fix each element of [t] \ R1; similarly
for w2.

Proof. Recall the notation ρ(w) from Section 2.3 used denote the cycle type of a permutation w.
In this proof, we also use the following notation: We write ρ ∼ Sr to denote that ρ is a random
partition of r formed by first choosing w ∼ Sr uniformly and then taking ρ = ρ(w).

Using Theorem 2.33 for the first equality below, and Corollary 2.37 for the third equality, we
have

E
λ∼SWn

q

[
s∗µ(λ)s∗ν(λ)

]
= E
λ∼SWn

q

[
E

ρ1∼Sr1
[χµ(ρ1) · p]ρ1(λ)] · E

ρ2∼Sr2
[χν(ρ2) · p]ρ2(λ)]

]
= E
ρ1∼Sr1
ρ2∼Sr2

[
χµ(ρ1)χν(ρ2) · E

λ∼SWn
q

[
p]ρ1(λ) · p]ρ2(λ)

]]

= E
ρ1∼Sr1
ρ2∼Sr2

χµ(ρ1)χν(ρ2) · E
λ∼SWn

q

 r1+r2∑
t=r1∨r2

∑
τ`t

Ctr1r2 · Pr
w1∼S(R1)|ρ1
w2∼S(R2)|ρ2

[ρ(w1w2) = τ ] · p]τ (λ)


 ,

where here wi is chosen to be a uniformly random permutation on Ri (as in the lemma’s statement),
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conditioned on having cycle type ρi. By Proposition 2.34 the above equals

E
ρ1∼Sr1
ρ2∼Sr2

χµ(ρ1)χν(ρ2) ·
r1+r2∑
t=r1∨r2

∑
τ`t

Ctr1r2 · Pr
w1∼S(R1)|ρ1
w2∼S(R2)|ρ2

[ρ(w1w2) = τ ] · n↓t · pτ (q)


=

r1+r2∑
t=r1∨r2

Ctr1r2 · n
↓t · E

ρ1∼Sr1 , ρ2∼Sr2
w1∼S(R1)|ρ1
w2∼S(R2)|ρ2

[
χµ(ρ1)χν(ρ2) ·

∑
τ`t

1{ρ(w1w2)=τ} · pτ (q)

]

The summation on the inside here simply equals pρ(w1w2)(q); we may also replace χµ(ρ1) with
χµ(w1), and similarly for χν(ρ2). Thus to complete the proof it remains to show that w1 and w2

have the same distribution as in the statement of the lemma. But this is clear: if we first pick a
random permutation of ri symbols, then take its cycle type, then setwi to be a random permutation
of ri symbols of this cycle type, this is the same as simply taking wi to be a uniformly random
permutation of ri symbols.

We will also require the following Fourier-theoretic lemma:

Lemma 4.9. For u ∈ Sr, ν ` r, and d ∈ Z+,

E
w∼Sr

[χν(w) · d`(uw)] =
χν(u)d↑ν

r!
.

Proof. Define the class function e on Sr by

e(v) = pv(1, . . . , 1︸ ︷︷ ︸
d entries

) = d`(v).

Since χν(w) = χν(w−1) because χν is a class function, the quantity on the left in the proposition’s
statement is

E
w∼Sr

[χν(w−1) · d`(uw)] = E
v∼Sr

[χν(v−1u) · d`(v)] = (e ∗ χν)(u) =
∑
µ`r

ẽ ∗ χν(µ)χµ(u)

=
∑
µ`r

1
dimµ ẽ(µ)χ̃ν(µ)χµ(u) = 1

dim ν ẽ(ν)χν(u) = 1
dim ν sν(1, . . . , 1)χν(u) =

χν(u)d↑ν

r!
,

the last equality being Proposition 2.11.

We can now complete the proof of Theorem 4.7 (and therefore also Theorem 4.4):

Proof of Theorem 4.7. We will use Lemma 4.8 in the case of SWn
d , i.e., q = (1

d , . . . ,
1
d); in this case,

for τ ` t we have pτ (q) = d`(τ)−t. We thereby obtain

∑
|ν|=r2
`(ν)≤d

sν(x)

d↑ν
E

λ∼SWn
d

[
s∗µ(λ)s∗ν(λ)

]

=

r1+r2∑
t=r2

Ctr1r2 ·
n↓t

dt
· E
w1∼S(R1)

[
χµ(w1) ·

∑
|ν|=r2
`(ν)≤d

sν(x)

d↑ν
· E
w2∼S(R2)

[
χν(w2)d`(w1w2)

]]
. (21)
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(Here we are using the convention `(w1w2) = `(ρ(w1w2)).) We now would like to analyze the
number of cycles of w1w2 within St. In w1’s cycle decomposition, there are some cycles that act
only on elements of R1 \ R2. Let’s write `\(w1) for the number of such cycles, and let’s define
w∩1 ∈ St to be w1 with those cycles deleted. Thus

`(w1w2) = `\(w1) + `(w∩1 ·w2).

Next, let w⊥1 denote the permutation obtained by deleting every element of R1 \R2 from the cycle
decomposition of w∩1 . Though w⊥1 acts only on R1 ∩ R2, we will view it as an element of S(R2).
Although we don’t have w⊥1 ·w2 = w∩1 ·w2, it’s not too hard to see that

`(w∩1 ·w2) = `(w⊥1 ·w2).

Thus we obtain

(21) =

r1+r2∑
t=r2

Ctr1r2 ·
n↓t

dt
· E
w1∼S(R1)

[
χµ(w1)d`

\(w1) ·
∑
|ν|=r2
`(ν)≤d

sν(x)

d↑ν
· E
w2∼S(R2)

[
χν(w2)d`(w

⊥
1 ·w2)

]]
.

Applying Lemma 4.9, we deduce

(21) =

r1+r2∑
t=r2

Ctr1r2 ·
n↓t

dt
· E
w1∼S(R1)

[
χµ(w1)d`

\(w1) · 1

r2!

∑
|ν|=r2
`(ν)≤d

sν(x)χν(w⊥1 )
]
.

Notice that we may extend the summation over ν to include `(ν) > d as well: since x has d
coordinates, sν(x) = 0 anyway when `(ν) > d by Proposition 2.12. Having done this, we replace
sν(x) with Ev∼Sr2 [χν(v)pv(x)], obtaining

(21) =

r1+r2∑
t=r2

Ctr1r2 ·
n↓t

dt
· E
w1∼S(R1)

[
χµ(w1)d`

\(w1) · 1

r2!

∑
|ν|=r2

E
v∼Sr2

[χν(v) · pv(x)]χν(w⊥1 )
]

=

r1+r2∑
t=r2

Ctr1r2
r2!

· n
↓t

dt
· E
w1∼S(R1)

[
χµ(w1)d`

\(w1) · E
v∼Sr2

[
pv(x) ·

∑
|ν|=r2

χν(v)χν(w⊥1 )
]]
.

We claim that the inner expectation is 0 in most cases. First, pv(x) vanishes whenever v has a fixed
point, since p1(x) = x1 + · · ·+xd = 0 by assumption. Next, suppose that v has no fixed points. By
the orthogonality relations of representation theory, the innermost sum vanishes unless v and w⊥1
are conjugate. Since w⊥1 ∈ S(R2) acts only on R1 ∩R2, it must have a fixed point (and therefore
not be conjugate to v) unless R2 \R1 = ∅. Since r2 ≥ r1, this can only happen if |µ| = r1 = r2 = t.
We conclude that the inner expectation can only be nonzero in case |µ| = r1 = r2 = t. In this case
we have Ctr1r2 = r2! and `\(w1) = 0, whence

(21) = 1{r2=r1} ·
n↓r1

dr1
· E
w1∼Sr1

[
χµ(w1) · E

v∼Sr1

[
pv(x) ·

∑
|ν|=r1

χν(v)χν(w⊥1 )
]]
.

Once again, the summation is 0 if v and w1 are not conjugate; otherwise it equals zρ(w1). Further,

having chosen w1, the probability that v is conjugate to w1 is precisely z−1
ρ(w1). Thus these factors

cancel and we obtain

(21) = 1{r2=r1} ·
n↓r1

dr1
· E
w1∼Sr1

[χµ(w1) · pw1(x)] = 1{r2=r1} ·
n↓r1

dr1
· sµ(x),

completing the proof.
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4.4 A formula for sµ(+1,−1,+1,−1, . . . )

For this formula we will need to recall the notion of the 2-quotient of a partition. This definition
essentially encodes the ways in which a partition can be tiled by dominoes.

Definition 4.10. Given a partition µ, a 2-hook in [µ] is a hook of length 2; i.e., a domino whose
removal from [µ] results in a valid Young diagram.

Definition 4.11. A partition µ is said to be balanced (or to have an empty 2-core) if [µ] can be
reduced to the empty diagram by successive removal of 2-hooks.

Definition 4.12. Given a partition µ we write [µ]even (respectively, [µ]odd) for the set of boxes
� ∈ [µ] with even (respectively, odd) content c(�).

Remark 4.13. It’s obvious from Definition 4.11 that if µ ` k is balanced then |[µ]even| = k/2. In
fact, the converse also holds (this follows from, e.g., [JK81, Theorem 2.7.41]).
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Figure 4: The Russian and Maya diagrams for µ = (6, 4, 4, 3, 3) ` 20. The segments and pebbles
corresponding to the 2-quotient pair are colored green and red. The dashed lines outline a 2-hook
that could be removed; d is the square in this 2-hook with even content (namely, −2).
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Figure 5: The diagram for 2-quotient partition µ(0) = (2, 1) ` 3.
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Figure 6: The diagram for 2-quotient partition µ(1) = (3, 2, 2) ` 7. The 1-hook square s (with
content −1) is associated to the 2-hook in Figure 4 that contains square d.

Definition 4.14. Let µ be a partition. From the Maya diagram for [µ], form two new Maya
diagrams by taking the two alternating sequences of pebbles. More precisely, for b ∈ {0, 1}, let
µ(b) denote the partition whose Maya diagram is formed by the pebbles at positions 2z + (−1)b 1

2 ,
z ∈ Z. (See Figure 4, in which b = 0 is associated to green and b = 1 is associated to red.) The
pair (µ(0), µ(1)) is called the 2-quotient of µ. (See Figures 5, 6 respectively.)

Remark 4.15. Note that when the Maya diagrams for µ(0), µ(1) are formed, each of the two origin
mark positions may need to be adjusted from the former origin mark position coming from µ’s
origin mark. It is a fact (see, e.g., [RZ12, Section 2.1]) that µ is balanced if and only if neither
origin mark position must be adjusted.

Fact 4.16. A 2-hook in [µ] naturally corresponds to a sequence of three pebbles in [µ]’s Maya
diagram of the form (white, ∗, black). (See the dashed domino containing the label d in Figure 4.)
In turn, this corresponds to a “1-hook” in one of µ(0), µ(1); i.e., a square on the rim whose removal
leaves a valid Young diagram (see the square labeled s in Figure 6). Removal of the 2-hook from [µ]
corresponds to replacing the sequence (white, ∗, black) by (black, ∗, white). (One thinks of the
“filled” black pebble as jumping two positions to the left, onto the “empty” white pebble.) In turn,
this corresponds to removing the associated 1-hook from either µ(0) or µ(1).

We will require the following lemma. It is likely to be known; however we were unable to find its
statement in the literature. The analogous lemma for hook lengths is well known (see, e.g., [RZ12,
Lemma 2.1.ii]).

Lemma 4.17. Let µ ` k be a balanced partition with 2-quotient (µ(0), µ(1)). Then the multiset
{c(�) : � ∈ [µ(0)],� ∈ [µ(1)]} is equal to the multiset {1

2c(�) : � ∈ [µ]even}.

Proof. The statement is proved by induction on the deconstruction of µ from 2-hooks, with the
base case being µ = ∅. We rely on the fact that since µ is balanced, the Maya diagrams of µ(0)

and µ(1) can be seen alternating within the Maya diagram for µ, with all three origin markers
“lining up” (see Remark 4.15). By way of induction, suppose we consider the removal of some
2-hook D from [µ]. This corresponds (see Fact 4.16) to removing a 1-hook (square) s from µ(b), for
some b ∈ {0, 1}. Exactly one of D’s two squares is in [µ]even; call that square d. (See Figures 4, 6
for illustration.) By induction, it suffices to show that 1

2c(d) = c(s). But this is easily seen from the
combination of the Russian and Maya diagrams, as the content of a square is simply the horizontal
displacement of its center.

We are now ready to establish a formula for sµ(+1,−1,+1,−1, . . . ).
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Theorem 4.18. Let µ ` k and let d be even. Then

sµ(+1,−1,+1,−1, . . .︸ ︷︷ ︸
d entries

) =


0 if µ is not balanced,

χµ(2, 2, . . . , 2︸ ︷︷ ︸
k/2 entries

) · 1

k!!
· (d↑[µ]even) if µ is balanced.

Proof. The first part of the proof relies on a formula from [RSW04, Theorem 4.3], specialized to
the case of “t” = 2:

sµ(+1,−1,+1,−1, . . .︸ ︷︷ ︸
d entries

)

=


0 if µ is not balanced,

sgn(χµ(2, 2, . . . , 2︸ ︷︷ ︸
k/2 entries

)) · sµ(0)(1, 1, . . . , 1︸ ︷︷ ︸
d/2 entries

) · sµ(1)(1, 1, . . . , 1︸ ︷︷ ︸
d/2 entries

) if µ is balanced,

where (µ(0), µ(1)) is the 2-quotient of µ. Thus it suffices to show

sµ(0)(1, 1, . . . , 1) · sµ(1)(1, 1, . . . , 1) =
|χµ(2, 2, . . . , 2)| · (d↑[µ]even)

(k/2)! · 2k/2
(22)

assuming µ is balanced. Applying Proposition 2.11, the left-hand side of (22) is

(d2
↑µ(0)

) · (d2
↑µ(1)

) · dimµ(0) · dimµ(1)

|µ(0)|! · |µ(1)|!
.

Next, we appeal to [RZ12, formula (2.2)], which states

χµ(2, 2, . . . , 2) = σµ ·
(

|µ|/2
|µ(0)|, |µ(1)|

)
· dimµ(0) · dimµ(1),

where σµ ∈ {±1} is a certain sign. Thus to verify (22) it remains to show

(d2
↑µ(0)

) · (d2
↑µ(1)

) =
d↑[µ]even

2k/2
. (23)

But this follows immediately from Lemma 4.17.

4.5 Wrapping up the lower bound

In this section we complete the proof of Theorem 4.2. We begin by applying Corollary 4.5 with
x = (+2ε,−2ε,+2ε,−2ε, . . . ). Using Theorem 4.18 and the homogeneity of Schur polynomials, we
obtain the following after a few manipulations:

Theorem 4.19. For d even and 0 ≤ ε ≤ 1
2 ,

dχ2(SWn
Pεd
,SWn

d ) =
∑

k=2,4,6,...

n↓k(2ε)2kd−k ·
( 1

k!!2

∑
µ`k balanced

0<`(µ)≤d

χµ(2, . . . , 2)2 · d
↑[µ]even

d↑[µ]odd

)
. (24)
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To estimate this quantity we will use the following very crude bound:

Proposition 4.20. Let d ∈ Z+ and let µ ` k be balanced, with 0 < `(µ) ≤ d. Then

d↑[µ]even

d↑[µ]odd
≤ 2k/2. (25)

Proof. Fix any domino-tiling for µ. Each of the k/2 dominoes contains one cell of even content ce
and one cell of odd content co, with |ce − co| = 1. Thus each contributes a factor of d+ce

d+co
≤ 2

1 = 2

to (d↑[µ]even)/(d↑[µ]odd).

By character orthogonality relations we also have∑
µ`k balanced

0<`(µ)≤d

χµ(2, . . . , 2)2 ≤
∑
µ`k

χµ(2, . . . , 2)2 = z(2,...,2) = k!!. (26)

Combining (25), (26), we get that the parenthesized expression in (24) is at most 2k/2/k!! =
1/(k/2)!. Using also n↓k ≤ nk, the right-hand side of (24) is thus bounded by∑

k=2,4,6,...

nk(2ε)2kd−k/(k/2)! = exp((4nε2/d)2)− 1,

completing the proof of Theorem 4.2.

We end by indicating how to obtain the testing lower bound in the case when d ≥ 3 is odd. In
this case we define Pεd to be (1+2ε

d , 1−2ε
d , . . . , 1+2ε

d , 1−2ε
d , 1

d). This distribution has dsym
TV (Pεd,Unifd) =

d−1
d ε ≥ 2

3ε; since this differs from ε only by a constant factor, the lower bound of Ω(d/ε2) is
not affected. Now Corollary 4.5 is applied with x = (+2ε,−2ε, . . . ,+2ε,−2ε, 0). By stability of the
shifted Schur polynomials we have sµ(+1,−1, . . . ,+1,−1, 0) = sµ(+1,−1, . . . ,+1,−1), where there
are d− 1 entries in the latter. Now we get χµ(2, 2, . . . , 2) · 1

k!! · (d− 1)↑[µ]even out of Theorem 4.18,
and we can simply upper-bound (d− 1) by d and proceed with the remainder of the proof.

5 Hardness of distinguishing uniform distributions

In this section, we prove Theorem 1.12, namely that O(r2/∆) copies are sufficient to distinguish
between the cases when ρ’s spectrum is uniform on either r or r+ ∆ eigenvalues (1 ≤ ∆ ≤ r), and
that Ω̃(r2/∆) copies are necessary. To be more precise, our lower bound on the number of copies n
will be

n ≥ r2−O(1/ log.33 r)/∆. (27)

5.1 The upper bound

The proof of the upper bound is quite similar to that of Theorem 4.1 for the Mixedness Tester. We
employ the following tester:

Uniform Distribution Distinguisher. Given ρ⊗n:

1. Sample λ ∼ SWn
ρ .

2. Accept if p]2(λ) ≤ e := n(n− 1) · 1
2

(
1
r + 1

r+∆

)
. Reject otherwise.
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As for the analysis, from Equations (17) and (18):

E
λ∼SWn

m

[
p]2(λ)

]
=
n(n− 1)

m
, and Var

λ∼SWn
m

[
p]2(λ)

]
≤ 2n(n− 1).

We see that the variance is the same whether m = r or m = r+∆; only the expectation is different,
and the tester’s acceptance cutoff e is precisely the midway point between the two expectations. If
m = r, then Chebyshev’s inequality implies

Pr
λ∼SWn

m

[
p]2(λ) ≥ e

]
≤ 8r2(r + ∆)2

n(n− 1)∆2
≤ 32r4

(n− 1)2∆2
,

and we have the same upper bound by Chebyshev for Prλ∼SWn
m

[
p]2(λ) ≤ e

]
when m = r+∆. This

upper bound is at most 1/3 provided n ≥ 4
√

6 · r2∆ + 1, completing the proof of the upper bound in
Theorem 1.12.

The end of Section 6.1 gives a different O(r2)-copy tester (the “Rank Tester”) for the r-versus-
(r + 1) case. In this case it’s superior to the Uniform Distribution Distinguisher in that it has
one-sided error (i.e., it never rejects in the rank-r case).

5.2 The lower bound

The bulk our work for the lower bound will be devoted to the case of ∆ = 1. The extension to
larger ∆ is very tedious and will be dealt with in Section 5.3. So let r ∈ Z+ be a parameter
which we think of as tending to infinity, and for brevity let r+ = r + 1. Our task is to show that
the distributions SWn

r and SWn
r+ are very close in total variation distance unless n ≥ Ω̃(r2). For

notational convenience we will write

n =
r2

ω2

and seek to show that SWn
r and SWn

r+ are close once ω is sufficiently large as a function of r.

Ultimately we will select ω = exp(Θ(log.67 r)). For now, though, let’s keep ω general, subjecting it
only to the following assumption:

200 ≤ ω ≤
√
r. (28)

5.2.1 Initial approximations

It proves more convenient to study the Kullback–Leibler divergence between SWn
r and SWn

r+:

dKL(SWn
r , SWn

r+) = E
λ∼SWn

r

[
ln

(
SWn

r [λ]

SWn
r+[λ]

)]

= E
λ∼SWn

r

[
ln

(
rn+
rn
· r
↑λ

r↑λ+

)]

= n ln
(r+
r

)
+ E
λ∼SWn

r

[
ln

(∏
�∈[λ](r + c(�))∏
�∈[λ](r+ + c(�))

)]
, (29)

where the second equality used Proposition 2.26. (We remark that the logarithms above are always
finite since supp(SWn

r ) ⊆ supp(SWn
r+).)
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Recalling that r+ = r + 1, it is very easy to verify (cf. [Mac95, Exercise I.1.11], [CGS04, Sec-
tion 2.5]) that the large fraction inside the inner logarithm of (29) is equal to

`(λ)∏
i=1

r − (i− 1)

r − (i− 1− λi)
= Φ(−(r + 1

2);λ),

where Φ denotes a generating function for the modified Frobenius coordinates, defined in [IO02]
and similar to the “Frobenius function” from [Las08, CSST10]. Proposition 1.2 in [IO02] observes
that

Φ(z;λ) =
∏
i

z + b∗i
z − a∗i

,

where the a∗i ’s and b∗i ’s are the modified Frobenius coordinates of λ; as a consequence, Proposi-
tion 1.4 in [IO02] states that

ln Φ(z;λ) =
∞∑
k=1

p∗k(λ)

k
z−k. (30)

However we cannot immediately take z = −(r + 1
2) and conclude

(29)
?
= n ln

(
1 +

1

r

)
+ E
λ∼SWn

r

[ ∞∑
k=1

(−1)kp∗k(λ)

k(r + 1
2)k

]
(31)

because (30) is merely a formal identity of generating functions and does not hold for all real z. More
specifically, it’s necessary that the Taylor series for ln(1 + bi/z) and ln(1 − ai/z) converge, which
happens provided |bi/(r+ 1

2)|, |ai/(r+ 1
2)| ≤ 1. These conditions are equivalent to `(λ) = λ′1 ≤ r+1

and λ1 ≤ r + 1. The first condition is automatic, since λ ∼ SWn
r . The second condition does

not always hold; however, we will show (see Lemma 5.2 below) that it holds with overwhelming
probability when n � r2. Indeed the “central limit theorems” for the Schur–Weyl distributions
suggest that both λ1 and λ′1 will almost always be O(

√
n) = O( rω ). Let us therefore make a

definition:

Definition 5.1. We say that λ ` n is usual if λ1, λ
′
1 ≤ 10

ω r. Since we are assuming ω ≥ 200, usual
λ’s satisfy λ1, λ

′
1 ≤ 1

20r ≤ r + 1.

Thus when λ is usual we may apply (31). Since the quantity inside the expectation in (29) is
clearly always negative, we may write

dKL(SWn
r , SWn

r+) = (29) ≤ n ln

(
1 +

1

r

)
+ E
λ∼SWn

r

[
1{λ usual} · ln

(∏
�∈[λ](r + c(�))∏
�∈[λ](r+ + c(�))

)]

= n ln

(
1 +

1

r

)
+ E
λ∼SWn

r

[
1{λ usual} ·

∞∑
k=1

(−1)kp∗k(λ)

k(r + 1
2)k

]

= n ln

(
1 +

1

r

)
− 1

r + 1
2

· E
λ∼SWn

r

[
1{λ usual} · p∗1(λ)

]
(32)

+ E
λ∼SWn

r

[
1{λ usual} ·

∞∑
k=2

(−1)kp∗k(λ)

k(r + 1
2)k

]
. (33)
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Recall that p∗1(λ) is simply |λ|; thus the expectation in (32) is simply nPr[λ usual]. As Lemma 5.2
below shows, Pr[λ usual] = 1− δ for δ≪ 1

60r2
. Thus:

(32) = n

(
ln

(
1 +

1

r

)
− 1

r + 1
2

+
δ

r + 1
2

)
≤ n

(
1

12r3
+

1/(60r2)

r + 1
2

)
≤ n

10r3
=

1

10ω2r
. (34)

Lemma 5.2. Let λ ∼ SWn
r . Then Pr[λ unusual] ≤ 2−20r/ω.

Proof. Write B = d10
ω re. By Proposition 2.31 and the fact that B ≤ r,

Pr[λ1 ≥ B],Pr[λ′1 ≥ B] ≤
(

2e2n

B2

)B
≤
(

2e2

100

)10r/ω

≤ 2−1−20r/ω.

The lemma now follows from the union bound.

Turning to (33), let’s write

L∗C(λ) :=
C∑
k=2

(−1)kp∗k(λ)

k(r + 1
2)k

,

recalling that L∗∞(λ) is definitely convergent if λ is usual. The infinite sum in (33) is inconvenient,
as is the +1

2 in the denominator. We clean these issues up with the following lemma:

Lemma 5.3. Assuming λ ` n is usual, if

C ≥ 3 log(10r)

log(ω/10)
,

it follows that

|L∗∞(λ)− LC(λ)| ≤ 201

ω3
,

where LC(λ) denotes the same quantity as L∗C(λ) except with no +1
2 in the denominator.

Proof. For any λ ` n (not necessarily usual), we have the crude bound |p∗k(λ)| ≤ 2
√
nBk whenever

λ1, λ
′
1 ≤ B. This is because each modified Frobenius coordinate a∗i or b∗i (of which there are at

most
√
n each) is at most B. For usual λ we may take B = 10

ω r. Thus we have

|L∗∞(λ)− L∗C(λ)| ≤
∞∑

k=C+1

|p∗k(λ)|
k(r + 1

2)k
≤

∞∑
k=C+1

2 rω (10 rω )k

krk
≤ 2r

∞∑
k=C+1

(
10

ω

)k
≤ 4r

(
10

ω

)C
≤ 1

250r2
,

where the last inequality used the assumption about C (and the second-to-last inequality used
ω ≥ 200 in a crude way). Further,

|L∗C(λ)− LC(λ)| ≤
C∑
k=2

|p∗k(λ)|
k

(
1

rk
− 1

(r + 1
2)k

)
≤

C∑
k=2

2 rω (10 rω )k

k

(
k

2rk+1

)
=

1

ω

C∑
k=2

(
10

ω

)k
≤ 200

ω3
.

Finally, 200
ω3 + 1

250r2
≤ 201

ω3 by our assumption (28) that ω ≤
√
r.
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Let us use this lemma in (33), and also apply (34) in (32). Assuming the lemma’s hypotheses,
we obtain

dKL(SWn
r , SWn

r+) ≤ E
λ∼SWn

r

[
1{λ usual} · LC(λ)

]
+ 1

10ω2r
+ 201

ω3

≤ E
λ∼SWn

r

[LC(λ)]− E
λ∼SWn

r

[
1{λ unusual} · LC(λ)

]
+ 202

ω3 .

We can use Cauchy–Schwarz to bound∣∣∣∣ E
λ∼SWn

r

[
1{λ unusual} · LC(λ)

]∣∣∣∣ ≤√E[12
{λ unusual}]

√
E[LC(λ)2] ≤ 2−10r/ω

√
E[LC(λ)2], (35)

where the last inequality used Lemma 5.2. Finally, we can afford to use an extraordinarily crude
bound on E[LC(λ)2]:

E[LC(λ)2] ≤ C
C∑
k=2

E[p∗k(λ)2] ≤ C
C∑
k=2

(2
√
nnk)2 ≤ n3C ≤ r6C ,

where the second inequality used the crude bound on |p∗k(λ)| from the proof of Lemma 5.3. (In
fact, in Section 5.3 we will actually show that this quantity is quite tiny.) If we now make the very
weak assumption that C ≤ 3r

ω log r , we may conclude (35) ≤ 2−r/ω � 1
ω3 .

Now we can summarize all of the preparatory work we have done so far:

Proposition 5.4. Assuming 3 log(10r)
log(ω/10) ≤ C ≤

3r
ω log r , for λ ∼ SWn

r we have

dKL(SWn
r ,SWn

r+) ≤ E [LC(λ)] + 203
ω3 ,

where

LC(λ) :=

C∑
k=2

(−1)kp∗k(λ)

krk
. (36)

(It is straightforward to check using (28) that the range of values for C is nonempty.)

We now come to the main task: showing that E[LC(λ)] is small.

5.2.2 Passing to the p] polynomials

In this section and the following one, we will use the notation

fact(µ) =
∏
w≥1

mw(µ)!

where, recall, mw(µ) is the number of parts of µ equal to w.
The following proposition is essentially immediate from known formulas:

Proposition 5.5. For any k ∈ Z+, we have the following identity on observables:

p∗k =
∑

µ : wt(µ)=k+1

k↓(`(µ)−1)

fact(µ)
p]µ +Ok,

where Ok is an observable with wt(Ok) ≤ k. More precisely,

Ok =
∑

µ : wt(µ)≤k

ck,µp
]
µ

for some rational coefficients ck,µ.
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Proof. From [IO02, Corollary 2.8] we have

p∗k =
1

k + 1
· p̃k+1 +

{
a linear combination of p̃k, . . . , p̃2

}
.

From [IO02, Corollary 3.7] (cf. [Mél10b, Lemma 10.10]) we have

p̃k+1 =
∑

µ : wt(µ)=k+1

(k + 1)↓`(µ)

fact(µ)

∏
i≥1

(p]i)
mi(µ).

The result is now easily deduced from Proposition 2.39.

Substituting the above result into (36) yields:

LC(λ) =

C∑
k=2

(−1)k

krk
·

∑
wt(µ)=k+1

k↓(`(µ)−1)

fact(µ)
p]µ(λ) +

C∑
k=2

(−1)kOk(λ)

krk
. (37)

Taking the expectation over λ ∼ SWn
r , and using Corollary 2.35 to evaluate the expectation of p]µ,

we obtain:

E
λ∼SWn

r

[LC(λ)] =
C∑
k=2

(−1)k

krk
·

∑
wt(µ)=k+1

k↓(`(µ)−1)

fact(µ)
n↓|µ|r`(µ)−|µ| (38)

+

C∑
k=2

(−1)k Eλ∼SWn
r
[Ok(λ)]

krk
. (39)

We will show in Lemmas 5.7, 5.8 below that the “error term” (39) is small assuming n� r2. Thus
we focus on (38).

5.2.3 Showing the “main term” is small: some intuition

Before diving into manipulations, let’s take a high-level look at the contributions to (38) from
k = 2, 3, 4, 5, . . . , focusing on the powers of n and r. First consider the case of k = 2. Here there
is only one µ with wt(µ) = 3, namely µ = (2), which has |µ| = 2 and `(µ) = 1. Thus from k = 2

we pick up a factor on the order of n2

r3
; more precisely, n↓2

2r3
. This looks rather bad from the point

of view of proving a quadratic lower bound for n: the term n↓2

2r3
is not small unless n � r3/2. The

main surprise in our proof is that this term will be exactly canceled by “lower-degree” contributions
from larger k.

To see an example of this, consider the k = 3 contribution in (38). Here there are two µ’s with

wt(µ) = 4, namely µ = (3) and µ = (1, 1). The first gives a contribution on the order of n3

r5
; more

precisely, −n↓3

3r5
. The second gives a contribution of −n↓2

2r3
, thereby precisely canceling the k = 2

term. Thus we are left (so far) with −n↓3

3r5
, which is small if n � r5/3. This is still far from a

quadratic bound, but it’s better than the r3/2 bound we were faced with previously.
In turn, the −n↓3

3r5
contribution will be canceled by a certain k = 3 term, namely n↓3

r5
from

µ = (2, 1), together with a certain k = 4 term, namely 2n↓3

3r5
from µ = (1, 1, 1). Indeed, if we sum

up through k = 6, the total contribution is −5n↓4

r7
− n↓5

5r9
, which is small if n � r7/4. This gets us

still closer to a quadratic bound.
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In fact, looking carefully at small partitions suggests that perfect cancelation is achieved if we
group contributions according to |µ|. This proves to be the case, as we will show below. In the
end (38) does not precisely vanish because for m > C/2, not all µ’s with |µ| = m appear in (38).
However the “leftover contributions” are of the shape r( n

r2
)k for k > C/2, a quantity we can ensure

is small by taking ω and C large enough. (There is a tradeoff involved preventing us from taking C
too large: our “error bound” (39) increases with C.)

5.2.4 Proof that the “main term” is small

Although (38) has a double summation, the summed quantity is simply counted exactly once for
each µ with 3 ≤ wt(µ) ≤ C + 1. As suggested above, let us rearrange the summation according
to |µ|. We will use the notation s = |µ| − 1 and h = `(µ) − 1, so that wt(µ) = s + h + 2 (i.e.,
k = s+ h+ 1) and wt(µ) ≤ C + 1 ⇐⇒ h ≤ C − 1− s:

(38) =

C−1∑
s=1

min(s,C−1−s)∑
h=0

∑
µ`s+1

`(µ)=h+1

(−1)s+h+1

(s+ h+ 1)rs+h+1

(s+ h+ 1)↓h

fact(µ)
n↓(s+1)rh−s

=
C−1∑
s=1

(−1)s+1 · n
↓(s+1)

r2s+1

min(s,C−1−s)∑
h=0

(−1)h(s+ h)↓(h−1)
∑
µ`s+1

`(µ)=h+1

1

fact(µ)
.

(We remark that we switched from r + 1
2 to r in Lemma 5.3 so as to obtain nice cancelations on r

here. We also recall the convention m↓(−1) = 1
m+1 .) It is not hard to show (see, e.g., [Mél10a,

Lemma 11]) that ∑
µ`s+1

`(µ)=h+1

1

fact(µ)
=

1

(h+ 1)!

(
s

h

)
.

Substituting this into the above, and also using (s+ h)↓(h−1) = (s+h)!
(s+1)! , we get

(38) =
C−1∑
s=1

(−1)s+1 · n
↓(s+1)

r2s+1

min(s,C−1−s)∑
h=0

(−1)h
(s+ h)!

(s+ 1)!(h+ 1)!

(
s

h

)

=

C−1∑
s=1

(−1)s+1

s+ 1
· n
↓(s+1)

r2s+1

min(s,C−1−s)∑
h=0

(−1)h

h+ 1

(
s+ h

h

)(
s

h

)
.

We now obtain the promised cancelation. Specifically, it is a known combinatorial identity (see,
e.g., [GKP94, page 182]) that for all s ∈ Z+, the inner summation equals 0 provided h ranges all
the way up to s. In other words, all contributions from s ≤ C−1

2 vanish. For larger s, it’s not
hard to bound the inner “partial sum” crudely by, say, 9s in absolute value. We therefore finally
conclude:

|(38)| ≤
∑

C
2
≤s≤C−1

1

s+ 1
· n
↓(s+1)

r2s+1
· 9s ≤ n

r

∑
s≥C

2

(
9n

r2

)s
=

r

ω2

∑
s≥C

2

(
9

ω2

)s
≤ r

(
3

ω

)C
. (40)
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5.2.5 Bounding the “error term”

In this section we bound the “error term” (39), using the following lemma:

Lemma 5.6. Suppose n = r2

ω2 . Then 0 ≤ E
λ∼SWn

r

[p]µ(λ)] ≤ rwt(µ) · (1/ω2)|µ|.

Proof. By Corollary 2.35, E
λ∼SWn

r

[
p]µ(λ)

]
= n↓|µ|r`(µ)−|µ| ≤ n|µ|rwt(µ)−2|µ| = rwt(µ) · (1/ω2)|µ|.

We will first use this lemma to bound (39) in a “soft” way, thinking of C as an absolute
universal constant. This is enough to get a testing lower bound like n ≥ Ωδ(r

2−δ) for every δ > 0.
Subsequently we do some technical work (which the uninterested reader may skip) to get a more
explicit lower bound.

Lemma 5.7. For all C ≥ 2 there is a constant AC such that |(39)| ≤ AC · 1
ω2 .

Proof. It suffices to show that for all k ≥ 2 there is a constant A′k such that

Eλ∼SWn
r
[Ok(λ)]

rk
≤ A′k ·

1

ω2
.

But recalling Proposition 5.5, the left-hand side is

∑
µ : wt(µ)≤k

ck,µ E
λ∼SWn

r

[
p]µ(λ)

rk

]
,

and each expectation here is at most ( 1
ω2 )|µ| ≤ 1

ω2 by Lemma 5.6. This completes the proof.

Lemma 5.8. In fact, the constants AC from Lemma 5.7 satisfy AC ≤ 2O(C2 logC).

Proof. The proof involves some tedious analysis using the results of Section 2.8.1. It suffices to
show that ∑

µ:wt(µ)≤k

|ck,µ| ≤ 2O(k2 log k), (41)

where, recall, the coefficients ck,µ are defined by

p∗k =
∑

µ : wt(µ)=k+1

k↓(`(µ)−1)

fact(µ)
p]µ +

∑
µ : wt(µ)≤k

ck,µp
]
µ. (42)

Let us return to the relationship between the p∗ and p] polynomials described in Section 2.8.1.
Specifically, we’ll need identities (7), (8), which express each p]k as a polynomial in p∗1, . . . , p

∗
k via

the power series Qk(t).
Given any polynomial R in indeterminates p1, . . . , pk (either p∗’s or p]’s), write ‖R‖ for the sum

of the absolute values of R’s coefficients. This is a submultiplicative norm. Observe from (8) that

‖Qk,m‖ ≤ (k + 1)m+1 (indeed, one may show it’s precisely (k+1)m+1−km+1−1
m+1 ). Thus the coefficient

on ts in Qk(t)
i is a polynomial in p∗1, . . . , p

∗
k of norm at most O(k)s. Hence the same is true for

the coefficient on ts in the expression
∑∞

i=0
(−1)i

i! Qk(t)
i from (8). As the coefficient on each power

of t in
∏k
j=1(1 − (j − 1

2)t) is a number of magnitude at most (k − 1
2)k, we finally deduce that the

relationship (10) can be expressed more quantitatively as

p]k = p∗k +Rk(p
∗
1, . . . , p

∗
k−1), where 1 + ‖Rk‖ ≤ exp(bk log k), b a universal constant.
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We inductively invert this relationship as in (11), writing

p∗k = Sk(p
]
1, . . . , p

]
k), where Sk = p]k +

{
polynomial in p]1, . . . , p

]
k−1 of gradation at most k − 1

}
.

(43)
If we let s(k) = ‖Sk‖, using convexity of exp(bk log k) we get the inductive bound

s(k) ≤ exp(bk log k)s(k − 1),

leading to the bound s(k) ≤ exp(O(k2 log k)). This is nearly enough to complete the proof; the

only issue is that in (43) we have a polynomial in the p]j ’s, whereas in (42) we have the products

of p]j ’s expanded out into linear combinations of p]µ’s. However Lemma 5.9 below, which crudely

bounds the magnitude of the structure constants for the p]’s, shows that each monomial
∏
i p
]
λi

with gradation |λ| = w can be replaced by a linear polynomial in p]µ’s (with |µ| ≤ w) wherein each

coefficient has magnitude at most 4w
2 logw. Since w is always bounded by k − 1 and since there

are at most 2O(
√
k) � exp(O(k2 log k)) partitions µ with |µ| ≤ k, we conclude that each of these

linear polynomials has norm at most exp(O(k2 log k)). Thus making these replacements in Sk only
increases its norm by another multiplicative factor of exp(O(k2 log k)). The proof is complete.

Lemma 5.9. Let λ ` w, and suppose

`(λ)∏
i=1

p]λi =
∑
µ

cµp
]
µ within Λ∗. Then |cµ| ≤ 4w

2 logw for all µ.

Proof. The proof is an induction on ` = `(λ), the base case of ` = 1 being trivial. Now for general
λ with λ` = k we have

∏̀
i=1

p]λi =

(
`−1∏
i=1

p]λi

)
· p]k =

(∑
µ

dµp
]
µ

)
· p]k =

∑
µ

dµ
∑
τ

f τµkp
]
τ =

∑
τ

p]τ
∑
µ

dµf
τ
µk, (44)

where each |dµ| is at most 4(w−k)2 log(w−k) ≤ 4(w−1)2 log(w) by induction. By Corollary 2.37, the

structure constants f τµk satisfy |f τµk| ≤ |C
|τ |
|µ|k| ≤ |µ|!k! ≤ ww. Since the number of partitions of

(w − k) is trivially at most ww, the coefficient on p]τ in (44) has magnitude at most∑
µ

|dµf τµk| ≤ w2w ·max
µ
|dµ| ≤ w2w · 4(w−1)2 log(w) ≤ 4w

2 logw,

completing the induction.

5.2.6 Combining the bounds

Combining (40), and Lemmas 5.7, 5.8, we get that under the hypotheses of Proposition 5.4,

dKL(SWn
r ,SWn

r+) ≤ r
(

3

ω

)C
+ exp(O(C2 logC)) · 1

ω2
+ 203

ω3 ≤ exp(O(C2.01)) · 1

ω2
. (45)

In the above we used r
(

3
ω

)C ≤ r (10
ω

)C ≤ r ( 1
10r

)3 ≤ 1
ω3 , the second inequality here following from

the assumed lower bound on C. It’s now evident that we should take C as small as we can; in
particular, to equal d3 log(10r)

log(ω/10)e. We conclude:
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Theorem 5.10. For any 200 ≤ ω ≤
√
r, if n = r2

ω2 then

dKL(SWn
r ,SWn

r+1) ≤ exp(O((log r)/(logω))2.01) · ω−2.

In particular, for ω = exp(O(log.67 r)) and hence n = r2−O(1/ log.33 r), the above bound is or(1).

By Pinsker’s inequality we may conclude also that dTV(SWn
r , SWn

r+) ≤ or(1) unless n =

r2−O(1/ log.33 r) = Ω̃(r2). This completes the proof of the rank-r versus rank-(r + 1) testing lower
bound; in particular, the more precise bound (27) in the case ∆ = 1.

5.3 Extension to ∆ > 1

Let us henceforth fix the parameter C = d3 log(10r)
log(ω/10)e. To recap the preceding section we saw that

|E[LC(λ)]| ≤ exp(O(C2.01)) · 1

ω2
, and hence dKL(SWn

r , SWn
r+1) ≤ exp(O(C2.01)) · 1

ω2
. (46)

If we apply Pinsker’s inequality to the latter bound we obtain

dTV(SWn
r ,SWn

r+1) ≤ exp(O(C2.01)) · 1

ω
.

The key to getting a good lower bound when ∆ > 1 is to show that Pinsker’s inequality is not
sharp in our setting, and in fact the following is true:

Theorem 5.11. For any 200 ≤ ω ≤
√
r, if n = r2

ω2 then

dTV(SWn
r , SWn

r+1) ≤ exp(O(C2.01)) · 1

ω2
.

From this we can obtain the testing bound (27) for rank-r versus rank-(r+∆) (where 1 ≤ ∆ ≤ r)
simply by using the triangle inequality. Specifically, given r ≤ r′ ≤ 2r and n, define ωr′ by n = (r′)2

ω2
r′

.

Applying Theorem 5.11 for each r′, we get

dTV(SWn
r′ , SWn

r′+1) ≤ exp(O((log r′)/(logωr′))
2.01) · 1

ω2
r′

for all r ≤ r′ < 2r.

But ωr′ is within a factor of 2 of ωr for all r ≤ r′ ≤ 2r; thus by adjusting the constant in the O(·),
the above holds with ωr in place of ωr′ . Applying the triangle inequality, we get

dTV(SWn
r , SWn

r′+∆) ≤ exp(O((log r)/(logωr))
2.01) · 1

ω2
r

·∆.

Again, taking ωr = exp(O(log.67 r)), we get

dTV(SWn
r ,SWn

r′+∆) ≤ n

r2−O(1/ log.33 r)
·∆,

and this completes the proof of the rank-testing lower bound (27).

Thus it remains to prove Theorem 5.11. The main result we need for this is the following:

Theorem 5.12. Var
λ∼SWn

r

[LC(λ)] ≤ exp(O(C2.01)) · 1

ω4
.
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To prove Theorem 5.12 we will employ the following lemma:

Lemma 5.13. Let µ be a partition with wt(µ) = k ≥ 2. Then

Var
λ∼SWn

r

[p]µ(λ)] ≤ exp(O(k2 log k)) · r2k−2 · (1/ω4).

Proof. If |µ| = 1 then p]µ(λ) = n which has variance 0. Thus we may assume |µ| ≥ 2 and hence
k ≥ 3. Using Proposition 2.39,

Var[p]µ(λ)] = E[p]µ(λ)2]−E[p]µ(λ)]2 = E[p]µ∪µ(λ)]−E[p]µ(λ)]2 + E[qµ(λ)] (47)

where qµ(λ) is a certain linear combination of p]ν polynomials, each of weight at most 2k − 2.
Regarding the first two quantities here, Corollary 2.35 tells us that

E[p]µ∪µ(λ)]−E[p]µ(λ)]2 = n↓(2|µ|)r2`(µ)−2|µ| − (n↓|µ|r`(µ)−|µ|)2 = r2`(µ)−2|µ|(n↓(2|µ|) − (n↓|µ|)2),

which is evidently nonpositive. Thus it suffices to prove the upper bound

|E[qµ(λ)]| ≤ exp(O(k2 log k)) · r2k−2 · (1/ω4). (48)

By Lemma 5.9, the coefficients on the p]ν ’s in the linear combination qµ(λ) each have magnitude at

most exp(O(k2 log k)), and there are at most 2O(
√
k) of them. Thus (48) follows provided we can

show E[p]ν(λ)] ≤ r2k−2/ω4 for all ν of weight at most 2k − 2. This is immediate from Lemma 5.6
for all ν 6= (1), and when ν = (1) it still holds: Lemma 5.6 gives us the bound r2/ω2 ≤ r3/ω4 ≤
r2k−2/ω4, the first inequality using ω ≤

√
r and the second using k ≥ 3.

We can now prove Theorem 5.12.

Proof of Theorem 5.12. Recall identity (37):

LC(λ) =
C∑
k=2

(−1)k

krk
·

∑
wt(µ)=k+1

k↓(`(µ)−1)

fact(µ)
p]µ(λ) +

C∑
k=2

(−1)kOk(λ)

krk
.

We claim that for each 2 ≤ k ≤ C,

Var

[
(−1)kOk(λ)

krk

]
≤ exp(O(C2.01)) · 1

ω4
, (49)

and that furthermore for each µ of weight k + 1 we have

Var

[
(−1)k

krk
· k
↓(`(µ)−1)

fact(µ)
p]µ(λ)

]
≤ exp(O(C2.01)) · 1

ω4
. (50)

This is sufficient to complete the proof, as in general

Var[X1 + · · ·+Xm] ≤ m(Var[X1] + · · ·+ Var[Xm]); (51)

in our particular case we have only m = exp(O(
√
C)) summands, and this factor can be absorbed

into the target variance bound of exp(O(C2.01)) · (1/ω4). To verify (49), first recall that each Ok(λ)

is a linear combination of p]ν(λ)’s for ν of weight at most k ≤ C; further, the sum of the absolute
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value of the coefficients is at most exp(O(C2.01)) (see (41)). Using (51) again, it therefore suffices
to check that

Var

[
p]ν(λ)

rk

]
≤ exp(O(C2.01)) · 1

ω4

when wt(ν) ≤ k ≤ C. By Lemma 5.13 this is true, with a factor of r−2 to spare.

To verify (50), we may ignore the factor (−1)k

k·fact(µ) , and also ignore the factor k↓(`(µ)−1) as it

contributes at most a multiplicative CC � exp(O(C2.01)). Thus it suffices to show Var[p]µ(λ)/rk] ≤
exp(O(C2.01))/ω4 for µ of weight k+ 1 (and k ≤ C). But this is immediate from Lemma 5.13.

We now work towards the proof of Theorem 5.11. Adding Theorem 5.12 and the square of (46)
we obtain

E
λ∼SWn

r

[LC(λ)2] ≤ exp(O(C2.01)) · 1

ω4
. (52)

We would now like to similarly claim that

E
λ∼SWn

r+

[L+

C(λ)2] ≤ exp(O(C2.01)) · 1

ω4
, (53)

where we are writing

L+

C(λ) :=
C∑
k=2

(−1)kp∗k(λ)

k(r + 1)k
.

To obtain this, it suffices to repeat all of the arguments beginning with Section 5.2.2 until this
point; the only thing that really changes is that ω = ωr needs to be replaced with ωr+1, but this
has a negligible effect on the bounds (and indeed usually very slightly improves them).

Next, we claim that Lemma 5.3 continues to hold if we replace LC(λ) with the analogous L+

C(λ).
The key change to the proof comes in the last main inequality, where we need to observe that the(

1

rk
− 1

(r + 1
2)k

)
≤ k

2rk+1

continues to hold if the left-hand side is replaced with(
1

(r + 1
2)k
− 1

(r + 1)k

)
.

We need one more definition for the proof of Theorem 5.11.

Definition 5.14. Say that λ ` n is usual+ if it is usual and if furthermore |L∗∞(λ)| ≤ 2.

Lemma 5.15. Both for λ ∼ SWn
r and λ ∼ SWn

r+ it holds that

Pr[λ not usual+] ≤ exp(O(C2.01)) · 1

ω4
.

Proof. For λ ∼ SWn
r , Lemma 5.2 tells us that

Pr[λ not usual] ≤ 2−20r/ω ≤ 2−Ω(
√
r) � exp(O(C2.01)) · 1

ω4
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and it’s easy to check that this is also true with plenty of room to spare for λ ∼ SWn
r+. Thus it

suffices to verify for both distributions on λ that the probability of |L∗∞(λ)| ≤ 2 satisfies the same
upper bound. By applying Markov’s inequality to (52), (53) we get

Pr
λ∼SWn

r

[LC(λ)2 ≥ 1], Pr
λ∼SWn

r+

[L+

C(λ)2 ≥ 1] ≤ exp(O(C2.01)) · 1

ω4
.

Finally, when λ is usual and |LC(λ)2| 6≥ 1, it follows that necessarily |L∗∞(λ)| ≤ 2, in light of
Lemma 5.3 and the fact that 201

ω3 ≤ 1. As noted earlier, the r+-analogue of Lemma 5.3 holds, and
hence we may draw the same conclusion concerning L+

C(λ)2.

Finally we are ready to complete the proof of Theorem 5.11. We begin with

dTV(SWn
r , SWn

r+) ≤ 1

2
Pr

λ∼SWn
r

[λ not usual+] +
1

2
Pr

λ∼SWn
r+

[λ not usual+]

+
1

2

∑
usual+ λ

∣∣∣SWn
r+[λ]− SWn

r [λ]
∣∣∣ .

We can bound the first two terms above using Lemma 5.15. Indeed there is room to spare, as the
bound we get is the square of what we can tolerate. Thus it remains to bound the third term by
exp(O(C2.01)) · 1

ω2 . For it we use∑
usual+ λ

∣∣∣SWn
r+[λ]− SWn

r [λ]
∣∣∣ = E

λ∼SWn
r+

[
1{λ usual+} ·

∣∣∣∣∣1− SWn
r [λ]

SWn
r+[λ]

∣∣∣∣∣
]

= E
λ∼SWn

r+

[
1{λ usual+} · |1− exp(u(λ))|

]
(54)

where

u(λ) = ln

(
SWn

r [λ]

SWn
r+[λ]

)
= n ln

(
1 +

1

r

)
− n

r + 1
2

+ L∗∞(λ), (55)

the last equality holding from (31) (see also the sentence after (33)) under the assumption that λ
is usual (which we can indeed assume, since we’re multiplying against 1{λ usual+}). As we noted

after (33), the first two quantities in (55) sum to a positive quantity not exceeding n
12r3
≤ 1

ω2 . Fur-
thermore, because of the presence of the usual+-indicator in (54) we may assume in analyzing (55)
that |L∗∞(λ)| ≤ 2. Thus we may use the bound u(λ) ≤ 2 + 1

ω2 ≤ 2.01. Since |1− exp(u)| ≤ 4|u| for
u ∈ [−2.01, 2.01], we may conclude that

(54) ≤ 4 E
λ∼SWn

r+

[
1{λ usual+} ·

(
1

ω2
+ |L∗∞(λ)|

)]
.

Thus to complete the proof of Theorem 5.11 it remains to show

E
λ∼SWn

r+

[|L∗∞(λ)|] ≤ exp(O(C2.01)) · 1

ω2
.

By the r+-analogue of Lemma 5.3, it suffices to prove this with L+

C(λ) in place of L∗∞(λ), because
201/ω3 � exp(O(C2.01))/ω2. But finally

E
λ∼SWn

r+

[
|L+

C(λ)|
]
≤
√

E
λ∼SWn

r+

[
L+

C(λ)2
]
≤ exp(O(C2.01)) · 1

ω2
,

using Cauchy–Schwarz and (53). The proof of Theorem 5.11—and hence also the testing lower
bound (27)—is therefore complete.
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6 Quantum rank testing

6.1 Testers with one-sided error

In this section, we prove the first part of Theorem 1.11, that Θ(r2/ε) copies are necessary and
sufficient to test whether or not a state has rank r with one-sided error. We will show this by
analyzing the following algorithm.

Rank Tester. Given ρ⊗n,

1. Sample λ ∼ SWn
ρ .

2. Accept if `(λ) ≤ r. Reject otherwise.

Our primary tool in analyzing this tester will be the RSK correspondence. Suppose ρ’s nonzero
eigenvalues are η = {η1, . . . , ηd}, and let D be the distribution over [d] induced by η. By Re-
mark 2.24, SWn

ρ has the same distribution as the process which first samples w ∼ D⊗n and outputs
λ = RSK(w). Write LDS(w) for the length of the longest strongly decreasing subsequence in w.
By Theorem 2.14, `(λ) = LDS(w).

The key property we will need of the Rank Tester is the following:

Proposition 6.1. The Rank Tester is the optimal algorithm for testing whether or not a state has
rank r with one-sided error.

Proof. To show this, we need to show (i) that every λ satisfying `(λ) ≤ r occurs with nonzero
probability in SWn

ρ for some ρ of rank r and (ii) that no λ satisfying `(λ) > r occurs in SWn
ρ for

any ρ of rank r. The first follows because if ρ has r nonzero eigenvalues, then the word

w := r, . . . , r︸ ︷︷ ︸
λr letters

, (r − 1), . . . , (r − 1)︸ ︷︷ ︸
λr−1 letters

, . . . , 1, . . . , 1︸ ︷︷ ︸
λ1 letters

occurs in D⊗n with nonzero probability. It is easy to check that λ = RSK(w).
To show that (ii) holds, if ρ is rank r, then η has at most r nonzero entries. Thus, any word w

in the support of D⊗n will always satisfy LDS(w) ≤ r because w will contain at most r distinct
letters. As `(λ) = LDS(w), we are done.

As a result of Proposition 6.1, Theorem 1.11 follows from the following lemma.

Lemma 6.2. The Rank Tester tests whether or not a state has rank r with Θ(r2/ε) copies.

Proof. If ρ is ε-far from having rank r, then η is ε-far in TV distance from having support size r.
Thus, we can show the lemma by showing the following two facts about probability distributions.

(i) For every probability distribution D = (p1, . . . , pd) which is ε-far from having support size r,
a random word w ∼ D⊗n satisfies LDS(w) ≥ r + 1 with probability at least 2/3 for some
n = O(r2/ε).

(ii) There exists an integer d and a probability distribution D = (p1, . . . , pd) which is ε-far from
having support size r such that, for a random word w ∼ D⊗n, LDS(w) ≤ r with probability
greater than 1/3 whenever n = o(r2/ε).
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Proof of statement (i): We will need the following concentration bound for sums of geometric
random variables.

Proposition 6.3 ([Bro]). Write X = X1 + . . . + Xn, where the Xi’s are iid geometric random
variables with expectation µ. For any k > 1, Pr[X > knµ] ≤ exp

(
−1

2kn(1− 1/k)2
)
.

We note that Proposition 6.3 also holds with the weaker hypothesis that the Xi’s are independent
(and not necessarily identically distributed), each with expectation at most µ.

We may assume that p1 ≥ . . . ≥ pd. We will split into two cases, handled below: (1) pr+1 ≥ ε/4r
and (2) pr+1 < ε/4r.

(1) Because the probabilities are sorted, p1, . . . , pr+1 ≥ ε/4r. For the infinite random word w ∼
D⊗∞, consider the number of letters one has to traverse through before finding (r+1), r, . . . , 1
as a subsequence. This number is distributed asX = Xr+1+. . .+X1, whereXi is a geometric
random variable with success probability pi.

By assumption, pi ≥ ε/4r, and therefore EXi ≤ 4r/ε, for each i ∈ [r+1]. By Proposition 6.3,
X is at most 24r2/ε with probability at least 2/3. Thus, if n = 24r2/ε, then w ∼ D⊗n has a
strictly decreasing subsequence of size r + 1 with high probability.

(2) Because the probabilities are sorted, pr+1, . . . , pd < ε/4r. Place the letters from {r+1, . . . , d}
into buckets as follows: starting from letter (r + 1) and proceeding in order, add each letter
to the current bucket until it contains at least ε/4r weight. At this point, move to the next
bucket and repeat this process starting with the current letter until all letters have been
bucketed.

Because these letters have weight ≤ ε/4r, each bucket has total weight in the interval
[ε/4r, ε/2r) (except possibly the final bucket). There must be at least 2r + 1 buckets with
nonzero total weight, as otherwise pr+1 + . . . + pd < ε, contradicting the fact that P is ε-far
from having support size r. This gives us at least 2r ≥ r + 1 buckets each of which contains
at least ε/4r total weight.

Now we can use an argument similar to case (1) to show that when n = 24r2/ε, a random
w ∼ D⊗n will with probability ≥ 2/3 have a strictly decreasing subsequence in which the
first letter comes from bucket r+ 1, the second letter comes from bucket r, and so on (ending
in a letter from the first bucket). This is a strictly decreasing subsequence of size r + 1.

Proof of statement (ii): For d� r, define the probability distribution

P =

(
1− 2ε,

2ε

d− 1
, . . . ,

2ε

d− 1

)
.

Because d � r, P is ε-far from having support size r. For a string w ∈ [d]n, let w̃ be the
substring of w formed by deleting all occurrences of the letter “1” from w. It is easy to see that
LDS(w̃) ≤ LDS(w) ≤ LDS(w̃) + 1.

For a randomly drawn w ∼ P⊗n, let us condition on w̃ having a certain fixed length m. The
value of LDS(w̃) is distributed as the length of the longest decreasing subsequence in a uniformly
random word drawn from [d − 1]m. By Theorem 2.14, this is distributed as λ′1 for λ ∼ SWm

d−1.
Setting B = d100

√
me, let us show that Pr[λ′1 ≥ B] is small. If B ≥ d, then surely λ′1 < B

always, as λ ∼ SWm
d−1 will always have height at most d− 1. On the other hand, if B < d, then by

Proposition 2.31,

Pr[λ′1 ≥ B] ≤
(

2e2m

B2

)B
≤ 2e2

10000
.
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In summary, conditioned on w̃ having a certain fixed length m, LDS(w̃) ≤ O(
√
m) with all but

the above probability.
In expectation, for a random w ∼ P⊗n, w̃ has length 2εd. By Markov’s inequality, the probabil-

ity that the length of w̃ is greater than 200εd is at most 1/100. Conditioned on the length of w̃ being
at most 200εd, the above paragraph tells us that LDS(w̃) ≤ O(

√
εd) with probability 1−2e2/10000.

Thus, when w ∼ P⊗n, we have with probability greater than 1/3 that LDS(w) ≤ O(
√
εd), which

is o(r) unless d = Ω(r2/ε).

For our last result of this section, we will show that the copy complexity of the Rank Tester can
be improved in certain interesting cases. In particular, the Rank Tester matches the upper bound
of the Uniform Distribution Distinguisher from Section 5 for the case of r v. r + 1, and does so
with one-sided error.

Proposition 6.4. The Rank Tester can distinguish between the case when ρ’s spectrum is uniform
on either r or r + 1 eigenvalues with O(r2) copies of ρ.

Proof. If ρ’s spectrum is uniform on r eigenvalues, then it is rank r and so the Rank Tester never
rejects. Thus, we need only show that the Rank Tester rejects with probability ≥ 2/3 when ρ’s
spectrum is uniform on r + 1 eigenvalues for some n = O(r2). We will follow the analysis in the
proof of statement (i) above and show that a random word w ∼ D⊗n has LDS(w) = r + 1 with
high probability. The gain will come from the fact that η = (1/(r + 1), . . . , 1/(r + 1)).

For the infinite random word w ∼ D⊗∞, consider the number of letters one has to traverse
through before finding (r + 1), r, . . . , 1 as a subsequence. This number is distributed as X =
Xr+1 + . . .+X1, where Xi is a geometric random variable with success probability 1/(r+ 1) and
expectation r + 1. By Proposition 6.3, X is at most 6r2 with probability at least 2/3. Thus, if
n = 6r2, then w ∼ D⊗n has a strictly decreasing subsequence of size r+1 with high probability.

6.2 A lower bound for testers with two-sided error

In this section, we prove the second part of Theorem 1.11, that Ω(r/ε) copies are necessary to test
whether or not a state has rank r with two-sided error.

Proof. Let d � r. In this proof, we will take the viewpoint of a density matrix as a probability
distribution over pure states. Let ρ and σ be maximally mixed on subspaces of dimension (r − 1)
and (d − 1), respectively. Consider the following process for generating a product state |Ψ〉 =
|Ψ1〉 ⊗ · · · ⊗ |Ψn〉:

1. Let x ∈ {0, 1}n2ε be a uniformly random 2ε-biased string, meaning each coordinate is selected
independently according to Pr[xi = 1] = 2ε.

2. For each i ∈ [n] such that xi = 0, set |Ψ1〉 := |d〉.

3. Let b be an arbitrary {0, 1}-bit. For each i ∈ [n] such that xi = 1,

(a) if b = 0, then set |Ψi〉 to be a state vector sampled from ρ.

(b) if b = 1, then set |Ψi〉 to be a state vector sampled from σ.

If b is 0, then the mixed state output by this procedure has spectrum (1− 2ε, 2ε
r−1 , . . . ,

2ε
r−1), which

is rank r. On the other hand, if b is 1, then the mixed state output by this procedure has spectrum
(1− 2ε, 2ε

d−1 , . . . ,
2ε
d−1), which because d� r is ε-far from having rank r.
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Let us consider the choice of x in the first step, and set wt(x) to be the number of 1’s in x.
In expectation, wt(x) will be 2εn, and so by Markov’s inequality wt(x) will be at most 200εn
with probability at least 99/100. There must exist an x with wt(x) ≤ 200εn conditioned on which
the algorithm succeeds with probability at least 3/5, as otherwise it will succeed in total with
probability at most 1/100 + 99/100 · 3/5 < 2/3.

Fix any such x. The job of the algorithm is reduced to distinguishing between the cases when
those |Ψi〉’s for which xi = 1 came from ρ which is maximally mixed on a subspace of dimension
(r−1) (when b = 0) or from σ which is maximally mixed on a subspace of dimension (d−1) (when
b = 1). Because d� r, we have by Theorem 1.9 that this requires at least Ω(r) copies to succeed
with probability at least 3/5. Thus, we must have 200εn ≥ Ω(r), in which case n = Ω(r/ε).

7 The EYD lower bound (continued)

In this section, we prove Theorem 3.4.

Theorem 3.4 restated. For every constant C > 0, there are constants δ, ε > 0 such that

Pr
λ∼SWn

d

[dTV(λ,Unifd) > ε] ≥ δ

when n ≤ Cd2 and d is sufficiently large.

Proof. To prove Theorem 3.4, we show, at a high level, that when n ≤ Cd2, Biane’s law of large

numbers kicks in and λ approaches the limiting curve Ωθ, for θ :=
√
n
d . Each of these curves is

constantly far from the curve produced by the uniform partition, and the lower bound follows.
However, carrying out this proof involves some subtle argumentation and splitting of hairs which
we will go into.

There is one regime where λ certainly does not approach Ωθ: when n is a fixed value independent
of the value of d, then λ will be always be constantly far from Ωθ. However, we can rule this case
out by noting that when n is too small as a function of d, then any λ = (λ1, . . . , λd) with n boxes
will have most of its λi’s zero, and so λ will be far from uniform. In particular, when n = o(d), then
we have that dTV(λ,Unifd)→ 1 as d→∞. As a result, for sufficiently large d we can immediately
assume that n ≥ f(d), where f(d) is any function which is both ωd(1) and o(d). For concreteness,
we will take f(d) :=

√
d.

We are now in the regime where Biane’s law of large numbers holds. Theorem 2.30 tells us

that if
√
n
d ∼ c for c some absolute constant, then there is some constant d(c) > 0 such that for a

random λ ∼ SWn
d , λ is ε-close (in L∞ distance) to Ωc whenever d ≥ d(c). The main difficulty we

have in applying Biane’s law of large numbers directly is that the function d(c) is left unspecified
and, for example, could be wildly different even for two close values of c. This is problematic in

our case, because for each value of d, the ratio θ =
√
n
d may be any real number in the interval

[
√
f(d)/d,

√
C], and so θ may jump around and never converge to a fixed value c. In particular, an

adversary could potentially choose n (and therefore θ) as a function of d cleverly so that for each d,
we have that d < d(θ), and so Biane’s law of large numbers never applies. Though seemingly
unlikely, this possibility is not ruled out by the statements of known theorems.

Our goal now is to show that the convergence to the limiting shapes guaranteed by Biane’s
theorem happens at roughly the same rate for all values of θ in our interval. First we will need a
definition.
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Definition 7.1. Given continual diagrams f, g : R→ R, the L1 distance between them is

d1(f, g) :=

∫
R

|f(x)− g(x)| dx.

This defines a metric on the set of continual diagrams, and it is well-defined because f(x)−g(x) = 0
whenever |x| is sufficiently large. If λ, µ are both partitions of n, then d1(λ, µ) = 4 · dTV(λ, µ,).

We will prove the following result:

Theorem 7.2. Let C > 0 be an absolute constant, and let f(d) : N → N be ωd(1). Then for any
constant 0 < δ < 1, if f(d) ≤ n ≤ Cd2, then

Pr
λ∼SWn

d

[
d1(λ,Ωθ) ≥ δ

]
≤ δ,

for sufficiently large d, where θ =
√
n
d .

Let us now complete the argument assuming Theorem 7.2. For κ > 0, define the following
continual diagram:

unifκ(x) :=


x+ 2

κ if x ∈ (− 1
κ , κ−

1
κ ]

−x+ 2κ if x ∈ (κ− 1
κ , κ),

|x| otherwise.
(56)

To see how such a function arises, consider the uniform “partition”
(
n
d , . . . ,

n
d

)
(“partition” being

in quotation marks because n
d may not be integral). Drawing this in the French notation gives a

rectangle of width n
d and height d whose bottom-left corner is the origin. Drawing this in the Russian

notation and dilating by a factor of 1/
√
n therefore gives the curve unifθ(x). One consequence of

this is that if λ is a partition of n, then d1(λ, unifθ) = 4 · dTV(λ,Unifd,).
Define the function ∆ : (0,

√
C] → R≥0 by ∆(κ) := d1(unifκ,Ωκ). When κ < .3, ∆(κ) > .5 for

all c. This is because Ωκ(x) = −x for all x ≤ −2 regardless of κ, whereas unifκ(x) = −x + 2κ in
(κ− 1

κ ,−2]. Because κ < .3,

d1(unifκ,Ωκ) =

∫
R

∣∣unifκ(x)− Ωκ(x)
∣∣dx ≥ 2κ ·

(
1
κ − 2− κ

)
≥ 0.5.

Now, let us lower-bound ∆(κ) when κ ≥ .3. Write I for the interval [.3,
√
C]. (If .3 >

√
C then

this step can be skipped.) To begin, we note that ∆(κ) is continuous on I. By comparing (56)
with Theorem 2.30, it is easy to see that ∆(κ) > 0 for all κ > 0. We can now apply the extreme
value theorem, which implies that ∆ achieves its minimum on I at some fixed point κ∗ ∈ I. We
therefore have that ∆(κ) ≥ ∆(κ∗) > 0 for all κ ∈ I.

Combining the last two paragraphs, we now know that there is some value

δ := min{0.5,∆(κ∗)} > 0

such that ∆(κ) > δ for all κ ∈ (0,
√
C]. Crucially, δ is an absolute constant which depends only

on the constant C and is independent of n and d. Now, let us apply Theorem 7.2 with the values
f(d) =

√
d, C, and δ

2 . Then with probability at least 1− δ
2 , d1(λ,Ωθ) <

δ
2 . When this occurs,

dTV(λ,Unifd) =
1

4
d1(λ, unifθ) ≥

1

4

(
d1(Ωθ, unifθ)− d1(λ,Ωθ)

)
≥ δ

8
,

where the second step follows from the triangle inequality, and the third step uses the fact that
d1(Ωθ, unifθ) = ∆(θ) ≥ δ. This proves the theorem with the parameters 1− δ

2 and δ
8 .

It remains to prove Theorem 7.2, and this is done in the next subsection.
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7.1 Proof of Theorem 7.2

Our goal is to give a rate of convergence of λ to Ωθ which depends only on d and is independent
of n. To do this, we will show that standard law of large numbers arguments give convergence rates
of this form. Biane’s [Bia01] proof of the law of large numbers for the Schur-Weyl distribution does
not use Kerov’s algebra of observables. Instead, we will follow the proof of the law of large numbers
(second form) for the Plancherel distribution in [IO02, Theorem 5.5] and use results from [Mél10a]
to extend this proof to the Schur–Weyl distribution. We emphasize that our proof contains no ideas
not already found in [IO02, Mél10a], and that our goal is just to show that proper bookkeeping
of their arguments yields our Theorem 7.2. (Finally, we note that Meliot [Mél10a] also sketches a
proof the law of large numbers for the Schur–Weyl distribution using Kerov’s algebra of observables
at the beginning of his Section 3.)

Write ∆λ(x) := λ(x) − Ωθ(x). Because λ and Ωθ are both continual diagrams, we know that
∆λ is supported (i.e., nonzero) on a finite interval. We will need a stronger property, which is
that the width of this interval does not grow with d (or, equivalently, with n). To show this, note
that ∆λ(x) is zero when both Ωθ(x) = |x| and λ(x) = |x|. For the first of these, we can consult
Theorem 2.30 and see that Ωθ(x) = |x| outside the interval [−2, θ + 2]. On the other hand, λ(x)
does not equal |x| outside a constant-width interval for all λ ∼ SWn

d . (For example, with nonzero
probability λ = (n), in which case λ(x) = |x| only outside the interval (−1/

√
n,
√
n).) However,

the next proposition shows that our desired property occurs with high probability.

Proposition 7.3. With probability 1− δ
2 , λ(x) 6= |x| only on an interval of width w = Oδ(1).

Proof. We will show that λ1 and λ′1 ≤ β
√
n, each with probability 1 − δ/4, for some constant

β which depends only on δ (and C). The proposition will then follow from the union bound, as
λ = |x| outside the interval [−λ1/

√
n,λ1/

√
n]. By Proposition 2.31,

Pr[λ1 ≥ β
√
n],Pr[λ′1 ≥ β

√
n] ≤

(
(1 + βθ)e2

β2

)β√n
≤ (1 + βθ)e2

β2
≤ (1 + β

√
C)e2

β2
.

This can be made less than δ/4 by choosing β to be a sufficiently large function of C and δ.

Let I ′ be the constant-width interval guaranteed by Proposition 7.3. Clearly, I ′ contains the
point zero. Thus, if we define

I := [−2, θ + 2] ∪ I ′

then this is a single interval of width w = Oδ(1). This motivates the following definition:

Definition 7.4. We say that λ is usual if ∆λ is supported on I. By the previous discussion, a
random λ is usual with probability 1− δ/2.

Let us condition λ on it being usual, and let us suppose that d1(λ,Ωθ) ≥ δ. Then there is
some point x ∈ I such that |∆λ(x)| ≥ δ

w . Now we will use the fact that Ωθ and λ are continual
diagrams, which implies that they are both 1-Lipschitz, and therefore ∆λ is 2-Lipschitz. Then if
we consider the subinterval Ix ⊆ I defined as Ix := [x− δ

4w , x+ δ
4w ], this Lipschitz property implies

that |∆λ(y)| ≥ δ
2w for all y ∈ Ix. (That Ix is contained in I follows from the fact that ∆λ is nonzero

on Ix and λ is usual.) We note that the width of Ix is δ
2w .

Let J be a set of d4w2

δ e closed intervals of width δ
4w which cover I. These intervals are chosen

to have half the width of Ix, the result being that there is some interval J∗ ∈ J which is completely
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contained in Ix. For each interval J ∈ J , let ΨJ : R→ R≥0 be a continuous function supported on
J which satisfies

∫
ΨJ(y)dy = 1 (such functions are known to exist; e.g., bump functions). Then∣∣∣∣∫ ∞
−∞

∆λ(y)ΨJ∗(y)dy

∣∣∣∣ ≥ min
y∈Ix
|∆λ(y)| ·

∫ ∞
−∞

ΨJ∗(y)dy ≥ δ

2w
.

By the Weierstrass approximation theorem, we can approximate each ΨJ with a polynomial
function Ψ̃J such that for each x ∈ I, |ΨJ(x)− Ψ̃J(x)| ≤ δ

8w3 . (Outside of I, Ψ̃J can—and will—be
an arbitrarily bad approximator for ΨJ .) Because ∆λ is 2-Lipschitz and λ is usual, |∆λ(x)| ≤ 2w
for all x ∈ I and is zero everywhere else. As a result, for the interval J∗,∣∣∣∣∫ ∞

−∞
∆λ(y)Ψ̃J∗(y)dy

∣∣∣∣ ≥ ∣∣∣∣∫ ∞
−∞

∆λ(y)ΨJ∗(y)dy

∣∣∣∣− ∣∣∣∣∫ ∞
−∞

∆λ(y)
(

ΨJ∗(y)− Ψ̃J∗(y)
)
dy

∣∣∣∣ ≥ δ

4w
.

The first inequality uses the triangle inequality, and the second inequality uses crucially the fact
that ∆λ is zero outside I.

In summary, we have

Pr
λ∼SWn

d

[
d1(λ,Ωθ) ≥ δ

]
≤ Pr
λ∼SWn

d

[
∃J ∈ J :

∣∣∣∣∫ ∞
−∞

∆λ(y)Ψ̃J(y)dy

∣∣∣∣ ≥ δ

4w

]
+
δ

2
, (57)

where the δ/2 comes from the event that λ is not usual. We will therefore show that
∣∣∣∫ ∆λ(y)Ψ̃J(y)dy

∣∣∣
is at most δ

4w for all J ∈ J with probability at least 1− δ
2 . By the union bound, it suffices to show

that for each J ∈ J ,
∣∣∣∫ ∆λ(y)Ψ̃J(y)dy

∣∣∣ ≤ δ
4w with probability at least 1− δ

2·|J | .

Let m be the maximum degree of the Ψ̃J functions, for all J ∈ J . Fix an interval J ∈ J . Then
we can write

Ψ̃J(x) =
m∑
k=0

a
(k)
J xk and

∫ ∞
−∞

∆λ(y)Ψ̃J(y)dy =
m∑
k=0

a
(k)
J

∫ ∞
−∞

xk∆λ(x)dx, (58)

where the a
(k)
J ’s are constants. The following proposition, found in [Mél10a, Lemma 7], gives a nice

expression for the integrals on the right-hand side.

Proposition 7.5. Let k ≥ 1. Then∫ ∞
−∞

xk∆λ(x)dx =
2 · q̃k+1(λ)

(k + 1)
√
n
,

where q̃k(λ) is the quantity defined as

q̃k(λ) :=
p̃k+1(λ)

(k + 1)nk/2
−
b k+1

2
c∑

`=1

k↓2`−1

(k + 1− `)`!(`− 1)!
· n

k/2+1−`

dk+1−2`
.

The key fact we will use is that we can upper bound the right-hand side of Equation (58) by a
quantity which decays with d, independent of the value of n. This is the subject of the following
lemma.

Lemma 7.6. The random variable
∣∣∣ q̃k(λ)√

n

∣∣∣, for λ ∼ SWn
d , has mean od(1), for all f(d) ≤ n ≤ Cd2.
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Applying Proposition 7.5 and Lemma 7.6 to Equation (58), we see that Eλ∼SWn
d

∣∣∣∫ ∆λ(x)Ψ̃J(x)dx
∣∣∣

is od(1). We may take d large enough to make this quantity arbitrarily small. Thus, select

dJ so that for all d ≥ dJ , this expectation is at most δ2

8w·|J | . Then by Markov’s inequality,∣∣∣∫ ∆λ(x)Ψ̃J(x)dx
∣∣∣ ≤ δ

4w with probability at least 1 − δ
2·|J | . If we set d0 to be the max of dJ

over all J ∈ J , then by Equation (57), Prλ∼SWn
d

[
d1(λ,Ωθ) ≥ δ

]
≤ δ so long as d ≥ d0, and we are

done.
Now we turn to the proof of Lemma 7.6.

Proof of Lemma 7.6. Define

Xk(λ) :=
∑

µ:wt(µ)=k

k↓`(µ)

m(µ)
· p]µ(λ)

and

q]k(λ) :=
Xk+1(λ)

(k + 1)nk/2
−
b k+1

2
c∑

`=1

k↓2`−1

(k + 1− `)`!(`− 1)!
· n

k/2+1−`

dk+1−2`
. (59)

Then by Proposition 5.5, q̃k(λ) and q]k(λ) differ from each other by n−k/2 times an observable O(λ)
of weight k. Thus,

E
λ∼SWn

d

∣∣∣∣ q̃k(λ)√
n

∣∣∣∣ ≤ E
λ∼SWn

d

∣∣∣∣∣q]k(λ)√
n

∣∣∣∣∣+ E
λ∼SWn

d

∣∣∣∣ O(λ)

n(k+1)/2

∣∣∣∣ .
By Cauchy–Schwarz, E |O(λ)/n(k+1)/2| ≤

√
EO(λ)2/nk+1. Because O has weight k, O2 has

weight 2k. As a result, we can use the next proposition to bound the contribution from this term
by od(1).

Proposition 7.7. Let O(λ) be an observable of weight at most 2k. Then

E
λ∼SWn

d

[
O(λ)

nk+1

]
= od(1).

Proof. As in the proof of Lemma 5.7, this reduces to showing that Eλ∼SWn
d

[
p]µ(λ)/nk+1

]
= od(1),

where µ is a partition of weight 2k, i.e. |µ|+ `(µ) ≤ 2k. By Corollary 2.35,

E
λ∼SWn

d

[
p]µ(λ)

nk+1

]
=
n↓|µ|

nk+1
· d

`(µ)

d|µ|
≤ n|µ|

nk+1
· d

`(µ)

d|µ|
=

n|µ|

nk+1
· d

wt(µ)

d2|µ| .

If |µ| < k + 1, then this expression is at most 1/n, which is od(1) because n ≥ f(d) = ωd(1). On
the other hand, if |µ| ≥ k + 1, then for all n ≤ Cd2 this expression is at most

(Cd2)|µ|

(Cd2)k+1
· d

wt(µ)

d2|µ| ≤ C
|µ|−(k+1) · d

wt(µ)

d2(k+1)
,

which is od(1) as wt(µ) ≤ 2k.
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It remains to bound E |q]k(λ)/
√
n| by od(1). First, we will show that q]k(λ) can be viewed as

(approximately) computing the deviation of a certain random variable from its mean. To do this,
let us compute the mean of the first term on the right-hand side of Equation (59).

E
λ∼SWn

d

Xk+1(λ)

(k + 1)nk/2
=

1

(k + 1)nk/2
·

∑
µ:wt(µ)=k+1

(k + 1)↓`(µ)

m(µ)
· n↓|µ|

d|µ|−`(µ)

=
1

(k + 1)nk/2
·
b k+1

2
c∑

`=1

(k + 1)↓`n↓k+1−`

dk+1−2`

∑
µ:wt(µ)=k+1

1

m(µ)

=
1

(k + 1)nk/2
·
b k+1

2
c∑

`=1

(k + 1)↓`n↓k+1−`

dk+1−2`
· 1

`!

(
k − `
`− 1

)

=

b k+1
2
c∑

`=1

k↓2`−1

(k + 1− `)`!(`− 1)!
· n↓k+1−`

nk/2 · dk+1−2`
,

where the third equality follows from [Mél10a, Lemma 11]. As a result, the difference

E
λ∼SWn

d

Xk+1(λ)

(k + 1)nk/2
−
b k+1

2
c∑

`=1

k↓2`−1

(k + 1− `)`!(`− 1)!
· n

k/2+1−`

dk+1−2`

can be written as a sum over terms of the form a · nb/dk+1−2`, where a is a constant coefficient,
1 ≤ b ≤ k/2 − `, and 1 ≤ ` ≤ bk+1

2 c. Given that n ≤ Cd2, each of these terms if ±od(1). Thus, if
we set

qk(λ) :=
Xk+1(λ)

(k + 1)nk/2
− E
λ∼SWn

d

Xk+1(λ)

(k + 1)nk/2
,

then

E
λ∼SWn

d

∣∣∣∣∣q]k(λ)√
n

∣∣∣∣∣ ≤ E
λ∼SWn

d

∣∣∣∣qk(λ)√
n

∣∣∣∣+ o1(d).

Finally, we show that E |qk(λ)/
√
n| = od(1). By Cauchy–Schwarz,

E

∣∣∣∣qk(λ)√
n

∣∣∣∣ ≤
√

E

(
qk(λ)√
n

)2

,

so it suffices to show that E (qk(λ)/
√
n)

2
= od(1). This expectation is simply the variance of the

random variable Xk+1(λ)/(k + 1)n(k+1)/2, which itself is a weighted sum of a constant number

of random variables of the form p]µ(λ)/n(k+1)/2, where wt(µ) = k + 1. An easy application of
Cauchy–Schwarz shows that the variance of a weighted sum of a constant number of random
variables is od(1) if the variance of each random variables is od(1). Thus, we will show that

Var[p]µ(λ)/n(k+1)/2] = od(1) for all wt(µ) = k + 1.
Fix a partition µ of weight k + 1. Then

Var

[
p]µ(λ)

n(k+1)/2

]
= E
λ∼SWn

d

[
1

n(k+1)/2

(
p]µ(λ)p]µ(λ)−E[p]µ]2

)]
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By Proposition 2.39, p]µ(λ) ·p]µ(λ) = p]µ∪µ(λ)+O(λ), where O(λ) is an observable of weight at most

2 · wt(p]µ)− 2 = 2k. Then

Var

[
p]µ(λ)

n(k+1)/2

]
= E
λ∼SWn

d

[
1

nk+1
·
(
p]µ∪µ(λ)−E[p]µ]2

)]
+ E
λ∼SWn

d

[
1

nk+1
· O(λ)

]
.

The second term is ±od(1) by Proposition 7.7. As for the first term, Corollary 2.35, shows that it
equals

1

nk+1
·
(
n↓2|µ|d2`(µ)−2|µ| − n↓|µ|n↓|µ|d2`(µ)−2|µ|

)
=

1

d4|µ|−2(k+1)
·

(
n↓2|µ| − (n↓|µ|)2

nk+1

)
, (60)

where we used the fact that `(µ) = wt(µ) − |µ| = k + 1 − |µ|. The highest-degree term of both
n↓2|µ| and (n↓|µ|)2 is n2|µ|, so we can write

(60) =
1

d4|µ|−2(k+1)
·

2|µ|−(k+2)∑
b=−(k+1)

αb · nb

for some constants αb. When b < 0, nb/d4|µ|−2k−2 ≤ 1/n, which is od(1) because n ≥ f(d) = ωd(1).
On the other hand, when b ≥ 0, then this term is od(1) because n ≤ Cd2.
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[BDKR05] Tuğkan Batu, Sanjoy Dasgupta, Ravi Kumar, and Ronitt Rubinfeld. The complexity
of approximating the entropy. SIAM Journal on Computing, 35(1):132–150, 2005. 1.1
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