
Four-Layer Categorization Scheme of Fast GMM Computation Techniques in
Large Vocabulary Continuous Speech Recognition Systems

Arthur Chan, Jahanzeb Sherwani, Ravishankar Mosur, Alex Rudnicky

Computer Science Department
Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA, 15213.�
archan,jsherwan,rkm,air � @cs.cmu.edu

Abstract

Large vocabulary continuous speech recognition systems
are known to be computationally intensive. A major bottle-
neck is the Gaussian mixture model (GMM) computation and
various techniques have been proposed to address this problem.
We present a systematic study of fast GMM computation tech-
niques. As there are a large number of these and it is imprac-
tical to exhaustively evaluate all of them, we first categorized
techniques into four layers and selected representative ones to
evaluate in each layer. Based on this framework of study, we
provide a detailed analysis and comparison of GMM computa-
tion techniques from the four-layer perspective and explore two
subtle practical issues, 1) how different techniques can be com-
bined effectively and 2) how beam pruning will affect the per-
formance of GMM computation techniques. All techniques are
evaluated in the CMU Communicator domain. We also com-
pare their performance with others reported in the literature.

1. INTRODUCTION
The Gaussian mixture model (GMM) computation component
of large vocabulary continuous speech recognition (LVCSR)
systems is well known to be computationally intensive and a
bottleneck in recognition. In a typical hidden Markov model-
based system, the number of tied-triphone states (or senones)
can be 2000 to 6000 each of which is a weighted sum of multi-
dimensional Gaussian distributions. The GMM computation
task involves the computation of the likelihood for all these tied-
triphone states. In some tasks, GMM computation can consume
70-80% of the whole decoding process. As a result, much ef-
fort has been spent on optimizing GMM computation ([2]-[8]).
Many techniques focus on approximating the full computation
of all GMMs. For example, Gaussian Selection (such as [6])
assumes that only a few Gaussians will dominate the score of a
GMM. This set of techniques has been found to be highly useful
in practice. 1

In this paper, we present a systematic study of fast GMM
computation techniques. Our study is motivated by our desire
to build highly-responsive conversational agents based on higly-
accuracy, user-adaptive and real-time speech recognition. Our
approach has been to refine an existing decoder, Sphinx 3.3 [2],
to incorporate efficient GMM computation techniques. Our tar-
get is to achieve real-time performance with minimal accuracy
degradation (����� relative) from Sphinx 3.3. The evaluation
in this paper will focus on this set of techniques.

1Many researchers note the importance of machine optimization;
however, this paper will focus on algorithmic optimization.

GMM
Comp.

Search

scores

active
GMMs

Figure 1: The conceptual model of computation at every frame
of a speech recognizer

The conceptual model of major computation process of
Sphinx 3.3, as well as many other HMM-based speech rec-
ognizers, can be illustrated in Figure 1. At every frame, the
GMM computation module computes the scores for each active
clustered GMM and feeds them into the search module. The
search module traverses the word lattice and determine the high-
est scored paths. The number of paths traversed is controlled by
the use of pruning techniques. This conceptual model is advan-
tageous because it simplifies the discussion of different speed-
up techniques and enhances interpretation by breaking down the
measurement into two parts.

We further break down the GMM computation component
into four different layers, with lower layers providing informa-
tion to upper layers. Individual fast GMM computation tech-
niques can be associated with specific layers. This property
of the four-layer model allows us to select representative tech-
niques from each layer and to compare the effectiveness of tech-
niques from each layer. In this we follow Takami et al. [9],
where tying techniques are similarly organized into four inde-
pendent levels. We will further explore two subtle but signifi-
cant issues of GMM computation techniques. The first is how
the different techniques can be combined. The second is how
pruning affects the performance of GMM computation tech-
niques. We will try to analyze these issues from the four-layer
perspective.

The organization of this paper is as follows, we first de-
scribe the detail of our four-layer categorization schemes for
fast GMM computation techniques in Section 2. We will de-
scribe the details of each layer. The discussion of potential ef-
fect of pruning on these techniques under the four-layer catego-
rization perspective can be found in Section 3. The evaluation
conditions and results of representative techniques can be found
in Section 4. The conclusion and future work can be found in
Section 5.

comp.
score

Score
Gaus.

GMM
Score

To search module
Frame
Score Frame−Layer

GMM−Layer

Gaussian−Layer

Component−Layer

Sub−vector quantization

k−d tree Gaussian Selection
Bucket Box IntersectionAlgorithm

SVQ−based Gaussian Selection
VQ−based Gaussian Selection

CI−based GMM Selection

VQ−based Down−Sampling
Simple Down−Sampling

Figure 2: Illustrated Four-Layer Categorization Scheme.

2. FOUR-LAYER CATEGORIZATION
SCHEME FOR FAST GMM

COMPUTATION
We will describe the proposed categorization scheme in this sec-
tion and the scope of our study.

2.1. FRAME-LAYER ALGORITHMS

Algorithms that decide whether a frame’s GMM scores should
be computed or skipped are categorized as frame-layer algo-
rithms. In our discussion, we will assume the score of a skipped
frame will be copied from the most recently computed frame.2

The simplest example is to compute frame scores only every
other frame, which we call this simple down-sampling (SDS).
It is evaluated in [4].

Other than SDS, we also evaluate another scheme in which
a VQ codebook is trained from all means of GMMs of a set
of trained acoustic models. Then, in decoding, every frame’s
feature vector is quantized using that codebook. A frame is
skipped only if its feature vector was quantized to a codeword
which is the same as that of the previous frame. We call this
method VQ-based Down-Sampling (VQDS) and it is slightly
different from the work in [4] because we made use of acoustic
modeling information in the algorithm.

2.2. GMM-LAYER ALGORITHMS

Algorithms that ignore some GMMs in the computation in each
computed frame are assigned to the GMM-layer. One rep-
resentative technique is context-independent (CI) GMM-based
GMM selection (CIGMMS) proposed by Lee et al. in Julius
[5]. Briefly the algorithm can be implemented as follows.3. At
every frame, CI GMMs’ scores are first computed and a beam is
applied to these scores. For all context-dependent (CD) GMMs,
if the corresponding CI GMM’s score is within the beam, com-
pute the detail CD GMM’s score. If not, the CD GMM’s score
is backed-off by the corresponding CI GMM’s score.

This scheme is highly effective in reducing GMM compu-
tation. However, because some scores are backed-off, they be-
come the same when they are fed into the search module. As
a consequence, beam pruning becomes less effective. We will
explore this further in Section 3.

2.3. GAUSSIAN-LAYER ALGORITHMS

Usually only a few Gaussians will dominate the likelihood of
a GMM and different techniques are used to decide which

2This implementation can preserve transition information.
3This is slightly different from [5] which use fix number instead of

a beam.

Gaussian dominates the likelihood computation. We catego-
rize these techniques as part of the Gaussian layer. Generally
a rough model, either vector-quantizer (VQ) [6], sub-vector-
quantizer(SVQ) [2] or kd-tree [4] is first used to decide which
Gaussian should be computed in the GMM. Hence, these tech-
niques are also called Gaussian selection.

The major issue in using any Gaussian selection techniques
is the need to trade-off between rough model computation (e.g.
the VQ codebook) and accuracy degradation. Usually, a more
detailed model (e.g., a higher-ordered VQ codebook) gives bet-
ter accuracy, but results in more computation.

In this study, we focused on two techniques which made
use of simple VQ as a Gaussian selector (VQGS) [6] and SVQ
as a Gaussian selector (SVQGS) [2]. We ignored tree-based
techniques because of the practical difficulty in then applying
adaptation techniques such as Maximum Likelihood Linear Re-
gression (MLLR).

2.4. COMPONENT-LAYER ALGORITHMS

As in the full-feature space, the distribution of features in a pro-
jection of the full-space (or subspace) can be approximated as a
GMM. The full-space likelihood can thus be obtained by sum-
ming individual sub-spaces likelihood. Similar to situation in
the full-space, only few Gaussians will dominate the subspace
likelihood in a particular subspace. Therefore, techniques can
be used to choose the best Gaussians in individual subspaces
and combined them. We categorize algorithms which make use
of this fact to be component-layer algorithm. We will focus
one representative technique in this layer, sub-vector quantiza-
tion (SVQ) [8] in which VQ was used as a Gaussian selector in
subspaces.

2.5. RELATIONS BETWEEN THE 4 LAYERS

Our categorization scheme results in a layered architecture for
GMM computation and many fast GMM techniques can be cat-
egorized into one of the layers 4. The advantage of this scheme
is that one can follow a conceptual model when implementing
different algorithms. It also simplifies the studies of interaction
of different schemes. For example, once we understand that two
techniques are in the same-layer (such as VQGS and SVQGS),
we will probably not want to implement them in the same sys-
tem, as that can only result in higher overhead.

3. PRUNING AND FAST GMM
COMPUTATION ALGORITHMS

The performance of fast GMM computation techniques is usu-
ally less effective when a tighter beam is used in search. From
the perspective of our conceptual model, pruning can be re-
garded as a GMM-layer algorithm, and as such, only affects
the layers above, namely, the GMM and frame layers.

We summarize the effect below.
Relationship with Frame-Layer: We assume skipped

frames’ scores are copied from previous frames’ scores. How-
ever, the search module will decide whether a clustered-GMM
is active or not based on pruning. There will be problematic
situations where some GMMs are active in the current frame
but deactivated in previous frame. Hence, recomputation of ac-
tive states is necessary. When the beam is tight, recomputation

4We also note that some techniques has the characteristics of multi-
ple layers.

can be time-consuming and can cancel out the computation gain
obtained from down-sampling.5

Relationship with GMM-Layer: As the GMM’s scores will
feed into the search module, one observation is that if CIGMMS
applied, the search time increases. If the CI scores’ beam (men-
tioned in Section 2.2) is tight, CIGMMS will cause many CD-
GMMs’ scores to be the same and also narrows the range of
scores. Hence, the search module will be more computationally
intensive. In practice, this problem can be solved by tightening
the Viterbi beam.

4. EXPERIMENTAL RESULTS
GMM computation techniques were tested in the Communi-
cator domain [1] using 85,735 utterances (about 60 hours of
speech) to train the model. The model contains 2165 clustered-
triphone states, where each state is represented by a GMM with
32 mixtures and each mixture contains 39 feature components
(12 mel-frequency cepstral coefficients (MFCC) + � + ��� +
energies of each). The vocabulary size is 2001 words and re-
sults are evaluated using the 2001 Communicator test set that
contains 1691 utterances.

The baseline recognizer we used is Sphinx 3.3 [2] in which
tree-structured lexicons are used along with language model
look-ahead. For our purposes, we further refined the recog-
nizer by implementing techniques in fast GMM computation
and phoneme-lookahead pruning. Our implementation of the
latter part can be viewed as a simplified version of work by Ort-
man et al. [3].6

We report the performance in terms of the word error rate
(WER), computation required for GMM computation (GMM),
search (Srch) and overhead (Ovrd) in terms of real-time factor
(RTF). All results are evaluated on a 1GHz Intel Pentium III
with 256MB RAM. The word error rate of the baseline recog-
nizer is 18.65% and it takes 5.85xRT in GMM computation and
0.95xRT in search with un-tuned beam sizes.

The final choice of algorithms depends on both the speed
and accuracy of the recognition. To ensure practical validity,
we consider a technique or a combination of techniques usable
only if they cause less than 5% relative degradation with respect
to the baseline recognizer.

We will present the comparison of all techniques with un-
tuned pruning beams in Section 4.1. The results of the com-
bination of algorithms in the four layers will be described in
Section 4.3. Finally, the effect of pruning will be discussed in
Section 4.4.

4.1. COMPARISON OF REPRESENTATIVE TECH-
NIQUES IN THE FOUR-LAYER CATEGORIZATION
WITHOUT PRUNING.

In this section, we evaluate the performance of different fast
GMM algorithms. We followed the four-layer categorization
scheme described in Section 2 and chose the following repre-
sentative algorithms in each layer.

Frame-layer: 1) Simple down-sampling (SDS)[4], tuned
with down-sampling ratio (�).

2) VQ-based down-sampling (VQDS) (proposed in
Section2.1), tuned with different size of VQ codebook. (���)

5One can also deactivate the state. However, in our preliminary ex-
periment, we found that deactivation can result in no valid paths at the
final frame.

6This work is open-source but still under development. A develop-
ment version can be found at www.cs.cmu.edu/ � archan.

GMM-layer: CI-based GMM selection (CIGMMS) [5],
tuned with different beam thresholds (�	��
) applied to the CI
GMM scores.

Gaussian-layer: 1) VQ-based Gaussian selection (VQGS)
[6], tuned with different VQ codebook sizes (���).7

2) Sub-VQ-based Gaussian selection (SVQGS) [2], tuned
with different VQ codebook sizes (���) when number of sub-
vectors equal to � .

Component-layer: Sub-vector quantization (SVQ) [8], we
present results with different number of sub-vectors (����)
when the codebook size is 4096.

These techniques have been selected because they are well-
known and are representative of their class; most other pub-
lished techniques are derivatives. The results are tabulated in
Table 1.

Table 1: Comparison of Fast GMM Computation Techniques
Algorithms WER Total GMM Srch Ovrd

BL 18.65 6.90 5.85 0.85 -
SDS(�����) 19.10 4.35 3.39 0.96 -

VQDS(�����������) 18.89 6.27 5.08 0.97 0.22
CIGMMS(�	��
������ �) 18.82 3.25 1.18 2.06 -

VQGS(
��!�#" �) 18.95 3.95 2.84 0.89 0.22
SVQGS(���%$&
��!�'�)(*�) 18.86 4.11 2.62 1.49 0.49

SVQ(��������'�) 18.69 4.20 2.04 0.98 1.08

We note that CIGMMS gave us the best speed performance
within the 5% degradation constraint (absolute WER below
19.55%). As mentioned in 3, there is a minor problem inher-
ent in CIGMMS, where the range of GMM scores is narrowed.
For example, at beam threshold ���#� , there is a 80% reduction in
GMM computation but the search module requires 100% more
time. Other techniques are less effective mainly because the
overhead is too large. SVQ (with ����+�+���), for example, is
highly ineffective in terms of overhead.

4.2. COMPARISON WITH PREVIOUSLY REPORTED
RESULTS

Table 4 presents a comparison of fast GMM computation tech-
niques from different sources. We found that some authors
claim that the speed-up factor can be 9 (or 88.89% reduction);
however, such techniques usually sacrifice about ,-��� � accu-
racy. Bearing in mind that different researchers have varying
goals (speed, accuracy), we include only those results that have
less than 5% degradation from the baseline used by the authors.
We observe that 75%-80% time reduction appears to be an up-
per bound on GMM computation time savings for a system with
2k-6k tied states.

Table 2: Relative reduction of GMM computation.
Algorithms GMM(Mix) BL(RT) Rel. Deg RF.

SDS[4] 3k(32) 3 2 30%
CIGMMS[5]8 2k(64) NA 7.5% 72.09%

VQGS[6] 110(64) NA � ��� 80%
VQGS[7] NA NA � ��� 77%
VQGS[10] 4K(16) NA � ��� 51%

BBI[4]9 3k(32) 2.2 5% 27%

When comparing different techniques appearing in the lit-
erature, it is important to be aware the use of the term “relative

7We also implemented the dual ring constraint described by [7]. We
found that the improvement is negligible.

computation reduction”. Relative computation reduction may
be different when the system’s complexity changes. For exam-
ple, a technique is likely to give better results in a system with
64 mixtures than in one with 32 mixtures. The reason is that the
former system may have more redundant parameters and can be
more readily trimmed by fast computation techniques. Hence, it
is very important to quote system performance in the context of
specific system parameters. Likewise, it is important to report
exact pruning conditions as this usually changes the baseline’s
complexity. Unfortunately, this is not a common practice.

4.3. ATTEMPTS IN COMBINING TECHNIQUES IN
THE FOUR-LAYER CATEGORIZATION

From the results of Section 4.1, we tried to combine differ-
ent algorithms using the best settings we obtained. Based on
the best results we obtained so far, i.e. CIGMMS, we tried
to improve its performance by augmenting it with other tech-
niques. In this stage, we ignored less promising techniques such
as VQDS and SVQ. The former’s performance was too ineffec-
tive and the latter had too much overhead. The results obtained
from the combination of various techniques with CIGMMS can
be found in Table 3.

In the last section we observed that most of the techniques
in the literature provide less than 80% GMM computation re-
duction. This is confirmed by our experimental results. Empiri-
cally, we observed that only small gains can be obtained through
augmenting CIGMMS with VQGS or SVQGS. The use of SDS
did give us some gain, however, this sacrificed the performance
to a point which was more than 5%. The fact that multiple tech-
niques didn’t give us much gain under the 5% constraint shows
that 80% may be an empirical upper bound of the GMM com-
putation reduction under the current complexity of the system
when just using fast GMM techniques.

Table 3: Results of techniques combined with
CIGMMS(�	��
 ����� �)

Algorithms WER Tot GMM Srch Ovrd

BL 18.65 6.90 5.85 0.85 -
CIGMM 18.82 3.25 1.18 2.06 -

+SDS 19.76 3.02 0.53 2.47 -
+VQGS 18.57 3.23 1.37 1.63 0.22

+SVQGS 18.866 3.12 0.93 1.63 0.49

4.4. EFFECT OF PRUNING TECHNIQUES

The final set of results we provide illustrates the effect of prun-
ing on GMM computation techniques. Consider that the over-
head of VQGS and SVQGS can be very significant after pruning
(even before pruning, the overheads are 0.22xRT and 0.47xRT
respectively). Therefore, we decided to test with only CIGMMS
applied, and incrementally added different beam-pruning tech-
niques to improve performance. Table 4 summarizes these re-
sults.

The use of pruning can effectively solve the back-off prob-
lems of CIGMMS, though one might be surprised at the effec-
tiveness of beam-pruning techniques compared to GMM tech-
niques. One can probably understand this from the observation
that the pruning threshold is continuous and can be more easily
varied.

5. CONCLUSION
We proposed a conceptual categorization scheme for fast GMM
computation techniques. We compared different techniques un-

Table 4: Beam applied to improve the search performance
Algorithms WER Total GMM Srch

BL 18.65 6.90 5.85 0.85

CIGMMS 18.82 3.25 1.18 2.06
+Word-end 18.76 2.71 1.13 1.57
+Vit. Beam 19.06 1.63 0.91 0.71

+Phone Beam 19.12 1.49 0.90 0.59
+Word Beam 19.27 1.31 0.89 0.42
+Histogram 19.25 1.16 0.86 0.30

+P. Lookahead 19.49 1.11 0.82 0.28

der this scheme and then compared our best result with tech-
niques that can be found in the literature. Our current test is
limited to tasks which GMM computation dominates the de-
coding process’s computation. In the future, we will evaluate in
tasks where search is dominant.

6. ACKNOWLEDGEMENTS
This work, part of the CALO project, was supported by DARPA
grant NBCH-D-03-0010. The content of the information in this
publication does not necessarily reflect the position or the policy
of the US Government, and no official endorsement should be
inferred. The authors would like to thank Richard Stern, Alan
Black, Jim Baker and Satanjeev Banerjee for their valuable sug-
gestions.

7. References
[1] Bennett, C. and Rudnicky, A.I. “The Carnegie Mellon

Communicator Corpus”, ICSLP 2002, Denver, Colarado,
pp 341-344.

[2] Mosur, R., Singh, R., Raj B. and Stern, R.M. “The 1999
CMU 10X Real Time Broadcast News Transcription Sys-
tem”, Maryland, 2000 Speech Transcription Workshop.

[3] Ortmanns, S., Ney, H., Coenen, N. and Eiden, A. “Look-
ahead Techniques for Fast Beam Search”, ICASSP 1997,
Munich, Germany.

[4] Woszczyna, M. “Fast Speaker Independent Large Vocab-
ulary Continuous Speech Recognition”, Universitat Karl-
sruhe; Institut fur Logik, Komplexitat und Deduktionssys-
teme. Dissertation. 1998.

[5] Lee, A. “”Gaussian Mixture Selection using Context-
independent HMM,” IEEE ICASSP, 2001.

[6] Bocchieri, E. “Vector quantization for efficient computa-
tion of continous density likelihoods”, ICASSP, volume
II, page II-692-II-695, Minneapolis, 1993.

[7] Gales, M. J. F., Knill, K. M. and Young, S. J. “Use
of Gaussian Selection in Large Vocabulary Continu-
ous Speech Recognition Using HMMs” ICSLP 1996.
Philadelphia, Pennsylvania.

[8] Mosur R., Bisiani, R., and Thayer, E. ”Sub-Vector Clus-
tering to Improve Memory and Speed Performance of
Acoustic Likelihood Computation” Eurospeech, Rhodes,
Greece, Sep 1997.

[9] Satoshi, T. , Sagayama, S., “Four-Level Tied Structure
for Efficient Representation of Acoustic Modeling” in
ICASSP vol. 1 pp. 520-523, 1995

[10] Douglas P., “An Investigation of Gaussian Shortlists”
ASRU 1999, Keystone, Colarado, USA.

