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Abstract

An instance of the 2-Lin(2) problem is a system of equations of the form “xi + xj = b
(mod 2)”. Given such a system in which it’s possible to satisfy all but an ε fraction of the
equations, we show it is NP-hard to satisfy all but a Cε fraction of equations, for any C < 11

8 =
1.375 (and any 0 < ε ≤ 1

8 ). The previous best result, standing for over 15 years, had 5
4 in place

of 11
8 . Our result provides the best known NP-hardness even for the Unique-Games problem,

and it also holds for the special case of Max-Cut. The precise factor 11
8 is unlikely to be best

possible; we also give a conjecture concerning analysis of Boolean functions which, if true, would
yield a larger hardness factor of 3

2 .
Our proof is by a modified gadget reduction from a pairwise-independent predicate. We also

show an inherent limitation to this type of gadget reduction. In particular, any such reduction
can never establish a hardness factor C greater than 2.54. Previously, no such limitations on
gadget reductions was known.
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1 Introduction

The well known constraint satisfaction problem (CSP) 2-Lin(q) is defined as follows: Given n
variables x1, . . . , xn, as well as a system of equations (constraints) of the form “xi−xj = b (mod q)”
for constants b ∈ Zq, the task is to assign values from Zq to the variables so that there are as few
unsatisfied constraints as possible. It is known [KKMO07, MOO10] that, from an approximability
standpoint, this problem is equivalent to the notorious Unique-Games problem [Kho02]. The special
case of q = 2 is particularly interesting and can be equivalently stated as follows: Given a “supply
graph” G and a “demand graph” H over the same set of vertices V , partition V into two parts so
as to minimize the total number of cut supply edges and uncut demand edges. The further special
case when the supply graph G is empty (i.e., every equation is of the form xi − xj = 1 (mod 2)) is
equivalent to the Max-Cut problem.

Let’s say that an algorithm guarantees an (ε, ε′)-approximation if, given any instance in which
the best solution falsifies at most an ε-fraction of the constraints, the algorithm finds a solution fal-
sifying at most an ε′-fraction of the constraints. If an algorithm guarantees (ε, Cε)-approximation
for every ε then we also say that it is a factor-C approximation. To illustrate the notation we recall
two simple facts. On one hand, for each fixed q, there is a trivial greedy algorithm which (0, 0)-
approximates 2-Lin(q). On the other hand, (ε, ε)-approximation is NP-hard for every 0 < ε < 1

q ; in
particular, factor-1 approximation is NP-hard.

We remark here that we are prioritizing the so-called “Min-Deletion” version of the 2-Lin(2)
problem. We feel it is the more natural parameterization. For example, in the more traditional
“Max-2-Lin(2)” formulation, the discrepancy between known algorithms and NP-hardness involves
two quirky factors, 0.878 and 0.912. However, this disguises what we feel is the really interest-
ing question — the same key open question that arises for the highly analogous Sparsest-Cut
problem: Is there an efficient (ε, O(ε))-approximation, or even one that improves on the known
(ε, O(

√
log n)ε)- and (ε, O(

√
ε))-approximations?

The relative importance of the “Min-Deletion” version is even more pronounced for the 2-Lin(q)
problem. As we describe below, this version of the problem is essentially equivalent to the highly
notorious Unique-Games problem. By way of contrast, the traditional maximization approximation
factor measure for Unique-Games is not particularly interesting — it’s known [FR04] that there is
no constant-factor approximation for “Max-Unique-Games”, but this appears to have no relevance
for the Unique Games Conjecture.

1.1 History of the problem

No efficient (ε, O(ε))-approximation algorithm for 2-Lin(2) is known. The best known efficient
approximation guarantee with no dependence on n dates back to the seminal work of Goemans and
Williamson:

Theorem 1.1. ([GW94].) There is a polynomial-time (ε, 2
π

√
ε + o(ε))-approximation algorithm

for 2-Lin(2).

Allowing the approximation to depend on n, we have the following result building on [ARV04]:

Theorem 1.2. ([ACMM05].) There is a polynomial-time factor-O(
√

log n) approximation for 2-
Lin(2).

Generalizing Theorem 1.1 to 2-Lin(q), we have the following result of Charikar, Makarychev,
and Makarychev:
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Theorem 1.3. ([CMM06].) There is a polynomial time (ε, Cq
√
ε)-approximation for 2-Lin(q) (and

indeed for Unique-Games), for a certain Cq = Θ(
√

log q).

The question of whether or not this theorem can be improved is known to be essentially equiv-
alent to the influential Unique Games Conjecture of Khot [Kho02]:

Theorem 1.4. The Unique Games Conjecture implies ([KKMO07, MOO10]) that improving on
Theorems 1.1, 1.3 is NP-hard. On the other hand ([Rao11]), if there exists q = q(ε) such that
(ε, ω(

√
ε))-approximating 2-Lin(q) is NP-hard then the Unique Games Conjecture holds.

The recent work of Arora, Barak, and Steurer has also emphasized the importance of subexponential-
time algorithms in this context:

Theorem 1.5. ([ABS10].) For any β ≥ log logn
logn there is a 2O(qnβ)-time algorithm for (ε, O(β−3/2)

√
ε)-

approximating 2-Lin(q). For example, there is a constant K <∞ and an O(2n
0.001

)-time algorithm
for (ε,K

√
ε)-approximating 2-Lin(q) for any q = no(1).

Finally, we remark that there is an exact algorithm for 2-Lin(2) running in time roughly
1.73n. [Wil05].

The known NP-hardness results for 2-Lin(q) are rather far from the known algorithms. It follows
easily from the PCP Theorem that for any q, there exists C > 1 such that factor-C approximation
of 2-Lin(q) is NP-hard. However, getting an explicit value for C has been a difficult task. In
1995, Bellare, Golreich, and Sudan [BGS95] introduced the Long Code testing technique, which
let them prove NP-hardness of approximating 2-Lin(2) to factor of roughly 1.02. Around 1997,
H̊astad [H̊as97] gave an optimal inapproximability result for the 3-Lin(2) problem; combining this
with the “automated gadget” results of Trevisan et al. [TSSW00] allowed him to establish NP-
hardness of factor-C approximation for any C < 5

4 . By including the “outer PCP” results of
Moshkovitz and Raz [MR10] we may state the following more precise theorem:

Theorem 1.6. ([H̊as97].) Fix any C < 5
4 . Then it is NP-hard to (ε, Cε)-approximate 2-Lin(2)

(for any 0 < ε ≤ ε0 = 1
4). In fact ([MR10]), there is a reduction with quasilinear blowup; hence

(ε, Cε)-approximation on size-N instances requires 2N
1−o(1)

time assuming the Exponential Time
Hypothesis (ETH).

Since 1997 there had been no improvement on this hardness factor of 5
4 , even for the (presumably

much harder) 2-Lin(q) problem. We remark that H̊astad [H̊as97] showed the same hardness result
even for Max-Cut (albeit with a slightly smaller ε0) and that O’Donnell and Wright [OW12] showed
the same result for 2-Lin(q) (even with a slightly larger ε0, namely ε0 → 1

2 as q →∞).

1.2 Our results and techniques

In this work we give the first known improvement to the factor-5
4 NP-hardness for 2-Lin(2) from [H̊as97]:

Theorem 1.7. Fix any C < 11
8 . Then it is NP-hard to (ε, Cε)-approximate 2-Lin(2) (for any

0 < ε ≤ ε0 = 1
8). Furthermore, the reduction takes 3-Sat instances of size n to 2-Lin(2) instances

of size O(n7); hence (ε, Cε)-approximating 2-Lin(2) instances of size N requires 2Ω(N1/7) time
assuming the ETH.

This theorem is proven in Section 3, wherein we also note that the same theorem holds in the
special case of Max-Cut (albeit with some smaller, inexplicit value of ε0).
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Our result is a gadget reduction from the “7-ary Hadamard predicate” CSP, for which Chan [Cha13]
recently established an optimal NP-inapproximability result. In a sense our Theorem 1.7 is a direct
generalization of H̊astad’s Theorem 1.6, which involved an optimal gadget reduction from the “3-
ary Hadamard predicate” CSP, namely 3-Lin(2). That said, we should emphasize some obstacles
that prevented this result from being obtained 15 years ago.

First, we employ Chan’s recent approximation-resistance result for the 7-ary Hadamard predi-
cate. In fact, what’s crucial is not its approximation-resistance, but rather the stronger fact that
it’s a useless predicate, as defined in the recent work [AH12]. That is, given a nearly-satisfiable
instance of the CSP, it’s NP-hard to assign values to the variables so that the distribution on
constraint 7-tuples is noticeably different from the uniform distribution.

Second, although in principle our reduction fits into the “automated gadget” framework of
Trevisan et al. [TSSW00], in practice it’s completely impossible to find the necessary gadget auto-
matically, since it would involve solving a linear program with 2256 variables. Instead we had to
construct and analyze our gadget by hand. On the other hand, by also constructing an appropriate
LP dual solution, we are able to show the following in Section 4:

Theorem 1.8. (Informally stated.) Our gadget achieving factor-11
8 NP-hardness for 2-Lin(2) is

optimal among gadget reductions from Chan’s 7-ary Hadamard predicate hardness.

In spite of Theorem 1.8, it seems extremely unlikely that factor-11
8 NP-hardness for 2-Lin(2)

is the end of the line. Indeed, we view Theorem 1.7 as more of a “proof of concept” illustrating
that the longstanding factor-5

4 barrier can be broken; we hope to see further improvements in the
future. In particular, in Section 5 we present a candidate NP-hardness reduction from high-arity
useless CSPs that we believe may yield NP-hardness of approximating 2-Lin(2) to any factor no
larger than 3

2 . The analysis of this reduction eventually depends on a certain conjecture regard-
ing analysis of Boolean functions that we were unable to resolve; thus we leave it as an open problem.

Finally, in Section 6 we show an inherent limitation of the method of gadget reductions from
pairwise-independent predicates. We prove that such reductions can never establish an NP-hardness
factor better than 1

1−e−1/2 ≈ 2.54 for (ε, Cε)-approximation of 2-Lin(2). We believe that this
highlights a serious bottleneck in obtaining an inapproximability result matching the performance
of algorithms for this problem as most optimal NP-inapproximability results involve pairwise-
independent predicates.

2 Preliminaries

Definition 2.1. Given x, y ∈ {−1, 1}n, the Hamming distance between x and y, denoted dH(x, y),
is the number of coordinates i where xi and yi differ. Similarly, if f, g : V → {−1, 1} are two
functions over a variable set V , then the Hamming distance dH(f, g) between them is the number
of inputs x where f(x) and g(x) disagree.

Definition 2.2. A predicate on n variables is a function φ : {−1, 1}n → {0, 1}. We say that
x ∈ {−1, 1}n satisfies φ if φ(x) = 1 and otherwise that it violates φ.

Definition 2.3. Given a predicate φ : {−1, 1}n → {0, 1}, Sat(φ) is the set of satisfying assignments.

Definition 2.4. A set S ⊆ {−1, 1}n is a balanced pairwise-independent subgroup if it satisfies the
following properties:

1. S forms a group under bitwise multiplication.
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2. If x is selected from S uniformly at random, then Pr[xi = 1] = Pr[xi = −1] = 1
2 for any

i ∈ [n]. Furthermore, xi and xj are independent for any i 6= j.

A predicate φ : {−1, 1}n → {0, 1} contains a balanced pairwise-independent subgroup if there exists
a set S ⊆ Sat(φ) which is a balanced pairwise-independent subgroup.

Definition 2.5. For a subset S ⊆ [n], the parity function χS : {−1, 1}n → {−1, 1} is defined as
χS(x) :=

∏
i∈S xi.

Definition 2.6. The Hadk predicate has 2k − 1 input variables, one for each nonempty subset
S ⊆ [k]. The input string {xS}∅6=S⊆[k] satisfies Hadk if for each S, xS = χS(x).

Fact 2.7. The Hadk predicate contains a balanced pairwise-independent subgroup. (In fact, the
whole set Sat(Hadk) is a balanced pairwise-independent subgroup.)

Given a predicate φ : {−1, 1}n → {0, 1}, an instance I of the Max-φ CSP is a variable set V and
a distribution of φ-constraints on these variables. To sample a constraint from this distribution,
we write C ∼ I, where C = ((x1, b1), (x2, b2), . . . , (xn, bn)). Here the xi’s are in V and the bi’s are
in {−1, 1}. An assignment A : V → {−1, 1} satisfies the constraint C if

φ (b1 ·A(x1), b2 ·A(x2), . . . , bn ·A(xn)) = 1.

We define several measures of assignments and instances.

Definition 2.8. The value of A on I is just val(A; I) := PrC∼I [A satisfies C], and the value of
the instance I is val(I) := maxassignments A val(A; I). We define uval(A; I) := 1 − val(A; I) and
similarily uval(I).

Definition 2.9. Let (=) : {−1, 1}2 → {0, 1} be the equality predicate, i.e. (=)(b1, b2) = 1 iff
b1 = b2 for all b1, b2 ∈ {−1, 1}. We will refer to the Max-(=) CSP as the Max-2-Lin(2) CSP. Any
constraint C = ((x1, b1), (x2, b2)) in a Max-2-Lin(2) instance tests “x1 = x2” if b1 · b2 = 1, and
otherwise tests “x1 6= x2”.

Typically, a hardness of approximation result will show that given an instance I of the Max-φ
problem, it is NP-hard to tell whether val(I) ≥ c or val(I) ≤ s, for some numbers c > s. A stronger
notion of hardness is uselessness, first defined in [AH12], in which in the second case, not only is
val(I) small, but any assignment to the variables A appears “uniformly random” to the constraints.
To make this formal, we will require a couple of definitions.

Definition 2.10. Given two probability distributions D1 and D2 on some set S, the total variation
distance dTV between them is defined to be dTV (D1,D2) :=

∑
e∈S

1
2 |D1(e)−D2(e)|.

Definition 2.11. Given a Max-φ instance I and an assignment A, denote by D(A, I) the dis-
tribution on {−1, 1}n generated by first sampling ((x1, b1), . . . , (xn, bn)) ∼ I and then outputting
(b1 ·A(x1), . . . , bn ·A(xn)).

The work of [Cha13] showed uselessness for a wide range of predicates, including the Hadk
predicate.

Theorem 2.12 ([Cha13]). Let φ : {−1, 1}n → {0, 1} contain a balanced pairwise-independent
subgroup. For every ε > 0, given an instance I of Max-φ, it is NP-hard to distinguish between the
following two cases:

• (Completeness): val(I) ≥ 1− ε.
• (Soundness): For every assignment A, dTV (D(A, I),Un) ≤ ε, where Un is the uniform dis-

tribution on {−1, 1}n.
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


1 1 1 1 1 1 1
1 1 −1 1 −1 −1 −1
1 −1 1 −1 1 −1 −1
1 −1 −1 −1 −1 1 1
−1 1 1 −1 −1 1 −1
−1 1 −1 −1 1 −1 1
−1 −1 1 1 −1 −1 1
−1 −1 −1 1 1 1 −1




Figure 1: The Had3-matrix. The rows are the satisfying assignments of Had3.

2.1 Gadgets

The work of Trevisan et al [TSSW00] gives a generic methodology for constructing gadget reductions
between two predicates. In this section, we review this with an eye towards our eventual Hadk-to-
2-Lin(2) gadgets.

Suppose φ : {−1, 1}n → {0, 1} is a predicate one would like to reduce to another predicate
ψ : {−1, 1}m → {0, 1}. Set K := |Sat(φ)|. We begin by arranging the elements of Sat(φ) as the
rows of a K × n matrix, which we will call the φ-matrix. An example of this is done for the Had3

predicate in Figure 1. The columns of this matrix are elements of {−1, 1}K . Naming this set
V := {−1, 1}K , we will think of V as the set of possible variables to be used in a gadget reduction
from φ to ψ. One of the contributions of [TSSW00] was to show that the set V is sufficient for any
such gadget reduction, and that any gadget reduction with more than 2K variables has redundant
variables which can be eliminated.

Of these variables, the n variables found as the columns of the φ-matrix are special; they
correspond to n of the variables in the original φ instance and are therefore called generic primary
variables. We will call them v1, v2, . . . , vn, where they are ordered by their position in the φ-
matrix. The remaining variables are called generic auxiliary variables. For example, per Figure 1,
(1, 1, 1, 1,−1,−1,−1,−1) and (1,−1,−1, 1,−1, 1, 1,−1) are generic primary variables in any gadget
reducing from φ, but (−1,−1, 1,−1, 1,−1, 1,−1) is always a generic auxiliary variable.

On top of the variables V will be a distribution of ψ constraints. As a result, a gadget G is just
an instance of the Max-ψ CSP using the variable set V . As above, we will associate G with the
distribution of ψ constraints and write C ∼ G to sample a constraint from this distribution. Given
an assignment A : V → {0, 1}, the goal is for G to be able to detect whether the values A assigns
to the generic primary variables satisfy the φ predicate. For shorthand, we will say that A satisfies
φ when

φ (A(v1), A(v2), . . . , A(vn)) = 1.

On the other hand, A fails to satisfy φ when this expression evaluates to 0. Of all assignments, we
are perhaps most concerned with the dictator assignments. The i-th dictator assignment, written
di : {−1, 1}K → {−1, 1}, is defined so that di(x) = xi for all x ∈ {−1, 1}K . The following fact
shows why the dictator assignments are so important:

Fact 2.13. Each dictator assignment di satisfies φ.

Proof. The string ((v1)i, (v2)i, . . . , (vn)i) is the i-th row of the φ-matrix, which, by definition, sat-
isfies φ.
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At this point, we can now give the standard definition of a gadget. Typically, one constructs
a gadget so that the dictator assignments pass with high probability, whereas every assignment
which fails to satisfy φ passes with low probability. This is formalized in the following definition,
which is essentially from [TSSW00]:

Definition 2.14 (Old definition). A (c, s)-generic gadget reducing Max-φ to Max-ψ is a gadget G
satisfying the following properties:

• (Completeness): For every dictator assignment di, uval(di;G) ≤ c.

• (Soundness): For any assignment A which fails to satisfy φ, uval(A;G) ≥ s.

We use uval as our focus is on the deletion version of 2-Lin(2). We include the word generic in this
definition to distinguish it from the specific type of gadget we will use to reduce Hadk to 2-Lin(2).
See Section 2.3 for details.

This style of gadget reduction is appropriate for the case when one is reducing from a predicate
for which one knows an inapproximability result and nothing else. However, in our case we are
reducing from predicates containing a balanced pairwise-independent subgroup, and Chan [Cha13]
has shown uselessness for this class of predicates (see Theorem 2.12). As a result, we can relax the
(Soundness) condition in Definition 2.14; when reducing from this class of predicates, it is sufficient
to show that this (Soundness) condition holds for distributions of assignments which appear random
on the generic primary variables. In the following paragraph we expand on what this means.

Denote by A a distribution over assignments A. The value of A is just the average value of an
assignment drawn from A, i.e. val(A;G) := EA∼A val(A;G), and similarly for uval(A;G). We say
that A is random on the generic primary variables if the tuple

(A(v1), A(v2), . . . , A(vn))

is, over a random A ∼ A, distributed as a uniformly random element of {−1, 1}n.

Definition 2.15. Denote by Rgen(φ) the set of distributions which are random on the generic
primary variables.

Our key definition is the following, which requires that our gadget only does well against dis-
tributions in Rgen(φ).

Definition 2.16 (New definition). A (c, s)-generic gadget reducing Max-φ to Max-ψ is a gadget
G satisfying the following properties:

• (Completeness): For every dictator assignment di, uval(di;G) ≤ c.

• (Soundness): For any A ∈ Rgen(φ), uval(A;G) ≥ s.

The following proposition is standard, and we sketch its proof for completeness.

Proposition 2.17. Suppose there exists a (c, s)-generic gadget reducing Max-φ to Max-ψ, where
Max-φ is any predicate containing a balanced pairwise-independent subgroup. Then for all ε > 0,
given an instance I of Max-ψ, it is NP-hard to distinguish between the following two cases:

• (Completeness): uval(I) ≤ c+ ε.

• (Soundness): uval(I) ≥ s− ε.
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Proof sketch. Let I be an instance of the Max-φ problem produced via Theorem 2.12. To dispense
with some annoying technicalities, we will assume that every constraint C in the support of I is of
the form C = ((x1, 1), . . . , (xn, 1)). Construct an instance I ′ of Max-ψ as follows: for each constraint
C = ((x1, 1), . . . , (xn, 1)) in the support of I, add in a copy of G — call it GC — whose total weight
is scaled down so that it equals the weight of C. Further, identify the primary variables v1, . . . , vn
of GC with the variables x1, . . . , xn.

Completeness: In this case, there exists an assignment A to the variables of I which violates at
most an ε-fraction of the constraints. We will extend this to an assignment for all the variables of
I ′ as follows: for any constraint C = ((x1, 1), . . . , (xn, 1)) which A satisfies, there is some dictator
assignment to the variables of GC which agrees with A on the primary variables v1, . . . , vn. Set A
to also agree with this dictator assignment on the auxiliary variables in GC . Regardless of how A
is extended in the remaining GC ’s, it now labels a (1 − ε)-fraction of the G gadgets in I ′ with a
dictator assignment, meaning that uval(A; I ′) ≤ (1− ε) · c+ ε · 1 ≤ c+ ε.

Soundness: Let A be an assignment to the variables in I ′. Consider the distribution A of
assignments to the gadget G generated as follows: sample C ∼ I and output the restriction of A
to the variables of GC . Because the distribution (A(x1), . . . , A(xn)) is ε-far from uniform in total
variation distance, A is ε-far in total variation distance from some distribution A′ ∈ Rgen(φ). As
a result, uval(A;G) ≥ uval(A′;G)− ε ≥ s− ε. But then uval(A;G) = uval(A; I), which is therefore
bounded below by s− ε.

2.2 Reducing into 2-Lin(2)

In this section, we consider gadgets which reduce into the 2-Lin(2) predicate. We show several
convenient simplifying assumptions that can be made in this case.

Definition 2.18. An assignment A : {−1, 1}K → {−1, 1} is folded if A(x) = −A(−x) for all
x ∈ {−1, 1}K . Here −x is the bitwise negation of x. In addition, a distribution A is folded if every
assignment in its support is folded.

The following proposition shows that when designing a gadget which reduces into 2-Lin(2),
it suffices to ensure that its (Soundness) condition holds for folded distributions. The proof is
standard.

Proposition 2.19. For some predicate φ, suppose G is a gadget reducing Max-φ to Max-2-Lin(2)
which satisfies the following two conditions:

• (Completeness): For every dictator assignment di, uval(di;G) ≤ c.

• (Soundness): For any folded A ∈ Rgen(φ), uval(A;G) ≥ s.

Then there exists a (c, s)-generic gadget reducing Max-φ to Max-2-Lin(2).

Proof. For each pair of antipodal points x and −x in {−1, 1}K , pick one (say, x) arbitrarily, and
set

canon(x) := canon(−x) := x.

This is the canonical variable associated to x and −x. The one constraint is that if either x or −x
is one of the generic primary variables, then it should be chosen as the canonical variable associated
to x and −x. Now, let G′ be the gadget whose constraints are sampled as follows:
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1. Sample a constraint A(x1) ·A(x2) = b from G.

2. For i ∈ {1, 2}, set bi = 1 if canon(xi) = xi and bi = −1 otherwise.

3. Output the constraint A(canon(x1)) ·A(canon(x2)) = b · b1 · b2.

We claim that G′ is a (c, s)-gadget reducing Max-φ to Max-2-Lin(2). To see this, set is-canon(x)
to be 1 if canon(x) = x and (−1) otherwise. Then the probability that an assignment A fails on
G′ is the same as the probability that the assignment A′(x) := is-canon(x) · A(canon(x)) fails on
G. For any dictator function di, di(x) = is-canon(x) · di(canon(x)) for all x. Therefore, di fails
G′ with probability c. Next, it is easy to see that for any assignment A, A′ is folded and, due
to our restriction on canon(·), A′ agrees with A on the generic primary variables. Thus, given a
distribution A ∈ Rgen(φ), A fails on G′ with the same probability that some folded distribution in
Rgen(φ) fails on G, which is at least s.

Proposition 2.20. For fixed values of c and s, let G be a gadget satisfying the (Completeness)
and (Soundness) conditions in the statement of Proposition 2.19. Then there exists another gadget
satisfying these conditions which only uses equality constraints.

Proof. Let G′ be the gadget which replaces each constraint in G of the form x 6= y with the constraint
x = −y. If A is a folded assignment,

A(x) 6= A(y) ⇐⇒ A(x) = A(−y).

Thus, for every folded assignment A, val(A;G) = val(A,G′). As the (Completeness) and (Soundness)
conditions in Proposition 2.19 only concern folded assignments, G′ satisfies these conditions.

This means that sampling from G can be written as (x, y) ∼ G, meaning that we have sampled
the constraint “x = y”.

2.3 The Hadk-to-2-Lin(2) Gadget

Now we focus on our main setting, which is constructing a Hadk-to-2-Lin(2) gadget. Via Section 2.2,
we need only consider how well the gadget does against folded assignments.

The Hadk predicate has 2k − 1 variables. In addition, it has K := 2k satisfying assignments,
one for each setting of the variables x{1} through x{k}. It will often be convenient to take an

alternative (but equivalent) viewpoint of the variable set V := {−1, 1}K as the set of k-variable
Boolean functions, i.e.

V =
{
f
∣∣ f : {−1, 1}k → {−1, 1}

}
.

The Hadk matrix is a 2k× (2k−1) matrix whose rows are indexed by strings in {−1, 1}k and whose
columns are indexed by nonempty subsets S ⊆ [k]. The (x, S)-entry of this matrix is χS(x). This
can be verified by noting that for any x ∈ {−1, 1}k,

(
χ{1}(x), χ{2}(x), . . . , χ{k}(x), χ{1,2}(x), . . . , χ{1,2,...,k}(x),

)

is a satisfying assignment of the Hadk predicate. As a result, for each S 6= ∅, χS is a column in
the Hadk matrix. Therefore, these functions are the generic primary variables. However, it will be
convenient to consider a larger set of functions to be primary. For example, because we plan on
using our gadget on folded assignments, χS and −χS will always have opposite values, and so the
−χS ’s should also be primary variables. In addition, it is a little unnatural to have every parity
function but one be a primary variable, so we will include the constant function χ∅ and its negation
−χ∅ in the set of primary variables. In total, we have the following definition.
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Definition 2.21. The primary variables of a Hadk-to-2-Lin(2) gadget are the functions ±χS , for
any S ⊆ [k]. The remaining functions are auxiliary variables.

To account for the inclusion of χ∅ as a primary variable, we will have to modify some of our
definitions from Section 2.1. We begin by defining a modification to the Hadk predicate.

Definition 2.22. The Had∗k predicate has 2k input variables, one for each subset S ⊆ [k]. The
input string {xS}S⊆[k] satisfies Had∗k if for each S, xS = x∅ ·

∏
i∈S x{i}.

In other words, if x∅ = 1, then the remaining variables should satisfy the Hadk predicate, and if
x∅ = −1, then their negations should. We will say that A satisfies the Had∗k predicate if

Had∗k
(
A (χ∅) , A

(
χ{1}

)
, . . . , A

(
χ{k}

)
, A
(
χ{1,2}

)
, . . . , A

(
χ[k]

))
= 1.

Otherwise, A fails to satisfy the Had∗k predicate. We say that A is random on the primary variables
if the tuple (

A (χ∅) , A
(
χ{1}

)
, . . . , A

(
χ{k}

)
, A
(
χ{1,2}

)
, . . . , A

(
χ[k]

))

is, over a random A ∼ A, distributed as a uniformly random element of {−1, 1}K .

Definition 2.23. Denote by R(Hadk) the set of folded distributions which are uniformly random
on the primary variables.

Definition 2.24. A (c, s)-gadget reducing Max-Hadk to Max-2-Lin(2) is a gadget G satisfying the
following properties:

• (Completeness): For every dictator assignment di, uval(di;G) ≤ c.

• (Soundness): For any A ∈ R(Hadk), uval(A;G) ≥ s.

Proposition 2.25. The following two statements are equivalent:

1. There exists a (c, s)-gadget reducing Max-Hadk to Max-2-Lin(2).

2. There exists a (c, s)-generic gadget reducing Max-Hadk to Max-2-Lin(2).

Proof. We prove the two directions separately.

(1) ⇒ (2): Let G be a (c, s)-gadget reducing Max-Hadk to Max-2-Lin(2). We claim that for
any folded A ∈ Rgen(Hadk), uval(A;G) ≥ s. To see this, consider the distribution A′ ∈ R(Hadk)
which samples A ∼ A and outputs either A or −A, each with half probability. Then uval(A′;G) =
uval(A;G), and furthermore we know that uval(A;G) ≥ s. As a result, G satisfies the (Completeness)
and (Soundness) conditions in the statement of Proposition 2.19, meaning there exists a (c, s)-
generic gadget reducing Max-Hadk to Max-2-Lin(2).

(2) ⇒ (1): Let G be a (c, s)-generic gadget reducing Max-Hadk to Max-2-Lin(2). Let A ∈
R(Hadk), and for b ∈ {−1, 1}, write A(b) for A conditioned on the variable χ∅ being assigned
the value b. Then b · A(b) (by which we mean the distribution where we sample A ∼ A(b) and
output b ·A) is in Rgen(Hadk) for both b ∈ {−1, 1}, and so uval

(
b · A(b);G

)
≥ s. As uval(A(b);G) =

uval
(
b · A(b);G

)
, uval(A;G) ≥ s, and so G is a (c, s)-gadget reducing Max-Hadk to Max-2-Lin(2).

Combining this with Proposition 2.17, we have the following corollary.
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Corollary 2.26. Suppose there exists a (c, s)-gadget reducing Max-Hadk to Max-2-Lin(2). Then
for all ε > 0, given an instance I of Max-2-Lin(2), it is NP-hard to distinguish between the following
two cases:

• (Completeness): uval(I) ≤ c+ ε.

• (Soundness): uval(I) ≥ s− ε.

2.4 Reducing to the length-one case

When constructing good gadgets, we generally want dictators to pass with as high of probability
as possible. By Proposition 2.20, we can assume that our gadget operates by sampling an edge
(x, y) and testing equality between the two endpoints. Any such edge of Hamming distance i will
be violated by i

K of the dictator assignments. Intuitively, then, if we want to dictators to pass
with high probability, we should concentrate the probability mass of our gadget G on edges of low
Hamming distance. The following proposition shows that this is true in the extreme: so long as
we are only concerned with maximizing the quantity s

c , we can always assume that G is entirely
supported on edges of Hamming distance one.

Proposition 2.27. Suppose there exists a (c, s)-gadget G reducing Max-Hadk to Max-2-Lin(2).
Then there exists a (c′, s′)-gadget reducing Max-Hadk to Max-2-Lin(2) using only length-one edges
for which

s′

c′
≥ s

c
.

Proof. For each i ∈ {1, . . . ,K}, let pi be the probability that an edge sampled from G has length i,
and let Gi denote the distribution of G conditioned on this event. Then sampling from G is equivalent
to first sampling a length i with probability pi, and then sampling an edge from Gi.

Let Q = 1 · p1 + 2 · p2 + . . .+K · pK , and for each i ∈ {1, . . . ,K} define qi = i·pi
Q . It is easy to

see that the qi’s form a probability distribution. Now we may define the new gadget G′ as follows:

1. Sample a length i with probability qi.

2. Sample (x, y) ∼ Gi.

3. Pick an arbitrary shortest path x = x0, x1, . . . , xi = y through the hypercube {−1, 1}K .

4. Output a uniformly random edge (xj , xj+1) from this path.

Note that G′ only uses length-one edges. Let G′i denote the distribution of G′ conditioned on i being
sampled in the first step. (Note that G′i is defined in a way that is different from the way Gi is
defined.)

Let A : {−1, 1}K → {−1, 1} be any assignment. Then

uval(A;G) =

K∑

i=1

pi · uval(A;Gi), and uval(A;G′) =

K∑

i=1

qi · uval(A;G′i).

We can relate uval(A;G′i) to uval(A;Gi) as follows: if A assigns different values to the endpoints
of the edge (x, y) ∼ G, then on any shortest path x = x0, x1, . . . , xi = y through the hypercube
{−1, 1}K , A must assign different values to at least one of the edges (xj , xj+1). As a result, every
time A errs on Gi, it must err at least a (1/i)-fraction of the time on G′i. This means that:

uval(A;G′i) ≥
uval(A;Gi)

i
. (1)
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In the case when A is a dictator function, Equation (1) becomes an equality. This is because
x = x0, x1, . . . , xi = y is a shortest path between x and y through the hypercube {−1, 1}K . If A
assigns the same values to x and y, then it will assign the same values to all of x0, x1, . . . , xi. If,
on the other hand, it assigns different values to x and y, then it will assign different values to the
endpoints of exactly one edge (xj , xj+1).

Now we can use this relate uval(A;G′) to uval(A;G):

uval(A;G′) =

K∑

i=1

qi · uval(A;G′i)

≥
K∑

i=1

(
i · pi
Q

)
· uval(A;Gi)

i

=
1

Q

K∑

i=1

pi · uval(A;Gi)

=
1

Q
uval(A;G). (2)

Here the inequality follows from the definition of qi and Equation (1). As Equation (1) is an equality
in the case when A is a dictator function, we have that uval(A;G′) = 1

Quval(A;G) in this case.

Let A ∈ R(Hadk) maximize val(A;G′), and let di be any dictator function. Then

s′

c′
=

uval(A;G′)
uval(di;G′)

≥
1
Quval(A;G)
1
Quval(di;G)

=
uval(A;G)

uval(di;G)
≥ s

c
.

Here the first inequality is by Equation (2) (and the fact that it is an equality for dictators), and
the second inequality follows from the fact that uval(A,G) ≥ s and uval(di,G) = c.

2.5 Linear programs

One of the key insights of the paper [TSSW00] is that optimal gadgets (as per Definition 2.14)
can be computed by simply solving a linear program. Fortunately, the same holds for computing
optimal gadgets as per Definition 2.24. In our case, the appropriate linear program (taking into
account Proposition 2.27) is:

max s

s.t. uval(A;G) ≥ s, ∀A ∈ R(Hadk),

G is a gadget supported on edges of length one.

As written, this linear program has an (uncountably) infinite number of constraints, but this can
fixed by suitably discretizing the set R(Hadk). This is not so important for us, as even after
performing this step, the linear program is simply too large to ever be feasible in practice. What
is important for us is that we can take its dual; doing so yields the following linear program:

Definition 2.28. The dual LP is defined as

min s

s.t. Pr
A∼A

[A(x) = A(y)] ≤ s, ∀ edges (x, y) of length one,

A ∈ R(Hadk).
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The dual linear program shows us that we can upper-bound the soundness of any gadget with
the value s by exhibiting a distribution on assignments in R(Hadk) which passes each length-one
edge with probability at least s. Moreover, strong LP duality tells us that the optimum values
of the two LPs are the same. Hence, we can prove a tight upper bound by exhibiting the right
distribution. We do this in Section 4 for gadgets reducing Max-Had3 to Max-2-Lin(2).

2.6 The Had3 gadget

In this section, we will prove some structural results about the hypercube {−1, 1}8 which are
relevant to any Had3-to-2-Lin(2) gadget. The results of this section will be useful for both Sections 3
and 4.

Given a string x ∈ {−1, 1}n and subset of strings B ⊆ {−1, 1}n, we define the distance of x to
B as dH(x,B) := miny∈B dH(x, y).

Proposition 2.29. The vertex set V = {−1, 1}8 can be partitioned as V = V0 ·∪V1 ·∪V2, in which
V0 is the set of primary variables, and Vi = {x ∈ V | dH(x, V0) = i}, for i = 1, 2.

Proposition 2.30. |V0| = 16, |V1| = 128, and |V2| = 112.

Proposition 2.31.

• Each x ∈ V0 has eight neighbors in V1.

• Each x ∈ V1 has one neighbor in V0 and seven neighbors in V2.

• Each x ∈ V2 has eight neighbors in V1. Furthermore, there are four elements of V0 which are
Hamming distance two away from x.

Proposition 2.32. Let f ∈ V2, and let g1, g2, g3, and g4 be the four elements of V0 which are
Hamming distance two away from f . Then for any x ∈ {−1, 1}3, three of the gi’s have the same
value and one has a different value, and f(x) = sign(g1(x) + g2(x) + g3(x) + g4(x)).

Proof of Propositions 2.29, 2.30, 2.31, and 2.32. In this proof, we will take the viewpoint of V as
the set of 3-variable Boolean functions. The primary variables are of the form ±χS , where S ⊆ [3].
There are 16 such functions, and so |V0| = 16.

Let f ′ differ from one of the primary variables on a single input. From above, it must be at
least distance 3 from any of the other primary variables. This immediately implies that f ′’s seven
other neighbors are in V2. There are 16 ·8 = 128 distinct ways of constructng f ′, and so |V1| = 128.

This leaves 256 − 16 − 128 = 112 variables in V not yet accounted for. We will now show a
method for constructing 112 different elements of V2; by the pigeonhole principle, this shows that
V can be partitioned as Proposition 2.29 guarantees. Given three primary variables b1χS1 , b2χS2 ,
and b3χS3 , where b1, b2, b3 ∈ {−1, 1}, set b4 := −b1 · b2 · b3 and S4 := S1∆S2∆S3. Consider the
function f : {−1, 1}3 → {−1, 1} defined as

f(x) := sign (b1χS1(x) + b2χS2(x) + b3χS3(x) + b4χS4(x)) .

Our claim is that f is distance-2 from each of the biχSi ’s. First, to see that this sign(·) is well-
defined, note that by definition,

∏4
i=1 biχSi(x) = −1 for all x ∈ {−1, 1}3. As a result, for any x,

three of the biχSi(x)’s have the same value, while the other one has a different value. This means
that

4∑

i=1

biχSi(x) = 2 · sign
(

4∑

i=1

biχSi(x)

)
.
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for all x. Thus, the correlation of any of the biχSi ’s with f is

E
x

[f(x) · biχSi ] =
1

2
E
x

[(
4∑

i=1

biχSi(x)

)
· biχSi

]
=

1

2
.

In other words, Prx[f(x) = biχSi ] = 3
4 for each i ∈ {1, . . . , 4}.

There are 8 neighbors of f ; each biχSi neighbors two of them. As a result, all of f ’s neighbors
are in V1. In addition, since they are neighbors to the biχSi ’s, they can’t be neighbors for any of
the other primary variables. This means that the only variables in V0 that f is distance 2 from are
the biχSi ’s.

There are 2 ·
(

8
3

)
= 112 ways of selecting the biχSi ’s. As there are only 112 variables in V which

are not in either V0 or V1, all of the remaining variables in V must be contained in V2, and they
must all be generated in the manner above.

Proposition 2.33. Let B = sat(Had∗3). Then

Pr
x

[dH(x, B) = 0] =
1

16
, Pr

x
[dH(x, B) = 1] =

1

2
, and Pr

x
[dH(x, B) = 2] =

7

16
,

where x is a uniformly random element of {−1, 1}8.

Proof. This can be proven using a proof similar to Proposition 2.30. Alternatively, we can just show
a direct correspondence between the setting here and the setting in Proposition 2.30, as follows.

The input to Had∗3 is a set of bits {xS}S⊆[k], which can also be thought of as the function
f : P({1, 2, 3}) → {−1, 1} in which f(S) := xS . The satisfying assignments are then any function
of the form S → b · χS(x), where b ∈ {−1, 1} and x ∈ {−1, 1}3 are both fixed. For a string
x ∈ {−1, 1}3, let α(x) be the corresponding set, i.e. α(S)i = −1 if and only if i ∈ S. For any
function f : P({1, 2, 3})→ {−1, 1}, we can associate it with the function α(f) : {−1, 1}3 → {−1, 1}
defined by α(f)(x) := f(α(x)) for all x. Then α maps any satisfying assignment to Had∗3 into one
of the primary variables in V0, and more generally, dH(f,B) = i if and only if α(f) ∈ Vi. The
proposition therefore follows by applying Proposition 2.30 and by noting that 16

256 = 1
16 , 128

256 = 1
2 ,

and 112
256 = 7

16 .

Proposition 2.34.

1. Let f, g ∈ V0 be a pair of distinct affine functions. Then either dH(f, g) = 8, or dH(f, g) = 4.

2. For any x, y ∈ {−1, 1}3, x 6= y, bx, by ∈ {−1, 1}, the number of functions f ∈ V0 such that
f(x) = bx is 8, and the number of functions f ∈ V0 such that f(x) = bx and f(y) = by is 4.

Proof. Proof of (1): Let f = bfχS , and g = bgχT . Then E[fg] = bfbg E[χS∆T ] where ∆ is the
symmetric difference of two sets. If f = −g, then clearly dH(f, g) = 8. Now we assume that
f 6= ±g, and therefore S 6= T . Then E[χS∆T ] = 0. This completes the proof.

Proof of (2): Consider function f(x) = a0 + a1x1 + a2x2 + a3x3. Construct a linear system
where a0, a1, a2, a3 are the variables and f(x) = bx and f(y) = by are the constraints. The result
follows from working out the size of the solution space.
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2.7 Reducing to Max-Cut

Definition 2.35. Let (6=) : {−1, 1}2 → {0, 1} be the inequality predicate, i.e. (6=)(b1, b2) = 1 iff
b1 6= b2 for all b1, b2 ∈ {−1, 1}. The Max-Cut CSP is the special case of the Max-( 6=) CSP in which
every constraint C = ((x1, b1), (x2, b2)) satisfies b1 = b2 = 1. In other words, every constraint is of
the form “x1 6= x2”.

Proposition 2.36. For some predicate φ, suppose G is (c, s)-generic gadget reducing Max-φ to
Max-2-Lin(2). Then there exists a (c′, s′)-gadget reducing Max-φ to Max-Cut satisfying

s′

c′
=
s

c
.

Proof. Suppose the vertex set of G is V = {−1, 1}K . Let G′ be the gadget which operates as follows:

1. With probability 1− 1
2K−1 , pick x ∈ {−1, 1}K and output the constraint “x 6= −x”.

2. Otherwise, sample C ∼ G. If C is of the form “x 6= y”, output “x 6= y”. If C′ is of the form
“x = y”, output “x 6= −y”.

Any folded assignment A fails G’ with probability at most 1
2K−1 . Any assignment A which is not

folded fails G’ with probability at least 1
2K−1 . As a result, we can always assume that any assignment

is folded.
Now, if A is folded, then for any x, y ∈ {−1, 1}K , A(x) = A(y) if and only if A(x) 6= A(−y). As

a result, uval(A;G′) = uval(A;G)/2k−1. Thus, c′ = c/2k−1, s′ = s/2k−1, and so s′/c′ = s/c.

3 The factor-11/8 hardness result

In this section, we prove the following theorem.

Theorem 3.1. There is a
(

1
8 ,

11
64

)
-gadget reducing Had3 to 2-Lin(2).

Using Propositions 2.17 and 2.36, we have the following two corollaries:

Corollary 3.2. There is a (c, s)-generic gadget reducing Had3 to Max-Cut with s
c = 11

8 .

Corollary 3.3 (Theorem 1.7 restated). Fix any C < 11
8 . Then it is NP-hard to achieve a factor-C

approximation for both the Max-2-Lin(2) and the Max-Cut CSPs.

Proof of Theorem 3.1. To construct our gadget, we will assign a nonnegative weight to each edge in
the gadget. Our gadget will then sample each edge with probability equal to its weight normalized
by the weight of the entire gadget. As argued in Proposition 2.27, the gadget will only use length-one
edges. For f, g ∈ V with dH(f, g) = 1, the weight of the edge {f, g} is 5 if and only if either f ∈ V0

or g ∈ V0, and otherwise the weight is 1. The total weight of the edges in G is 5×128+896 = 1536.
For the completeness, the fact that the dictators pass with probability 7

8 follows immediately
from the fact that G only uses edges of length one. For the soundness, let A ∈ R(Had3). We will
lower-bound uval(A;G) by upper bounding uval(A;G) for each A in the support of A in terms of
how close A’s assignment to the primary variables is to satisfying the Had∗3 predicate.

Lemma 3.4. Let A : {−1, 1}8 → {−1, 1}. If A’s assignment to the primary variables satisfies the
Had∗3 predicate, then uval(A;G) ≥ 1

8 .
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Lemma 3.5. Let A : {−1, 1}8 → {−1, 1}. If A’s assignment to the primary variables is distance
one from satisfying the Had∗3 predicate, then uval(A;G) ≥ 21

128 .

Lemma 3.6. Let A : {−1, 1}8 → {−1, 1}. If A’s assignment to the primary variables is distance
two from satisfying the Had∗3 predicate, then uval(A;G) ≥ 3

16 .

Proposition 2.33 gives the probability that a random A ∼ A will fall into each of these three
cases. In total

uval(A;G) ≥ 1

16
· 1

8
+

1

2
· 21

128
+

7

16
· 3

16
=

11

64
,

which is what the theorem guarantees.
Before proving these lemmas, we will do some preliminary work which is relevant to all three.

In the remaining part of this section, we fix a partial assignment A that assigns values to variables
in V0. To analyze the quality of the gadget, we analyze certain measures of the gadget and bound
the best possible way to complete A to a full assignment. Hence, all definitions in the rest of this
section will be with respect to the partial assignment A.

We classify variables in V2 by the assignments of their associated affine functions.

Definition 3.7. Let f ∈ V2 be a function associated with g0, g1, g2, g3 ∈ V0. We say that f is a
(4, 0) function if A(g0) = A(g1) = A(g2) = A(g3). Similarly, we define (3, 1) and (2, 2) functions.

We consider paths of length 2 that start at some f ∈ V2 and ends at one of the affine functions
gi ∈ V0.

Definition 3.8. A path of length 2 from f ∈ V2 to g ∈ V0 is good if A(f) = A(g). Otherwise it is
a bad path. Let B be the number of bad paths given by partial assignment A.

Given partial assignment A, an easy way to assign values to some of the variables in V2 is to
take the majority value of its associated affine functions if the function is of type (4, 0) or (3, 1), and
leave it undetermined if it is of type (2, 2). This gives us the following way of classifying functions
in V1.

Definition 3.9. Consider a function f ∈ V1 and a partial assignment to variables in V0 ∪ V2. We
say that f is of type (a, b, c) if in the partial assignment, there are a good paths, b bad paths and
c undetermined-paths going through f . Note that a+ b+ c = 7.

A function is switched if it has type (0, 7, 0).

After fixing the assignment to the (4, 0) and (3, 1) functions, the maximum number of switched
functions is the number of functions in V1 that have so far no good paths through them.

Let C be the number of switched functions.
Once we have assignment for variables in V0 ∪ V2, we can find the optimal assignments for

variables in V1 in a greedy way. That is, for an (a, b, c) function in f ∈ V1, as long as b < 7, we set
A(f) = A(g) where g ∈ V0 is the closest affine function to f , and otherwise we set A(f) = −A(g).
The weight of violated edges of this assignment is B − 2C.

The overall proof idea is to show that the above majority assignment is always the best. In
particular, we prove that no matter how we change the assignment of some of the (4, 0) and (3, 1)
variables to anti-majority and increase the number of bad paths B by some number Q, we will
never be able to increase the number of functions with no good paths through them by more than
Q/2. Thus, the weight of violated constraints will never decrease under non-majority assignments.

Once we fix the assignment of (4, 0) and (3, 1) to majority, it is not hard to compute the number
of bad paths and the maximum number of switched function in each of the two cases. In particular,
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in the distance 1 case, the minimum weight of violated constraints is 252 (= 21
128 · 1536), and the

distance 2 case has minimum weight at least 288 (= 3
16 · 1536).

This completes the proof.

3.1 Assignments at distance 1 from Had3

In this section, we prove Lemma 3.5.

Proof of Lemma 3.5: Let A be a partial assignment to variables in V0, where there exists x0 ∈
{−1, 1}3, and l0 ∈ V0, such that A(f) = f(x0) for all f ∈ V0 \ {l0,−l0}, and A(b · l0) = −b · l0(x0)
for b ∈ {−1, 1}. We call ±l0 the corrupted affine functions. As the gadget has a total weight of
1536, we want to show that the total weight violated by A is at least 252.

Of the 112 functions in V2, 56 of them are associated with ±l0, and 56 of them are not. The 56
functions that are not associated with ±l0 are all (3, 1) functions by Proposition 2.32.

Let f ∈ V2 be a function that is associated with a0 ∈ {l0,−l0}. There are 14 of these functions
such that a0(x0) 6= f(x0), and in this case f is a (4, 0) function. Otherwise it is a (2, 2) function.

As discussed above, given a partial assignment to V0, we need to decide, for the (4, 0) and (3, 1)
functions in V2, whether we assign them the majority assignment. The analysis in this section
proceed in two steps. We first argue that for any assignment for the (3, 1) variables, to minimize
the weight of violated constraints, either all (4, 0) variables are assigned according to majority of
their associated functions in V0, or all of them are assigned according to anti-majority. It is easy
to argue that the cost will be high in the case where all (4, 0) variables are assigned according to
anti-majority. Then, assuming that the (4, 0) variables are assigned according to majority, we prove
that the (3, 1) variables should also be assigned according to majority. This gives us a sufficient
lower-bound for the weight of violated constraints.

Before we argue about the optimal assignments, let us classify the variables with respect to the
majority assignment for V2 and see how different classes of variables relate to each other.

Proposition 3.10.

1. There are 2 variables of type (7, 0, 0). Those are obtained by starting from ±l0 and flipping
the value at x0. All 7 neighbors in V2 of the (7, 0, 0) functions have type (4, 0). This gives a
total of 14, and those are exactly all the (4, 0) functions.

2. Each (4, 0) function has 1 neighbor of type (7, 0, 0), 1 of type (1, 0, 6), and 6 of type (6, 0, 1).

3. Each (6, 0, 1) function that is adjacent to a (4, 0) function actually has 2 neighbors of type
(4, 0), 1 of type (2, 2) and 4 of type (3, 1). There are 42 such (6, 0, 1) functions.

Proof. Consider a path starting from a0 ∈ V0, where a0 = ±l0. Let f1 be the function obtained
by flipping the value of a0 at x0. We then flip some other values to get to function f ∈ V2. Since
f(x0) 6= a0(x0), we know that a0 is the unique function that has different value at x0 from f in
Proposition 2.32, and now since A(f) = −a0(x0), we have that f is a (4, 0) variable. There are
2×7 = 14 such paths, and each of them end at a distinct (4, 0) variable. This argument also shows
that all 7 V2-neighbors of f1 are of (4, 0)-type and hence such f1 is a (7, 0, 0) variable.

We now study the other neighbors of the (4, 0) variables. Starting from such an f , if we flip the
value at x0, then we arrive at function f ′1 associated with a0 and they agree on the value of x0 but
differ on exactly one point, denoted as y0. If we flip the value at a point that is neither x0 nor x′0,
then we arrive at another function in V2 which is of (2, 2)-type. This means that f ′1 is a (1, 0, 6)
function.
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To understand the other neighbors of f , note that by Proposition 2.34, there are 4 affine
functions that takes values different from a0 at both x0 and y0, one of them is −a0, and the
remaining three are all at distance 2 from f . To each of those affine functions there are 2 paths
from f so this gives a total of 6 paths. We now show that all six V1 variables on these 6 paths have
type (6, 0, 1).

Let f2 ∈ V1 be one of the functions on these 6 paths, and let a1 be its associated affine function.
We know that a0(x0) = f2(x0) 6= a0(x0). Now consider the affect of flipping different values in f2.

• To get to the closest (7, 0, 0) function f1 from f2, we need to flip two bits. We can flip them
in two different orders, so this gives us two different paths of length 2, each going through a
different (4, 0) function.

• If we flip value x0 of function f2 and get function f3, then in fact we have that f3 is still
distance 2 from a0 and thus associated with it. Note that a1(x0) 6= f3(x0) = a0(x0), which
means that A(a1) = A(a0) 6= f3(x0), and thus f3 is a (2, 2) function.

• For all the other neighbors of f2, we have that they agree with f2 on x0 and is at distance
4 from a0. This means that those functions are not associated with ±l0, and therefore are
(3, 1) functions contributing a good path to f2.

This concludes the analysis.

We also need to analyze the remaining variables in V1 and the neighbors of the (3, 1) variables.

Proposition 3.11.

• There are 56 functions in V1 of type (3, 1, 3), and 14 in V1 of type (0, 4, 3). These functions
do not have neighbors of type (4, 0).

• For (3, 1) functions in V2, they contribute 3 good paths to 3 (3, 1, 3) functions, 3 good paths
to 3 (6, 0, 1) functions, and 2 bad paths to 2 (0, 4, 3) functions.

Proof. Let a1 be an arbitrary affine function that is not corrupted, and a0 now be the corrupted
affine function such that a0(x0) = a1(x0). Choose one of the four bits where a0 and a1 differ, let’s
assume that we have chosen y0.

Starting from a1, let g1 be the function where we flip the value a1(y0). If we flip any of the three
remaining bits where g1 and a0 differ, we will end up in a (2, 2) function. Otherwise, we will end
up in a (3, 1) function. There are two subcases here. If we flip x0 and get function g2, then taking
the majority assignment for g2 will give us a bad path at g1. In the other three cases, we will get a
good path. The conclusion is that in this case g1 is a (3, 1, 3) function. There are 14× 4 = 56 such
functions.

Now consider what happens if we start at a1 and flip the value at x0 first. If we then flip any of
the three remaining bits where a0 and a1 agree, then we end up in a (2, 2) function. Otherwise, we
end up in a (3, 1) function that contributes a bad path. This gives us 14 level 1 functions of type
(0, 4, 3).

Together with Proposition 3.10, we see that there are 2 (7, 0, 0) functions, 56 (3, 1, 3) functions,
14 (0, 4, 3) functions, 42 (6, 0, 1) functions, and 14 (1, 0, 6) functions. This gives the types of all 128
functions in V1.

We now view it from the perspective of (3, 1) functions. For any such function f2 ∈ V1, there
are 6 good paths coming from it and going into 3 uncorrupted V0 variables, and 2 bad paths going
to another uncorrupted variable in V0. Consider 2 good paths that go to the same affine function
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a1. From the above analysis, we know that the level 1 functions on them have type either (3, 1, 3)
or (6, 0, 1). Let a0 be the corrupted affine function such that a1(x0) = a0(x0). Combining the above
analysis, we know that on these 2 paths, we flipped exactly one bit x such that a1(x) = a0(x) and
another bit y such that a1(y) 6= a0(y), and x 6= x0. We also know that starting from a1, if we
first flip y, we will get a (3, 1, 3) function. If we first flip x, we will actually get a (6, 0, 1) function
because it has a (4, 0)-neighbor and it is clearly not a (7, 0, 0) function.

Therefore each of the (3, 1) functions contributes to 3 (3, 1, 3) functions exactly 1 good path
each, and 3 (6, 0, 1) functions exactly 1 good path each.

The following proposition show that in an optimal assignment, all (4, 0) variables should be
assigned according to majority, unless all of them are flipped.

Proposition 3.12. Let A be a partial assignment to variables in V0 as defined at the beginning of
this subsection. For any partial assignment to the (3, 1) and (2, 2) variables, we can assume that the
assignment to the (4, 0) variables that minimizes the weight of violated constraints either assigns
the (4, 0) variables according to majority, or assigns the (4, 0) variables according to the negation
of majority.

Proof. Fix an assignment to all variables of type (3, 1) or (2, 2). We start by analyzing the majority
assignment to the (4, 0) variables. Observe that the (7, 0, 0) functions under the majority assignment
will still have 7 good paths through them under this assignment. The (6, 0, 1) functions will have
at least 2 good paths going through them, and the (1, 0, 6) function will still have at least 1 good
path going through them.

Every time we change the assignment of one of those (4, 0) variables, we will introduce 8 bad
paths (actually we flip those assignments in pairs — the variable and its negation — and we will
get 16 in each step.) The key is to bound the number of variables in V1 that are now switched.
Suppose we flipped 0 < k < 14 of the (4, 0) functions, in the best case we have made k of the (1, 0, 6)
functions switched, and 6k/2 = 3k of the (6, 0, 1) functions switched. Note that unless we flip all
(4, 0) functions, we will never make the (7, 0, 0) functions switch. Therefore as long as 0 < k < 14,
we will increase the number of bad paths by 8k but will only get at most 4k more switched functions.
This means that unless we flip all assignments of (4, 0) functions to anti-majority, the value of the
assignment will never be better than having all (4, 0) functions be assigned to majority.

Next we show that suppose the (4, 0) functions are all fixed to majority, then the best assignment
will assign majority to the (3, 1) functions.

Proposition 3.13. Let A be a partial assignment to variables in V0 as defined at the beginning
of this subsection. If all (4, 0) variables in V2 are assigned according to majority, then to complete
this assignment and minimize the weight of violated constraints, one should set all (3, 1) variables
according to majority.

Proof. We follow the general approach of comparing the number of bad paths introduced by each
flip against the potential number of switched function we get. Note that of all the types of V1

functions we have, after setting (4, 0) variables to majority, the only potential function that could
switch has type (3, 1, 3) or (0, 4, 3). However, flipping some (3, 1) to non-majority will only give
good paths to (0, 4, 3) and potentially decrease the number of switched functions. To get an upper-
bound on the number of switched function, we can safely ignore the affect of those functions and
only focus on the (3, 1, 3) functions.

Now suppose that we change k of the (3, 1) functions to anti-majority assignment. Then we get
4k extra bad paths, and the number of switched functions will increase by at most 3k/3 = k < 4k/2
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(every flip impacts 3 (3, 1, 3) functions, and each (3, 1, 3) needs 3 flips such that the number of good
paths becomes 0.) This means that in this case anything another than the majority assignment to
the (3, 1) functions will give a worse assignment.

Finally, we show that flipping all (4, 0) functions to anti-majority is not a good idea. The
number of bad paths before assigning the (3, 1) and (2, 2) functions in V2 is 14 · 8 = 112. With
respect to the assignment where (4, 0) functions are assigned anti-majority and (3, 1) functions
are assigned majority, we have 2 functions in V1 of type (0, 7, 0), 42 functions of type (4, 2, 1), 14
functions of type (0, 1, 6), 56 of type (3, 1, 3) and 14 of type (0, 4, 3).

We now use an argument similar as above to show that all (3, 1) functions should be assigned
according to majority. Essentially, every flip of a (3, 1) function will decrease the number of good
paths in 3 (3, 1, 3) functions and 3 (4, 2, 1) functions. After flipping k of the (3, 1) variables away
from majority, the increase in the number of switched function is at most 3k/3 + 3k/4 = 7k/4 <
4k/2, not enough to make up the increased number of bad paths. If we assign majority to the (3, 1)
functions, then we already have 224 bad paths and 336 undetermined paths, thus the total number
of bad paths regardless of the assignment to the (2, 2) functions will be 224 + 336/2 = 392, and the
number of switched function is at most 16, giving a minimum cost of 392− 2 · 16 = 360.

On the other hand, if we take the all majority assignment, we get 280 bad paths and at most
14 switched function, giving a minimum cost of 280− 2 · 14 = 252.

This completes the proof of the lemma.

3.2 Assignments at distance 2 from Had3

In this section, we prove Lemma 3.6

Proof. Now let A be a partial assignments to variables in V0, such that there exists x0 ∈ {−1, 1}3,
and l0, l1 ∈ V0, l0 6= ±l1, such that A(f) = f(x0) for all f ∈ V0 \ {±l0,±l1}, and A(f) = −f(x0)
otherwise. Note that there are multiple choices of x0 and the identity of l0 and l1 depends on
the choice of x0. Here we pick x0 arbitrarily from all the possible options. We call ±l0 and ±l1
corrupted affine functions. We want to show that the total weight violated by A is at least 288.

The functions in V2 are of three types: the ones that contain neither of l0 and l1 as associated
linear functions, the ones that contain one of them and the ones that contain both. Functions of
the first and the third type are all (3, 1) functions, and functions of the second type can be either
(4, 0) or (2, 2).

The following proposition classifies variables in V1 and V2.

Proposition 3.14.

• All affine functions have 1 (7, 0, 0) neighbor, 3 (1, 2, 4) neighbors and 4 (4, 0, 3) neighbors.
This gives a total of 16 (7, 0, 0) functions, 48 (1, 2, 4) functions and 64 (4, 0, 3) functions.

• All (7, 0, 0) functions have 4 (4, 0) neighbors and 3 (3, 1) neighbors.

• All (1, 2, 4) functions get 1 good path from a (3, 1), 2 bad paths from 2 (3, 1)’s, and 4 unde-
termined paths from 4 (2, 2)’s.

• All (4, 0, 3) functions get 1 good path from a (4, 0), 3 good paths from 3 (3, 1)’s, and 3 unde-
termined paths from 3 (2, 2)’s.
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Proof. We first identify the (4, 0) functions.
Since these functions are associated with exactly one corrupted affine function, we start with

corrupted affine functions. Let a0 ∈ V0 be some arbitrary corrupted affine function. After flipping
two bits in a0, the function will be at distance 2 from a0, 6 from −a0. For it to be (4, 0), it must have
distance 4 from the other two corrupted affine functions. Let a1 be the other corrupted function
with a0(x0) = a1(x0). There are 4 bits on which a0 and a1 differ, and let y0 be an arbitrary one of
them. Let f be the level-2 function where we flip both x0 and y0 in a0. By the argument above,
the only corrupted affine function associated with f is a0. Observe also that the assignments to
its associated linear functions all agree, therefore f is a (4, 0) function. Since each corrupted affine
function a gives us 4 (4, 0) functions associated only with a, this gives a total of exactly 16 (4, 0)
functions.

We now consider the paths from a0 to f . Let g ∈ V1 be the function obtained by flipping
x0 of a0. If we flip one of the four y0’s discussed above, we will arrive at a (4, 0) function. This
contributes 4 good paths through g. The other 3 paths will lead us to a level-2 function associated
with 2 corrupted affine functions and 2 uncorrupted affine functions. Since the inputs assigned to
the 2 uncorrupted affine functions are the same as the one assigned to a0 but different from the
one assigned to the other corrupted affine function, this gives a (3, 1) function with a good path
through g. Summing up, g is a (7, 0, 0) function with 4 (4, 0) neighbors and 3 (3, 1) neighbors.

Starting from a0, consider flipping one of the 3 bits other than x0 where a0 and a1 agree. Let
g ∈ V1 be a function obtained this way. We know from the above that if we further flip x0, then
we will arrive at a (3, 1) function associated with a0 and −a1 which contributes a good path to g.
Otherwise, if we flip the remaining 2 bits where f and a1 agree that is not x0, then we reach a level 2
function again associated with a0 and −a1. This is a (3, 1) function but it contributes a bad path to
g. If we instead start from g and flip one of the 4 bits where a0 and a1 disagree, then we arrive at a
level-2 function that is only associated with a0. Since we did not flip x0 along the path, the function
we reached is a (2, 2) function. We conclude that g is actually a (1, 2, 4) function, with 1 good path
from a (3, 1) function, 2 bad paths from 2 (3, 1) functions, and 4 undetermined paths from 4 (2, 2)
functions. We also know that all corrupted affine functions have 3 such (1, 2, 4)-neighbors.

Now consider start at a0 and flip one of the 4 bits on which a0 and a1 disagree, and again let g
be the function we get. If we then choose to flip one of the 3 bits on which a0 and a1 agrees other
than x0, we will reach a (2, 2) function associated with only a0, and if we flip x0, or we will reach a
(4, 0) function associated only with a0. If instead we flip any of the remaining 3 bits on which a0

and a1 disagree, then we get a (3, 1) function associated with both a0 and a1, contributing good
paths to g. This means that g is a (4, 0, 3) function, getting 1 good path from a (4, 0) function and
3 good paths from 3 (3, 1) functions.

We have now completed the proof for corrupted affine functions. Now we turn to the uncor-
rupted ones. Although the idea is very similar, we need to choose the bits we flip differently.

Let a0 now be an uncorrupted affine function. There are two corrupted affine function that
disagrees with a0 on x0, denoted as a1 and a′1, and these three functions are at distance 4 from
each other. This means that:

1. There are two bits on which the two corrupted function agrees but they disagree with a0, one
of them is x0, and we denote the other as y0;

2. There are two bits on which all three functions agree, denoted as z and z′.

We first flip y0 of a0 and denote the resulting function by g. From g, we choose one of a1 and a′1
and try to find path to it. Without loss of generality let us assume that we want to find a path
from f to a1. Note that f and a1 still differs on 3 bits, one of them is x0. We can choose to flip one
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of the other two bits. This gives us a function in V2 associated with a1 but disagrees with a1 on x0,
and this is actually a (4, 0) function. To summarize, from g, there are two choices of destination
(a1 and a′1) and two choices of the next bit to flip that will lead us to a (4, 0) function. Thus,
function g also has 4 (4, 0) neighbors. For the remaining neighbors of g, consider flipping x0. This
leads to a (3, 1) function associated with 2 corrupted function, and which contributes a good path
to g. Also, if we flip any of the two remaining bits, we would reach a (3, 1) function not associated
with any corrupted affine functions, and this also contributes a good path to g. We conclude that
g is a function of type (7, 0, 0) with 4 (4, 0) neighbors and 3 (3, 1) neighbors.

Let us now consider what happens if we flip one of the four bits on which a1 and a′1 disagree.
Let the resulting function be g. Then we are moving closer to one of a1 and a′1 and away from the
other. Suppose without lost of generality that dH(g, a1) = 3 and dH(g, a′1) = 5. There are 3 bits
on which g and a1 differ, and let z′′ be such that g(z′′) = a′1(z′′). If we flip z′′, then the resulting
function will be associated with a1 and −a′1, and thus is a (3, 1) function contributing a good path
to g. The other two bits on which g and a1 differ are x0 and y0. Flipping x0 will give us a (2, 2)
function, and flipping y0 will give us a (4, 0) function. If we instead flip either of z and z′, then
we get a function where the only associated corrupted affine function is −a′1, and this is a (4, 0)
function since we have not flipped x0 yet. Flipping the remaining two bits in g will all give us (3, 1)
functions contributing good paths to g. Thus, we conclude that g is in fact a (4, 0, 3) function.

Let us now consider what happens if we flip x0 of a0. Further flipping y0 will lead to a (3, 1)
function that contributes a good path. Flipping either z and z′ gives us (3, 1) functions contributing
bad paths to g. Otherwise we have to flip a bit where a1 and a′1 disagree and this would give us a
(2, 2) function. Therefore, such g has type (1, 2, 4).

Finally, consider flipping z or z′ first. If we then flip the other one of z and z′, we get a function
associated with −a1 and −a′1, and this is a (3, 1) function contributing bad paths. If we flip x0,
then we get a (3, 1) function not associated with corrupted functions contributing bad paths. If we
flip y0, then we again get a (3, 1) function not associated with corrupted functions, but contributes
1 good path. If we flip one of the four bits on which a1 and a′1 disagrees, we will get to a (2, 2)
function. This means that such g is also (1, 2, 4).

This completes the proof.

Running the above argument from functions in V2, we have the following statement for functions
in V2.

Proposition 3.15.

• All (4, 0) functions have 4 neighbors of type (7, 0, 0) and 4 of type (4, 0, 3).

• All (3, 1) functions have 1 neighbors of type (7, 0, 0), 4 of type (4, 0, 3), 2 of type (1, 2, 4)
getting bad paths and 1 of type (1, 2, 4) getting a good path.

Proof. Consider first the (4, 0) functions. Let f be a function of type (4, 0). It is associated with
exactly one corrupted affine function that disagrees with the other three uncorrupted affine function
on x0. Let a0 be the corrupted affine function associated with f , and let a1 be the other corrupted
affine function such that a0(x0) = a1(x1). We show that for each pair of paths going from f to
one of its associated affine functions, one of them goes through a (7, 0, 0) function in V1 and the
other goes through a (4, 0, 3) function. The case for paths from f to the associated corrupted affine
function is already argued in the proof for Proposition 3.14. Now consider paths from f to some
uncorrupted affine function a2. The path from f to a2 consists of flipping the bit other than x0

where a0 and a1 agree but not with a2, and a bit where a1 and a2 agree but not with a0. From
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the proof of Proposition 3.14, we see that flipping the former bit gives us a (4, 0, 3) function, while
flipping the latter bit gives us a (7, 0, 0) function. This completes our proof for the (4, 0) functions.

The (3, 1) functions are either associated with no corrupted affine functions, or associated with
two. We consider the two cases separately.

Let f be a (3, 1) function that is not associated with any corrupted affine functions. Denote the
associated affine functions by a0, a1, a2 and a3. Without loss of generality assume that a0(x0) =
a1(x0) = a2(x0) = −a3(x0). Let a and a′ be the two corrupted affine functions such that f(x0) =
−a(x0) = −a′(x0). Since f , a and a′ are at distance 4 from each other, there is exactly one other
input z0 6= x0 where f(z0) = −a(z0) = −a′(z0). The two paths from f to a3 are all bad. Since the
only type of function in V1 that contains bad paths is (1, 2, 4), these two paths go through (1, 2, 4)
functions in V1 and contributes bad paths.

Let us now flip f(z0) and get to some g ∈ V1. Now dH(g, a) = dH(g, a′) = 3, but since f is not
associated with corrupted affine functions, to get to the nearest affine function from g, we need to
increase the distances dH(g, a) and dH(g, a′) by flipping some bit on which g, a and a′ all agree,
and we denote it as y0. Let h ∈ V0 be the function we get. We have h(x0) = −a(x0) = −a′(x0),
h(y0) = −a(y0) = −a′(y0) and h(z0) = a(z0) = a′(z0). From the proof of Proposition 3.14, we
conclude that g has type (7, 0, 0), and if starting from f we first flip y0 and then z0, we will go
through a (1, 2, 4) function and contribute a good path.

Now suppose f is a (3, 1) function associated with two corrupted affine functions a and a′.
Let the other two affine functions be a1 and a2. There are two subcases depending on whether
a(x0) = a′(x0).

First, suppose that a(x0) = a′(x0). Then it must be that a1(x0) 6= a2(x0). Assume that a2 is
the function with a2(x0) = a(x0) = a′(x0). Then the two paths from f to a2 are all bad paths, and
thus they go through two (1, 2, 4) functions. On the paths from f to a1, one of the bits flipped is x0,
and the other is the other bit where a1 disagrees with a and a′. Again, by the proof of Proposition
3.14, we conclude that one of them is a (1, 2, 4) function and the other is a (7, 0, 0) function.

Next, suppose that a(x0) = −a′(x0). Then a1(x0) = a2(x0). Without loss of generality, further
assume that a(x0) = a1(x0) = a2(x0). Then the two paths from f to a are bad, giving f two
(1, 2, 4) neighbors. On the paths from f to a′, we have to flip x0 and another bit on which a and a′

agree. We can flip the two bits in two different orders and this gives again a (7, 0, 0) function and
a (1, 2, 4) function.

So far, we proved that no matter what kind of (3, 1) function we have, they all have 1 (7, 0, 0)
neighbor and 3 (1, 2, 4) neighbor. By simple counting, we conclude that we have identified all the
(7, 0, 0) and (1, 2, 4) functions, and therefore all remaining neighbors have type (4, 0, 3).

Suppose we flip k of the (4, 0) functions and k of their negations away from majority. At most
8k functions of type (4, 0, 3) will switch, and (7, 0, 0) functions will not switch unless 4 ≤ k ≤ 8.
This means that for a fixed assignment to the (3, 1) and (2, 2) functions, the weight of violated
constraints will not be less than that of assigning majority to all (4, 0) functions, unless k ≥ 4.

Further, observe that if two (7, 0, 0) functions f and g share a (4, 0) neighbor, then dH(f, g) = 2.
Therefore they share exactly 2! = 2 (4, 0) neighbors. Thus if k = 4, 5, at most 1 (7, 0, 0) function
and its negation will be switched.

Let us consider the case when k = 4. We are flipping 8 (4, 0) functions, generating 64 bad
paths. This should be compensated by turning at least 32 functions from the set of (7, 0, 0) and
(4, 0, 3) functions into functions that have no good paths. Suppose we choose 0 ≤ k1 ≤ 1 of the
(7, 0, 0) functions and 0 ≤ k2 ≤ 64 of the (4, 0, 3) functions, where k1 + k2 = 32. Each (7, 0, 0) is
connected to a set of 3 (3, 1) functions, and these sets are disjoint for different (7, 0, 0) functions.
Therefore, at least 3k1 of the (3, 1) functions need to be flipped. Also, each (4, 0, 3) is connected
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to a set of 3 (3, 1) functions, and each (3, 1) function is connected to 4 (4, 0, 3) functions, therfore
at least 3k2/4 (3, 1) functions need to be flipped. Moreover, the number of functions flipped must
be even because we are flipping both the function and its negation. Combining this, we conclude
that at least 24 of the (3, 1) needs to be flipped, contributing 96 new bad paths. This means that
we now have 64 + 96 = 160 bad paths and would like to find at least 80 functions in V1 that will
potentially switch. This is the total number of (7, 0, 0) and (4, 0, 3) functions, and since we assumed
that we only switch 1 of the (7, 0, 0) functions, which means that it is already impossible.

For k > 4, the number of functions we need to potentially switch will only be higher, and
therefore flipping (4, 0) is never optimal.

Once we have that the (4, 0) functions should be assigned majority, the rest of the argument is
easy. The only function that could possibly switch are the (1, 2, 4) functions. However, when we
flip a (3, 1), we get 4 bad paths and could expect to gain at most 1 switched function. Therefore
flpping (3, 1) in this case will always increase the weight of violated constraints.

It is then easy to see that under the majority assignment, there is no switched function, and
the total number of bad paths is 288.

4 Optimality of the 11/8-gadget

In this section, we will construct an optimal solution to the dual LP given in Definition 2.28. This
yields the following theorem.

Theorem 4.1. [Theorem 1.8 restated] The value of the LP in Definition 2.28 is 11
64 . As a result,

for every (c, s)-gadget reducing Max-Had3 to Max-2-Lin(2),

s

c
≤ 11

8
.

In other words, the gadget given in Theorem 3.1 is optimal among gadget reductions from Chan’s
7-ary Hadamard predicate.

Proof. Our goal is to construct A ∈ R(Hadk), i.e. a folded distribution of assignments which is
random on the primary variables. For i ∈ {0, 1, 2}, denote by Ri(Had3), the set of distributions Ai
such that the string

(
A (χ∅) , A

(
χ{1}

)
, A
(
χ{2}

)
, A
(
χ{3}

)
, A
(
χ{1,2}

)
, A
(
χ{1,3}

)
, A
(
χ{2,3}

)
, A
(
χ{1,2,3}

))

is, over a random A ∼ Ai, distributed like a uniformly random element of {−1, 1}8 which is
distance i from satisfying the Had3 predicate. To prove Theorem 4.1, we will construct three
separate distributions A0, A1, and A2 with the property that Ai ∈ Ri(Had3) for each i ∈ {0, 1, 2}.
Then, using Proposition 2.33, we will set A = 1

16A0 + 1
2A1 + 7

16A2.
Using Proposition 2.29, we can decompose {−1, 1}8 = V0 ·∪V1 ·∪V2. By Proposition 2.31, a length-

one edge (x, y) in {−1, 1}8 has one of two types: either it goes between V0 and V1, or it goes between
V1 and V2. Each Ai distribution we construct will perform equally well on edges of a given type.
As a result, for each distribution Ai, we only need to keep track of two numbers, one for each edge
type. To do so, for any fixed edge (x, y) of type V0 ↔ V1, define

val(A′, V0 ↔ V1) := Pr
A∼A′

[A(x) = A(y)],

and define val(A′, V1 ↔ V2) analogously. For convenience in this section, we will keep track of these
val(·) parameters rather than the corresponding uval(·) parameters.
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For each i ∈ {0, 1, 2}, our goal is to construct the Ai which strikes the right balance between
making val(Ai, V0 ↔ V1) large and making val(Ai, V1 ↔ V2) large. The next three lemmas show
what we achieve.

Lemma 4.2. There exists a distribution A0 ∈ R0(Had3) such that

val(A0, V0 ↔ V1) =
7

8
and val(A0, V1 ↔ V2) =

7

8
.

Lemma 4.3. There exists a distribution A1 ∈ R1(Had3) such that

val(A1, V0 ↔ V1) =
25

32
and val(A1, V1 ↔ V2) =

7

8
.

Lemma 4.4. There exists a distribution A2 ∈ R2(Had3) such that

val(A2, V0 ↔ V1) =
7

8
and val(A2, V1 ↔ V2) =

43

56
.

By setting A := 1
16A0 + 1

2A1 + 7
16A2, we see that

val(A, V0 ↔ V1) = val(A, V1 ↔ V2) =
53

64
.

Finally, 1− 53
64 = 11

64 , and this is the number guaranteed by the theorem.
We now prove Lemmas 4.2, 4.3, and 4.4. The first two are straightforward, but Lemma 4.4 is

relatively involved.

Proof of Lemma 4.2. The distribution A0 simply picks a random (negated) dictator assignment.
More formally, it does the following:

1. Pick b ∈ {−1, 1} and i ∈ {1, 2, . . . ,K} independently and both uniformly at random.

2. Let di be the i-th dictator function.

3. Output the function b · di.

A random dictator will satisfy any fixed edge of the hypercube with probability 7
8 . Thus, it remains

to prove that A0 ∈ R0(Had3), and this is easy to check.

Proof of Lemma 4.3. The distribution A1 picks a random (negated) dictator assignment and cor-
rupts its value on a single primary variable. More formally, it does the following:

1. Sample A from A0.

2. Let x be a uniformly random primary variable.

3. Set Ã(x) := −A(x) and Ã(−x) := −A(−x). Set Ã := A for all other inputs.

4. Output Ã.

Note that whenever Ã is generated from A, Ã and A agree on all variables in V1 and V2. As a
result,

val(A1, V1 ↔ V2) = val(A0, V1 ↔ V2) =
7

8

24



Next, fix an edge (x, y) where x ∈ V0 and y ∈ V1. Then Ã and A agree on (x, y) unless either x or −x
is selected as the primary variable in Step 2, in which case they disagree on x. By Proposition 2.29,
there are 16 primary variables, meaning this event occurs with probability 1

8 . As a result,

val(A1, V0 ↔ V1) =
7

8
· val(A0, V0 ↔ V1) +

1

8
· (1− val(A0, V0 ↔ V1)) =

25

32
.

It remains to check that A1 ∈ R1(Had3); this follows from the fact that A0 ∈ R0(Had3) and that Ã
is chosen by randomly perturbing A on a single primary variable.

Proof of Lemma 4.4. The distribution A2 is itself a mixture of two other distributions, A0
2 and A1

2.
We now describe them separately and combine them later.

Constructing A0
2: The distribution A0

2 is generated by the following process:

1. Sample di uniformly at random from the set of dictators and negated dictators.

2. Form d̃i by negating di on two uniformly random primary variables (and their negations).

3. Set A : V → {−1, 1} to agree with d̃i on V0.

4. For every y ∈ V1, let x be y’s neighbor in V0.

• If A(x) = di(x), set A(y) := di(y).

• Otherwise, set A(y) := A(x).

5. For every z ∈ V2, set A(z) to the majority value of A on z’s eight neighbors in V1. (Ties will
not occur.)

By the construction of A, it is immediate that A0
2 ∈ R2({−1, 1}8). As for its performance on the

two edge types, we have the following proposition.

Proposition 4.5. val(A0
2, V0 ↔ V1) = 29

32 and val(A0
2, V1 ↔ V2) = 167

224 .

Proof. Let x ∈ V0 and y ∈ V1 be neighbors. With probability 3
4 , A(x) = di(x), in which case

A(y) = di(y). Conditioning on this event, A(y) = A(x) with 7
8 probability,. as the dictator

assignment satisfies each edge with probability 7
8 . On the other hand, when A(x) 6= di(x), which

happens with probability 1
4 , A(y) always equals A(x). Thus,

val(A0
2, V0 ↔ V1) =

3

4
· 7

8
+

1

4
=

29

32
.

To compute val(A0
2, V1 ↔ V2), we will condition the output of A0

2 on the choice of the (possibly
negated) dictator di in Step 1. Let us focus on a particular z ∈ V2. We will now describe what the
immediate neighborhood of z looks like.

Let N (z) ⊆ V1 denote the neighborhood of z, and let x1, x2, x3, and x4 be the four points in V0

which are distance two from z. Regardless of what di is, (di(x1), di(x2), di(x3), di(x4)) will always
have a majority size of three. Furthermore, di(z) agrees with this majority. Let x̃ ∈ {x1, x2, x3, x4}
be the variable in the minority, and assume WLOG that x̃ = x1. Then of the two elements in N (z)
which neighbor x1, di assigns one a value of 1 and the other a value of (−1); for the remaining
elements y ∈ N (z), di(y) = di(z). A pictorial representation of this is given in Figure 2.

Consider the two primary variables which were selected in Step 2. If a given primary variable
xj is selected, then the value given to it by di is negated when forming A. Furthermore, all of xj ’s
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x̃ = x1

x2 x4

x3

z
1

1

1
1

1

1
1

1

1

1

1

−1
−1

Figure 2: The neighborhood of z. The variables are labeled with the assignment di gives them.
Note that the assignment of z agrees with all but one of its neighbors and all but one of the xj ’s.
Further, the two variables which disagree with z are adjacent.

neighbors in V1 are assigned the value A(xj). Pictorially, if x3 in Figure 2 was selected in Step 2,
then its and its two neighbors’ values would be flipped to (−1) in A. Similarly, if x̃ = x1 in Figure 2
was selected, then both it and its two neighbors would be given the value 1 by A.

The value A assigns to z is just the majority value of z’s neighbors, so A’s success on the edges
neighboring z will just be the fractional size of this majority. If x1 is selected in Step 2, then the
value given to every y ∈ N (z) agrees with the value given to y’s neighbor in the xj ’s. Thus, in
this case, the majority size of z’s neighbors will just be 2 · Maj-Size(A(x1), A(x2), A(x3), A(x4)).
Otherwise, the two neighbors of x1 will disagree with one another, and the majority size will be
1 + 2 ·Maj-Size(A(x2), A(x3), A(x4)).

Now, we split into cases based on how many elements of {x1, x2, x3, x4} were selected in Step 2.
Case 0 occurs when zero were selected, Case 1 when one was selected, and so forth.

Case 0: In this case x1 is not selected, and Maj-Size of the remaining xj ’s is three. As a result,
the success probability is 1+2·3

8 = 7
8 .

Case 1: We split into two subcases depending on whether x1 was selected.

Case x1 is selected: In this case, Maj-Size(A(x1), A(x2), A(x3), A(x4)) = 4, and so the suc-
cess probability is 1.

Case x1 is not selected: In this case, Maj-Size(A(x2), A(x3), A(x4)) = 2, and so the success
probability is 1+2·2

8 = 5
8 .

The first subcase occurs with probability 1
4 and the second subcase occurs with probability 3

4 .
Combined, this means that A succeeds with probability 1

4 + 3
4 · 5

8 = 23
32 in this case.

Case 2: Again, we split into two subcases depending on whether x1 was selected.

Case x1 is selected: In this case, Maj-Size(A(x1), A(x2), A(x3), A(x4)) = 3, so the success
probability is 2·3

8 = 6
8 .

Case x1 is not selected: In this case, Maj-Size (A(x2), A(x3), A(x4)) = 2, and so the suc-
cess probability is 1+2·2

8 = 5
8 .

Both subcases occur with probability 1
2 . As a result, A succeeds in this case with probability

1
2

(
3
4 + 5

8

)
= 11

16
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There are
(

8
2

)
possible choices for the two primary variables which were negated to form d̃i. Of

these,
(

4
2

)
yield Case 0, 4 ·4 yield Case 1, and

(
4
2

)
yield Case 2. This gives a total success probability

of

val(A0
2, V1 ↔ V2) =

(
4
2

)
(

8
2

) · 7

8
+

4 · 4(
8
2

) · 23

32
+

(
4
2

)
(

8
2

) · 11

16
=

167

224
,

as guaranteed by the proposition.

Constructing A1
2: In constructing A1

2, it will be convenient to take the viewpoint of V ={
f
∣∣ f : {−1, 1}3 → {−1, 1}

}
. The distribution A1

2 is generated by the following process:

1. Pick x1, x2, x3 ∈ {−1, 1}3.

2. Set (x4)i = (x1)i · (x2)i · (x3)i for i ∈ [3].

3. Pick b1, . . . , b4 ∈ {−1, 1} subject to b1b2b3b4 = −1.

4. Set A1, . . . , A4 such that Ai(f) = bi · f(xi) for i ∈ [4].

5. Pick a uniformly random M : {−1, 1}4 → {−1, 1} subject to

• M(a1, . . . , a4) = sgn(a1 + . . .+ a4) when a1 + . . .+ a4 6= 0, and

• M(a1, . . . , a4) = −M(−a1, . . . ,−a4) otherwise.

6. Output A(f) = M(A1(f), . . . , A4(f)).

The construction of A1
2 is similar to the construction of the variables in V2 in the proof of Proposi-

tion 2.32. Via the correspondence shown in the proof of Proposition 2.33, Proposition 2.32 shows
that A1

2 ∈ R2(Had3). As for its performance on the two edge types, we have the following proposi-
tion.

Proposition 4.6. val(A1
2, V0 ↔ V1) = val(A1

2, V1 ↔ V2) = 13
16 .

Proof. Let f, f ′ : {−1, 1}3 → {−1, 1} ∈ V be neighboring variables, i.e. they differ on one input.
Let x̃ be the input that f and f ′ differ on. Let us condition on whether x̃ ∈ {x1, . . . , x4}. As there
are eight elements of {−1, 1}3, both cases occur with half probability.

Case x̃ /∈ {x1, . . . , x4}: In this case, Ai(f) = Ai(f
′) for all i, so A(f) always equals A(f ′).

Case x̃ ∈ {x1, . . . , x4}: In this case, one of the two strings (f(x1), . . . , f(x4)) and (f ′(x1), . . . , f ′(x4))
has an even parity and the other string has an odd parity. Without loss of generality, assume that
(f(x1), . . . , f(x4)) has the odd parity.

Over the random choice of the bi’s, the string (b1f(x1), . . . , b4f(x4)) is distributed like a uni-
formly random string with an even parity. In particular, the probability that all four entries are
the same is 1/4. When this occurs, then A(f) = A(f ′). This holds because if, for instance,
(b1f(x1), . . . , b4f(x4)) = (1, 1, 1, 1), then (b1f

′(x1), . . . , b4f
′(x4)) has three 1’s, and so the majority

value is 1.
This means that with 3/4 probability, (b1f(x1), . . . , b4f(x4)) has two 1’s and two (−1)’s. Fix

the bi’s, and consider the randomness over the choice of M . In this case, A(f) will be a uniformly
random ±1 bit, because M is uniformly random when there is no clear majority. On the other
hand, (b1f

′(x1), . . . , b4f
′(x4)) will have a clear majority, so A(f ′) a deterministic value. Thus, in

this case, A(f) = A(f ′) with half probability.
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Putting it all together. As a result,

Pr[A(f) = A(f ′)] =
1

2
+

1

2
·
(

1

4
+

3

4
· 1

2

)
,

which equals 13/16. As this holds for any neighboring functions f and f ′, we get our desired
conclusion, which is that val(A1

2, V0 ↔ V1) = val(A1
2, V1 ↔ V2) = 13/16.

Combining A0
2 and A1

2: The final distribution A2 is given by the mixture A2 = 2
3A0

2 + 1
3A1

2.
Because A0

2 and A1
2 are both elements of R2(Had3), it follows that A2 ∈ R2(Had3). Furthermore,

by combining Propositions 4.5 and 4.6, we see that

val(A2, V0 ↔ V1) =
7

8
and val(A2, V1 ↔ V2) =

43

56
,

as promised by the lemma.

This completes the construction of the distributions A0, A1, and A2, thereby completing the
theorem.

5 A candidate factor-3/2 hardness reduction

5.1 The Game Show Conjecture

Herein we present an interesting problem concerning analysis of Boolean functions. We make
a conjecture about its solution which, if true, implies NP-hardness (with quasilinear blowup) of
factor-(3

2 − δ) approximating 2-Lin(2) for any δ > 0.

Definition 5.1. Let g : {−1, 1}n → {−1, 1} be a folded function (i.e., g(−x) = −x). The Game
Show, played with Middle Function g, works as follows. There are two personages: the Host and
the Contestant. Before the game begins, the Host secretly picks a uniformly random path π from
(1, 1, . . . , 1) to (−1,−1, . . . ,−1) in the Hamming cube. (Equivalently, π is a uniformly random
permutation on [n].) The Host also secretly picks T ∼ Binomial(n, 1

2). We define the secret half-
path to be the sequence of the first T edges along π: (x0, x1), (x1, x2), . . . , (xT−1, xT ). Note that
xT is uniformly distributed on {−1, 1}n.

The Game now begins, with the current time being t = 0, the current point being x0 =
(1, 1, . . . , 1), and the current function being g̃ = g. (The current function will always be ±g.)

At each time step t = 0, 1, 2, . . . , the Host asks whether the Contestant would like to negate
the current function, meaning replace g̃ with −g̃. If the Contestant does not negate the current
function there is no cost. However, if the Contestant elects to negate the current function, the
Contestant must pay a cost of

w(t) :=
1

(1− t/n)2
. (3)

After the Contestant makes the decision, the Host reveals to the Contestant what the (t + 1)th
point on the secret half-path is, and the new time becomes t+ 1.

As soon as time T is reached, the Game ends. At this instant, if g̃(xT ) 6= 1, then the Contestant
incurs a further cost of w(T ). (It’s as though the Contestant is now obliged to negate g̃.) Thus
one can think of the Contestant’s goal throughout the Game as trying to ensure that g̃(xT ) will
equal 1, while trying to minimize the total cost incurred by all negations.

We define cost(g) to be the least expected cost that a Contestant can achieve when the Game
Show is played with Middle Function g.
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To get a feel for the Game Show, let’s make some observations. First, as mentioned, the negation
cost w(t) is an increasing function of time; i.e., the later it is in the Game, the more costly it is for
the Contestant to negate g̃. The cost to negate at the beginning of the Game is w(0) = 1 and the
cost to negate when the Game ends is w(T ) ∼ 4 (with very high probability, since T = (1

2±on(1))n
with very high probability). As a consequence, we always have cost(g) ≤ 2 + on(1). The reason is
that the Contestant can always use the strategy of never negating g̃ unless obliged to at the end of
the Game. In this case, the final evaluation will be g(x) where x is uniformly random. By oddness
of g, this evaluation is −1 with probability exactly 1

2 , and only in this case does the Contestant
suffer a cost, namely 4± on(1) (with high probability).

It can be shown that the best Middle Function g for the Contestant to play with is any
(positive) dictator, g = di, say. It’s easy to check that the Contestant’s best strategy is the obvious
one: negate if and only if the Host restricted coordinate i to −1 on the previous turn. To estimate
the expected cost of this strategy, first note that the probability the Host restricts coordinate i
throughout the course of the game is 1

2 . If the Host never restricts coordinate i then the Contestant
will have cost 0. Otherwise, conditioned on the Host restricting coordinate i over the course of
the game, the Contestant will have cost w(t∗), where t∗ is “essentially” uniformly distributed on
{1, 2, . . . , n2 }. At this point it’s natural to introduce the “continuous” time parameter u = t/n,
which ranges in [0, 1

2 ] (with very high probability), as well as the function

W (u) := w(un) =
1

(1− u)2
, (4)

which increases from 1 to 4 on [0, 1
2 ]. The distribution of u∗ = t∗/n is “essentially” uniform on

[0, 1
2 ]. More precisely, one may check that up to on(1) errors, the expected cost to the Contestant

conditioned on coordinate i being restricted is just the average value of W , namely

∫ 1
2

0
W (u) · 2du = 2.

Thus we finally conclude that cost(di) ∼ 1
2 · 2 = 1.

Let’s now look at the best strategy when the Middle Function is a negated dictator; i.e., let’s try
to determine cost(−di). Playing the Game Show with Middle Function −di is more stressful for the
Contestant because at the beginning of the game we have g̃(x) = −1. Assume the Contestant elects
not to negate g̃ for a while at the beginning of the Game. If ever the Host restricts the ith coordinate
to −1 then the Contestant can relax, knowing that no costs at all will be incurred. However as time
progresses without the ith coordinate being restricted, the Contestant will naturally get more and
more nervous that the game will end with g̃(1, 1, . . . , 1) = −1, forcing a cost of essentially 4. On
the other hand, if the Contestant decides to “preemptively” negate, there is still some chance that
the ith coordinate will subsequently be restricted before the game ends, forcing the Contestant
to negate again. Actually, it’s not hard to show that the best strategy for the Contestant is of
the following form, for some value u0 ∈ [0, 1

2 ]: “If ever the Host restricts the ith coordinate to −1,
negate g̃ if necessary and then never negate again. Otherwise, wait until the continuous time hits u0

and then negate g̃.” For example, the u0 = 0 case of this strategy involves negating immediately
at the game’s beginning (incurring cost 1) and then playing the optimal strategy for a positive
dictator (incurring expected cost 1 ± on(1)). The total expected cost is 2 ± on(1). As another
example, the u0 = 1

2 case of this strategy is the generic strategy of never negating unless forced to
at the game’s end. This case also has an expected cost of 2 ± on(1). In fact, one can do a short
calculation to show that the expected cost is 2± on(1) for every value of u0. This is by design: the
particular cost function W is the unique function with this property.
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We’ve concluded that cost(di) ∼ 1 and cost(−di) ∼ 2. To now state our conjecture about
the Game Show, we need a piece of notation; for g : {−1, 1}n → {−1, 1} and “negation pattern”
b ∈ {−1, 1}n, we write g+b to denote the function defined by g+b(x) = g(b1x1, . . . , bnxn). Roughly
speaking, our conjecture about the Game Show is that for every odd g, the average value of
cost(g+b) over all b is at least 3

2 . To be precise, we need to be concerned with averaging over merely
pairwise-independent distributions on b.

Game Show Conjecture. Let g : {−1, 1}n → {−1, 1} be odd and let D be any distribution on
{−1, 1}n which is pairwise-independent and symmetric (meaning PrD[b] = PrD[−b]). Then

E
b∼D

[cost(g+b)] ≥ 3

2
− on(1).

Our motivation for making the Game Show Conjecture is the following result:

Theorem 5.2. Suppose the Game Show Conjecture is true. Then it is NP-hard to approximate
2-Lin(2) (and hence also Max-Cut) to factor 3

2 − δ for any δ > 0.

We remark that given a Middle Function g, in some sense it is “easy” to determine the Con-
testant’s best strategy. It can done with a dynamic program, since the Game Show is essentially
a 2-Lin(2) instance on a tree graph. Nevertheless, we have been unable to prove the Game Show
Conjecture. We will discuss some of our efforts in Section 5.3. First, however, we will prove
Theorem 5.2.

5.2 Proof of Theorem 5.2

The proof is by construction of a gadget as in Definition 2.24.

Theorem 5.3. Suppose the Game Show Conjecture is true. Then for each k, there exists a (c, s)-
gadget reducing Max-Hadk to Max-2-Lin(2) satisfying

s

c
≥ 3

2
− ok(1).

Via Corollary 2.26, this shows that for every ε > 0, it is NP-hard to approximate 2-Lin(2) to
factor 3

2 − ok(1)− ε. Thus, by taking k large enough and ε small enough so that ok(1) + ε ≤ δ, we
get Theorem 5.2.

Now we prove Theorem 5.3.

Proof of Theorem 5.3. Set n := 2k (previously we have used K for this number, but for this proof
we will use n). For the gadget G, let {−1, 1}n denote the usual vertex set, and let Z be the
set of 2n primary variables. For reasons that will be clearer later, we will call these variables
the Contestant Strategy variables. As in the definition of a (c, s)-gadget, we need only consider
assignments A : {−1, 1}n → {−1, 1} which are folded.

We will add one twist to this construction: we will have an additional collection of variables,
identified with {−1, 1}n, called the Middle Function variables. We will write g : {−1, 1}n → {−1, 1}
for assignments to these variables, and we will use folding here as well so that each g can assumed
to be folded. We remark that it would actually be okay if the Middle Function variables and the
Contestant Strategy variables were identified; however, we find it conceptually clearer to separate
them, and it doesn’t affect our analysis of gadget’s quality.

We now describe the constraints we put on our gadget; these are highly reminiscent of the Game
Show described in the previous section. All of the constraints are equality tests along Hamming
edges (either within the Contestant Strategy/Middle Function hypercubes, or between them). We
will henceforth refer to gadget variables as “points”, and assume that n is at least a sufficiently
large universal constant.
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Overall Gadget Test G:
With probability δ, run the Average Sensitivity Test; with probability 1−δ, run the Game Show Test.

Average Sensitivity Test:
Choose a uniformly random edge (y,y′) in the Middle Function hypercube and test that g(y) = g(y′).

Game Show Test:
Choose a random primary point x0 ∈ Z in the Contestant Strategy cube. Choose a random path
(x0,x1), (x1,x2), . . . , (xn−1,xn) from x0 to xn := −x0. Choose T to be a Binomial(n, 1

2) random
variable, conditioned on being in the range n

2 ±
√
n log n. Choose t ∈ [T ] such that Pr[t = t] is pro-

portional to w(t) (as defined in (3)). Finally, if t < T then test that A(xt−1) = A(xt); otherwise,
test that A(xt−1) = g(xT ). (In the former case, both points are taken from the Contestant Strategy
cube; in the latter case, xt−1 is taken from the Contestant Strategy cube and xT is taken from the
Middle Function cube.)

Here δ will be some decreasing function of n which we specify implicitly later. We first prove a
little lemma:

Lemma 5.4. Let 1 ≤ t ≤ n
2 +
√
n log n and write u = t/n. Then in the Game Show Test,

Pr[t = t] =
W (u)

n
· (1± on(1)),

where W is defined as in (4).

Proof. By definition, all we need to do is show that the “constant of proportionality” in the Game
Show Test, namely

∑T
i=1w(t), is equal to n(1 ± on(1)), uniformly for each outcome of T . Since

w is an increasing function, this discrete sum is bounded between the integrals
∫ T

0 w and
∫ T+1

1 w.

Using the fact that
∫ 1/2

0 W = 1, it’s easy to compute that both of the bounding integrals are
n±O(

√
n log n) when T is n

2 ±
√
n log n.

It’s easy to see that in both the Average Sensitivity Test and the Game Show Test, we have
complete symmetry with respect to the direction in [n] of the edge being tested for equality. Thus,
for any dictator function di, the probability of rejecting when A = g = di is indeed precisely 1

n .

Thus, we need only show that s ≥ 3/2−on(1)
n for G to prove Theorem 5.3.

Theorem 5.5 (Soundness). Assume the Game Show Conjecture. Suppose A’s assignments to the
2n primary points Z are chosen uniformly at random. Then regardless of how g and the remaining
values of A are chosen, the probability that the Overall Gadget Test rejects is, in expectation, at
least 3/2−on(1)

n , provided that δ = on(1) is suitably chosen.

Proof. Let’s ignore the Average Sensitivity Test for a moment and focus on the Game Show Test.
It is evidently somewhat similar to the Game Show as played with Middle Function g : {−1, 1}n →
{−1, 1}. In brief, the key differences are: (i) the Game Show Test starts its path from a random
point in Z, rather than from (1, 1, . . . , 1); (ii) in the Game Show Test, the Contestant/A-chooser’s
job is even harder than in the Game Show, because the entire strategy A must be fixed before the
Game begins. In other words, it’s as though the Contestant must act at time t independently of
what happened prior to time t.

Having given a little intuition, let’s elaborate by carefully phrasing the operation of the Game
Show Test in language similar to that of the Game Show. We incorporate into the Game Show
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Test A’s random assignment to the primary points Z; we can imagine that the Host announces
uniformly random values A(z) for each z ∈ Z that the Contestant must use. In the next step of the
Game Show Test, we have the Contestant fix an odd Middle Function g; it’s important to note that
the Contestant gets to do this after seeing the random values (A(z))z∈Z . Next we can imagine that
the Host secretly picks a uniformly random primary point z0 ∈ Z and a random half-path from it,
(z0, z1), . . . , (zT−1, zT ). The Host will be testing equality of A’s values on a random (according
to w) edge along this half-path, using the value of g instead of A for the last point along the
half-path. However in the Game Show Test, the Contestant must fix an entire strategy (A(x))x 6∈Z
before the Host reveals which edge is tested.

We’ll now make things easier on the Contestant — this can only decrease the probability of
the test rejecting. Specifically, we won’t force the Contestant to immediately announce an entire
strategy (A(x))x 6∈Z . Rather, the Host will reveal the edges (z0, z1), (z1, z2), . . . one-by-one, just
as in the Game Show, and will only require the Contestant to decide on A(zt) in the tth step of
this process. Note that A(z0) is already fixed, as is g(zT ). Once zT is revealed, the Host will then
choose t as in the Game Show Test and do the equality-test on the tth edge.

Now let’s make a few more viewpoint changes, so that the Game Show Test becomes even more
similar to the Game Show. As it has now been described, the Game Show Test starts at a random
primary point z0 ∈ Z, and the Contestant is obliged to use the Host’s initially randomly chosen
value A(z0). Let’s change this so that once the Host chooses z0 ∈ Z at random, the function g
is immediately replaced by g̃ = A(z0)g+z0 = g+A(z0)z0 . (The last equality uses the fact that g
is odd.) In this way, we may equivalently assume that (as in the Game Show) the random half-
path always originates from (1, 1, . . . , 1), and that the Contestant is obliged to use the assignment
A(1, 1, . . . , 1) = 1. Now as the Game Show Test proceeds, when the Host reveals the tth edge,
the Contestant is allowed to specify whether A(zt) should be equal to A(zt−1), or equal to its
negation. Note that it is “costly” for the Contestant to choose negation, in the sense that it yields
an “unequal” edge that will increase the Host’s rejection probability by w(t). This process proceeds
until zT is reached, whereupon the Contestant is committed to the final assignment value g(zT ).
In our final viewpoint change, instead of allowing the Contestant to either “keep” or “negate” the
value assigned at time t− 1, it is equivalent to allow the Contestant to either keep g̃ or replace it
by −g̃. The latter choice corresponds to creating an “unequal” edge and incurring cost (rejection
probability) w(t). The fact that the Contestant is obliged to use the initial assignment 1 (recall we
initially multiply g+z0 by A(z0)) in the test corresponds to the fact that in the Game Show, the
Contestant is obliged to end on 1.

It may seem as though we have by now shown that the Game Show Test is equivalent to
playing the Game Show with Middle Function g+A(z0)z0 , where z0 ∈ Z is chosen uniformly at
random — in the sense that the rejection probability of the test is equal to the expected value of
cost(g+A(z0)z0). However there is one catch: in the Game Show Test, g may be chosen after the
random assignments (A(z))z∈Z to the primary points. The remainder of the proof is devoted to
showing that the Contestant can not effectively “take advantage” of this.

For this we return to the actual Overall Gadget Test, which performs the Average Sensitivity
Test with probability δ and the Game Show Test with probability 1 − δ. (Note that our theorem
statement tolerates the loss of factor-(1 − δ) in soundness here.) The purpose of the Average
Sensitivity Test is to ensure that the chosen g must essentially be a junta. More precisely, we see
that if the chosen g has average sensitivity exceeding 3/2

δ then the Average Sensitivity component

of the Overall Gadget Test already rejects with probability exceeding 3/2
n . Thus we can assume

the chosen g has average sensitivity at most 3/2
δ . It follows from Friedgut’s Junta Theorem [Fri98]

that g must be δ-close to a junta on some J = 2O(1/δ3) variables. Using the fact that g is odd, one
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can also ensure that this junta is odd.1 Next, note that the Game Show Test only involves g with
probability W (1/2)

n (1 ± on(1)) ≤ 5
n (using Lemma 5.4). Furthermore, when it does involve g, the

point on xT on which it involves g is nearly uniformly random in {−1, 1}n. The difference from
uniform randomness comes because we conditioned T to lie in the range n

2 ±
√
n log n; however, T

lies outside this range only with probability on(1). Thus we see that if we simply replace g with
its δ-close odd J-junta, we only affect the Overall Gadget Test’s rejection probability by at most
5
n(δ + on(1)), an amount we can absorb in the theorem statement. In summary, we may freely

assume that the chosen g is always an odd junta on J = 2O(1/δ3) coordinates.
Finally, to complete the proof by applying the Game Show Conjecture, it would remain to show

that with probability 1 − on(1) over the initial random choice of (A(z))z∈Z , for all choices of J
out of n coordinates, the projection of the distribution A(z0)z0 to the coordinates J is pairwise
independent and symmetric. This is not quite correct, but in Lemma 5.6 below we show that each
projection is O(δ)-close in total variation distance to being simultaneously pairwise-independent
and symmetric. This is sufficient to complete the proof.

Lemma 5.6. Suppose n is sufficiently large as a function of δ. Suppose that for each of the n/2
strings z ∈ Z a uniformly random bit az is chosen. Then except with probability on(1), for every
fixed set of J = J(δ) coordinates in [n] (in particular, for J = 2O(1/δ3)), the uniform distribution
on the set of strings (azzJ)z∈Z is O(δ)-close (in fact, on(1)-close) to being simultaneously pairwise-
independent and symmetric.

Proof. We begin just by showing the pairwise-independence property; here we won’t need that J
is small compared to n. For any particular pair of coordinates (i, j) in [n] the list of two-bit
strings (z{(i, j)})z∈Z has n/4 equal pairs and n/4 unequal pairs (since Walsh–Hadamard columns
are orthogonal). Thus when the bits az are chosen, in the list (azz{(i,j)})z∈Z we will see each of
the four possible two-bit strings n/8 ± O(

√
n log n) times except with probability � 1/n2. Thus

by taking a union bound over all pairs of coordinates (i, j), it follows that except with probability
on(1) we have that all projections of (azz)z∈Z onto two coordinates are Õ(1/

√
n)-close to uniform.

Next we consider the symmetry property. Fix any subset J ⊂ [n] of J coordinates. Let’s
consider, for each string x ∈ {−1, 1}J , how many times it occurs in the list (zJ)z∈Z . Some x’s
have at most

√
n occurrences. However even collectively, these constitute only 2J

√
n out of the n/2

strings, and thus they contribute only on(1) total probability mass to the uniform distribution on
(zJ)z∈Z . As for the remaining strings x ∈ {−1, 1}J , each occurs at least

√
n times. Thus when the

bits az are chosen, nearly equally many occurrences of ±x will be formed. Taking into account the
need to union-bound over all 2J strings and indeed all

(
n
J

)
subsets J , we still get that except with

probability on(1), for all J of cardinality J , the projection of (azz)z∈Z onto the J-coordinates is

O(
√
J logn
n1/4 )-close to symmetric.

Finally, we claim that if a distribution on J-bit strings is on(1)-close to symmetric and has
all 2-bit marginals on(1)-close to uniform, then it is has total variation distance at most 2J2 ·
on(1) = on(1) from being simultaneously symmetric and pairwise-independent. To see this, we
can begin with the on(1)-nearby symmetric distribution; it still has all its 2-bit marginals at most
2on(1)-close to uniform, and all of its 1-bit marginals are exactly uniform. Now we can apply the
“correction procedure” from [AGM03] to deduce that the resulting distribution is 2J2on(1)-close
to being pairwise-independent. It only remains to observe that this correction procedure maintains
symmetry, since it merely mixes the distribution with various symmetric distributions (namely,
distributions of the form “uniform on {x : xixj = 1}” for distinct i, j ∈ J ).

1The proof shows g is close to sgn(
∑
S⊆J ĝ(S)χS) for some |J | ≤ J , using an arbitrary convention for sgn(0).

One need only ensure that any sgn(0) choices that arise are made in an oddness-preserving way.
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This finishes the (Completeness) and (Soundness) cases of G, giving us Theorem 5.3.

5.3 Regarding the Game Show Conjecture

As mentioned, we are unable to prove the Game Show Conjecture. For the record, we describe
here some of our ideas toward proving it. Since we are not claiming any theorems in this section,
we will not be completely precise.

As we have already seen, it seems more natural to think of a “continuous” time parameter
u = t/n that starts at u = 0 and ends at u = 1

2 . (Thinking of n as large, the ending time will
indeed be u = 1

2 ± on(1) with high probability.) In fact, we believe it’s even more natural to use a
different continuous parameterization of time. Specifically, define the time remaining parameter s
by s = ln(2 − 2u); i.e., u = 1 − exp(s)/2. As time runs from u = 0 up to u = 1

2 , the “time
remaining” runs from s = ln 2 down to s = 0. The idea behind this rescaling is that now the Host
restricts coordinates according to an exponential clock of rate 1

n . Note from (4) that the cost to
the Contestant of negating g̃ with s time remaining is

W (s) = 4 exp(−2s). (5)

Suppose we have some current function g̃ and the time remaining is s. Let us define costg̃(s)
to be the expectation of the Contestant’s remaining cost, assuming an optimal strategy; note that
cost(g̃) = costg̃(ln 2). For the two constant functions we have:

cost+1(s) = 0

cost−1(s) = 4 exp(−2s).

The latter equality holds because whenever the current function g̃ gets restricted to the constant
function −1, it is in the Contestant’s best interest to immediately negate (because the negation
cost is an increasing function of time).

As we alluded to earlier, for general g̃ there is a “dynamic program” for computing costg̃(s).
(Actually, because s is a continuous parameter it’s more like a “differential equation”.) The “base
case” for the dynamic program is

costg̃(0) =

{
0 if g̃(1, 1, . . . , 1) = 1,

4 if g̃(1, 1, . . . , 1) = −1.
(6)

In general, we can compute costg̃(s+ ds) given knowledge of costf (s) for all subfunctions f of ±g̃.
The fact that the Contestant is allowed to actively negate g̃ causes some complications, so let’s
begin by considering a lazy Contestant, meaning one who uses the (possibly nonoptimal) strategy
of never negating g̃ unless it gets restricted to the constantly −1 function (or unless the game ends
and negation is “forced”).

Writing Cg̃(s) for the analogue of costg̃(s) in the case of a lazy Contestant, we have the same
base case (6). As for the general formula, suppose that g̃ depends on r coordinates and that we
consider the time remaining dropping from s+ds to s. Let u = 1−exp(s)/2 as usual. It’s easy to see
that each of g̃’s relevant coordinates has probability du

1−u of being restricted. Since u = 1−exp(s)/2,
this precisely equals −ds, and hence in going from s+ ds to s time remaining, each coordinate has
probability ds of being restricted. Thus we deduce the “dynamic programming” formula:

Cg̃(s+ ds) = r · ds · avg
g̃′
{Cg̃′(s)}+ (1− r · ds) · Cg̃(s),
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where the average is over all functions g̃′ gotten by restricting one coordinate of g̃ to be −1. Let’s
write

Ag̃(s) = avg
g̃′
{Cg̃′(s)},

and also approximate Cg̃(s+ds) = Cg̃(s) + d
dsCg̃(s). Then after rearrangement, the above dynamic

programming formula becomes the differential equation

−Cg̃(s) = r(Cg̃(s)−Ag̃(s)).

The solution to this ODE is
Cg̃(s) = r exp(−rs) · LrAg̃(s), (7)

where Lr denotes the operator defined by

LrA(s) =

∫ s

0
exp(ry)A(y) dy + const,

with the value of const being determined by the initial condition, Cg̃(0) ∈ {0, 4}. With these
formulas in hand one can directly compute the following formulas for the two r = 1 functions:

Cdi(s) = 4 exp(−s)− 4 exp(−2s),

C−di(s) = 4 exp(−s).

It was previously argued that the lazy strategy is optimal when the Middle Function is a dictator di,
and the first formula above confirms that cost(di) = 4 exp(− ln 2)−4 exp(−2 ln 2) = 1. Furthermore,
observe that

C−di(s) = Cdi(s) +W (s).

The left-hand side is the expected cost to the Contestant when using the lazy strategy on a negated
dictator; the right-hand side is the expected cost if the Contestant decides to negate −di to di at
time s. Notice that we have equality for all s. This is precisely by design; as mentioned earlier, we
chose the negation-cost formula W (s) so that when the Middle Function is a negated dictator, all
strategies of the form “negate if and only the relevant restriction has not occurred by time s0” are
equally good, including the lazy strategy.

We have cost(di) = 1 and cost(−di) = 4 exp(− ln 2) = 2, hence Eb∼D[cost(g+b)] = 3
2 whenever

D is symmetric and g is a dictator or negated dictator. To confirm the Game Show Conjecture,
what we need to show is that for D symmetric and pairwise-independent we have

E
b∼D

[cost(g+b)] ≥ 3

2

for all odd g.
Next we consider functions with exactly 2 relevant variables. There are actually no such odd

functions, but we still need to analyze them since they can arise at intermediate points in the game.
From (7) one may compute:

CAND2(s) = 8(exp(s)− 1− s) exp(−2s) COR2(s) = 8s exp(−2s) (8)

CNOR2(s) = 4 exp(−2s) C=2(s) = 4(2 exp(s)− 1− 2s) exp(−2s) (9)

C6=2(s) = 8(exp(s)− 1) exp(−2s) Cx∧¬y(s) = 4(exp(s)− 1) exp(−2s) (10)

Cx∨¬y(s) = 4 exp(s) exp(−2s) CNAND2(s) = 4(2 exp(s)− 1) exp(−2s). (11)
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Note that CNAND2(s) > W (s) + CAND2(s) for all s > 0. This implies that the lazy strategy is
not optimal for the Contestant when the function is NAND2. It is not hard to show that the best
strategy for the Contestant involves immediately negating NAND2 to AND2 whenever it arises.
For all other functions above the lazy strategy is optimal, i.e., costg(s) = Cg(s); but for NAND2

we have
costNAND2(s) = W (s) + costAND2(s) = 4(2 exp(s)− 1− 2s) exp(−2s).

Now we can consider 3-bit functions. The only odd ones (up to symmetry) are χ{1,2,3} and

Maj+b3 for b ∈ {−1, 1}3. It’s an exercise to confirm the Game Show Conjecture for all parity
functions, so let’s focus on the majority-type functions. For them we’ll introduce the more general
notation LTFa1,...,ar(x) = sgn(a1x1 + · · ·+ arxr). From (7) one may compute:

CLTF1,1,1(s) = 24(1− exp(−s) + s exp(s)) exp(−3s)

CLTF1,1,−1(s) = 8(exp(2s)− s exp(s)− 1) exp(−3s)

CLTF1,−1,−1(s) = 4(2 exp(s)− 2s− 1) exp(−2s)

CLTF−1,−1,−1(s) = 4(3 exp(s)− 2) exp(−3s).

One can show that in fact cost = C for the first three of these functions. However this is not true
for the last function, namely −Maj3. Here we have C−Maj3(s) > CMaj3(s) + W (s), implying that
sometimes the Contestant should negate −Maj3 to Maj3. Indeed, now one should consider the
overall “dynamic program” more carefully, to incorporate the fact that the Contestant is allowed
to negate. Extending the differential equation reasoning above, one finds that it is optimal for the
Contestant to negate g̃ at time s0 if and only if

Ag̃(s0) ≤ A−g̃(s0) +W (s0) +W ′(s0)/r.

In particular, when g̃ = −Maj3, this condition is equivalent to

costNOR2(s0) ≤ costOR2(s0) +W (s0)/3.

Using the formulas in (8), one directly calculates that the least s0 for which we have equality above
is s0 = 1/3. It follows that the optimal strategy for −Maj3 is to negate if and only if the time
remaining reaches 1/3 without any relevant coordinates being restricted. Taking this into account,
we ultimately determine:

cost−Maj3(s) =

{
24(1− exp(−s) + s exp(s)) exp(−3s) + 4 exp(−2s) if s ≤ 1/3,

12(2 + exp(s)− 2 exp(1/3)) exp(−3s) if s ≥ 1/3.

By substituting s = ln 2, we can state the optimal costs for all reorientations of Maj3:

cost(LTF1,1,1) = 6 ln 2− 3 ≈ 1.159

cost(LTF1,1,−1) = 3− 2 ln 2 ≈ 1.614

cost(LTF1,−1,−1) = 3− 2 ln 2 ≈ 1.614

cost(LTF−1,−1,−1) = 6− 3 exp(1/3) ≈ 1.813.

The last of these, cost(−Maj3), is “surprisingly low”. In particular, note that

avg{cost(Maj3), cost(−Maj3)} =
3

2
(1− exp(1/3) + 2 ln 2) ≈ .99 · 3

2
. (12)
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This shows that it is not sufficient in the Game Show Conjecture merely to assume that the
distribution on orientations b is symmetric. However, as the only symmetric pairwise-independent
distribution on three bits is the uniform distribution, the case of g = Maj3 is consistent with the
Game Show Conjecture:

1
8(6 ln 2− 3) + 3

8(3− 2 ln 2) + 3
8(3− 2 ln 2) + 1

8(6− 3 exp(1/3)) ≈ 1.58 > 3
2 .

We do not have a clear strategy for analyzing the general case. A reasonable place to start is to
analyze all linear threshold functions, a class of functions closed under restriction, which includes
dictators and majorities. In particular, the r-ary “monarchy” function, LTFr−2,1,1,...,1 seems like
an interesting challenge to analyze.

We make one final remark: As we have seen, the Game Show Conjecture is not correct if
the distribution on orientations b need only be symmetric. This is a bit of a shame, because
in the proof of the soundness Theorem 5.5, one can ensure symmetry without using any special
properties of the predicate being reduced from, besides uselenessness. In particular, one could use
the older NP-hardness reduction of Samorodnitsky and Trevisan [ST00] in place of Chan’s, which
has the advantage [MR10] of holding with a quasilinear-size blowup. If one hazards the guess
that Eb∼D[cost(g+b)] ≥ .99 · 3

2 whenever D is symmetric, a consequence would be that 2-Lin(2)
is NP-hard to approximate to factor .99 · 3

2 with a quasilinear-size reduction; hence, this level of

approximation would require nearly full exponential time, 2n
1−o(1)

, assuming the Exponential Time
Hypothesis.

6 Limitations of gadget reductions

In this section, we show a limitation to proving inapproximability using gadget reductions from
balanced pairwise-independent predicates: that is, predicates φ that admit a set S ⊆ sat(φ) sat-
isfying Property 2 in Definition 2.4. We show that gadget reductions from φ to 2-Lin(2) can not
prove inapproximability larger than a factor-2.54 for the deletion version. Note that this applies
to the Hadk predicates and to a broader class of predicates that do not necessarily admit a natural
group operation.

Theorem 6.1. Let G be a (c, s)-generic gadget reducing Max-φ to Max-2-Lin(2), where φ admits
a balanced pairwise-independent set. Then

s

c
≤ 1

1− e−1/2
≈ 2.54.

Proof. As before, K is the number of satisfying assignments of φ. Recall that the vertex set of G is
V = {−1, 1}K . Further, via Propositions 2.19 and 2.20, we need only consider folded assignments
to these variables, and we can assume G only uses (=)-constraints. Finally, via Proposition 2.27,
we can assume that every (=)-constraint used by G is between two variables x and y which are
Hamming distance one from each other. Let P be the set of generic primary variables, let −P
be their negations, and let P± = P ∪ (−P ) denote the union of the two. Since φ is balanced
pairwise-independent, we have a set S ⊆ [K] so that for i picked uniformly at random from S,
Pri[ui = vi] = 1/2 for distinct primary variables u, v ∈ P .

Define the similarity between x and y to be sim(x, y) := Pri[xi = yi] and set sim(x, P±) :=
maxy∈P± sim(x, y). Pairwise-independence allows us to claim that any variable x is strongly similar
(i.e. has similarity > 3

4) with at most one variable y ∈ P±; define y to be x’s closest primary
variable.
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Fact 6.2. For any x ∈ V , if sim(x, y) > 3
4 for some y ∈ P±, then sim(x, y′) < 3

4 for all other
y′ ∈ P±.

Proof. If x has sim(x, y1) > 3
4 and sim(x, y2) ≥ 3

4 for y1, y2 ∈ P±, then

sim(y1, y2) ≥ sim(y1, x) + sim(x, y2)− 1 >
1

2
,

contradicting the assumption on φ.

This fact allows us to design the following “threshold-rounding” procedure to construct a dis-
tribution A ∈ Rgen(φ). Let D be a distribution over [3/4, 1] with probability density function
D(t) = C · e2t, for t ∈ [3/4, 1] (and C set appropriately).

1. Pick a random assignment to the primary variables.

2. Pick a number t ∼ D. For any variable x ∈ V , call x type 1 if sim(x, P±) > t and type 2
otherwise.

3. Assign all type-1 variables the value of their closest primary variable.

4. Pick a uniformly random dictator di and set all the type-2 variables to agree with this dictator.

5. Output the resulting assignment.

Note that the assignments are folded and are random on the primary variables. We analyse the
performance of this assignment. Let (x, y) be an edge in {−1, 1}K of Hamming weight one. If
both sim(x, P±), sim(y, P±) ≤ 3

4 , then regardless of the value of t, x and y will both always be
type-2 variables, in which case A violates the edge between them with the probability of a random
dictator, which is 1

K ≤ 1
1−e−1/2 · 1

K .

On the other hand, suppose WLOG that sim(x, P±) > sim(y, P±) and that sim(x, P±) > 3
4 . If

we set s := sim(y, P±), then sim(x, P±) = s + 1
K . Because y is distance one from x, s ≥ 3

4 . Not
only that, if y has a closest primary variable, then that variable is the same as x’s closest primary
variable (this is by Fact 6.2). Now, to calculate the probability that A violates (x, y), there are
three cases:

1. If t ∈
[

3
4 , s
)
, then x and y are assigned the value of the same variable in P±, so (x, y) is never

violated in this case.

2. If t ∈
[
s, s+ 1

K

)
, then y’s value is chosen according to a uniformly random dictator assign-

ment, meaning that it is a uniformly random ±1-bit. independent from x’s value In this case,
(x, y) is violated with probabiltiy 1

2 .

3. If t ∈
[
s+ 1

K , 1
]
, then both x and y are assigned values according to a random dictator, in

which case (x, y) is violated with probability 1
K .

38



In total,

Pr[A violates (x, y)] =
1

2
· Pr
t∼D

[t ∈ [s, s+ 1/K)] +
1

K
· Pr
t∼D

[t ∈ [s+ 1/K, 1)]

=
1

2

∫ s+ 1
K

s
Ce2tdt+

1

K

∫ 1

s+ 1
K

Ce2tdt

≤ 1

2
· Ce

2s+2/K

K
+

1

K

∫ 1

s+ 1
K

Ce2tdt

=
Ce2

2K
=

1

1− e−1/2
· 1

K
,

as promised. Here the inequality follows from the fact that e2t is an increasing function. As G
only uses length-one edges, c = 1

K . We have just shown that uval(A;G) ≤ 1
1−e−1/2 · 1

K . Because

A ∈ Rgen(φ), we conclude that s
c ≤ 1

1−e−1/2 .

7 Conclusion

As mentioned, we view our factor-11
8 NP-hardness result more as a proof of concept, illustrating

that the longstanding barrier of factor-5
4 NP-hardness for Max-Cut/2-Lin(2)/Unique-Games can be

broken. There are quite a few avenues for further work:

• An obvious problem is to derive a better NP-hardness result for 2-Lin(2) by reduction from
Had4 rather than Had3. As one can always embed our Had3-based gadget into a standard
Had4-based gadget, this method will always yield a hardness of at least 11

8 . But presumably
the optimal Had4-based gadget will do slightly better.

• Since our analysis of the optimal Had3 gadget is already somewhat complicated, it might be
challenging to analyze the Had4 case explicitly. A weaker but more plausible goal would be
to prove (perhaps indirectly) that there exists a δ0 > 0 such that the optimal Had4 gadget
achieves factor-(11

8 + δ0) NP-hardness. This would at least definitely establish that 11
8 is not

the “correct answer” either.

• Of course, proving the Game Show Conjecture would yield the improved NP-hardness factor
of 3

2 . It may also be simpler to try to prove a non-optimal version of the conjecture, yielding
some hardness factor better than 11

8 but worse than 3
2 . Certain ideas we had for trying

to prove the conjecture (e.g., distinguishing whether g is “close to” or “far from” being a
dictator) might yield such a result.

• Along these lines, it could also be a good idea to prove some form of the Game Show Con-
jecture that only relies on the distribution D on orientations b being symmetric, rather than
pairwise-independent. As mentioned, this would allow one to reduce from the Samorodnitsky–
Trevisan hardness result, yielding nearly full-exponential hardness under the ETH. Since our
proof of Theorem 5.2 reduces from Chan’s hardness result, it has the unfortunate aspect that

we only get factor-(3
2 − δ) hardness (under ETH) for algorithms running in time 2n

δ′
for some

δ′ = δ′(δ) that we did not bother to make explicit.

• For Max-Cut, our work establishes NP-hardness of (ε, Cε)-approximation for any C < 11
8 , but

only for ε ≤ ε0 where ε0 is some not-very-large constant arising out of Proposition 2.36. It
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would be nice to get a direct Max-Cut gadget yielding a larger ε0, like the ε0 = 1
8 we have for

2-Lin(2).

• A recent result of Gupta, Talwar, and Witmer [GTW13] showed NP-hardness of approxi-
mating the (closely related) Non-Uniform Sparsest Cut problem to factor-17

16 , by designing a
gadget reduction from the old ( 4

21 ,
5
21)-approximation hardness of H̊astad [H̊as97]. A natural

question is whether one can use ideas from this paper to make a direct reduction from Had2

or Had3 to Non-Uniform Sparsest Cut, improving the NP-hardness factor of 17
16 .

• We are now in the situation (similar to the situation prior to [OW12]) wherein the best
NP-hardness factor we know how to achieve for 2-Lin(q) (or Unique-Games) is achieved by
taking q = 2. In fact, we don’t know how to achieve an NP-hardness factor better than 5

4 for
2-Lin(q) for any q > 2, even though 2-Lin(q) is presumably harder for larger q. Can this
situation be remedied?

• In light of the limitations described in Section 6, it makes sense to seek alternative methodol-
ogy of establishing improved NP-hardness for 2-CSPs. An example showing that this is not at
all hopeless comes from the decade-old work of Chleb́ık and Chleb́ıková [CC04], which shows
NP-hardness of approximating 2-Sat(-Deletion) to factor 8

√
5− 15 ≈ 2.8885. Their result is

essentially a small tweak to the Vertex-Cover hardness of Dinur and Safra [DS02] and thus
indeed uses a fairly radical methodology for establishing two-bit CSP-hardness, namely direct
reduction from a specialized Label-Cover-type problem.
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