
A Theorem Prover for Differential Dynamic Logic

Deductive Verification of Hybrid Systems

April 17, 2007

Jan-David Quesel

Carl von Ossietzky Universität Oldenburg
Fakultät II

Department für Informatik
Abteilung Entwicklung korrekter Systeme

Gutachter: Prof. Dr. Ernst-Rüdiger Olderog
Dipl.-Inform. André Platzer

Diploma Thesis

Abstract

This thesis aims at the computer aided verification of hybrid systems using de-
ductive techniques. We have developed an interactive verification tool on the
basis of a sound sequent calculus for dL. The logic dL is a dynamic logic with a
special focus on the specification and verification of hybrid systems. Our imple-
mentation extends the theorem prover component of the KeY system with rules
and data structures for handling dL formulas. Additionally, we have integrated
KeY with the computer algebra system Mathematica to handle quantifiers over
the reals and real arithmetic. In order to demonstrate that our implementation
can be used for verifying larger systems, we prove safety in a case study from the
context of the European Train Control System (ETCS).

Jan-David Quesel i April 17, 2007

Diploma Thesis

Acknowledgements

At this point I like to thank those who supported me during the work on this
thesis. First of all I want to express my great gratefulness to André Platzer, for
the various discussions, the useful hints and for giving me the opportunity to
write this thesis by recommending the subject. Also I like to thank Prof. Dr.
Ernst-Rüdiger Olderog for pointing out the most relevant aspects of the subject.
From the KeY team I like to thank Philipp Ruemmer, Steffen Schlager, Benjamin
Weiss, Daniel Larsson and most of all Richard Bubel for their advice on the topic
of the design and the implementation of the KeY prover and dynamic logic in
general. Some people have spent time on reading preliminary versions of this
thesis as well. These are by name Dominik Denker, Andreas Schäfer, Sven Linker
and my father Carsten Quesel. Last but not least, I would like to thank Christin
Boldt for her patience and support.

Jan-David Quesel ii April 17, 2007

Diploma Thesis Contents

Contents

1 Introduction 1
1.1 Overview . 1
1.2 Basic Definitions . 2
1.3 Propositional Logic . 2

1.3.1 Syntax . 2
1.3.2 Semantics . 3

1.4 First-Order Logic . 3
1.4.1 Syntax . 3
1.4.2 Semantics . 4

1.5 KeY . 5

2 Differential Dynamic Logic 7
2.1 Overview . 7
2.2 Syntax . 7
2.3 Semantics . 9
2.4 Sequent Calculus for dL . 13

2.4.1 Sequent Calculi . 13
2.4.2 Rules for Propositional Logic 15
2.4.3 Rules for FOL . 15
2.4.4 Rules for Hybrid Programs 20
2.4.5 Soundness Proofs . 23

3 Design 37
3.1 Overview . 37

3.1.1 Architecture of the KeY Prover 37
3.1.2 Calculus Embedding . 39

3.2 Integration . 43
3.2.1 Java Embedding of Hybrid Programs 43
3.2.2 Abstract Syntax of dL Formulas in KeY 44
3.2.3 Syntax Tree . 46
3.2.4 Data Structures for Hybrid Programs 47

3.3 Mathematica Integration . 51

4 Implementation 57
4.1 Overview . 57
4.2 KeY Extension . 57

4.2.1 Parsing . 57
4.2.2 Calculus Embedding . 59

Jan-David Quesel iii April 17, 2007

Diploma Thesis Contents

4.2.3 Integration Challenges . 71
4.2.4 Strategy . 71

4.3 Mathematica Integration . 75
4.4 Usage . 76

4.4.1 Input Format . 76
4.4.2 Tool Overview . 77

5 Case Study 83
5.1 Overview . 83
5.2 Formal Model . 85
5.3 Verification . 90

5.3.1 RBC Behavior . 91
5.3.2 Train Controller . 93

6 Related Work 97

7 Conclusions 101

Appendices 103

A Design Patterns 105
A.1 Architectural Patterns . 105
A.2 Fundamental Patterns . 105

A.2.1 Delegation . 105
A.2.2 Immutable Object . 105
A.2.3 Marker Interface Pattern 106

A.3 Creational Patterns . 106
A.3.1 Abstract Factory . 106
A.3.2 Lazy Initialization . 106
A.3.3 Singleton . 106

A.4 Behavioral Pattern . 108
A.4.1 Visitor . 108
A.4.2 Iterator Pattern . 108

Jan-David Quesel iv April 17, 2007

Diploma Thesis List of Figures

List of Figures

2.1 Propositional rules . 16
2.2 Example proof for the quantifier handling 17
2.3 First-order rules . 18
2.4 Side deduction . 19
2.5 Alternative rule for existential quantifier on the right side 20
2.6 Proof structure with alternative rule for existential quantifier on

the right side . 20
2.7 Rules for modalities . 24

3.1 KeY Architecture . 38
3.2 Example for a taclet . 40
3.3 Relation between sequent calculus rules and taclets 41
3.4 Example for a taclet using a metaoperator 42
3.5 Java embedded differential equation system 44
3.6 Data structures for dL programs resulting from productions α and

atomic-α . 48
3.7 Data structures for formulas within dL programs generated by the

productions α-form and α-atom 50
3.8 Data structures for expressions within dL programs generated by

α-expr, diffequation and diffexpr 52
3.9 Data structures for functions within dL programs 53
3.10 Mathematica interface design . 55

4.1 Two stage parsing of hybrid programs 58
4.2 Implementation of data structures for non-terminal dL programs . 60
4.3 Implementation of compound formulas 60
4.4 Implementation of data structures for terminal dL programs . . . 61
4.5 Implementation of data structures for comparisons 61
4.6 Implementation of data structures for functions 62
4.7 Metaoperators used in the taclets for dL 66
4.8 Taclet representation of the invariant rule R29 67
4.9 The built in rules used for the dL calculus 72
4.10 Rules for normalization of inequalities 74
4.11 Snapshot of the KeY Prover . 79
4.12 Snapshot of the KeY Prover with context menu opened on a sub-

formula . 80
4.13 Snapshot of the KeY Prover with context menu opened on a com-

plete formula . 81

Jan-David Quesel v April 17, 2007

Diploma Thesis List of Figures

4.14 Snapshot of the Abort Program 82

5.1 Communication between the train and the RBC 83
5.2 Train blocking 3 segments . 84
5.3 Train model as automata . 86

A.1 Abstract class diagram for the abstract factory pattern 107
A.2 Abstract class diagram for the singleton pattern with lazy initial-

ization . 107
A.3 Abstract class diagram for the visitor pattern 108

Jan-David Quesel vi April 17, 2007

Diploma Thesis List of Tables

List of Tables

3.1 Abstract syntax of dL formulas 45

4.1 Relation between rule classes and implementation method 60
4.2 Mapping from abstract syntax to input syntax 78

5.1 System specification . 88

Jan-David Quesel vii April 17, 2007

Diploma Thesis CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

1.1 Overview

As safety critical systems grow in complexity, formal verification becomes more
important. In this thesis we present a computer aided deductive approach to the
verification of hybrid systems. We want to develop a computer aided approach,
because proving safety of large systems by hand is time intensive and many proof
steps can be performed automatically by the theorem prover. Additionally, when
performing large proofs by hand, cases might be forgotten. The implementation
supports the user at this point and keeps track of open proof goals. A deductive
approach was chosen to support parameterized systems.

For this purpose we integrated the theorem prover component of the KeY sys-
tem [BHS07] with Mathematica [Wol03]. Among other tools Mathematica is a
commercial computer algebra system (CAS). It is known for its very powerful
symbolic calculation engine. In recent versions, features for numerical calcula-
tions have been added as well.

Hybrid systems are systems with continuous and discrete state transitions.
The continuous state transitions are evolutions of continuous variables along dif-
ferential equations. A common example for a safety critical hybrid system is an
airplane. As flight dynamics are very complex and also important for verifica-
tion tasks a mathematical model is needed that does not abstract from those
dynamics. Hybrid systems provide such a model. For the formal specification we
use a dynamic logic [HKT00], which has a special focus on the specification and
verification of hybrid systems [Hen96]. A dynamic logic is a special multi-modal
logic where the modalities have a program structure. Dynamic logics are usually
used for program verification in the discrete case.

The logic we use for the description of hybrid systems is called differential dy-
namic logic (dL) [Pla07c]. The differential dynamic logic is an extended dynamic
logic where it is possible to describe continuous evolutions using differential equa-
tions. The programs within the modalities in dL are so-called hybrid programs.
In addition to discrete mode switching, hybrid programs can describe contin-
uous evolutions. Operators for conditional execution, sequential composition,
non-deterministic choice and non-deterministic repetition are also available.

Structure The structure of this thesis is as follows. In this chapter we will
elaborate some basic definitions as well as provide definitions for propositional

Jan-David Quesel 1 April 17, 2007

Diploma Thesis CHAPTER 1. INTRODUCTION

and first-order logic as these terms are frequently used to identify subsets of dL.
Additionally, we will provide a short description of the KeY tool.

In chapter 2 we will provide the definition of the differential dynamic logic dL,
as well as a sequent calculus that can be used for verifying systems described in
dL.

Chapter 3 and 4 describe our extensions to KeY and the integration with Math-
ematica. We will describe how we designed the extensions and how they are
implemented.

In chapter 5, a case study from the context of the European Train Control
System (ETCS) [ERT02] will be presented to illustrate how the extended version
of KeY can be used to verify greater systems.

The last two chapters are used to compare the results of this thesis to related
work, to recapitulate major findings and to point out some perspectives of future
work.

1.2 Basic Definitions

In this section we introduce basic definitions for the notations used in this thesis.
First we define a notation for the set of real numbers and the set {true, false}.

Definition 1. We define the following abbreviations:

1. The set of real numbers is called R.

2. The set of the boolean constants {true, false} is called B.

We also need the composition of functions, thus we define it here.

Definition 2 (Composition of functions). The composition of two functions
f : X 7→ Y and g : Y 7→ Z, where X, Y and Z are arbitrary sets, is written as
f ◦ g. The semantics of this is applying the function f to the argument and
afterwards the function g to the result of f .

1.3 Propositional Logic

Propositional logic [Fit96] is a classic logic introduced by philosophers to formalize
propositions.

1.3.1 Syntax

Let Ξ be a set of boolean constants.

• true and false are propositional formulas.

• If X is in Ξ, then X is a propositional formula.

• If ϕ and ψ are propositional formulas, then ϕ ∧ ψ is a propositional formula.

Jan-David Quesel 2 April 17, 2007

Diploma Thesis CHAPTER 1. INTRODUCTION

• If ϕ is a propositional formula then ¬ϕ is a propositional formula.

With these definitions we can add abbreviations for the other classical boolean
combinations.

• ϕ ∨ ψ can be defined as ¬(¬ϕ ∧ ¬ψ)

• ϕ→ ψ can be defined as ¬ϕ ∨ ψ

• ϕ↔ ψ can be defined as (ϕ→ ψ) ∧ (ψ → ϕ)

1.3.2 Semantics

The semantics of propositional formulas is given by the valuation function valβ(ϕ)
where β is the interpretation of the boolean constants. valβ(ϕ) is defined as:

• valβ(true) := true

• valβ(false) := false

• valβ(x) := β(x)

• valβ(ϕ ∧ ψ) := valβ(ϕ) and valβ(ψ)

• valβ(¬ϕ) := not valβ(ϕ)

1.4 First-Order Logic

First-Order Logic (FOL) [Fit96] is an extension of the propositional logic intro-
ducing functions, predicates and quantifiers. The following definitions are taken
from [Old02].

1.4.1 Syntax

The syntax of FOL consists of a countable infinite set of variables V ar, the
common logic junctors (¬,∧,∨,→,↔) as well as quantifiers (∀,∃). Additionally,
there are non-logic symbols supplied by the signature.

Definition 3 (Signature for FOL). A signature is a pair of two sets, Func and
Pred. The first contains function symbols and the latter contains predicate sym-
bols. The signature also supplies the arity of these symbols.

For the further definitions we assume V ar, Func and Pred to be pairwise
disjoint. Let S = (Func, Pred) be a signature.

Definition 4 (Terms). The set of terms (TermS) over a given signature S is the
smallest set such that:

• If X ∈ V ar then X ∈ TermS.

Jan-David Quesel 3 April 17, 2007

Diploma Thesis CHAPTER 1. INTRODUCTION

• If t1, . . . , tn ∈ TermS, f ∈ Func and f has the arity n then
f(t1, . . . , tn) ∈ TermS.

Definition 5 (Formulas). The set of formulas FormS over a given signature S
is the smallest set such that:

• If t1, . . . , tn ∈ TermS, p ∈ Pred and p has the arity n then
p(t1, . . . , tn) ∈ FormS.

• If F ∈ FormS then ¬F ∈ FormS.

• If F,G ∈ FormS then (F ∧G), (F ∨G), (F → G), (F ↔ G) ∈ FormS.

• If X ∈ V ar and F ∈ FormS then ∀XF, ∃XF ∈ FormS.

Definition 6 (Syntax). The syntax of FOL for a given signature S is the set:

LS = TermS ∪ FormS

1.4.2 Semantics

Definition 7 (Structure). A structure M for the signature is a pair of two sets
(DM, M). The first is non-empty and is called the universe. The latter is the
interpretation.

Definition 8 (Interpretation). The interpretation  is a relation that maps every
function symbol f ∈ Func to a function with arity n:

M(f) : Dn
M → DM

The same holds for predicate symbols, but the range of those is boolean.

M(p) : Dn
M → B

Definition 9 (Valuation). A valuation β is a function that maps every variable
to an element in the universe.

β : V ar → DM

Definition 10 (Semantic modification of valuations). A semantic modification
of a valuation β is written as β[X 7→ d] which is a valuation identical to β expect
for the valuation of X, which is d ∈ DM.

Definition 11 (Semantics of terms). The semantics of a term t ∈ TermS depend-
ing on an interpretation  and a valuation of variables β is given by a valuation
function

val,β(t) : (V ar ×DM) → DM

This function is inductivly defined by

val,β(X) = β(X) iff X ∈ V ar
val,β(f(t1, . . . , tn)) = (f)(val,β(t1), . . . , val,β(tn))

Jan-David Quesel 4 April 17, 2007

Diploma Thesis CHAPTER 1. INTRODUCTION

Definition 12 (Semantics of formulas). The semantics of a formula f ∈ FormS

depending on an interpretation  and a valuation of variables β is given by a
valuation function

val,β(F) : (V ar ×DM) → B

This function is inductivly defined by

val,β(p(t1, . . . , tn)) = (p)(val,β(t1), . . . , val,β(tn))

val,β(¬F) = true iff val,β(F) = false

val,β(F ∧G) = true iff val,β(F) = true and val,β(G) = true

val,β(F ∨G) = true iff val,β(F) = true or val,β(G) = true

val,β(F → G) = true iff val,β(F) = false or val,β(G) = true

val,β(F ↔ G) = true iff val,β(F) = val,β(G)

val,β(∀XF) = true iff for all values d ∈ DM val,β[X 7→d](F) = true holds

val,β(∃XF) = true iff for one d ∈ DM val,β[X 7→d](F) = true holds

1.5 KeY

The KeY project [ABB+05,BHS07,KeY07] was created from the idea of combin-
ing formal methods and software design. It is intended to integrate design and
implementation of software systems with formal specification and formal verifi-
cation “as seamlessly as possible” [BHS07]. For this purpose the KeY project
was integrated with Borland Together [BSC06] as well as Eclipse [EFI05]. The
user can enter his system specifications using the Object Constraint Language
(OCL) [WK03] or the Java Modelling Language (JML) [LPC+07]. For verify-
ing the specification, it is translated into a dynamic logic called Java Card
DL [Bec01]. With this logic one can express properties of a subset of Java pro-
grams (Java Card [Che00]). The logic has been extended in order to provide
an opportunity to verify Java programs that do not use dynamic class loading
and floating point types [BHS07]. An interactive theorem prover is used in the
verification process. This theorem prover component is a point of major strategic
importance for us. Since we want to develop a theorem prover for dL which is a
dynamic logic as well, we decided that it might be easier to alter KeY instead of
extending a first-order theorem prover, or develop a higher-order translation for
dL to prove properties with a higher-order theorem prover (like Isabelle [Pau94]).
Another reason was that we expected better performance results, as KeY can
already handle a dynamic logic.

The satisfaction problem of FOL is undecidable as the halting problem of a
Turing machine with an empty band can be reduced to the satisfaction problem of
FOL formulas [Coo71]. Therefore it is not possible to construct a fully automatic
prover for FOL. This problem propagates to dL as it is a conservative extension
of FOL. There are algorithms to semi-decide the satisfaction problem, but an
interactive approach can cover a bigger subset of dL formulas.

Jan-David Quesel 5 April 17, 2007

Diploma Thesis CHAPTER 1. INTRODUCTION

Jan-David Quesel 6 April 17, 2007

Diploma Thesis CHAPTER 2. DIFFERENTIAL DYNAMIC LOGIC

Chapter 2

Differential Dynamic Logic

2.1 Overview

The differential dynamic logic (dL) is a dynamic logic for describing hybrid sys-
tems [Pla07c,Pla07b,Pla07a]. As a dynamic logic it has two relevant parts. On
the one hand we have the classical first-order part. On the other hand we have the
program world in the modalities. The programs in dL are regular combinations
of discrete state changes and continuous evolutions of the system variables.

Discrete state changes are possible using assignments like x:=5. This for ex-
ample is used to model states of a controller component.

Continuous evolutions can be modelled using systems of differential equations
and invariants. The continuous evolutions of variables are e.g. used to
model the driving behavior of a train.

Example 1. With the combination of these two system behaviors we can e.g.
model the following system behavior:

t

x

The discontinuous points of this trajectory are
marked with dashed lines. At these points discrete
state changes are performed.

In this chapter we will present the formal syntax and semantics of dL as well
as a sequent calculus, to provide a decision procedure on a syntactical level.

2.2 Syntax

The syntax of dL [Pla07c] formulas is given by the set F(V ,S,Σ) where V is a
set of real-valued logical variables, S is a set of real-valued program variables and
Σ is a relation between function symbols or predicate symbols and their arities.

Jan-David Quesel 7 April 17, 2007

Diploma Thesis CHAPTER 2. DIFFERENTIAL DYNAMIC LOGIC

The names of logical variables, program variables, function symbols and predicate
symbols are pairwise disjoint. To define the content of F(V ,S,Σ) we need two
other sets: T (V ,S,Σ) is the set of valid terms and H(V ,S,Σ) the set of hybrid
programs. The sets are simultaneously inductively defined in definitions 13, 14,
15 and 16.

To make formulas easier to read, we will use uppercase letters to identify logical
variables and lowercase ones for program variables.

Definition 13 (Signature for dL). A signature for dL formulas is given by Σ,
which is a relation between function and predicate symbols and their arity. It
contains at least the pairs (0, 0), (1, 0), (+, 2), (−, 2), (×, 2), (÷, 2) (=, 2), (≤, 2),
(<, 2), (≥, 2) and (>, 2) with their usual interpretation.

Definition 14 (Terms). T (V ,S,Σ) is the set of all terms, which is the smallest
set such that:

• if X ∈ V, then X ∈ T (V ,S,Σ)

• if x ∈ S, then x ∈ T (V ,S,Σ)

• if f ∈ Σ then f(θ1, . . . , θn) ∈ T (V ,S,Σ) where f is a function symbol with
arity n and θ1, . . . , θn ∈ T (V ,S,Σ).

Definition 15 (Hybrid Program). H(V ,S,Σ) is the set of all hybrid programs,
which is the smallest set such that:

• if (x ∈ S and θ ∈ T (V ,S,Σ)), then(x := θ) ∈ H(V ,S,Σ)

• if (x ∈ S), then (x := ∗) ∈ H(V ,S,Σ)

• if (x ∈ S, θ ∈ T (V ,S,Σ) and ξ ∈ F(V ,S,Σ)) is a quantifier-free first-order
formula, then (ẋ = θ ∧ ξ) ∈ H(V ,S,Σ)

• if ϕ ∈ F(V ,S,Σ), then (?ϕ) ∈ H(V ,S,Σ), where ϕ is a quantifier-free first-
order formula

• if α, γ ∈ H(V ,S,Σ), then (α; γ) ∈ H(V ,S,Σ)

• if α, γ ∈ H(V ,S,Σ), then (α ∪ γ) ∈ H(V ,S,Σ)

• if α ∈ H(V ,S,Σ), then (α∗) ∈ H(V ,S,Σ)

Hybrid programs are regular combinations of (x := θ) and (x := ∗) to express
discrete state changes, the latter for a random one, i.e. after execution of (x := ∗)
the value of x is an arbitrary real number, (ẋ = θ ∧ ξ) for modelling continuous
evolutions of a variable with invariant behavior ξ and state assertions that can be
expressed using (?ϕ). The operators for the regular combination are the sequen-
tial composition (;), the non-deterministic choice (∪) and the non-deterministic
repetition (∗).

Jan-David Quesel 8 April 17, 2007

Diploma Thesis CHAPTER 2. DIFFERENTIAL DYNAMIC LOGIC

Definition 16 (Formulas). The set F(V ,S,Σ) of formulas is the smallest set
such that:

• if ((p, n) ∈ Σ and θi ∈ T (V ,S,Σ)), then p(θ1, . . . , θn) ∈ F(V ,S,Σ) where p
is a predicate symbol.

• if (φ ∈ F(V ,S,Σ)), then (¬φ ∈ F(V ,S,Σ))

• if (φ, ψ ∈ F(V ,S,Σ)), then (φ op ψ) ∈ F(V ,S,Σ), where
op ∈ {∧,∨,→,↔}

• if (φ ∈ F(V ,S,Σ) and X ∈ V), then (∀Xφ), (∃Xφ) ∈ F(V ,S,Σ)

• if (φ ∈ F(V ,S,Σ) and α ∈ H(V ,S,Σ)), then ([α]φ), (〈α〉φ) ∈ F(V ,S,Σ)

2.3 Semantics

In this section we define the semantics of dL [Pla07c]. For the valuation of terms
and formulas we need an interpretation function for the function and predicate
symbols, as well as a valuation of free variables, as well as a valuation of program
variables . In definition 17 we define an interpretation function for the function
and predicate symbols. Definition 18 provides a definition of a valuation function
for free variables and a state defined in definition 19 is used for the valuation of
program variables.

Definition 17 (Interpretations). An interpretation is a function  that assigns
to each (f, n) ∈ Σ where f is a function symbol a function

(f) : Rn → R

and to each (p, n) ∈ Σ if p is a predicate symbol a predicate

(f) : Rn → B

As we want to have standard mathematics as part of our logic we define our
interpretations to contain the function symbols {+,−,×,÷} and the predicate
symbols {<,≤,=,≥, >} with the usual meanings.

Definition 18 (Valuation of free variables). A valuation of free variables is a
function β that assigns to each variable V ∈ V a value β(V) ∈ R.

Definition 19 (State). A state is a function ν that assigns to each program
variable x ∈ S a value ν(x) ∈ R. The set of all states is called Ω(S).

Definition 20 (Modification of states). A modification [x 7→ r] of a state ν where
x is a program variable and r is a real number results in a new state ν[x 7→ r]
that is identical to ν but ν[x 7→ r](x) = r holds.

Definition 21 (Rigidity). We define rigidity of terms as follows:

Jan-David Quesel 9 April 17, 2007

Diploma Thesis CHAPTER 2. DIFFERENTIAL DYNAMIC LOGIC

• A term is called rigid if it does not contain program variables.

• A term is called non-rigid if it does contain program variables.

We define substitutions [Fit96] along the lines of the definition of substitutions
in [Old02].

Definition 22 (Substitution). A substitution is a finite relation
Θ ⊆ V × T (V ,S,Σ), written as Θ = {X1/θ1, . . . , Xn/θn}, with n ∈ N0 and

• X1, . . . , Xn are pairwise disjoint

• θ1, . . . , θn are rigid terms

• for all i ∈ {1, . . . , n} Xi 6= θi holds

If there is only one variable to be substituted we abbreviate the substitution with
[X 7→ θ] where X is the variable to substitute and θ is a term used as a substitution
value.

Definition 23 (Application of a substitution). Let t ∈ T (V ,S,Σ),
α ∈ H(V ,S,Σ), F ∈ F(V ,S,Σ) and Θ = {X1/θ1, . . . , Xn/θn} a substitution
of the signature Σ.

1. The application of Θ to t results in a new term tΘ, that is similar to t but
all occurrences of the variables X1, . . . , Xn are simultaneously replaced by
the corresponding terms θ1, . . . , θn.

2. The application of Θ to α results in a new program αΘ, that is similar to
α but all terms tα occurring in α are replaced by the result of tαΘ.

3. The application of Θ to F results in a new formula FΘ, that is created by:

a) renaming all occurrences of a variable Xi in a part of the formula with
the form ∃XG or ∀XG where G is a formula with X ∈ Θi to a name
that does not occur either in F nor in the substitution for i ∈ {1, . . . , n}

b) and replacing all remaining occurrences of the variables X1, . . . , Xn by
the corresponding terms θ1, . . . , θn.

Definition 24 (Composition of substitutions). The composition of two substitu-
tions

Θ1 = {X1/s1, . . . , Xm/sm}

Θ2 = {Y1/t1, . . . , Yn/tn}

is written as Θ1Θ2 and can be computed by reducing the set

{X1/s1, . . . , Xm/sm, Y1/t1, . . . , Yn/tn}

by removing

1. all pairs Yi/ti where Yi ∈ {X1, . . . , Xn} for i ∈ {1, . . . , n}

Jan-David Quesel 10 April 17, 2007

Diploma Thesis CHAPTER 2. DIFFERENTIAL DYNAMIC LOGIC

2. all pairs Xi/siΘ2 where siΘ2 = Xi for i ∈ {1, . . . ,m}

Lemma 1. The application of a substitution Θ = {X1/θ1, . . . , Xn/θn} can be de-
fined inductively over the syntax of terms, hybrid programs and formulas as:

XΘ =

{
θi if X = Xi for one i ∈ {1, . . . , n}
X otherwise

zΘ = z

(z := t)Θ = z := (tΘ)

(z := ∗)Θ = z := ∗
(ż = t ∧ ξ)Θ = ż = (tΘ) ∧ (ξΘ)

(α; γ)Θ = αΘ; γΘ

(α ∪ γ)Θ = αΘ ∪ γΘ

(α∗)Θ = (αΘ)∗

(?ϕ)Θ = ?(ϕΘ)

f(t1, . . . , tn)Θ = f(t1Θ, . . . , tnΘ)

p(t1, . . . , tn)Θ = p(t1Θ, . . . , tnΘ)

(¬ϕ)Θ = ¬(ϕΘ)

(ϕ op ψ)Θ = (ϕΘ op ψΘ)

for op ∈ {∧,∨,→,↔}
([α]ϕ)Θ = [αΘ](ϕΘ)

(〈α〉ϕ)Θ = 〈αΘ〉 (ϕΘ)

(∀Xϕ)Θ = ∀y(ϕ[X 7→ y]Θ)

where y /∈ var(ϕ) ∪ dom(Θ) ∪ range(Θ)

(∃Xϕ)Θ = ∃y(ϕ[X 7→ y]Θ)

where y /∈ var(ϕ) ∪ dom(Θ) ∪ range(Θ)

We use the following symbols in this definition:

• X and Y are logical variables

• z is a program variable

• t, t1, . . . , tn are terms

• α, γ are arbitrary hybrid programs

• f is a function symbol

• p is a predicate symbol

• ξ, ϕ, ψ are formulas

• var(ϕ) donates all variables used in the formula ϕ

Jan-David Quesel 11 April 17, 2007

Diploma Thesis CHAPTER 2. DIFFERENTIAL DYNAMIC LOGIC

• dom(Θ) is the domain of Θ, i.e. {X1, . . . , Xn}

• range(Θ) is the range of Θ, i.e. {θ1, . . . , θn}

Proof. The definition presented in lemma 1 produces the same results as the
definition 23 beside the renaming of bound variables. As the constraint for the
renaming is stronger in lemma 1 as in definition 23 and renaming of variables
does not alter neither the satisfiability nor the validity of formulas, the definition
in lemma 1 is sound.

First we define a valuation function for terms as they are used inside formulas
as well as inside hybrid programs.

Definition 25 (Valuation of terms). The valuation of terms with respect to a
interpretation of rigid function symbols , valuation of free variables β and a
state ν is given by the valuation function val,β(ν, θ):

1. val,β(ν,X) = β(X) where X ∈ V

2. val,β(ν, x) = ν(x) where x ∈ S

3. val,β(ν, f(θ1, . . . , θn))) = (f)(val,β(ν, θ1), . . . , val,β(ν, θn))

Second we define the semantics of hybrid programs. Hybrid programs are also
referred to as system action. They are used to describe the control flow and
behavior of a system.

Definition 26 (Semantics of hybrid programs). The semantics of hybrid pro-
grams is give by a valuation function ρ,β. This is a transition relation that
describes which states are reachable from the current state.

1. (ν, µ) ∈ ρ,β(x := θ) iff µ = ν[x 7→ val,β(ν, θ)]

2. (ν, µ) ∈ ρ,β(x := ∗) iff µ ∈ {ν[x 7→ t]|t ∈ R}

3. (ν, µ) ∈ ρ,β(ẋ = θ ∧ ξ) iff there is a function f : [0, r] → Ω(S) with r ≥ 0
such that γx(ζ) = val,β(f(ζ), x) is continuous on [0, r] and differentiable of
value γθ(ζ) at each time ζ ∈]0, r[, while γy is constant for each y 6= x and
f(0) = ν, f(r) = µ. Also val,β(f(ζ), ξ) = true holds for each ζ ∈]0, r[.

4. ρ,β(?ϕ) = {(ν, ν) | val,β(ν, ϕ) = true}

5. ρ,β(α; γ) = ρ,β(α) ◦ ρ,β(γ) = {(ν, µ) | (ν, z) ∈ ρ,β(α), (z, µ) ∈ ρ,β(γ) for
some state z}.

6. ρ,β(α ∪ γ) = ρ,β(α) ∪ ρ,β(γ)

7. (ν, µ) ∈ ρ,β(α∗) iff there are n ∈ N and ν = ν0, . . . , νn = µ with
(νi, νi+1) ∈ ρ,β(α) for 0 ≤ i < n

At last we define a function for the valuation of formulas.

Jan-David Quesel 12 April 17, 2007

Diploma Thesis CHAPTER 2. DIFFERENTIAL DYNAMIC LOGIC

Definition 27 (Valuation of formulas). The valuation function for formulas
val,β(ν, ϕ) with respect to an interpretation , a valuation of free variable β and
a state ν is defined by:

1. val,β(ν, p(θ1, . . . , θn)) = (p)(val,β(ν, θ1), . . . , val,β(ν, θn))

2. val,β(ν,¬φ) = true iff val,β(ν, φ) = false

3. val,β(ν, φ ∧ ψ) = true iff val,β(ν, φ) = true and val,β(ν, ψ) = true

4. val,β(ν, φ ∨ ψ) = true iff val,β(ν, φ) = true or val,β(ν, ψ) = true

5. val,β(ν, φ→ ψ) = true iff val,β(ν, φ) = false or val,β(ν, ψ) = true

6. val,β(ν, φ↔ ψ) = true iff val,β(ν, φ) = val,β(ν, ψ)

7. val,β(ν, ∀Xφ) = true iff val,β[X 7→d](ν, φ) = true for all d ∈ R

8. val,β(ν, ∃Xφ) = true iff val,β[X 7→d](ν, φ) = true for some d ∈ R

9. val,β(ν, [α]φ) = true iff val,β(µ, φ) = true for all µ with (ν, µ) ∈ ρ,β(α)

10. val,β(ν, 〈α〉φ) = true iff val,β(µ, φ) = true for some µ with (ν, µ) ∈ ρ,β(α)

2.4 Sequent Calculus for dL
In this section we present a sequent calculus for dL [Pla07c] that can be used to
proof formulas valid by performing syntactic transformations.

2.4.1 Sequent Calculi

The first sequent calculus was developed in 1935 by Gerhard Gentzen and is a
calculus for FOL [Gen35]. The central idea of a sequent calculus is to split the
existing formulas into atomic ones and separate those atomic formulas which are
true from those which are false. The calculus constructs a direct proof for the
validity of a formula.

Definition 28 (Sequent). Γ ` ∆ is a sequent with sets of formulas Γ and ∆.
It is satisfiable if for some interpretation , some valuation of free variable β

and some state ν: , β, ν 6|= ϕ for some formula ϕ ∈ Γ or , β, ν |= ψ for some
formula ψ ∈ ∆.

The sequent is valid if for all interpretations , all valuations of free variables
β and all states ν , β, ν 6|= ϕ for some ϕ ∈ Γ or , β, ν |= ψ for some formula
ψ ∈ ∆.

Definition 29 (Calculus and Inference Rule). Assuming that F(V ,S,Σ) is the set
of formulas for a signature Σ, an inference rule is a relation R ⊆ F(V ,S,Σ)n+1

with arity (n+ 1) where n ∈ N0. The inference rule can either be written as

R = {(ϕ1, . . . , ϕn, ϕn+1)| where ψ(ϕ1, . . . , ϕn, ϕn+1) holds}

Jan-David Quesel 13 April 17, 2007

Diploma Thesis CHAPTER 2. DIFFERENTIAL DYNAMIC LOGIC

or in the more common notation:

R :
ϕ1 . . . ϕn

ϕn+1

where ψ(ϕ1, . . . , ϕn, ϕn+1) holds

Where ϕ1, . . . , ϕn, ϕn+1 are schemata of formulas that have to satisfy
ψ(ϕ1, . . . , ϕn, ϕn+1). The schemata ϕ1, . . . , ϕn are called assumptions, ϕn+1 is
called conclusion.

A finite set of inference rules is called calculus.

Definition 30 (Proof). A proof for the formula ϕ is a finite directed acyclic
graph, such that

• there is only one root node

• each node is annotated with a sequent

• the annotated sequent of the root node is ` ϕ

• each node of the graph is annotated with an inference rule that relates the
sequent of the node with the sequents of its decendants

• the number of descendants of a node is equal to the number of premisses of
the annotated rule

Even though the proof structure is in general a directed acyclic graph it is in
most cases a tree.

The following example illustrates a common proof in a sequent calculus. The
rules used in the proof are presented in section 2.4.2, but an intuition for the
applied rules is already given at this place.

Example 2 (Proof Example). For verification of the propositional tautology
¬(A ∨B) → (¬A ∧ ¬B) we construct a proof beginning with a node containing
the sequent ` ¬(A ∨B) → (¬A ∧ ¬B). The first operator we handle is the im-
plication. As the sequent is defined as implication we can move the premiss to
the left side of it. A negation is handled by moving the negated formula from
one side of the sequent to another. The succeedents of a sequent are implicitly
connected by a disjunction, so we can drop the disjoint operator. On the other
hand a conjunction on the right side triggers branching of the proof. The two
resulting goals can be closed after applying the negation rule again.

∗
R11A ` A,B
R2 ` ¬A,A,B

∗
R11B ` A,B
R2 ` ¬B,A,B

R7 ` ¬A ∧ ¬B,A,B
R5 ` ¬A ∧ ¬B,A ∨B
R1 ¬(A ∨B) ` ¬A ∧ ¬B
R3 ` ¬(A ∨B) → (¬A ∧ ¬B)

Jan-David Quesel 14 April 17, 2007

Diploma Thesis CHAPTER 2. DIFFERENTIAL DYNAMIC LOGIC

2.4.2 Rules for Propositional Logic

The rules for handling the propositional part of the formulas are illustrated in
figure 2.1. The rules are basically used for sorting the sequent, i.e. transforming
the logic operators into the proof structure and eliminate negations.

The rules R1 and R2 eliminate negations. A negation in a sequent can be
eliminated by moving the formula from one side to the other. To show that a
sequent is satisfied, we have to show that there is a formula on the left side that
is false or a formula on the right side that is true. If e.g. ¬A occurs on the right
side of the sequent, it is obvious that we can add A on the left side of the sequent,
because if we can show that A is false, we have also shown that ¬A is true.

The rules R6, R5 and R3 eliminate conjunctions, disjunctions and implication
in the cases where no branch is necessary. A sequent is by definition an implication
between the conjunction of the formulas on the left side and the disjunction of
the formulas from the right side. As formulas on the left side are connected
implicitly by a conjunction, we can remove conjunctions here. The same holds
for the implicit disjunction and disjunctions on the right side. In total the sequent
represents an implication. So if an implication occurs on the right side, we can
move its premiss to the left side.

On the other hand the rules R7, R4 and R8 handle the cases where the
proof branches. These cases are complementary to those described before. The
branches of a proof are implicitly connected by a conjunction. If a conjunction
occurs on the right side of the sequent, we have to show that both conjunctive
elements are valid. This results in two new proof goals. For the complementary
reason the proof branches if there is a disjunction on the left side. Here we have
to show that in either the case where one disjunctive element is false or the other
the proof can be closed. The case where both disjunctive elements are false is
subsumed by these two cases. As an implication is by its semantics a special form
of a disjunction the proof branches for an implication on the left side as well.

The equivalence is handled by the rules R9 and R10. It causes the proof to
branch in both cases. For the case, that the equivalence occurs on the left side,
it is necessary to show that the proof can be closed if the equivalence is valid,
i.e. either both sides are true or both sides are false. If the equivalence would be
false the sequent would trivially be valid. For the other case, we have to show
that the formulas connected by the equivalence are complementary. This causes
a branch as well, as again there are two cases to consider.

For closure of the proof the rule R11 is used. It can be applied if there is the
same formula occurring on both sides of the sequent. A rule for closure is a rule
without premisses, thus it leads to a leaf of the proof graph.

2.4.3 Rules for FOL

First-order logic can be handled by the propositional rules and additionally rules
for handling quantifiers. These rules are shown in figure 2.3. As in dL the
quantifiers are real valued we use quantifier elimination [Tar51] to handle them.
Tarski showed that for every FOL formula interpreted over the real numbers,

Jan-David Quesel 15 April 17, 2007

Diploma Thesis CHAPTER 2. DIFFERENTIAL DYNAMIC LOGIC

(R1)
Γ ` ∆, A

Γ,¬A ` ∆

(R2)
Γ, A ` ∆

Γ ` ¬A,∆

(R3)
Γ, A ` B,∆

Γ ` A→ B,∆

(R4)
Γ, A ` ∆ Γ, B ` ∆

Γ, A ∨B ` ∆

(R5)
Γ ` A,B,∆

Γ ` A ∨B,∆

(R6)
Γ, A,B ` ∆

Γ, A ∧B ` ∆

(R7)
Γ ` A,∆ Γ ` B,∆

Γ ` A ∧B,∆

(R8)
Γ ` A,∆ Γ, B ` ∆

Γ, A→ B ` ∆

(R9)
Γ, A,B ` ∆ Γ ` A,B,∆

Γ, A↔ B ` ∆

(R10)
Γ, A ` B,∆ Γ, B ` A,∆

Γ ` ∆, A↔ B

(R11)
Γ, A ` A,∆

• A and B are schemata of arbitrary dL formulas

• Γ and ∆ are arbitrary sets of schemata of dL formulas

Figure 2.1: Propositional rules

there is an equivalent quantifier free formula.

We handle universal quantifiers on the right and existential quantifiers on the
left side of the sequent using Skolemization [Fit96].

For a sound implementation of the Deskolemization rule (R14) that does not
destroy completeness we need to assure that the quantifier elimination is applied
to the inner-most quantifier, i.e. we must not eliminate a universal quantifier
which quantifies a formula containing at least one existential quantifier and vice
versa. This is necessary as the following formula is not universially valid:

(∀X∃Y ϕ(X, Y)) → (∃Y ∀Xϕ(X, Y))

Therefore we define a partial ordering on Skolem symbols to keep track of the
quantifier order, which is retained in the parameters of the Skolem symbols.

Definition 31 (Partial ordering on Skolem symbols). We define a partial or-
dering on Skolem symbols as: sk1 is smaller than sk2 considering free variables
(sk1 ≺fv sk2) iff the set of parameters of sk1 is a subset of the parameters of sk2.

In the following example we illustrate how this ordering can be used to assert
that the right quantifier is eliminated.

Example 3. If we got a formula like ∀X∃Y ∀Zϕ(X, Y, Z) on the right side of the
sequent, then the calculus works as follows (see also figure 2.2): The universal

Jan-David Quesel 16 April 17, 2007

Diploma Thesis CHAPTER 2. DIFFERENTIAL DYNAMIC LOGIC

quantifier over X is dropped and a new function symbol skX is added with no pa-
rameters by rule R12. Afterwards the existential quantifier triggers a side deduc-
tion where Y is a free variable (R15). The rule R12 is applied again but the new
symbol skZ gets the parameter Y as it is a free variable now. This is done to keep
track of the quantifier order. At the point where rule R14 is applicable it would be
possible to eliminate both, skX as well as skZ. For soundness it does not matter
which one we eliminate as ∀X∃Y ∀Zϕ(X, Y, Z) → ∀X∀Z∃Y ϕ(X, Y, Z) holds and
quantifiers of the same type are commutative. But as the reverse implication does
not hold we may not be able to close the proof, when choosing the wrong symbol
for elimination even if the formula is valid.

` ϕ′′
` qE(∀Xψ′(X))

R14 ` ψ′(skX)
` qE(∃Y ψ(skX , Y))

R15 ` ∃Y ∀Zϕ(skX , Y, Z)
R12 ` ∀X∃Y ∀Zϕ(X, Y, Z)

` ψ(skX , Y)
` qE(∀Zϕ′(skX , Y, Z))

R14 ` ϕ′(skX , Y, skZ(Y))
` ϕ(skX , Y, skZ(Y))

R12 ` ∀Zϕ(skX , Y, Z)

here we could apply R14 to X or Z

Figure 2.2: Example proof for the quantifier handling

The rule R14 works on a complete sequent as opposed to matching a fixed
number of formulas inside the sequent. The rule separates the formulas of the
sequent into four sets. Γ is the set of formulas on the left side of the sequent that
do not contain the Skolem symbol skY , whereas Γ′ are those that do. The same
holds for ∆ and ∆′ on the right side of the sequent.

It has to be said that using rules here that work on a single formula would also
be correct but e.g. if we got a sequent like ` ∀X(ϕ ∨ ψ) it is easy to see that if
we apply R12 the sequent ` ϕ, ψ could be closed by applying R14 to ϕ and ψ
separately but there does not have to be a solution even if the prior formula was
valid.

As mentioned above, quantifier elimination can only be applied (by Mathemat-
ica) to first-order formulas. Thus we need to transform the quantified dL formulas,
possibly containing modalities specifying continuous evolutions of variables etc.,
into FOL. For the universal quantifier right case, we use Skolemization but for
the existential quantifier right case we have two possibilities for this purpose. We
could use a side deduction as suggested in figure 2.3 or we could try to integrate
the transformation into the main proof as drafted in figure 2.5. This asymmetric
solution has to be used, as the branches of a proof are implicitly connected by a

Jan-David Quesel 17 April 17, 2007

Diploma Thesis CHAPTER 2. DIFFERENTIAL DYNAMIC LOGIC

(R12)
Γ ` ϕ[X 7→ skX(Y1, . . . , Yn)],∆

Γ ` ∀Xϕ,∆
where skX new, Yi free in ϕ

(R13)
ϕ[X 7→ skX(Y1, . . . , Yn)],Γ ` ∆

∃Xϕ,Γ ` ∆

where skX new, Yi free in ϕ

(R14)
Γ ` ∆, qE(∀X(Γ′ ` ∆′))

Γ,Γ′[X 7→ skY (. . .)] ` ∆′[X 7→ skY (. . .)],∆

(R15)
qE(∃X

∧
i(Γi ` ∆i))

Γ ` ∆,∃Xϕ

(R16)
qE(∀X

∧
i(Γi ` ∆i))

Γ,∀Xϕ ` ∆

• Γ and ∆ are arbitrary sets of schemata of dL formulas

• ϕ is a schemata of a dL formula

• skX and skY are schemata of Skolem symbols

• X, Yi for i ∈ {1, . . . , n} are schemata for variables

• The conditions for R14 are: skY does not occur in Γ ` ∆ and it is maximal
considering ≺fv. X is fresh, i.e. does not occur in Γ′ ` ∆′. All formulas in
Γ′ ` ∆′ are quantifier free and first-order possibly prefixed with assignments.

• For the rules R15 and R16 the conditions are: X can be assumed to occur
only in ϕ and a side deduction is started from Γ ` ∆, ϕ for rule R15 or
Γ, ϕ ` ∆ for rule R16 that yields to the first-order sequents Γi ` ∆i. (qE is
the quantifier elimination).

Figure 2.3: First-order rules

Jan-David Quesel 18 April 17, 2007

Diploma Thesis CHAPTER 2. DIFFERENTIAL DYNAMIC LOGIC

conjunction. For the universal quantifier we can easily split this conjunction and
handle it separately. For the existential quantifier this is not possible, as we need
a simultaneous solution for all conjuncts.

Side deduction approach [Pla07c] The rules R16 and R15 trigger a side deduc-
tion (Figure 2.4) as a new proof obligation. The side deduction can be considered
finished if all formulas on all leafs that are relevant, i.e. contain the quantified
variable X, are first-order formulas. Afterwards the conjunction of all those leafs
(Γi ` ∆i) is returned to the proof where the side deduction was triggered from
and the quantifier elimination is applied. The formulas that do not contain the
variable X, can be abstracted as an atomic formula throughout the quantifier
elimination as they have no influence on the choice of the variable. All steps
performed in the side deduction have to be locally sound (see definition 37 on
page 26). Otherwise the rules R16 and R15 could not be proven to be sound, as
by applying a rule that is only globally sound within the side deduction we loose
the information that the quantifier was an existential one.

qE(∃X
∧
i(Γi ` ∆i))

Γ ` ∆,∃Xϕ

Γ1 ` ∆1

. . . ` . . .
. . .

Γn ` ∆n

. . . ` . . .
. . . ` . . .
Γ ` ∆, ϕ

qelim

start side

Figure 2.4: Side deduction

Simultaneous branch closure approach It seems very complicated to give
sound rules that can reconstruct the existential quantifier (see figure 2.5), as
it depends on the local soundness of all rules applied to the sequent since the
removal of the existential quantifier. Formally these rules should result in two
derivations. One that simply drops the quantifier resulting in a free variable
and one to reintroduce it before quantifier elimination is applied. If we would
use the rules drafted in figure 2.5, we would have the problem that the quantifier
elimination has to consider all branches that contain the quantified variable. This

Jan-David Quesel 19 April 17, 2007

Diploma Thesis CHAPTER 2. DIFFERENTIAL DYNAMIC LOGIC

is necessary, as a closure of each branch alone does not yield a simultaneous
solution for the implicit conjunction of the branches. For this, the rule would
have to join all those branches. The proof would become a directed acyclic graph
instead of a tree (see figure 2.6) which is uncommon for proofs in a sequent
calculus. The condition for the reintroduction rule is that all rules applied in
the deduction steps marked with ♠ are locally sound (see definition 37). The
reason for the essential local soundness of these rules is the same as for the local
soundness of the side deduction. The application of a rule that is not locally
sound does not preserve the information that the quantifier was an existential
one. We could always replace the existential quantifier by an universal one, as
our domain is non-empty, but this would destroy completeness.

` ∃X
∧
i∈{1,...,n} ϕi

` ϕ1 . . . ` . . . ` ϕn
. . . ` . . .

` ψ
` ∃Xψ

this inference step depends on local soundness of ♠

♠

Figure 2.5: Alternative rule for existential quantifier on the right side

` qE(∃X
∧
i(Γi ` ∆i)

...
Φ′

1 ` Ψ′
1

Φ1 ` Ψ1 . . .

...
Φ′
n ` Ψ′

n

Φn ` Ψn

` ψ
` ∃Xψ

Figure 2.6: Proof structure with alternative rule for existential quantifier on the
right side

2.4.4 Rules for Hybrid Programs

The rules for handling the modalities are presented in figure 2.7. These rules,
except the rule R29, can be applied on either side of the sequent. We use this to
reduce the number of rules, by writing these rules without a sequent sign.

We use 〈[α]〉 to donate an abbreviation for either the modality 〈α〉 or [α].
The basic principle is to split the modalities until we get elementary programs.

The splitting is done by the rules R19, R20 and R21.

Jan-David Quesel 20 April 17, 2007

Diploma Thesis CHAPTER 2. DIFFERENTIAL DYNAMIC LOGIC

A sequential composition is split into two modalities by the rule R19. This
is sound as the semantics of the sequential composition (definition 26) says that
from the current state a state can be reached, by executing the first program,
from which we can reach a state, by executing the second program, in which the
postcondition holds.

The choice is handled differently depending on the modality type. If it is a box
modality, we have to show that the postcondition holds if either the one or the
other program is executed. For the diamond modality case it is sufficient to show
that there is an execution of one of the programs that lead to a state where the
postcondition is satisfied.

Loops cannot be eliminated so easily. They can be handled either using loop
unrolling with rules R22 and R23 or by providing an invariant using the induction
rule R29.

The invariant rule proves that a given invariant is valid in the current state,
that it is preserved during the execution of the loop body and that it is strong
enough to imply the postcondition. This leads to a sufficient description of the
loop behavior. It may be noted that the current context is only used for the
branch that shows that the invariant is initially valid. This branch is necessary
as the loop could be executed zero times. To show that the invariant is preserved
by the loop body we must not use the context formulas, as the state may already
be changed by the loop before. Also for showing that the invariant can imply the
postcondition, the state is only determined by the invariant not by contextual
formulas.

The elementary programs are handled using the rules R17 and R18 for state
assertions, R24 for assignments, R25 and R26 for random assignments as well as
R27 and R28 for continuous evolutions.

State assertions are dragged to the logic level. The semantics of a state assertion
says that it is a “no operation”operation if it is true and that there is no successor
state if it is false. For the box modality case this leads to an implication with the
state assertion as premiss and the postcondition as conclusion. This is expressed
in rule R18. For the diamond modality case the situation is different. The
semantics of the diamond modality forces that there is at least one execution of
the program that leads to a state where the postcondition holds. This means
that the state assertion as well as the postcondition have to be valid to satisfy
the formula. This is expressed in the rule R17.

Assignments are applied by the rule R24 if they are applicable. The handling
of assignments is similar to those of updates in KeY [BHS07]. As the parallelism
of updates in KeY is only syntactic sugar, we decided to leave the assignments
sequential.

Definition 32 (Application of assignments). An assignment x := θ is applicable
to a formula ϕ if either

• the toplevel operator of ϕ is a first-order operator

• or ϕ has the form 〈[α]〉ψ and α does not modify the value of x and no
program variable is modified by α that occurs in θ.

Jan-David Quesel 21 April 17, 2007

Diploma Thesis CHAPTER 2. DIFFERENTIAL DYNAMIC LOGIC

The application of the assignment U is defined inductively. Applying an assign-
ment to a term is inductively defined as:

U(x, θ, Y) = Y

U(x, θ, z) =

{
θ if z = x

z otherwise

U(x, θ, f(t1, . . . , tn)) = f(U(x, θ, t1), . . . ,U(x, θ, tn))

Applying an assignment to a hybrid program is inductively defined as:

U(x, θ, (z := t)) = z := U(x, θ, t)

U(x, θ, (z := ∗)) = z := ∗
U(x, θ, (ż = t ∧ ξ)) = ż = U(x, θ, t) ∧ U(x, θ, ξ)

U(x, θ, ?ϕ) = ?(U(x, θ, ϕ))

U(x, θ, (α; γ)) =

{
U(x, θ, α); U(x, θ, γ) if u(α) and u(γ)

x := θ; α; γ otherwise

U(x, θ, (α ∪ γ)) =

{
U(x, θ, α) ∪ U(x, θ, γ) if u(α) and u(γ)

x := θ; (α ∪ γ) otherwise

U(x, θ, (α∗)) =

{
U(x, θ, α)∗ if u(α)

x := θ;α∗ otherwise

The application of an assignment to a formula is inductively defined as:

U(x, θ, p(t1, . . . , tn)) = p(U(x, θ, t1), . . . ,U(x, θ, tn))

U(x, θ, (¬ϕ)) = ¬(U(x, θ, ϕ))

U(x, θ, (ϕ op ψ)) = (U(x, θ, ϕ) op U(x, θ, ψ))

for op ∈ {∧,∨,→,↔}

U(x, θ, ([α]ϕ)) =

{
[U(x, θ, α)](U(x, θ, ϕ)) if u(α)

[x := θ][α]ϕ otherwise

U(x, θ, (〈α〉ϕ)) =

{
〈U(x, θ, α)〉 (U(x, θ, ϕ)) if u(α)

[x := θ] 〈α〉ϕ otherwise

U(x, θ, (∀Y ϕ)) = ∀Y (U(x, θ, ϕ))

U(x, θ, (∃Y ϕ)) = ∃Y (U(x, θ, ϕ))

We use the following abbreviations

• u(α) donates whether the assignment is applicable to the program α or not

• Y is a logical variable

Jan-David Quesel 22 April 17, 2007

Diploma Thesis CHAPTER 2. DIFFERENTIAL DYNAMIC LOGIC

• x and z are program variables

• f is a function symbol

• p is a predicate symbol

• θ, t, t1, . . . , tn are terms

• α, γ are arbitrary hybrid programs

• ξ, ϕ, ψ are formulas

It may be noted that we always use the box modality in this definition to
represent the assignment if its not applicable to a subformula. This is done
for convenience reasons. The semantics of the box and the diamond modality
assignment is equivalent so it does not matter which modality type we use to
reintroduce it.

On the other hand random assignments need different rules depending on the
modality type. As the semantics of the box modality demand that every suc-
cessor state of the modality satisfies the postcondition, a universal quantifier is
introduced to describe the possible values for the randomly assigned variable. In
case of a diamond modality the semantics demands that there is one execution
that leads to a state satisfying the postcondition. Therefore the possible values
of the variable are quantified with an existential quantifier.

The last elementary program is the continuous evolution. The differential equa-
tion is translated into a function that serves as solution of the system. This
function depends on a newly introduced variable t that measures the execution
time. In case of a box modality, for the same reason as above, the postcondition
has to hold for every possible execution time. In case of diamond modality it is
sufficient if there is a satisfying execution time. The invariant expression has, in
both cases, to be satisfied for every possible execution below the chosen one. This
is expressed in the rules R27 for the diamond case and R28 for the box case.

2.4.5 Soundness Proofs

In this section we define soundness for a calculus and different types of soundness
for inference rules. Also we will show that the altered version of the calculus is
sound.

To define soundness of a calculus, we need different types of relations. These
relations are used to express validity of formulas. First we define a global satis-
faction relation.

Definition 33 (Satisfaction Relation). An interpretation , a valuation of
free variables β and a state ν satisfy a formula ϕ written as , β, ν |= ϕ iff
val,β(ν, ϕ) = true.

With this definition we can define the terms satisfiability and validity.

Jan-David Quesel 23 April 17, 2007

Diploma Thesis CHAPTER 2. DIFFERENTIAL DYNAMIC LOGIC

(R17)
ϕ ∧ ψ
〈?ϕ〉ψ

(R18)
ϕ→ ψ

[?ϕ]ψ

(R19)
〈[α]〉 〈[γ]〉ϕ
〈[α; γ]〉ϕ

(R20)
〈α〉ϕ ∨ 〈γ〉ϕ
〈α ∪ γ〉ϕ

(R21)
[α]ϕ ∧ [γ]ϕ

[α ∪ γ]ϕ

(R22)
ϕ ∨ 〈α;α∗〉ϕ

〈α∗〉ϕ

(R23)
ϕ ∧ [α;α∗]ϕ

[α∗]ϕ

(R24)
U(x, θ, ϕ)

〈[x := θ]〉ϕ

(R25)
∀T [x := T]ϕ

[x := ∗]ϕ

(R26)
∃T [x := T]ϕ

〈x := ∗〉ϕ

(R27)
∃T ≥ 0 ∀ 0 < T̃ < T

〈
x := yv(T̃)

〉
ξ → 〈x := yv(T)〉ϕ

〈ẋ = θ ∧ ξ〉ϕ

(R28)
∀T ≥ 0 ∀ 0 < T̃ < T

[
x := yv(T̃)

]
ξ → [x := yv(T)]ϕ

[ẋ = θ ∧ ξ]ϕ

(R29)
Γ ` Ap,∆ p ` [α] p p ` ϕ

Γ ` A [α∗]ϕ,∆

• Γ and ∆ are arbitrary sets of schemata of dL formulas

• ϕ, ψ, ξ and p are schemata of dL formulas

• α and γ are schemata of hybrid programs

• θ is a schema of a term

• x is a schema for a program variable

• T and T̃ are schemata of a logical variables

• yv is a schema for a function symbol

• A is a schema for a finite number of assignments within either box or dia-
mond modalities

The side conditions are:

• the assignment in rule R24 must be applicable

• T is a fresh variable

• yv is the solution of the initial value problem (ẋ = θ, x(0) = v)

Figure 2.7: Rules for modalities

Jan-David Quesel 24 April 17, 2007

Diploma Thesis CHAPTER 2. DIFFERENTIAL DYNAMIC LOGIC

Definition 34 (Satisfiability and validity). A formula ϕ is satisfiable if for some
interpretation , some valuation of free variables β and some state ν , β, ν |= ϕ
holds.

It is valid if for all interpretation , all valuation of free variables β and all
state ν , β, ν |= ϕ holds.

Definition 35 (Consequence Relation). We say ψ is a (global) consequence of ϕ
(written as ϕ |= ψ) iff for interpretations , for all valuations of free variables
β and for all states ν (∀∀β ∀∀ν ∀∀ (, β, ν |= ϕ)) ⇒ (∀∀β ∀∀ν ∀∀ (, β, ν |= ψ))
holds.

As we need a local consequence for some soundness proofs we define a special
consequence relation for it.

Definition 36 (Not fully local consequence). We say ϕ |=β,ν ψ, i.e.
ψ is a not fully local consequence of ϕ with respect to β and ν,
iff for interpretations , valuations of free variables β and states ν
∀∀β ∀∀ν (∀∀ (, β, ν |= ϕ) ⇒ ∀∀ (, β, ν |= ψ)) holds.

In [Pla07c] the author defined local consequence as ϕ |=` ψ iff
∀∀ ∀∀β ∀∀ν (, β, ν |= ϕ ⇒ , β, ν |= ψ). We will show that this relation is a
subset of our not fully local consequence relation, thus if a rule is sound with
respect to |=` it is also sound with respect to |=β,ν .

Lemma 2 (Consequence relation subsets). The consequence relation |=` is a
subset of |=β,ν (written as |=` ⊆ |=β,ν), i.e. ϕ |=` ψ implies ϕ |=β,ν ψ.

Proof. We want to proof that

∀∀β ∀∀ν ∀∀ ((, β, ν |= ϕ) ⇒ (, β, ν |= ψ))

⇒ ∀∀β ∀∀ν (∀∀ (, β, ν |= ϕ) ⇒ ∀∀ (, β, ν |= ψ))

In prenix normal form this is:

∃∃β ∃∃ν ∃∃ ∀∀β2 ∀∀ν2 ∃∃2 ∀∀3 (((, β, ν |= ϕ) ⇒ (, β, ν |= ψ))

⇒ ((2, β2, ν2 |= ϕ) ⇒ (3, β2, ν2 |= ψ)))

We can now transform the implications into disjunctions and get:

∃∃β ∃∃ν ∃∃ ∀∀β2 ∀∀ν2 ∃∃2 ∀∀3 (, β, ν |= ϕ ∨ , β, ν 6|= ψ

∨ 2, β2, ν2 6|= ϕ ∨ 3, β2, ν2 |= ψ)

If we assume that
∀∀β2 ∀∀ν2 ∃∃2 (2, β2, ν2 6|= ϕ)

does not hold, the following proposition holds:

∃∃β ∃∃ν ∀∀ (, β, ν |= ϕ)

This means that
∃∃β ∃∃ν ∃∃ (, β, ν |= ϕ)

holds as well as the set of interpretations is non-empty.

Jan-David Quesel 25 April 17, 2007

Diploma Thesis CHAPTER 2. DIFFERENTIAL DYNAMIC LOGIC

With the previous definitions it is possible to define soundness of inference
rules.

Definition 37 (Soundness of inference rules). We define soundness of inference
rules as follows:

1. An inference rule

R :
ϕ1 . . . ϕn

ϕn+1

where ψ(ϕ1, . . . , ϕn, ϕn+1) holds

is sound if (∧
i∈{1,...,n}

ϕi
)
|= ϕn+1

where ψ(ϕ1, . . . , ϕn, ϕn+1) is satisfied holds.

2. It is called locally sound if also(∧
i∈{1,...,n}

ϕi
)
|=β,ν ϕn+1

holds.

3. A calculus is called sound if all its inference rules are sound.

Lemma 3 (Context of rules). The context Γ ` ∆ can be ignored for proving the
soundness of rules that do not change the context [Pla04].

Proof. For proving soundness of rules, e.g. the soundness of a rule

Γ, ϕ1 ` ∆, ϕ′1 . . . Γ, ϕn ` ∆, ϕ′n
Γ, ψ ` ∆, ψ′

we have to show that ∧
i∈{1,...,n}

Γ, ϕi ` ∆, ϕ′i |= Γ, ψ ` ∆, ψ′

Now let us consider the context. If Γ implies ∆ the conjunction on the left side
of this relation becomes true, as well as the sequent on the right side. So we
can assume for the soundness proofs that the context does not yield a solution.
Therefore it is sufficient to show∧

i∈{1,...,n}

ϕi ` ϕ′i |= ψ ` ψ′

As we delay the applications of assignments, we have to show that the rules
that are locally sound can also be applied if there is a prefix of assignments. We
perform this proof along the lines of the proof for contextual lifting in [Pla04].

Jan-David Quesel 26 April 17, 2007

Diploma Thesis CHAPTER 2. DIFFERENTIAL DYNAMIC LOGIC

Lemma 4 (Assignment introduction). If the inference rule

Γ1 ` ∆1 . . . Γn ` ∆n

Γ ` ∆

is sound with respect to |=β,ν, the inference rule

〈[A]〉Γ1 ` 〈[A]〉∆1 . . . 〈[A]〉Γn ` 〈[A]〉∆n

〈[A]〉Γ ` 〈[A]〉∆

for some assignment A is sound with respect to |=β,ν as well.

The sequent context Γ and ∆ could also be written as ϕ1, . . . , ϕn and
ψ1, . . . , ψm. We use 〈[A]〉Γ and 〈[A]〉∆ to donate abbreviations 〈[A]〉ϕ1, . . . , 〈[A]〉ϕn
and 〈[A]〉ψ1, . . . , 〈[A]〉ψn.

Proof. For convenience reasons we will show that if the rule

Γ′ ` ∆′

Γ ` ∆

is locally sound so is the rule
〈[A]〉Γ′ ` 〈[A]〉∆′

〈[A]〉Γ ` 〈[A]〉∆

This is sufficient to show for proving the soundness of lemma 4 as the possible
branch could be expressed as conjunction over the elements Γi and disjunction
over ∆i for i ∈ {1, . . . , n}.

1. First, we handle the case where Γ = Γ′ = ∅. From the premiss we can
conclude that

∀∀β ∀∀ν (∀∀ (, β, ν |= ` ∆′) ⇒ ∀∀ (, β, ν |= ` ∆))

holds. As the introduction of the assignment only alters the state we can
conclude that for every state µ with µρ,β(A)ν the sequent ` 〈A〉∆ is
satisfied. As A is an assignment we can conclude that ` [A]∆ is satisfied
as well. This means that

∀∀β ∀∀ν (∀∀ (, β, ν |= ` 〈[A]〉∆′) ⇒ ∀∀ (, β, ν |= ` 〈[A]〉∆))

holds as well.

2. In case of Γ and Γ′ are arbitrary we can use the definition of the sequent
(definition 28) to conclude that if the premiss holds the rule

` ¬Γ′,∆′

` ¬Γ,∆

is locally sound as well. Now this case equivalent to the first case.

Jan-David Quesel 27 April 17, 2007

Diploma Thesis CHAPTER 2. DIFFERENTIAL DYNAMIC LOGIC

Lemma 5 (Soundness of the calculus). All rules presented in figures 2.1, 2.3 and
2.7 are sound. All rules presented beside the rule R29 are locally sound as well.

Proof. With lemma 2 (page 25) we can conclude that all rules that are proven
to be locally sound in [Pla07c] are also sound with respect to our not fully local
consequence relation 36.

We will present proofs for the rules that were changed compared to the calculus
in [Pla07c].

Soundness of rule R9. The rule R9 is defined as:

(R9)
Γ, A,B ` ∆ Γ ` A,B,∆

Γ, A↔ B ` ∆

We want to proof that this rule is locally sound. This means:

Γ, A,B ` ∆ ∧ Γ ` A,B,∆ |=β,ν Γ, A↔ B ` ∆

Using the definition of the sequent (definition 28) and the definition of the local
consequence relation (definition 36) and the context lemma (lemma 3) we get:

∀∀β ∀∀ν (∀∀ (, β, ν |= ¬(A ∧B) ∧ (A ∨B)) ⇒ ∀∀ (, β, ν |= ¬(A↔ B)))

This can be transformed to

∀∀β ∀∀ν (∀∀ (, β, ν |= (¬A ∨ ¬B) ∧ (A ∨B)) ⇒ ∀∀ (, β, ν |= ¬(A↔ B)))

using one of de Morgan’s laws [Fit96]

¬(A ∧B) ≡ (¬A ∨ ¬B)

The semantic definition of A↔ B says that either A and B are true, or both are
false (definition 27). This means that

A↔ B ≡ ((A ∧B) ∨ (¬A ∧ ¬B))

holds. Using this equivalence we get

∀∀β ∀∀ν (∀∀ (, β, ν |= (¬A ∨ ¬B) ∧ (A ∨B))

⇒ ∀∀ (, β, ν |= ¬((A ∧B) ∨ (¬A ∧ ¬B))))

Now we apply de Morgan’s laws again:

¬((A ∧B) ∨ (¬A ∧ ¬B)) ≡ (¬(A ∧B) ∧ ¬(¬A ∧ ¬B)) ≡ (¬A ∨ ¬B) ∧ (A ∨B)

∀∀β ∀∀ν (∀∀ (, β, ν |= (¬A ∨ ¬B) ∧ (A ∨B))

⇒ ∀∀ (, β, ν |= (¬A ∨ ¬B) ∧ (A ∨B)))

This is valid as both sides of the implication are the same.

Jan-David Quesel 28 April 17, 2007

Diploma Thesis CHAPTER 2. DIFFERENTIAL DYNAMIC LOGIC

Soundness of rule R10. The rule R10 is defined as:

(R10)
Γ, A ` B,∆ Γ, B ` A,∆

Γ ` ∆, A↔ B

The local soundness of this rule can be performed along the lines of the sound-
ness proof for rule R9. We have to show that

Γ, A ` B,∆ ∧ Γ, B ` A,∆ |=β,ν Γ ` ∆, A↔ B

holds. Using the definition of the sequent (definition 28) and the definition of the
local consequence relation (definition 36) and the context lemma (lemma 3) we
get:

∀∀β ∀∀ν (∀∀ (, β, ν |= (A→ B) ∧ (B → A)) ⇒ ∀∀ (, β, ν |= A↔ B))

The implication is defined as either the premisses are false or the conclusion is
true (definition 27). This means that the following equivalence holds

(ϕ→ ψ) ≡ (¬ϕ ∨ ψ)

Using this equivalence we can conclude

∀∀β ∀∀ν (∀∀ (, β, ν |= (¬A ∨B) ∧ (¬B ∨ A)) ⇒ ∀∀ (, β, ν |= A↔ B))

There are exactly two valuations for A and B that satisfy ((¬A ∨B) ∧ (¬B ∨ A)).
Either A and B are both true, or they are both false. Using the definition of
the equivalence ↔ (definition 27) we can unify both sides of the implication.

Lemma 6 (Soundness of rule R24). The rule R24 is sound.

The rule R24 is defined as:

(R24)
U(x, θ, ϕ)

〈[x := θ]〉ϕ

We want to show that this rule is locally sound. Therefore we need to proof
that for all valuations of free variables β and all states ν if the premisses of the
rule are valid under all interpretations  so are its conclusions. We have to show
that

U(x, θ, ϕ) |=β,ν [x := θ]ϕ

holds. Using definition 36 we get:

∀∀β ∀∀ν (∀∀ (, β, ν |= U(x, θ, ϕ)) ⇒ ∀∀ (, β, ν |= [x := θ]ϕ))

As it is easier to prove we show that the even stronger relation holds:

∀∀ ∀∀β ∀∀ν (, β, ν |= U(x, θ, ϕ) ⇒ , β, ν |= [x := θ]ϕ)

We prove this using induction over the structure of ϕ.
In this proof we use the following abbreviations

Jan-David Quesel 29 April 17, 2007

Diploma Thesis CHAPTER 2. DIFFERENTIAL DYNAMIC LOGIC

• u(α) donates whether the assignment is applicable to the program α or not

• Y is a logical variable

• x and z are program variables

• f is a function symbol

• p is a predicate symbol

• θ, t, t1, . . . , tn are terms

• α, γ are arbitrary hybrid programs

• ξ, ϕ, ψ are formulas

The semantic of the assignment [x := θ] is defined as modification of the current
state by assigning the value of θ to the program variable x. Therefore we have to
show that the update application assigns the same value to x in every case. We
name the state that is reached by executing the assignment µ.

We have to show three propositions:

1. The valuation of terms is identical

val,β(ν,U(x, θ, t)) = val,β(µ, t) (2.1)

2. The set of successor states for the hybrid programs is the same

ρ,β(U(x, θ, α))(ν) = ρ,β(α)(µ) (2.2)

3. The valuation of formulas is identical

val,β(ν,U(x, θ, ϕ)) = val,β(µ, ϕ) (2.3)

Proof. From proposition 3 we can conclude that

∀∀ ∀∀β ∀∀ν (, β, ν |= U(x, θ, ϕ) ⇒ , β, ν |= [x := θ]ϕ)

holds.

First we show that proposition 1 holds.

Proof. From the definition of the assignment application (definition 32) we can
derive the following cases.

For terms we get the following valuations in ν.

val,β(ν,U(x, θ, Y)) = val,β(ν, Y)

val,β(ν,U(x, θ, z)) =

{
val,β(ν, θ) if z = x

val,β(ν, z) otherwise

Jan-David Quesel 30 April 17, 2007

Diploma Thesis CHAPTER 2. DIFFERENTIAL DYNAMIC LOGIC

For this three cases we can easily see that the terms in the state get the same
value in µ. In the case of a logical variable the value is not determined by the
state. The states ν and µ are identical for all program variables beside x such
that if z 6= x, the value is same. For the case that the term is x its value is θ in
both cases.

val,β(ν,U(x, θ, f(t1, . . . , tn)))

= val,β(ν, f(U(x, θ, t1), . . . ,U(x, θ, tn)))

= (f)(val,β(ν,U(x, θ, t1)), . . . , val,β(ν,U(x, θ, tn)))
(2.1)
= (f)(val,β(µ, t1), . . . , val,β(µ, tn))

= val,β(µ, f(t1, . . . , tn))

Next we show that proposition 2 holds.

Proof. Using proposition 1 and the definition of the application of assignments
(definition 32) we can easily show that the states that are reachable from ν after
applying the assignment are the same as the states that are reachable from the
state µ. For the cases of differential equations with invariant and state assertions,
we also need proposition 3 to show this.

ρ,β(U(x, θ, (z := t)))(ν) = ρ,β(z := U(x, θ, t))(ν)
(2.1)
= ρ,β(z := t)(µ)

= ρ,β(x := θ; z := t)(ν)

ρ,β(U(x, θ, (z := ∗)))(ν) = ρ,β(z := ∗)(ν) = ρ,β(z := ∗)(µ)

= ρ,β(x := θ; z := ∗)(ν)
ρ,β(U(x, θ, (ż = t ∧ ξ)))(ν) = ρ,β(ż = U(x, θ, t) ∧ U(x, θ, ξ))(ν)

(2.1)∧(2.3)
= ρ,β(ż = t ∧ ξ)(µ)

= ρ,β(x := θ; ż = t ∧ ξ)(ν)

ρ,β(U(x, θ, ?ϕ))(ν) = ρ,β(?(U(x, θ, ϕ)))(ν)
(2.3)
= ρ,β(?ϕ)(µ)

= ρ,β(x := θ; ?ϕ)(ν)

Now lets consider compound programs.

ρ,β(U(x, θ, (α; γ)))(ν) =

{
ρ,β(U(x, θ, α); U(x, θ, γ))(ν) if u(α) and u(γ)

ρ,β(x := θ; α; γ)(ν) otherwise

ρ,β(U(x, θ, (α ∪ γ)))(ν) =

{
ρ,β(U(x, θ, α) ∪ U(x, θ, γ))(ν) if u(α) and u(γ)

ρ,β(x := θ; (α ∪ γ))(ν) otherwise

ρ,β(U(x, θ, (α∗)))(ν) =

{
ρ,β(U(x, θ, α)∗)(ν) if u(α)

ρ,β(x := θ;α∗)(ν) otherwise

Jan-David Quesel 31 April 17, 2007

Diploma Thesis CHAPTER 2. DIFFERENTIAL DYNAMIC LOGIC

For the sequential composition we have to distinguish two cases.

• The first case is that the assignment is applicable on α as well as β. In
this case we know that neither of these programs alter the valuation of x.
Therefore we can conclude from the knowledge that elementary programs
are evaluated equally that in this case the sequential composition is evalu-
ated the same in ν and µ.

ρ,β(U(x, θ, α); U(x, θ, γ))(ν)
(2.2)
= ρ,β(α; γ)(µ)

= ρ,β(x := θ; α; γ)(ν)

• For the other case that the assignment is not applicable a program fragment
is inserted that performs a state transition to µ. Therefore the resulting
formula is directly what we have to show:

ρ,β(x := θ; α; γ)(ν)

The same arguments lead to the conclusion that the non-deterministic choice as
well as the non-deterministic repetition are eveluated equally.

The next proposition to proof is proposition 3.

Proof. From the definition of the application of assignments (definition 32) we
can derive the following cases for the application on formulas:

val,β(ν,U(x, θ, p(t1, . . . , tn)))

= val,β(ν, p(U(x, θ, t1), . . . ,U(x, θ, tn)))

= (p)(val,β(ν,U(x, θ, t1)), . . . , val,β(ν,U(x, θ, tn)))
(2.1)
= (p)(val,β(µ, t1), . . . , val,β(µ,U(x, θ, tn)))

= val,β(µ, p(t1, . . . , tn))

For this elementary formula the equality of the valuation follows from the equal-
lity of the valuation of terms.

val,β(ν,U(x, θ, (¬ϕ))) = val,β(ν,¬(U(x, θ, ϕ)))
(2.3)
= val,β(µ,¬(ϕ))

= val,β(ν, [x := θ]¬(ϕ))

Jan-David Quesel 32 April 17, 2007

Diploma Thesis CHAPTER 2. DIFFERENTIAL DYNAMIC LOGIC

val,β(ν,U(x, θ, (ϕ op ψ))) = val,β(ν, (U(x, θ, ϕ) op U(x, θ, ψ)))
(2.3)
= val,β(µ, (ϕ op ψ))

= val,β(ν, [x := θ](ϕ op ψ))

for op ∈ {∧,∨,→,↔}
val,β(ν,U(x, θ, (∀Y ϕ))) = val,β(ν, ∀Y (U(x, θ, ϕ)))

(2.3)
= val,β(µ,∀Y (ϕ))

= val,β(ν, [x := θ]∀Y (ϕ))

val,β(ν,U(x, θ, (∃Y ϕ))) = val,β(ν, ∃Y (U(x, θ, ϕ)))
(2.3)
= val,β(µ,∃Y (ϕ))

= val,β(ν, [x := θ]∃Y (ϕ))

The first three cases do not alter the state thus we can conclude that they are
evaluated equally. This is also obvious in the cases of quantified formulas.

val,β(ν,U(x, θ, ([α]ϕ))) =

{
val,β(ν, [U(x, θ, α)](U(x, θ, ϕ))) if u(α)

val,β(ν, [x := θ][α]ϕ) otherwise

val,β(ν,U(x, θ, (〈α〉ϕ))) =

{
val,β(ν, 〈U(x, θ, α)〉 (U(x, θ, ϕ))) if u(α)

val,β(ν, [x := θ] 〈α〉ϕ) otherwise

The cases for formulas that are prefixed by a modality split in two cases again.
In the first case the valuation of x is not changed within the execution of the
hybrid program α, thus we can conclude that it is evaluated the same in ν and
µ. For the case that α does modify the valuation of x, a state transition to
µ is inserted, thus the program α is executed always starting from a state µ
and evaluation of the complete formula is identical for assignment case and the
assignment application case.

Soundness of rule R25. The rule R25 is defined as:

(R25)
∀T [x := T]ϕ

[x := ∗]ϕ

We want to show that it is locally sound. Therefore we need to proof that for
all valuations of free variables β and all states ν if the premisses of the rule are
valid under all interpretations  so are its conclusions. We have to show that

∀T [x := T]ϕ |=β,ν [x := ∗]ϕ

holds. Using definition 36 we get:

∀∀β ∀∀ν (∀∀ (, β, ν |= ∀T [x := T]ϕ) ⇒ ∀∀ (, β, ν |= [x := ∗]ϕ))

Jan-David Quesel 33 April 17, 2007

Diploma Thesis CHAPTER 2. DIFFERENTIAL DYNAMIC LOGIC

A implication can only be false, if the premisses are true and the conclusions are
false. Assuming that the premisses are true, we can conclude that for a state ν
[x := T]ϕ holds for every value of T we choose.

The definition of the semantics of the random assignment (definition 26) says
that every successor state of the random assignment is equal to the current state,
but the value of the randomly assigned variable is an arbitrary real number.
Assuming that there is a valid successor state µ in which ϕ becomes false.

By assumption the formula [x := T]ϕ holds for every value of T in the state µ
as well, as it only differs from ν in the value of x which does is not used to evaluate
[x := T]ϕ as the interpretation of x is changed to T . This is a contradiction as
ϕ becomes false if we choose the value µ(x) for x and which means [x := T]ϕ
becomes false if we choose this value for T .

The proof for R26 can be performed along the lines of this proof.

Soundness of R29. We have to proof that the rule R29 is sound. This can be
done similar to the proof of the invariant rule in [Pla04]. The definition of the
rule is:

(R29)
Γ ` Ap,∆ p ` [α] p p ` ϕ

Γ ` A [α∗]ϕ,∆

For proving that this rule is sound, we have to show that

(Γ ` 〈[A]〉 p,∆) ∧ (p ` [α] p) ∧ (p ` ϕ) |= Γ ` 〈[A]〉 [α∗]ϕ,∆

With definition 28 (definition of sequents) we can infer:

ψ := (Γ → (〈[A]〉 p ∨∆)) ∧ (p→ [α] p) ∧ (p→ ϕ) |= Γ → 〈[A]〉 [α∗]ϕ ∨∆

We proof this inductively over the number of iterations performed by the loop.
Assume that the loop is performed exactly n times.

IH If the transition (ν, µ) with p being valid in ν is performed by α∗ within a
maximum of n iterations, then ψ holds.

IA For the case n = 0, we can conclude from p→ ϕ that ψ is valid.

IS For the case n > 0, we know, by assumption, that p holds in the state ν.
Let ν ′ be some successor state with (ν, ν ′) ∈ ρ,β(α). We know by premisses
that p holds in ν ′. Assuming that the loop will be terminated within less
than n iterations from the state ν ′, we can conclude using IH that [α∗]ϕ
holds in ν ′. This means that [α∗]ϕ also holds in ν, as ν ′ is the successor of
ν by performing α once.

For an arbitrary state µ that satisfies the premisses

(Γ → (〈[A]〉 p ∨∆)) ∧ (p→ [α] p) ∧ (p→ ϕ) |= Γ

Jan-David Quesel 34 April 17, 2007

Diploma Thesis CHAPTER 2. DIFFERENTIAL DYNAMIC LOGIC

we can distinguish two cases. Either Γ → ∆ is true, which means that µ also
models Γ → 〈[A]〉 [α∗]ϕ ∨∆. Or Γ is true but ∆ is false. In this case we know
that 〈[A]〉 p holds in µ. Further, we can conclude that there is a state ν with
(ν, µ) ∈ ρ,β(A) and p being valid in ν, which, as the induction shows, implies
that also [α∗]ϕ is true in ν. This leads to the conclusion that 〈[A]〉 [α∗]ϕ holds in
µ as well.

Soundness of R12. The definition of rule R12 is

(R12)
Γ ` ϕ[X 7→ skX(Y1, . . . , Yn)],∆

Γ ` ∀Xϕ,∆
where skX new, Yi free in ϕ

For proving the local soundness of R12 we have to show, that for all valuations
of free variables β and all states ν if the premisses of the rule are valid under all
interpretations  so are its conclusions.

` ϕ(skX(Y1, . . . , Yn) |=β,ν ` ∀Xϕ(X)

Using definition 36 and the definition of the sequent we get:

∀∀β ∀∀ν (∀∀ (, β, ν |= ϕ(skX(Y1, . . . , Yn)) ⇒ ∀∀ (, β, ν |= ∀Xϕ(X)))

We assume , β, ν 6|= ∀Xϕ(X), i.e. there is an element c ∈ R such that
, β[X 7→ c], ν |= ϕ(X). This means that there is an interpretation for skX , the
one that always maps to c, such that , β, ν 6|= ϕ(skX(Y1, . . . , Yn).

Soundness of R14. The definition of rule R14 is

(R14)
Γ ` ∆, qE(∀X(Γ′ ` ∆′))

Γ,Γ′[X 7→ skY (. . .)] ` ∆′[X 7→ skY (. . .)],∆

For proving the local soundness of R14 we have to show that

` qE(∀X(Γ′ ` ∆′) |=β,ν Γ′[X 7→ skY (. . .)] ` ∆′[X 7→ skY (. . .)]

holds. Using definition 36 we get:

∀∀β ∀∀ν (∀∀ (, β, ν |= ` qE(∀X(Γ′ ` ∆′)) ⇒
∀∀ (, β, ν |= Γ′[X 7→ skY (. . .)] ` ∆′[X 7→ skY (. . .)]))

We assume , β, ν 6|= Γ′[X 7→ skY (. . .)] ` ∆′[X 7→ skY (. . .)], i.e. there is at least
one interpretation for skY such that Γ′[X 7→ skY (. . .)] ` ∆′[X 7→ skY (. . .)] be-
comes false. The function skY is a Skolemfunction, so it is rigid as well as its
parameters. This rigidness makes it possible to extract the value of skY from this
interpretation and name it c. This value c is an counter example for ∀X(Γ′ ` ∆′).
As the quantifier elimination is an equivalence transformation on first-order for-
mulas that , β, ν 6|= ` qE(∀X(Γ′ ` ∆′). This means that

` qE(∀X(Γ′ ` ∆′) |=β,ν Γ′[X 7→ skY (. . .)] ` ∆′[X 7→ skY (. . .)]

holds.

Jan-David Quesel 35 April 17, 2007

Diploma Thesis CHAPTER 2. DIFFERENTIAL DYNAMIC LOGIC

Soundness of R15. The definition of rule R15 is

(R15)
qE(∃X

∧
i(Γi ` ∆i))

Γ ` ∆,∃Xϕ

For proving the soundness of R15 we have to show that:

` qE(∃X(
∧
i

Γi ` ∆i)) |=β,ν Γ ` ∃Xϕ,∆

∀∀β ∀∀ν (∀∀ (, β, ν |= ` qE(∃X(
∧
i

Γi ` ∆i))) ⇒ ∀∀ (, β, ν |= Γ ` ∃Xϕ,∆))

As the quantifier elimination is an equivalence transformation we can infer:

∀∀β ∀∀ν (∀∀ (, β, ν |= ` ∃X(
∧
i

Γi ` ∆i)) ⇒ ∀∀ (, β, ν |= Γ ` ∃Xϕ,∆))

Using the definition of the existence quantifier (definition 27.8) and the fact that
X does not occur free in Γ ` ∃Xϕ,∆ we get:

∀∀β ∀∀ν (∀∀ (, β[X 7→ c], ν |= ` (
∧
i

Γi ` ∆i)) ⇒ ∀∀ (, β[X 7→ c], ν |= Γ ` ∃Xϕ,∆))

Since the side deduction triggered by R15 is locally sound, we can conclude:

∀∀β ∀∀ν (∀∀ (, β[X 7→ c], ν |= ` (Γ ` ∆, ϕ)) ⇒ ∀∀ (, β[X 7→ c], ν |= Γ ` ∃Xϕ,∆))

Again we use definition 27.8:

∀∀β ∀∀ν (∀∀ (, β, ν |= ` ∃X(Γ ` ∆, ϕ)) ⇒ ∀∀ (, β, ν |= Γ ` ∃Xϕ,∆))

Using that X does not occur neither in Γ nor in ∆ we get:

∀∀β ∀∀ν (∀∀ (, β, ν |= ` Γ ` ∆,∃Xϕ) ⇒ ∀∀ (, β, ν |= Γ ` ∃Xϕ,∆))

The proofs for the soundness of the rules R13 and R16 can be performed along
the lines of the provided proofs for the rules R12 and R15.

Jan-David Quesel 36 April 17, 2007

Diploma Thesis CHAPTER 3. DESIGN

Chapter 3

Design

3.1 Overview

To provide a computer aided proof system, we have chosen a two tier architecture.
On the one hand we have KeY as the user interface and for providing deductive
methods and on the other hand we have an interface to an arithmetic solver. For a
first implementation we intend to integrate KeY version 1.0 with Mathematica 5.
The user can perform the proof in KeY and can invoke an arithmetic solver using
calculus rules. We have chosen Mathematica as it is known for its symbolic
methods and provides a well documented Java interface called J/Link [Wol07].

In this chapter we describe the design of our software system as well as the
necessary part of the architecture of KeY. The structure of this chapter is as
follows.

First we describe the architecture of the KeY system and which components
are changed to integrate support for dL. Afterwards we will describe how calculus
rules are embedded into KeY.

In the second section we will discuss two alternative approaches to extend KeY
such that it can handle dL formulas. The first is mapping the dL syntax to
the syntax of the already supported JavaCard DL. The second alternative is
extending the parsers and data structures to handle a new syntax for the dL
formulas. We decided that the latter alternative is the promising approach and
present the necessary design steps for implementing it.

Another challenge is the integration of KeY with arithmetic solvers. The last
section of this chapter covers this point and describes our approach to integrate
KeY with Mathematica.

3.1.1 Architecture of the KeY Prover

In figure 3.1 a schematic view on the architecture of KeY [BHS07] is provided.
The user communicates from two sides with the system. First he provides the
Problem File containing the system specification as well as the property to check.
Second he uses the GUI to perform the proof. The problem file is processed by
the problem parser which generates Namespaces containing all declared variables,
functions, predicates and sorts. It also translates the system specification and the
problem into Term objects. This information is used to initialize the proof. The

Jan-David Quesel 37 April 17, 2007

Diploma Thesis CHAPTER 3. DESIGN

Prover

Taclet Engine Built-in Rules

Rule Engine

Strategy Engine

Proof

GUI

Profile

Problem Parser

Problem File

Terms

Namespaces
Taclet Parser

Metaoperators

Taclet Base

interaction

Figure 3.1: KeY Architecture

Jan-David Quesel 38 April 17, 2007

Diploma Thesis CHAPTER 3. DESIGN

specified problem is the root node of the proof tree. Term objects are the common
representation of formulas inside KeY.

The Term data structures are immutable for two reasons. First, the performance
of the matching algorithms is significantly higher, as equality tests can be done
by comparing memory references. Second, no rule can, by programming mistake,
alter a node of the proof graph, it is only possible to append or discard nodes.
To assert that for one logic object the same Java object is used, they are cached
in the Namespaces.

For the initialization also a so called Profile is used. It specifies from which
file the taclets are loaded and which built-in rules to use. Taclets are a special
representation for calculus rules. They were introduced to make it easier to add or
change rules, as well as to avoiding programming mistakes in the implementation
of rules. Rules formulated in the taclet language are easier to check for soundness
as rules programmed in pure Java as the taclet language is simpler and specially
designed for the specification of calculus rules. For a detailed description of taclets
and built-in rules see section 3.1.2. By default KeY supplies a Profile for pure
FOL as well as one for Java Card DL. We add a Profile especially for dL.

The taclets are loaded using a specific Taclet Parser. This parser is an extended
version of the problem parser. It can handle schematic problem descriptions which
can contain calls to metaoperators as well as schema variables.

The Taclet Engine is an abstraction of the taclet processing mechanism. It can
check whether a taclet is applicable on a specific formula and, if this is the case,
apply it to that formula. The Rule Engine is the combination of the taclet engine
and the built-in rules. It uses the taclet engine to handle taclet based rules and
can process the built-in rules as well. The Strategy Engine is used for automation
of proofs. It processes a proof strategy defined by the Profile. A strategy is
basically a cost relation. It maps costs, depending on the current formula and
the previous rules applied, to rules. The cheapest applicable rule is to be applied.
The strategy engine can determine as well which proof goal should be processed
next.

For our extension we leave the GUI unchanged. Also we did not alter the
strategy engine, nor the taclet engine or the rule engine. We created a taclet base
for the dL calculus based on the existing taclet base for propositional logic. Also
we extended the parsers thus they can understand dL formulas. Additionally, we
added built-in rules that are only necessary in the dL context. They are used to
handle the real valued arithmetic that is inherent to dL but does not occur in
the JavaCard DL context, as Java only uses integer arithmetics. To make it
possible to translate most of the rules into the taclet language we added a few
new metaoperators.

3.1.2 Calculus Embedding

In KeY there are two ways to implement the calculus rules. They can either be
described as a taclet or they can be implemented in pure Java as so called built-in
rule. In this section we will describe both alternatives and distinguish the cases
where to use which alternative.

Jan-David Quesel 39 April 17, 2007

Diploma Thesis CHAPTER 3. DESIGN

Taclets KeY features a taclet language [BHS07] to describe calculus rules. An
example taclet is shown in figure 3.2.

Taclet

all_right {

\find (==> \forall u; b)

\varcond (\new(sk, \dependingOn(b)))
\replacewith (==> {\subst u; sk}b)

\heuristics (delta)

};

Taclet

Figure 3.2: Example for a taclet

We will describe only the relevant part of the taclet language here. A complete
specification can be found in [BHS07].

Taclets consist of a find clause, to ascertain if they are applicable and to
determine which formula in a sequent is changed as well as a replacewith clause
to describe their effect. The rule in the example watches on an universal quantifier
on the right side of a sequent. The quantifier is dropped and a new Skolem
symbol is added substituting the prior quantified variable. The Skolem symbol
is introduced using a variable condition, specified with the keyword varcond. In
this case two condition are made for the Skolem symbol. First it has to be a fresh
variable, i.e. must not occur anywhere else in the proof, and a dependency to the
free variables occurring in the quantified formula is added.

The keyword varcond is always used to specify conditions for symbols that are
introduced by the taclet. In the example two conditions on sk are specified. The
keyword new donates that sk is a fresh symbol, whereas dependingOn is used to
specify that it is depending on the free variables occurring in the formula b.

There is another keyword called assumes that can be used to specify that for
making the rule applicable a certain formula has to occur in the sequent. This
is illustrated in figure 3.3. Formulas specified in the find clause are replaced by
those specified in the replacewith clauses. The formulas specified in the assume
clause are left unchanged.

Also a heuristic group can be specified using the keyword heuristics. The
heuristic group is used when the prover is in the automatic mode. The taclets are
sorted into groups, to make it easier to describe which taclets should be applied
with which priority.

The formulas specified in the different clauses are basically the same that can
occur in the problem description. Additionally, they can contain so called schema
variables. These schema variables are used as place holders for a special sort
of formula element. While checking if a rule is applicable, the existing schema
variables are instantiated with terms contained in the current formula. The rule is
applicable, if all schema variables can be instantiated correctly, i.e. the instance is

Jan-David Quesel 40 April 17, 2007

Diploma Thesis CHAPTER 3. DESIGN

Γ,¬A ` ∆

Γ,¬A ` ∆, A ∨ A

\find{==> A | A}

\replacewith{==>}

\assumes{!A ==>}

Figure 3.3: Relation between sequent calculus rules and taclets

chosen with respect to the type of the schema variable, and the structure matches
the formula structure specified in the taclet. In our example there are the schema
variables u, b and sk. The schema variable u is a placeholder for an arbitrary
logical variable, b is schema of a formula and sk is a placeholder for a function
symbol.

Another common sort for a schema variable is e.g. \modaloperator{ dia-

mond, box }. A schema variable with this type matches the modalities box ([])
and diamond (<>) and thus can be used to easily model the calculus rules that
do not depend on the type of the modality like R19.

There are two kinds of taclets. First there are so called rewrite taclets that
can be applied to any formula or subformula. This can be used for e.g. replacing
modalities that only contain assignments with updates. Updates are the approach
used in KeY to delay the application of assignments. The second type of taclets
is the straight forward implementation of rules from a sequent calculus. They
contain the sequent symbol (==>) in the find as well as the replacewith clause,
so they can handle the different sides of the sequent differently. Those taclets only
work on complete formulas, whereas rewrite taclets can match parts of formulas.

Metaoperators are special symbols that make it possible to express complex
transformations. These metaoperators are implemented in pure Java, thus they
can be used for e.g. the handling of differential equation systems. These systems
can be matched using the taclet mechanism but for solving them we need to call
an arithmetic solver which can only be done using pure Java code.

While applying the taclet the metaoperator is evaluated. The call to the meta-
operator is replaced by its output.

An example for a taclet using a metaoperator is presented in figure 3.4. Here
the metaoperator #dlunwind is used. The metaoperator transforms its input
depending on the modality type as demanded by the rules R23 or R22. In this
example #dl is a schema variable that can stand for an arbitrary hybrid program.

Even with the use of metaoperators, not every sound rule of a sequent calculus
can be expressed using taclets. Taclets can only be used to express rules that are
sufficiently local, i.e. it is for example not possible to express a rule that explicitly
refers to all of the formulas in the sequent.

Jan-David Quesel 41 April 17, 2007

Diploma Thesis CHAPTER 3. DESIGN

Taclet

loop_unwind {

\find (

\modality{#allmodal}
#dl*

\endmodality(post)
)

\replacewith(
#dlunwind(

\modality{#allmodal}
#dl

\endmodality(post)
)

)

};

Taclet

Figure 3.4: Example for a taclet using a metaoperator

A solution to implement those rules are so called built-in rules.

Built-in Rules The second way to implement calculus rules in KeY are so called
built-in rules. These rules can work on the whole sequent or even on the whole
proof. They are written in pure Java, thus implementation faults can easily
occur in these implementations. For this reason, they should only be used if its
impossible to express the rule as taclet, as the restrictions made by the taclet
language help to avoid implementation faults.

All built-in rules have to implement the interface BuiltInRule which is a subin-
terface of Rule. The interface Rule demands that the implementing class imple-
ments a method for the application of the rule. This method is called apply.
It takes 3 parameters. The first is the current goal, the second is the current
configuration represented as Services object and the third is a RuleApp object
that describes to which formula the rule is applied. The last object can be ex-
tended to pass more informations to the built-in rule. This function has to return
a ListOfGoal which is the list of successor nodes in the tree. If this function
returns null the rule does not have any effect on the proof. An empty list as
return value stands for closing the current goal. The Interface BuiltInRule also
demands that a method called isApplicable is implemented. This method is
used to determine whether the built-in rule is applicable or not.

One example for such a case is the ReduceSequence rule, that is used to elimi-
nate arithmetic using the whole knowledge provided by a sequent. When applying
this rule the user may provide a list of variables that should be reduced. This
list is passed to the rule using an extended RuleApp object. The rule is described

Jan-David Quesel 42 April 17, 2007

Diploma Thesis CHAPTER 3. DESIGN

more extensively in section 4.2.2.2.

3.2 Integration

KeY is designed to prove Java Card DL formulas, thus the parsers only accept
Java programs in the modalities. Since changing this behavior is time intensive,
we have considered a Java embedding of the hybrid programs.

3.2.1 Java Embedding of Hybrid Programs

In this section we describe our approach to rewrite hybrid programs in a Java
syntax and argue why we decided to implement our own parser and program
representation instead of embedding the hybrid programs into Java syntax.

The chop operator can be mapped straight forward to the sequential composi-
tion used in Java, as it already uses the ; as representation. We intended to repre-
sent the choice (α ∪ γ) using a construct like if(nondet()) alpha else gamma.
The condition nondet() has to be a function of type boolean that is handled
specially by the rules, i.e. there have to be rules that can handle this special
symbol, as well as it has to be prevented that other rules handle this symbol like
a common function symbol.

The symbol nondet() is used to express non-determinism, i.e. it can randomly
change its value. The same symbol is used to represent the non-deterministic
repetition (α∗) as while(nondet()) alpha. To integrate state assertion we in-
tended to use if as well. One major problem with this is the fact that KeY has to
distinguish between normal predicate symbols and the special symbol nondet().
This could be achieved by introducing a new schema variable type that matches
all expressions others than nondet().

Also a formula representation has to be found for quantifier free formulas within
Java. It is necessary that the user defines every variable used inside the program
with a Java type. Also Java only provides boolean operators for the negation,
disjunction and conjunction. Thus the implication and equivalence can only be
expressed as special function symbols.

So we have a representation for the combination operators and the state asser-
tions, but what about the assignment and the continuous evolutions?

The translation of assignments is straight forward again. Java uses as-
signments as well, so we can just keep its syntax for that. The assignment
(x := θ) would simply become x = theta. The real problem is the embed-
ding of the continuous evolutions. We considered representing them within a
do { ... } while(diffsystem); statement and use a boolean array as encap-
sulation of the system itself. The representation of a differential equation system
({ẋ = θ1, ẏ = θ2, x < θ3}) is shown in figure 3.5.

The fact that using Java constructs for the syntax of hybrid programs would
lead to unreadable formulas, especially of those containing differential equation
systems, has motivated the decision to extend KeY in order that it can han-
dle the syntax of hybrid programs. This strategy is corroborated by the fact

Jan-David Quesel 43 April 17, 2007

Diploma Thesis CHAPTER 3. DESIGN

Java

do {

new Boolean[] {

dot(x) == theta1,

dot(y) == theta2,

x < theta3

};

} while(diffsystem);

Java

Figure 3.5: Java embedded differential equation system

that hybrid programs behave differently in comparison to Java. In Java, state-
ments can have side effects, which is a compelling case to handle statements
in, e.g., a while-loop condition carefully. An illustrating example would be
while(i++ < 20) { ... }. Here the condition is not a simple condition, but
it is a combination of an assignment and a condition. The embedded assignment
is the increment operator ++ that increases the value of i after the expression is
evaluated.

Also in hybrid programs real valued variables are used, whereas KeY only
provides rules for handling integers, thus we cannot reuse many of the existing
rules. A major problem would also be error tracing for the user. KeY uses Re-
coder [GHT07] to parse the Java programs. As alternating Recoder is unworthy
of discussion, as even the KeY developers decided to rather implement an own
Java parser for the schema part instead of extending Recoder, we can not pro-
hibit function calls in expression and other Java syntax we cannot handle. These
are convincing reasons to integrate a special syntax for hybrid programs.

3.2.2 Abstract Syntax of dL Formulas in KeY

To give an idea how the formulas used for system specification look like we present
an abstract syntax description of the formulas, that can be specified in KeY in this
section. We abstract from the use of parenthesis and abbreviate some productions.
Table 3.1 shows the grammar of the abstract syntax. This syntax description is
more technical than the syntax presented in section 2.2. Here we do not abstract
from different objects representing formula parts that look identical. The abstract
syntax should make it easier to understand our data representation presented in
the following sections.

The connection between the syntax definition in section 2.2 and the abstract
syntax presented here is as follows. The set of terms T (V ,S,Σ) is constructed
by the productions expr for terms in the FOL part of the formula and α-expr
for terms used inside programs. As derivatives may only occur inside differential
equation systems, a production is added that construct these terms. It is called
diffexpr. The set of hybrid programs is constructed by the production α for

Jan-David Quesel 44 April 17, 2007

Diploma Thesis CHAPTER 3. DESIGN

Form ::= ∀XForm | ∃XForm | [α]Form | 〈α〉Form
| Form ∧ Form | Form ∨ Form | Form → Form
| ¬Form | atom

atom ::= p(expr, . . . ,expr) | p
expr ::= f(expr, . . . ,expr) | f | y | NUM
α ::= α;α | α ∪ α | α∗ | atomic-α
atomic-α ::= ?α-form | {diffsystem} | z := α-expr | z := ∗
α-form ::= α-form ∧ α-form | α-form ∨ α-form

| α-form → α-form | α-form ↔ α-form | ¬α-form
| α-atom

α-atom ::= p(α-expr, . . . , α-expr) | p | α-expr ∼ α-expr
α-expr ::= f(α-expr, . . . , α-expr) | f | α-expr⊕ α-expr

| − α-expr | (α-expr)(α-expr) | y | NUM
diffsystem ::= (diffequation | α-form)(,diffequation | α-form)∗

diffequation ::= ż = diffexpr
diffexpr ::= f(diffexpr, . . . ,diffexpr) | f | ż | y | NUM

| diffexpr⊕ diffexpr | −diffexpr
| (diffexpr)(α−expr)

Table 3.1: Abstract syntax of dL formulas

compound programs and atomic-α for elementary programs. The set of formulas
F(V ,S,Σ) is constructed by the production Form for compound formulas and
atom for elementary ones. The quantifier free formulas that may occur inside
hybrid programs on the other hand are constructed by the production α-form.

Some of the symbols used in the figure are placeholders. The symbol X stands
for a logic variable, z stands for a program variable, whereas y stands for either
a logic or program variable. Numbers are represented by NUM. Predicate and
function symbols are donated by p and f. Binary relation for comparing terms
are given by ∼∈ {<,≤,=,≥, >}. The mathematical operators are abbreviated
by ⊕ ∈ {+,−,×,÷}.

We distinguish between the productions expr and α-expr here because the
first one is part of the input language of KeY by default, whereas the latter
one is part of our extension. One might remark that there are neither the usual
mathematical function symbols nor the common predicates predefined in the FOL
part of the formula construction. This is because the design of the KeY parser
is different from ours. For the FOL part the mathematic function are defined in
the taclet files and for easier input and better readability the parser and the GUI
have a mapping between the functions and a human readable representation.
For example in the taclet files for dL there is a function R mul(R,R) which is
printed as the common symbol ×. It is possible to switch this pretty printing
off in the KeY GUI. But for some reason the functions are saved in the pretty
printed version, which leads to problem with e.g. with the exponential function,
as the common operator for exponential function (^) is used as an internal parser
symbol.

Jan-David Quesel 45 April 17, 2007

Diploma Thesis CHAPTER 3. DESIGN

As for dL programs these predicate and function symbols are essential, we
decided to integrate them directly into our grammar.

The differential equation systems are represented by a comma separated list of
differential equations and invariant constraints. The comma symbolises a conjunc-
tion. The differential equations (diffequation) are equations that can contain
a special symbol dot. It donates the Newton notation of derivatives. For example
ż is the first derivative of z with respect to time. It may be noted that the exten-
sion from a single differential equation with invariant to a system of differential
equations with invariants is sound (see [Pla07c]).

3.2.3 Syntax Tree

We represent the dL formulas using their abstract syntax tree produced by the
abstract syntax described in the previous section. The representation of the first-
order part of the formulas left unchanged to the prior implementation of KeY.
In KeY there is a class called Term. A Term is an inner node of the syntax tree.
The children of a Term are Operators, JavaBlock objects and Term objects again.
One of the children of a Term is always an Operator. The operator implements an
interface called Operator. The operators can be the common first-order functions,
predicates or variables or operators like ∀,∃,∧,∨, . . . , modalities, substitutions
or updates. This covers the productions Form, atom and expr.

If the operator is a modality, the Term has two other children. One is the
JavaBlock containing the program description. The other child is postcondition
of the modality. The JavaBlock itself contains a Statement which is the point
we insert our data structures for hybrid programs. This statement is the root
node of the data structures produced by the production α and its successors.

The following example illustrates how a simple formula is represented using the
Term data structure.

Example 4. The representation of the formula −5 < 0 would look like this:

Term

Op Term

Op Term

Op

Term

Op

◦

< ◦

- ◦

5

◦

0

The data structures we use for hybrid programs are slightly different. The
following example should illustrate the differences and a detailed description of
the data structure design is provided in section 3.2.4.

Example 5. The representation of the hybrid program ?− 5 < 0 looks as follows.

Jan-David Quesel 46 April 17, 2007

Diploma Thesis CHAPTER 3. DESIGN

Quest

PredicateTerm

Predicate FunctionTerm

MinusSign Constant

Constant

?

◦

< ◦

- 5

0

3.2.4 Data Structures for Hybrid Programs

The architecture of KeY demands that all elements that can occur in a modality
implement the interface ProgramElement. As the Term objects used for the for-
mula representation of the FOL part in KeY do not implement this interface, it
is impossible to use inside the programs. The methods used to access the data
structures differ between the logic part and the program part and the Term class
is not intended to implement the interface ProgramElement. Also the elements
used for representation of the Java syntax contain Java specific data, that is not
necessary in our context. For these reasons we decided to design a complete set
of data structures for the hybrid programs.

In section 3.2.2 we presented the abstract syntax of the formulas. Section 3.2.3
was used to illustrate how the first-order part of the formulas is represented and
where we integrate our extension. In this section we present the data structures
used to represent the syntax for hybrid programs. We refer to the productions
presented in table 3.1. Figure 3.6 shows the interface structure for the programs.
These interfaces are used for representation of the results of the productions
of α and atomic-α. The figure 3.7 illustrates the interface structure for the
formulas that can occur in the programs resulting from the productions α-form
and α-atom. Figure 3.8 shows the interface structure for expressions that result
from the productions α-expr, diffsystem, diffequation and diffexpr.

The data structures for the hybrid programs are modelled with the abstract
factory pattern [GHJV95]. For a description of this pattern see appendix A sec-
tion A.3.1. This pattern is supported by the marker interface pattern [GHJV95]
which is already embedded in the Java language (see section A.2.3). In our case
our abstract factory is called TermFactory. The abstract products are the leafs
of the interface hierarchy presented in this section.

To have a common supertype, we decided that all our interfaces specialize the
interface DLProgramElement. This interface is a subinterface of ProgramElement
so we satisfy the requirements of KeY for objects occurring in programs. The
interface ProgramElement demands that the implementing classes provide two
methods for the visitor pattern [GHJV95] (see section A.4.1).

We have decided that it is the most natural form for tree structures if the
operator serves as the parent of its operands, thus we model the data structures in

Jan-David Quesel 47 April 17, 2007

Diploma Thesis CHAPTER 3. DESIGN

Figure 3.6: Data structures for dL programs resulting from productions α and
atomic-α

Jan-David Quesel 48 April 17, 2007

Diploma Thesis CHAPTER 3. DESIGN

this way where ever there is no disadvantage to the introduction of a composition
object. This has no special advantage compared to the composition approach,
but we had to make a decision and this way modelling looked more intuitive to
us.

The non-terminal α is represented by the interface DLProgram. The inter-
face ElementaryDLProgram represents the non-terminal atomic-α. The opera-
tors on program level are Chop for the sequential composition, Choice for the
non-deterministic choice and Star for the non-deterministic repetition. They
all implement DLNonTerminalProgramElement and DLProgram. The interface
DLNonTerminalProgramElement specifies that the implementing class can store
children and these children can be accessed in the common way used in KeY inside
programs. The DLNonTerminalProgramElement additionally demands that the
iterator pattern is implemented. Is is especially useful in the context of Java 1.5
as it enables the usage of the extend for-loop.

The children of non-terminal DLProgram objects have the common type DLPro-
gram again such that we can built up a recursive data structure. The leaves of the
tree are Quest for a state assertion, Assign and RandomAssign for a (random)
discrete state change as well as DiffSystem for continuous evolutions.

DLProgram implements the Statement interface supplied by KeY. As mentioned
before the JavaBlock can store a Statement such that we can easily integrate it
within the existing data structures for modalities by implementing the Statement
interface.

Formulas are modelled to a large extend in the same way as programs. The
formula operators all implement DLNonTerminalProgramElement and their chil-
dren are formulas of type Formula. The interface Formula is the representation
of the non-terminal α-form.

The first exception in the tree modelling are the data structures for formulas.
Here we use a special element for composition of an operator and its operands
(see example 5).

This way we need only one object per predicate name. They are cached using
a WeakHashMap, thus they are freed when their name is not referenced anymore.
This is important, as otherwise equality checks would be expensive. As the equal-
ity checks have to be performed to determine if a rule is applicable or not and
these checks are performed many times it is necessary that these checks can be
performed quickly. Two formulas are equal iff all their subterms at the same
position are equal. A composition term is equal iff all its children are equal with
respect to their order. As the predicates are shared, i.e. there is only one ob-
ject per number, function or predicate symbol, we can use the reference equality
(==) provided by Java to check this and delegation on the composition objects.
Without the composition model, it would be necessary to determine equality of
String objects. Another effect of this data structure is that we can share these
predicates between proofs to save memory.

The composition operator on formula level is called PredicateTerm and its
first child is always a Predicate, the rest is of type Expression. The interface
PredicateTerm is the representation of the non-terminal α-atom.

Jan-David Quesel 49 April 17, 2007

Diploma Thesis CHAPTER 3. DESIGN

Figure 3.7: Data structures for formulas within dL programs generated by the
productions α-form and α-atom

Jan-David Quesel 50 April 17, 2007

Diploma Thesis CHAPTER 3. DESIGN

The data structures for the expressions are shown in figure 3.8. A detailed view
on the data structures for the functions is presented in figure 3.9. The expressions
are related to the productions α-expr as well as diffexpr.

For the same reasons we model expressions with a composition operator. Here
it is called FunctionTerm and we share the functions instead of the predicates.

3.3 Mathematica Integration

Wolfram supplies a library for accessing Mathematica with Java functions. It
is called J/Link [Wol07]. J/Link can start Mathematica kernels and pass over
queries. These queries can either be Strings or of type Expr. We use the
Expr representation as it supports our recursive algorithm and String related
implementation faults can be avoided. The Expr format is a rather simple rep-
resentation of formulas. Instead of using many different classes to represent the
formula tree, Expr objects each have a node type. Only the leafs of the tree hold
informations. The inner nodes are just composition nodes. The format has the
expressive power of the FullForm strings in the Mathematica interface.

Our interface to Mathematica (see figure 3.10) is designed as a client-server
architecture. There is a server which performs the calculations implemented in
the class KernelLinkWrapper and on the client side there is the IMathSolver

interface for accessing the server side functions. Client and server communicate
using Java RMI.

RMI is the abbreviation for Remote Method Invocation. It is used for mod-
elling distributed computation in Java. With RMI Java objects can easily be
distributed between different applications on the same or on another machine.
The function the client wants to access has to be declared in an interface in our
case IMathSolver. By contract, all methods that can be accessed remotely have
to have a throws clause that specifies that they may throw a RemoteException.
Since Java 1.5 the stubs for the client side including the delegation code for the
communication with the server is generated automatically. The parameters of the
remote methods have to be serializable as they are passed as XML stream over
the network. As not all objects used for the formula representation in KeY are
serializable the translation is completely performed on the client side.

The MathSolverManager is the central class on client side. It provides access to
the available arithmetic solvers. At the moment there is only an implementation
for accessing Mathematica but the architecture is kept generic for later extensions.
We use a XML [BPSM97] file for configuration. This file describes which solvers
are available and how they have to be initiated.

The Mathematica interface on the client side is further separated into one wrap-
per class to implement the IMathSolver interface and a converter class called
MathematicaDLBridge. The latter one uses different specialized converters. The
translation from differential equation systems is done by the DL2ExprConverter.
The Term2ExprConverter is capable of translating first-order formulas that are
represented as Term objects into the Expr format. The third convert is the
Expr2TermConverter. It translates the result provided by Mathematica into

Jan-David Quesel 51 April 17, 2007

Diploma Thesis CHAPTER 3. DESIGN

Figure 3.8: Data structures for expressions within dL programs generated by α-
expr, diffequation and diffexpr

Jan-David Quesel 52 April 17, 2007

Diploma Thesis CHAPTER 3. DESIGN

Figure 3.9: Data structures for functions within dL programs

Jan-David Quesel 53 April 17, 2007

Diploma Thesis CHAPTER 3. DESIGN

the Term format. In either case the translation is performed recursively. Using
these converters the MathematicaDLBridge creates queries in the Mathematica
Expr format and handles the result. The MathematicaDLBridge returns Term

objects, which are the usual representation of formulas in KeY. The server only
has to handle Expr objects, thus it is independent from KeY.

The translation is in either case performed by a recursive algorithm that trans-
forms the abstract syntax tree from one representation to another one.

Example 6. Lets consider the example formula x > 0 ∨ y < 5. In the Term rep-
resentation this is:

Term

Op Term

Op Term

Op

Term

Op

Term

Op Term

Op

Term

Op

◦

∨ ◦

> ◦

x

◦

0

◦

< ◦

y

◦

5

In the Expr syntax this becomes Or[Greater[x,0],Less[y,0]].
Another example is the case when Mathematica returns a rational number. In

the Expr syntax this is e.g. represented as Rational[1,2] for 1
2
. We represent

this in the Term data structures as devision.

The interface IMathSolver provides methods for simplification of formulas,
quantifier elimination, solving of differential equation systems and counter exam-
ple derivation.

Simplification is done using the functions Simplify and FullSimplify pro-
vided by Mathematica. Simplify can optionally take a set of formulas that are
assumed to hold. This is also supported by our implementation. The quantifier
elimination is done using the function Reduce. This function can optionally take
a set of variables to eliminate. This is especially useful when handling formu-
las with a large number of variables. Mathematica is able to solve differential
equation systems using the function DSolve. We propagate this functionality to
handle the continuous evolutions that can occur inside hybrid programs. Another

Jan-David Quesel 54 April 17, 2007

Diploma Thesis CHAPTER 3. DESIGN

useful feature is the function FindInstance. This function tries to find a satisfy-
ing valuation for a given formula. This is useful for finding counter examples, as
if there is a satisfying valuation for the negation of a formula, it cannot be valid.

Figure 3.10: Mathematica interface design

Jan-David Quesel 55 April 17, 2007

Diploma Thesis CHAPTER 3. DESIGN

Jan-David Quesel 56 April 17, 2007

Diploma Thesis CHAPTER 4. IMPLEMENTATION

Chapter 4

Implementation

4.1 Overview

In this chapter we present implementation details. The chapter structure is the
same as in chapter 3; first we will describe the implementation that is related to
KeY, followed by a description of Mathematica related implementation details.
Additionally, we will describe the input format of KeY and how it can be used in
the last section of this chapter.

4.2 KeY Extension

In this section we describe the implementation of the extensions made to KeY. As
mentioned earlier, by default the KeY parsers only permit Java programs within
the modalities. We have extended the parser thus it can handle hybrid programs
as well.

4.2.1 Parsing

The problem parser of KeY consists of two parts. The main problem parser can
parse the problem file without handling the modalities. For handling the modal-
ities Recoder [GHT07] is invoked. Recoder is a parser for Java programs. We
decided to add a ProgramBlockProvider that is invoked on parsing time and
can either handle Java, using Recoder, or hybrid programs. Which implemen-
tation of the ProgramBlockProvider is to be used is determined by the current
Profile. We created implementations of the ProgramBlockProvider for the dL
Profile as well as for the Java Profile. This way our extended version of KeY
is still able to check Java programs when using the Java profile.

For the integration of hybrid programs we have implemented a two stage parser
in ANTLR [PQ95]. The first stage produces a classic homogeneous syntax tree. In
this regard“homogeneous”donates that there is only one class file for all elements
of the tree which are distinguished by a token field (see example 7). As for KeY
conventions each element that can occur in a modality has to implement the
interface ProgramElement, we decided to add a second parsing stage to generate
a heterogeneous syntax tree. This stage is realized using the TreeParser mode of
ANTLR. The transformation is illustrated in figure 4.1.

Jan-David Quesel 57 April 17, 2007

Diploma Thesis CHAPTER 4. IMPLEMENTATION

Input Data

KeY

Heterogeneous Syntax Tree using

DLProgramElement

DL. . . DL. . .

Stage 2 Parser

Homogeneous Syntax Tree using CommonTree

Stage 1 Parser

Figure 4.1: Two stage parsing of hybrid programs

Example 7 (Homogeneous Syntax Tree). The syntax trees generated by ANTLR
are homogeneous using only the class CommonTree this means a syntax tree looks
like this:

CommonTree

CommonTree

CommonTree CommonTree

CommonTree

CommonTree

CommonTree

Where each of these CommonTree objects holds a Token for identification.

The first parsing stage reads the input data passed over by the problem parser.
This input data is a string representation of a hybrid program. It is transformed
into an homogeneous syntax tree. The second parsing stage is a context free
grammar annotated with semantic expressions that produce a representation of
the hybrid program using the data structures described in section 3.2.4.

Jan-David Quesel 58 April 17, 2007

Diploma Thesis CHAPTER 4. IMPLEMENTATION

As mentioned in the previous chapter we model the data structures using the
abstract factory pattern. We already described the abstract interface structure.
In this section we present the concrete implementation of the data structures.

The design of the data structures described in section 3.2.4 is implemented in
the classes shown in figures 4.2, 4.3, 4.4, 4.5 and 4.6. Our design contains multiple
inheritance. As Java does not allow this for classes, the class model is a tree. As
the multiple inheritance was manly used for tagging objects, the transformation
was simple.

Tha class DLNonTerminalProgramElementImpl implements the iterator pat-
tern [GHJV95] (see section A.4.2). This way we can easily access its children
using the foreach loop introduced in Java 1.5. The provided iterator is DLNon-
TerminalPrograMElementIteratorImpl. We have not defined a special interface
for it, as the methods provided by the interface Iterator are sufficent for our
needs. This interface is part of the Java class library.

It may be noted that the subclasses of ComparsionImpl are all singleton as
well as the classes PlusImpl, MinusImpl, MinusSignImpl, MultImpl, DivImpl
and ExpImpl. These classes can be implemented using the design-pattern sin-
gleton [GHJV95] (see section A.3.3) as they represent mathematical operations
whose interpretation or presentation does not change. They are by design
used by PredicateTermImpl and FunctionTermImpl as operators. The classes
FreePredicateImpl and FreeFunctionImpl are used to represent predicates and
functions that are not known to the system by default. Functions like sine can
be integrated as free functions as well. The classes FreePredicateImpl, Free-
FunctionImpl and ConstantImpl have integrated caches that assure that there
is only one object at a time per name. The class ConstantImpl is used to rep-
resent numbers. They are represented as BigDecimal to keep the representation
as accurate as possible.

4.2.2 Calculus Embedding

In this section we describe the integration of an altered version of the calculus
described in section 2.4. We decided to keep the same taclets for the propositional
part of the formulas and to take on the rules for hiding that already exist for the
handling of formulas occurring in a sequent deduction in KeY. This way we could
base on the knowledge of the KeY developers.

In table 4.1 we present an overview which class of rules is implemented with
which methods. We distinguish tree types of implementations: Rules imple-
mented as taclet, rules implement as taclet using metaoperators and rules imple-
mented as built-in rules. It may be noted that we implemented most of the rules
for handling hybrid programs as rewrite rules, as they are local transformations.

We have not implemented an approach for the handling of existential quantifiers
on the right side or universal quantifiers on the left side of the sequent yet. The
reason for this is that there is no native support for side deductions in KeY and
proofs are considered to be trees. Therefore none of the presented approaches for
handling these quantifiers could be implemented easily and we decided to focus
on a sound implementation of the other rules and a case study that presents the

Jan-David Quesel 59 April 17, 2007

Diploma Thesis CHAPTER 4. IMPLEMENTATION

Figure 4.2: Implementation of data structures for non-terminal dL programs

Figure 4.3: Implementation of compound formulas

Rules for

Propositional
Logic

FOL Hybrid Programs

Implemented
as

Taclet x x x
Metaoperator x
Built-in x x

Table 4.1: Relation between rule classes and implementation method

Jan-David Quesel 60 April 17, 2007

Diploma Thesis CHAPTER 4. IMPLEMENTATION

Figure 4.4: Implementation of data structures for terminal dL programs

Figure 4.5: Implementation of data structures for comparisons

Jan-David Quesel 61 April 17, 2007

Diploma Thesis CHAPTER 4. IMPLEMENTATION

Figure 4.6: Implementation of data structures for functions

expressive power of the implemented fragment. As we will see, some existential
quantifiers on right or universal quantifiers on the left side could be handled
using other rules already. So a specification that contains these quantifiers is not
in general out of the implemented fragment.

The translation of the Skolemization rules R12 and R13 is straight forward.
The rule R12 is in taclet representation:

Taclet

all_right {

\find (==> \forall u; b)

\varcond (\new(sk, \dependingOn(b)))

\replacewith (==> {\subst u; sk}b)

\heuristics (delta)

};

Taclet

Whereas the rule R13 becomes:

Taclet

ex_left {

\find (\exists u; b ==>)

\varcond (\new(sk, \dependingOn(b)))

\replacewith ({\subst u; sk}b ==>)

\heuristics (delta)

};

Taclet

In these taclets 3 schema variables are used: u is a schema for a logical variable,
b is a schema for a formula and sk is a schema for a function symbol.

Jan-David Quesel 62 April 17, 2007

Diploma Thesis CHAPTER 4. IMPLEMENTATION

The translation of the rules that handle the sequential composition or the non-
deterministic choice can be performed easily as well. They use 5 schema variables:
#allmodal stands for an arbitrary modality, #dia stands for the diamond modal-
ity, #box for the box modality, #dl and #dl2 are schemata for arbitrary hybrid
programs. The rule R19 as taclet looks like this:

Taclet

modality_split {

\find (

\modality{#allmodal}
#dl;#dl2

\endmodality(post)
)

\replacewith(
\modality{#allmodal}

#dl

\endmodality(
\modality{#allmodal}

#dl2

\endmodality(post)
)

)

\heuristics(simplify_prog)
};

Taclet

We represent the non-deterministic choice ∪ with the ASCII [Int83] symbols ++,
thus the rule R20 is translated to the taclet language as follows.

Taclet

diamond_choice {

\find (

\modality{#dia}
#dl ++ #dl2

\endmodality(post)
)

\replacewith(
\modality{#dia}

#dl

\endmodality(post)
|

\modality{#dia}
#dl2

\endmodality(post)
)

\heuristics(simplify_prog)

Jan-David Quesel 63 April 17, 2007

Diploma Thesis CHAPTER 4. IMPLEMENTATION

};

Taclet

For the box case R21 the disjunction is simply replaced by a conjunction.
Some of the elementary programs are handled by simple taclets as well. There

are the rules R17 and R18 for handling state assertions, that can be easily
translated into the taclets diamond_quest and box_quest. The schema vari-
able #dlform matches a formula inside a hybrid program. It is translated into
the corresponding Term representation by the TypeConverter. This class is re-
sponsible for the translation of program elements into logic elements, when they
are dragged to the logic level. We extended the TypeConverter so that it can
convert the formulas occurring in hybrid programs into the common Term repre-
sentation. In the following taclet this schema variable occurs in two contexts. In
the find clause it represents the formula of a state assertion. In the replacewith
clause it is on the logical level. As the operators for the conjunction and impli-
cation are only defined on formulas (represented by the sort Sort.FORMULA), the
schema variable has to have a different sort depending on its position. In the
program context its sort is ProgramSVSort in context of a propositional formula
its sort is Sort.FORMULA. The schema variable post is a schema for an arbitrary
dL formula.

Taclet

diamond_quest {

\find (\modality{#dia}?#dlform\endmodality(post))
\replacewith(#dlform & post)

\heuristics(simplify_prog)
};

Taclet

Taclet

box_quest {

\find (\modality{#box}?#dlform\endmodality(post))
\replacewith(#dlform -> post)

\heuristics(simplify_prog)
};

Taclet

For handling the assignment rule R24 we use a taclet as well. It uses schema
variables to match both sides of the assignment. On the left side of an assignment
there is always a program variable, that is matched by #dlvar. The expression
on the right side is matched by the schema variable #dle.

Taclet

assignment_to_update {

\find (

\modality{#allmodal}
#dlvar := #dle

Jan-David Quesel 64 April 17, 2007

Diploma Thesis CHAPTER 4. IMPLEMENTATION

\endmodality(post)
)

\replacewith(({#dlvar := #dle} post))

\heuristics(simplify_prog)
};

Taclet

This taclet translates the assignment into an update. Updates are then handled
by a built-in rule called UpdateSimplifier.

4.2.2.1 Metaoperators

Some rules cannot be expressed directly as taclets but they have certain locality
properties such that we can use a metaoperator to get them into a taclet. A
metaoperator passes its name to its superclass which is invoked by the parser to
find out which expressions can be handled as a metaoperator. A metaoperator
further has a caclulate method that is invoked on taclet application. Its param-
eters are the currently matched term, the instantiations of the schema variables
in the taclet, as well as the Services for configuration reasons.

One example for this is the ODESolve rule. It is an extended implementation
of the rules R27 and R28. As it only changes the program it can be written down
using a metaoperator. This metaoperator performs the whole transformation.
It adds a new variable T to be quantified and calls DSolve in Mathematica.
The extension made by this rule is, that it can handle systems of differential
equations and invariants, instead of a single differential equation. This extension
is sound [Pla07c].

Taclet

ODESolve {

\find (

\modality{#allmodal}
#diffsystem

\endmodality(post)
)

\replacewith(
#ODESolve(

\modality{#allmodal}
#diffsystem

\endmodality(post)
)

)

\heuristics(simplify_prog)
};

Taclet

The rules for calls of Simplify, FullSimplify and Reduce also use metaoper-
ators. The random assignments are handled by a metaoperator as well, as it is

Jan-David Quesel 65 April 17, 2007

Diploma Thesis CHAPTER 4. IMPLEMENTATION

not possible to insert new quantified variables in taclets and KeY does not allow
quantifiers over program variables. The same holds for unwinding of loops.

The metaoperators we added are shown in figure 4.7 and we will describe in
short what they are supposed to do.

Figure 4.7: Metaoperators used in the taclets for dL

#dlunwind is used to unwind a loop. It is needed for the implementation of the
rules R22 and R23.

#ODESolve is used to solve differential equation systems. It calls the DSolve

function of the arithmetic solver and transforms the result into an update.

Jan-David Quesel 66 April 17, 2007

Diploma Thesis CHAPTER 4. IMPLEMENTATION

#randomass is the metaoperator that handles random assignments. It introduces
a new quantifier depending on the modality type. An update is introduced
that replaces the randomly assigned variable with the newly introduced
quantified one.

#simplify wraps the Simplify function of Mathematica that performs simplifi-
cation depending on a given cost function on the given term. It can handle
a complete formula as well as an expression.

#fullsimplify wraps the FullSimplify function of Mathematica. FullSim-

plify works basically the same as Simplify but it performs more expensive
transformations.

#reduce is the most important metaoperator. It is used as interface to the quanti-
fier elimination which is implemented in the Mathematica function Reduce.
The metaoperator is as the simplification operators, applicable on either a
complete formula or on a part of it.

The implementation of rule R29 (see figure 4.8) uses a metaoperator
(#introNewAnonUpdate) for the introduction of an anonymous update, that re-
names all variables that are changed by the loop. This way we can keep all
formulas in the sequent, thus the invariant does not have to include propositions
about constant values, as they are already included in the current formulas.

Taclet

loop_inv_box {

\find (==> \[#dl*\]post)
\varcond(\new(#modifies, \dependingOnMod(anon1)),

\new(#modifies, \dependingOnMod(anon2)))
"Invariant Initially Valid":

\replacewith (==> inv);

"Body Preserves Invariant":

\replacewith (==> #introNewAnonUpdate(

#modifies, (inv -> \[#dl\]inv), anon1));

"Use Case":

\replacewith (==> #introNewAnonUpdate(

#modifies, inv -> post, anon2))

\heuristics (loop_invariant, loop_invariant_proposal)

\displayname "loop_invariant"

};

Taclet

Figure 4.8: Taclet representation of the invariant rule R29

Jan-David Quesel 67 April 17, 2007

Diploma Thesis CHAPTER 4. IMPLEMENTATION

The rule implemented here is an induction rule. Loops can be handled by
finding an invariant that is strong enough to imply the post condition. The
invariant has to be initially valid, because repeating the loop zero times is valid
for the non-deterministic repetition. Also we have to proof that the invariant is
preserved by the body of the loop. This is the induction step. At last, we have
to show that the invariant is strong enough to imply the post conditions.

For the induction step and the test whether the invariant is strong enough
the previous context would have to be dropped. As this would not be pos-
sible using the taclet language, the trick is to rename the variables that are
changed by the loop body in these cases. They are renamed by the metaoperator
#introNewAnonUpdate.

After applying this rule it is useful to apply hiding rules to the formulas that
cannot lead to closure of the induction step branch. Usually there are formulas
expressing constraints for non-rigid variables that are initially true. As the in-
duction step talks about another state, these variables are renamed, thus these
formulas do not contain useful informations anymore. As Mathematica does not
know that these formulas are only left-overs, a reduce call tries to satisfy them
as well, which is not necessary at all.

Example 8. Let us consider a simple example. If we want to proof that

((x ≥ b ∧ b < 0) → [(x := x+ 1)∗]x ≥ b)

holds, we have to proof three propositions.

1. ((x ≥ b ∧ b < 0) → x ≥ b)

2. ((x ≥ b ∧ b < 0) → R(inv → [x := x+ 1]inv))

3. ((x ≥ b ∧ b < 0) → R(inv → x ≥ b)

Here R is the anonymous update that renames all occurrences of the variables
changed by the loop. This is in this case only x.

The invariant is changed by the anonymous update as well as it talks about
the new state. The formula x ≥ b on the left side of the implication only states a
proposition about the initial state. The loop invariant has to provide the necessary
informations about other states. On the other hand the variable b is not changed
in the loop body, therefore the constraint b < 5 is preserved and b is not renamed
by the update.

Proof. With the obvious invariant for this system inv :⇔ x ≥ b the proof can
easily be performed. The first case states an obvious tautology.

∗
R11 x ≥ b, b < 0 ` x ≥ b
R6 x ≥ b ∧ b < 0 ` x ≥ b
R3 ` ((x ≥ b ∧ b < 0) → x ≥ b)

Jan-David Quesel 68 April 17, 2007

Diploma Thesis CHAPTER 4. IMPLEMENTATION

Assuming the anonymous update renames the variable x to x2, the second case
becomes:

((x ≥ b ∧ b < 0) → (x2 ≥ b→ [x2 := x2 + 1]x2 ≥ b))

Which can be proven valid with:

∗
x ≥ b, b < 0, x2 ≥ b ` x2 + 1 ≥ b

R24x ≥ b, b < 0, x2 ≥ b ` [x2 := x2 + 1]x2 ≥ b
R3 x ≥ b, b < 0 ` (x2 ≥ b→ [x2 := x2 + 1]x2 ≥ b)
R6 x ≥ b ∧ b < 0 ` (x2 ≥ b→ [x2 := x2 + 1]x2 ≥ b)
R3 ` ((x ≥ b ∧ b < 0) → (x2 ≥ b→ [x2 := x2 + 1]x2 ≥ b))

The third goal is after applying the anonymous update:

((x ≥ b ∧ b < 0) → (x2 ≥ b→ x2 ≥ b)

Which can be proven valid as well:

∗
R11x ≥ b, b < 0, x2 ≥ b ` x2 ≥ b
R3 x ≥ b, b < 0 ` x2 ≥ b→ x2 ≥ b
R6 x ≥ b ∧ b < 0 ` x2 ≥ b→ x2 ≥ b
R3 ` (x ≥ b ∧ b < 0) → (x2 ≥ b→ x2 ≥ b)

This example also shows that the proof targets often become pure arithmetic at
the end. These targets are handled using the quantifier elimination.

4.2.2.2 Built-in Rules

A central built-in rule of the KeY prover is the UpdateSimplifier. The
UpdateSimplifier is used by a built-in rule to process updates. It applies the
updates if this is possible or merges two updates into parallel updates [BHS07].
Therefore it can be considered the implementation of our calculus rule R24. By
default the UpdateSimplifier cannot apply an update to a modality, thus it
applies the update to the part of the formula before the modality and moves the
update in front of the modality.

This design decision was made by the KeY developers as applying updates to
Java programs is difficult, as expression may for example contain the increment
operator ++. Also it would be necessary to evaluate the influence of all method
calls on the variable that should be update.

As it is much easier in the context of hybrid programs, to determine which vari-
ables are altered, we extended the UpdateSimplifier according to the definition
of the application of assignments (definition 32 on page 21). This extension is
implemented in the class DLApplyOnModality. Our extension additionally covers
the case that a parallel update should be applied to the modality.

Jan-David Quesel 69 April 17, 2007

Diploma Thesis CHAPTER 4. IMPLEMENTATION

The built-in rules, we implemented, are shown in figure 4.9.
A rule has been created that uses the decision procedures of the arithmetic

solver. It is called ReduceRule or ReduceSequence. The rule works as follows.
First, it reassembles the implication expressed by the sequent, i.e. for a sequent
Γ ` ∆ the formula

(
∧
ϕ∈Γ

ϕ) → (
∨
ψ∈∆

ψ)

is created. Afterwards the reduce function of the arithmetic solver on this im-
plication. The reduce function reduces a given formula by solving equations or
inequalities and eliminating quantifiers.

Only formulas that are already first-order are used for the reduce call. For-
mulas that contain substitutions, modalities or updates are ignored, i.e. left
unchanged and added to the resulting sequent. The result calculated by Mathe-
matica is translated into the Term representation and added to the right side of a
new sequent. If the result is true the goal is closed directly by the ReduceRule

rule. For a proof that it is sound to pick up some formulas process them and
leave the context unchanged see lemma 3. This lemma can be applied as reduce
yields an equivalence transformation of the input formula. In fact we assume that
it yields an equivalence as its a black-box operation imported from a commercial
tool. We want to point out at this point that this rule is an integral part of
our implementation and the usage of reduce endangers completeness as well as
soundness. Lets consider a simple example.

Example 9. If reduce would produce for the input formula x > 0 the output
formula x < 0 the implementation of the ReduceRule would not be sound.

If reduce would produce always produce the output false. The implementation
would be sound, but the application would yield a crucial loss of information.

It has to be noted that there is no corresponding calculus rule to the
ReduceRule.

The EliminateQuantifierRule is the implementation of rule R14. It can be
applied by clicking on the Skolem symbol that should be eliminated.

Both of these rules work like the ReduceRule but the implication is only con-
structed for formulas that contain the Skolem symbol to eliminate. The rule
EliminateQuantifierRuleWithContext works like the EliminateQuantifier-

Rule but uses the contextual formulas as well. Both rules reintroduce the quanti-
fiers that existed before the Skolemization. The behavior of the EliminateQuan-
tifierRule could be simulated by the EliminateQuantifierRuleWithContext

with using hiding rules on the unrelated formulas in the sequent by hand. As
this is not comfortable and in some cases the quantifier can be eliminated easily
without considering the contextual formulas, we decided to keep both implemen-
tations.

The reduce call may contain a set of variables to eliminate. The user is asked
to enter this set. If reduce is called with an empty set, Mathematica tries to
determine a reasonable set of variables itself.

In the automatic mode the set of variables that should be eliminated is empty
for the application of the ReduceRule. For the EliminateQuantifierRule the

Jan-David Quesel 70 April 17, 2007

Diploma Thesis CHAPTER 4. IMPLEMENTATION

singleton set contains the symbol that is to be eliminated. This set is also used as
suggestion when applying the rule manually. The EliminateQuantifierRule-

WithContext is not used by our strategy.
The FindInstanceRule is no real calculus rule. It is used to produce counter

examples for a given sequent. It calls FindInstance on the negation of the current
sequent and shows a popup with the result of the arithmetic solver. FindInstance
tries to find a valuation that satisfies the given formula. If it returns with a result
for the negation of the current goal, we got a counter example. This rule can be
used to test e.g. if a formula can be hidden, if an invariant is sufficient or to get
an idea of which system behavior can occur that is undesired.

4.2.3 Integration Challenges

PrettyPrinter As we changed the representation of the programs, it was nec-
essary to change the components that are reliable for the presentation of the
formulas to the user. The visualization of the formulas, at least the program
part, is done by a visitor [GHJV95] called PrettyPrinter. The PrettyPrinter

constructs a human readable representation of the program. It constructs a linear
string that contains, e.g. parenthesis which are not necessary in the data struc-
tures. Additionally, it defines regions that can be highlighted for user interaction.
This way subformulas, or in this case subprograms are identified. The imple-
mentation available is specifically designed to print out Java programs. We have
added some methods so the hybrid programs can be formatted too, but it would
be a much better design to separate the visitors. This could be transformed in a
design concept to create interfaces for several subclasses of the visitor and alter
the prettyPrint methods according to the principle “If the visitor can handle
me, e.g. is instance of IfPrettyPrinter, use the special method, otherwise per-
form the default action”. But this would require a major change of design change
which would be difficult to realize due to the fact that the PrettyPrinter is not
instantiated at a central location.

Substitutions The substitutions provided by KeY only affect the FOL part of
the formula. As in dL it is possible to have logic formulas in programs, we had to
extend the substitution in order to assure that it can also be applied to programs.
We extended the substitutions such that they match the definition provided in
lemma 1 on page 11.

This is especially required for the Skolemization rules (R12 and R13) as they
use the substitution to introduce the Skolem symbol. The extension of the sub-
stitution is implemented as a translation of the program where inner nodes of the
syntax tree are cloned and unchanged leaves are kept as the same objects. This
is done to preserve fast matching of programs and to save memory.

4.2.4 Strategy

For automation of proofs KeY provides so called proof strategies [BHS07]. A
strategy in KeY assigns a cost value to each applicable rule. The cheapest appli-

Jan-David Quesel 71 April 17, 2007

Diploma Thesis CHAPTER 4. IMPLEMENTATION

Figure 4.9: The built in rules used for the dL calculus

Jan-David Quesel 72 April 17, 2007

Diploma Thesis CHAPTER 4. IMPLEMENTATION

cable rule will be applied.
A naive approach to implement this would be using one priority queue per goal

and fill these with all applicable rules that are applicable on the specific goal. The
cheapest rule gets the highest priority. A goal is randomly chosen and the rule
with the highest priority on that goal is applied and afterwards removed from the
queue. Now the rules are added to the queue which have become applicable due
to changes made by the applied rule. Additionally, those rules are removed which
are not applicable anymore.

We must admit that the implementation is in fact more complicated but this
should naive approach should illustrate its basic idea.

Definition 38 (Strategy). Let Υ be the set of all sequents of the form
Γ,Γ′ ` ∆,∆′, < the set of all rules of the form

{(Γ1 ` ∆1), . . . , (Γn ` ∆n), (Γ
′ ` ∆′)}

and Π the set of all unfinished proofs. A strategy is a function that assigns a cost
to each rule application to a sequent in an unfinished proof

Strat : (Υ×<× Π) 7→ R

We have extended the FOL proof strategy that comes with KeY. Our strategy
assigns low costs to rules for propositional logic as well as for the Skolemization
rules. This is done, as the application time of these rules is short and in most
cases they produce sequents that can be handled easier by the other rules.

The built-in rules we added all implement the interface RuleFilter. This is
done to be able to use them within a strategy. The interface RuleFilter is
used to identify classes of rules. There is a default feature that evaluates the
RuleFilter and assigns costs depending on the result.

If the propositional structure of the formula already yields a satisfying solution
for closing a branch it is not necessary to expand the program elements. Therefore
the costs for handling program elements are a bit higher and rules for eliminating
quantifiers or reduction of the whole sequent are very expensive.

This way the time expensive operations like the reduce call to Mathematica
are only applied to rather simple formulas. The user can use options to spec-
ify whether sequents containing only FOL formulas should be directly passed
to the arithmetic solver or if they should be processed further by KeY and
ReduceSequence is used as last resort. We provide these two possibilities as in
general it should be possible for Mathematica to close a goal at the moment when
only first-order formulas are left, but as the sequent might be still too complicated
the user can choose to process it further using other calculus rules. The goals
resulting from revealing the propositional structure yield in many cases sequents
that can be processed faster by the reduction algorithm. By default the branches
are not expanded after every formula in the branch is a first-order formula, as
otherwise the proof may branch many times unnecessarily. While performing the
case study we have remarked that some goals can be closed by Mathematica di-
rectly within a few seconds or split into several thousand sub goals before closing
each separately.

Jan-David Quesel 73 April 17, 2007

Diploma Thesis CHAPTER 4. IMPLEMENTATION

Example 10. The sequent Γ, x > b, b > 0 ` x > 0,∆ is obviously valid, but de-
pending on the context Γ and ∆ the proof might split several times if we do not
apply the ReduceRule to this sequent.

We allow the strategy to call reduce on a FOL formula if its toplevel operator
is a quantifier. This way we can handle universal quantifiers on the left side of
the sequent and accordingly existential quantifiers on the right side if the formula
is already first-order. This is necessary as we have not implemented a general
approach for the elimination of these quantifiers yet. Afterwards simplify on
the same formula should be called as reduce does in most cases return formulas
that result in a lot of branches. Calling simplify solves this problem, as it removes
unnecessary branching. The simplify rule should also be applied with a very
high priority, i.e. very low costs, to formulas containing only numbers as ground
terms. This way we can omit the splitting of sequent that contains e.g. 3 = 3 on
the right side. We have realized this by creating a new Feature that assigns low
costs to the simplify rule, if reduce was applied but simplify is not applied yet
or if the formula does only contain numbers as ground terms.

While performing the case study, we have observed that some kind of normal-
ization of the inequalities could be useful. Therefore we have added rules that
normalize the inequalities such that they are all on the left side of the sequent and
only contain > or ≥. For this we added the rules presented in figure 4.10. The
soundess of these rules is a direct consequence from the definition of the sequent
symbol (definition 28) and the semantics of the inequality symbols. This way we
could easily provide rules for closing branches if complementary premisses occur.

(R30)
Γ, θ1 ≥ θ2 ` ∆

Γ ` ∆, θ1 < θ2

(R31)
Γ, θ1 > θ2 ` ∆

Γ ` ∆, θ1 ≤ θ2

(R32)
Γ, θ2 > θ1 ` ∆

Γ, θ1 < θ2 ` ∆

(R33)
Γ, θ2 ≥ θ1 ` ∆

Γ, θ1 ≤ θ2 ` ∆

(R34)
Γ, θ2 ≥ θ1 ` ∆

Γ ` ∆, θ1 > θ2

(R35)
Γ, θ2 > θ1 ` ∆

Γ ` ∆, θ1 ≥ θ2

(R36)
Γ, θ1 > θ2, θ2 > θ1 ` ∆

(R37)
Γ, θ1 > θ2, θ1 = θ2 ` ∆

(R38)
Γ, θ1 > θ2, θ2 = θ1 ` ∆

• θ1, θ2 are terms

Figure 4.10: Rules for normalization of inequalities

Jan-David Quesel 74 April 17, 2007

Diploma Thesis CHAPTER 4. IMPLEMENTATION

4.3 Mathematica Integration

In this section we describe implementation details of the integration with Math-
ematica.

Exception Handling As mentioned in chapter 3 we use a client server archi-
tecture. The server functions are accessed using RMI. The RMI implementation
demands that every function that is used remotely may throw a so called Re-

moteException. These exceptions are transported from the server to the client
automatically. If errors occur during conversion or during the calculation step
a RemoteException is thrown. In most cases the RemoteException is used as
container exception. The exceptions thrown by J/Link, are packed into the Re-

moteException and passed to the client. The implementation of our built-in
rules performs all operations that need Mathematica before altering the proof,
thus when an exception occurs during processing of a built-in rule, it does not
alter the proof. Unfortunately this does not work for the rules using Metaoper-
ators. In case of an exception the result of the Metaoperator is identical to the
input, but if the user does not undo this proof step, the resulting proof is incon-
sistent, as the rule was not really applied. If Mathematica returns $Aborted an
exception is thrown manually as well. The J/Link documentation says that the
interface should raise an exception by itself but runtime analytics have shown
that no exception occurs and an Expr object is returned containing the String

$Aborted.

Caching For performance reasons the server caches the queries. Up to 10000
queries are cached in a HashMap that maps queries to results. Before invoking
Mathematica, the cache is checked whether the result is already known.

This is done because analysis have shown that there are many similar queries.
This happens frequently if there is a quantified formula somewhere in the sequent
and another formula causes the proof to split the sequent into two branches.
The quantifier is now eliminated at least once per branch probably resulting in
exactly the same queries. The Skolemization rules R12 and R13 could brake this
symmetry in queries but in many cases the cache results in a huge performance
gain. This results from the fact that KeY generates names that are unique on the
whole proof. Therefore the introduced Skolem symbol does have another name,
thus the query is performed again.

Conversion Challenges In order to translate formulas to Expr it is essential
to convert the numbers into the right format. If there is a real number in the
Expr Mathematica uses numerical methods for the evaluation, whereas symbolic
methods are used for rationals. Mathematica infers a result accuracy from the
input values. Therefore if numbers are passed to Mathematica in floating point
representation, Mathematica uses numerical methods with a certain accuracy. As
we want to apply symbolic methods whenever possible we use objects of the type
BigDecimal to represent our numbers, as they make it easy to decide whether

Jan-David Quesel 75 April 17, 2007

Diploma Thesis CHAPTER 4. IMPLEMENTATION

a number is a whole number or not. If Mathematica returns rationals, we store
them as fraction using the division operator. This way we keep the information
instead of converting it into a floating point number.

4.4 Usage

In this section we describe how the tool can be used. First we describe the input
format and afterwards we provide an overview over the control elements in the
user interface.

4.4.1 Input Format

The input files for KeY are plain text files using a certain structure. For dL there
is the declaration of sorts at the beginning of the file. This section should only
contain R yet. This sort is used to represent the real numbers R. Afterwards
there may be the declaration of the function symbols. The last section defines
the proof obligation called problem.

The following listing shows a EBNF grammar of an input file format as it is
used for dL.

KeY Syntax

problemfile ::=

sorts

functions?

problem

sorts ::= "\sorts { R; }"

functions ::= "\functions" "{" (functiondecl ";")* "}"

functiondecl ::= "R" name (paramlist?)

paramlist ::= "(R" (", R")* ")"

problem ::= "\problem" "{" formula "}"

KeY Syntax

Example 11 (Problem File). The following listing contains an example problem
file. The statement \[x:= x\] is used as a declaration of the variable x. It is
necessary if a program variable is used in the first-order part before occurring in
a modality. In this example it could be omitted, as the variable is only used in the
FOL part in the scope of the diamond modality containing the assignment. It is
only added here for exemplification.

KeY Problem File

\sorts {

Jan-David Quesel 76 April 17, 2007

Diploma Thesis CHAPTER 4. IMPLEMENTATION

R;

}

\functions {

R b;

R f(R,R);

}

\problem {

\[x:=x\] (b > 0 -> \<x:=f(b,b)\> x = f(b, 1))

}

KeY Problem File

The input syntax for formulas is slightly different from the abstract syntax
presented in section 3.2.2. One reason is that it has to handle parenthesis, but
there is also the problem, that e.g. the symbol ∪ is not available on a standard
PC keyboard. Also the Newton Notation for the derivatives is hard to enter, so
we decided to use other symbols to solve this issue.

The part that can already be parsed by the default KeY parser uses some
kind of LATEX notation for the quantifiers. The universal quantifier is written as
\forall and the existential quantifier is written as \exists. The modalities are
written as \[alpha \] for the box modality and \< alpha \> for the diamond
modality.

We decided to use ++ to donate the non-deterministic choice. The notation
of the derivatives is similar to the Lagrange Notation but we keep the implicit
knowledge that it is always the derivative by respect to the time. Instead of ẋ we
write x‘. It has to be noted that this symbol is an accent not a single quote, as
single quotes are handled specially by the KeY lexer, thus we cannot use them.

We should also remark that KeY demands that variables are declared before
they are used. A program variable is considered to be declared if its in the scope of
a modality that refers to the variable. If it is necessary to define preconditions for
the variables one could use the trick to define the variable by adding a modality
that states \[x:= x\]. This modality does not effect the value of the variable
but under the scope of this modality the name of the variable is defined and can
be used. The mapping between abstract syntax and input syntax is illustrated
in table 4.2. It has to be noted that for marking derivatives an accent is used.
We cannot use a single quote here as the KeY lexer uses single quotes to identify
character literals.

4.4.2 Tool Overview

In figure 4.11 a snapshot of the KeY prover is shown. The GUI is programed in
Java Swing [Sun05,HWL+02], thus it has a traditional look and feel. In the left
upper corner, we see the open problem files in the box titled Tasks. Below the
Tasks box there are some tabs that are related to the current proof. The tab

Jan-David Quesel 77 April 17, 2007

Diploma Thesis CHAPTER 4. IMPLEMENTATION

Abstract Input String
∀ \forall

∃ \exists

∧ &

∨ |
→ ->

↔ <->

[] \[\]

<> \<\>

? ?

:= :=

< <

≤ <=

= =

≥ >=

> >

+ +

− -

× *

÷ /

xy x^y

ẋ x‘

{diffsystem} {diffsystem}

Table 4.2: Mapping from abstract syntax to input syntax

Jan-David Quesel 78 April 17, 2007

Diploma Thesis CHAPTER 4. IMPLEMENTATION

with the label Proof shows the proof tree. Goals marked green are closed ones.
The tab Goals is a list view of the current goals. The User Constraints are
not used in the dL implementation. Normally they are invoked when closing a
branch to choose a substitution matching certain conditions. The Proof Search

Strategy tab is used to choose the strategy that should be applied when pressing
the Play button. In the dL case only the dL strategy is available at the moment.
The last tab provides a overview over the available calculus rules. On the right
side we see the current sequent and some meta informations like which rule is to
be applied.

Figure 4.11: Snapshot of the KeY Prover

In KeY rules can be applied using the mouse. A single click on a formula (or a
part of it) shows a context menu with all rules that are applicable on the current
selection (see figures 4.12 and 4.13). Rules which have an \assumes clause can
be applied either by clicking on the target formula and choosing the rule, or by
dragging the assumption on the formula to be changed. If there is more than one
rule applicable with this assumption and target, a menu is shown to let the user
choose which rule should be applied.

Proofs can be saved either to complete them later or to document that a proof
can be performed. Saving of proofs uses basically the same format as the problem
files. Additionally, a Lisp like version of the current proof tree is saved. While
loading the proof the rules are applied one after another again. This means that
long calculations done by Mathematica have to be performed again.

Jan-David Quesel 79 April 17, 2007

Diploma Thesis CHAPTER 4. IMPLEMENTATION

Figure 4.12: Snapshot of the KeY Prover with context menu opened on a subfor-
mula

Jan-David Quesel 80 April 17, 2007

Diploma Thesis CHAPTER 4. IMPLEMENTATION

Figure 4.13: Snapshot of the KeY Prover with context menu opened on a complete
formula

Jan-David Quesel 81 April 17, 2007

Diploma Thesis CHAPTER 4. IMPLEMENTATION

Abort Program As sometimes e.g. a reduce call could take very long, when
given too much formulas or the wrong set of variables to reduce, it is necessary
to be able to abort the calculation and proceed with the proof, i.e. try to close
other goals, search for counter examples, or apply other rules to the current branch
before trying to call reduce again. We could not integrate a button for canceling
into the KeY GUI as rules are applied within the Swing event handling thread.
This means that while a rule is applied the GUI events just queue up and are
processed after the application of the rule is finished. As we want to cancel the
current rule application, the event would be handled to late. We have realized
this with an external program that links to the server and serves an abort button.
A snapshot of the program is shown in figure 4.14.

Figure 4.14: Snapshot of the Abort Program

Jan-David Quesel 82 April 17, 2007

Diploma Thesis CHAPTER 5. CASE STUDY

Chapter 5

Case Study

5.1 Overview

RBC

MAST SBnegot corrfar

Figure 5.1: Communication between the train and the RBC

This case study is a simple version of the European Train Control System
(ETCS) [ERT02] case study [DHO06, DMO+07]. It is based on the examples
in [Pla07c] and [Pla07a]. The ETCS models a collision avoidance algorithm for
trains. The idea is to give every train movement authorities, so that it can brake
without colliding with another registered vehicle in case of emergency. A central
controller instance, a Radio Block Controller (RBC), is responsible for managing
these authorities.

The ETCS system is developed to create a system for collision avoidance that
is used all over Europe. Currently there are many different systems used in the
different nations and international trains have to implement all these systems, or
exceptions have to be made for these trains.

In Germany currently a system is used that divides the railway system into fixed
segments [JP04]. The idea is to achieve collision freedom by assigning a segment
to at most one train at a time and keep a safety distance of at least one segment.
This means that a train is blocking 2 to 3 segments when its on the rail. It always
blocks the segment it is currently driving on, as well as the predecessor segment.
A train which is close to the end of its current segment blocks 3 segments at once,
as it has to request the successor segment before releasing the predecessor one to
keep moving and preserve the safety distance. This is illustrated in figure 5.2.

Jan-David Quesel 83 April 17, 2007

Diploma Thesis CHAPTER 5. CASE STUDY

Train Position

Figure 5.2: Train blocking 3 segments

A slow train driving behind might have to wait even if it is several minutes
behind and would never reach the first train if it keeps on moving.

The ETCS introduces so called moving blocks. This means that there is a
safety envelope around the train ensuring that the distance to any obstacles is
large enough that it can brake down to a certain speed. This envelope is calculated
depending on the maximal braking force of a train, the current velocity and the
target speed.

The trains have to request movement authorities from the RBC which keeps
track of the positions of all trains. This is similar to the requesting of segments
in the current system. These movement authorities are used to assure that the
train is slow enough if e.g. driving over bridges or railway crossings. Also they
are used to achieve collision freedom.

When a train approaches the end of its movement authority, it passes a point
ST (for “Start Talking”). This point marks the beginning of the communication
with the RBC to get an extension of the movement authority. The RBC can
either extend the movement authority or force the train to lower its speed to a
certain amount. If there is no reaction of the RBC in time a point SB (for “Start
Braking”) is reached and braking is initialized.

The train has a desired speed it should keep on the rail. The speed supervision
component of the train may not choose to accelerate if the speed is above this
desired speed. On the other hand, the train is allowed to accelerate until this
speed is reached.

The ETCS has a special focus on high speed trains. As the velocity of a train is
a quadratic part of the distance needed to brake until a complete halt is reached
it is significantly higher with growing velocity. For high speed trains the safety
distance should be reduced. If the maximum braking force of a train is known,
one can reduce the safety distance to the distance the rear train can brake down
to the speed of the leading train, before colliding with it. The problem with this
design is, that an external obstacle like e.g. a tree on the rail could increase the
braking force of the leading train and collision could in the worst case not be
avoided.

Jan-David Quesel 84 April 17, 2007

Diploma Thesis CHAPTER 5. CASE STUDY

5.2 Formal Model

The RBC and the train are independent components that run in parallel. As
we do not have a parallel operator we express the parallelism using the non-
deterministic choice and repetition. This is possible as we model the RBC action
to be instant. Time only passes while the train is moving.

We model the train using a differential system that formalizes the physical laws
for movement. The first derivative of the position function z is the velocity v,
the second derivative is the acceleration a. The time is modelled using a function
with a constant derivative of 1.

System Parameters As we want to get a general result, we use parameters to
describe the system.

• Constant parameters

– amax is the maximum acceleration

– b is the maximum acceleration that can be used for braking

– ε is the maximum response time of the train speed supervision

• System variables

– z is the current train position

– v describes the velocity

– a is the acceleration

– t is a clock used for measuring the length of driving phases

• Control parameters

– SB is the point where the train speed supervision needs to force brak-
ing

– ST is the point where the communication with the RBC is started

• RBC variables

– m is the end of movement authority

– mold is used to store the previous end of movement authority

– d is the maximum value allowed for the velocity of the train at the end
of movement authority

– dold is, like mold, used to store the previous value of d.

– vdes provides a desired speed for the train in normal operation

• State model

– state stores the current state of the train

– drive, brake are used as enumeration values for the state.

Jan-David Quesel 85 April 17, 2007

Diploma Thesis CHAPTER 5. CASE STUDY

Phases of the Train Control The train always passes the same stages. First it
polls its current position and recalculates the values for SB and ST . Afterwards,
if the point ST is passed, a communication with the RBC may be initialized. Next
the speed control chooses the acceleration depending on the relation between the
current and the desired speed or chooses to brake if the RBC demands it. Now
the speed supervision is invoked checking whether the point SB is passed, which
would cause immediate recovery. For verifying safety properties it is sufficient to
choose an acceleration between the maximum braking force and the maximum
acceleration when the speed is below the desired speed and between the maxi-
mum braking force and zero otherwise. Note that for liveness a strict positive
acceleration in the first case would be necessary. The last stage is the driving
stage, which is performed for a maximum of ε time units.

The train behavior is illustrated in figure 5.3.

Poll Negotiate

Speed ControlSpeed Supervision

Drive
t ≤ ε

t := 0

z > ST

RBC

choose vdes

recover

extend movement authority

Figure 5.3: Train model as automata

The RBC Model In our model the RBC is a rather simple controller as it
needs to control only one train. It has three possibilities to react. It can either
choose to extend the current movement authority, force braking or choose a new
desired speed for the train.

If the movement authority is extended the extension is provided by new values
for m and d. The new value for d is depending on the new position of m. It has to
be possible to brake from the previous target to speed down to the new one within
the extension range, as the train guarantees that it can brake down to the previous
target speed before it reaches the previous end of the movement authority. Now
the RBC could choose just at this moment to extend the authority. This is the
worst case as the previous target speed is the highest speed that could be obtained
at the closest position to the new end of movement authority. If no extension is
given the train keeps braking until it comes to a complete halt.

This RBC can be refined without endanger the safety of the train system. In our
model the desired speed may change without any constraints. Constraints could

Jan-David Quesel 86 April 17, 2007

Diploma Thesis CHAPTER 5. CASE STUDY

be added for e.g. map desired speeds to certain track sections. Also the RBC may
choose to recover independent on the current situation. An extension could be
made that restrict this choice to the cases in which recovery is necessary. For the
case that the movement authority is extended it is necessary that the train is able
to brake from its current speed and current position down to the new target speed
before reaching the end of the extended movement authority. Every refinement
that satisfy this constraint is thinkable. For example it would be possible to add a
second train that determines the current movement authority instead of choosing
it randomly within the braking constraints.

The possible choices for our RBC model are illustrated in figure 5.3.

Compared to the examples in [Pla07c] and [Pla07a] the RBC is modelled more
explicitly. We also extended the model by the introduction of the target and
the desired speed. The train behavior is also more realistic in our model, as
the acceleration of the train is not only determined by a maximum deceleration,
zero and a maximum acceleration but by the interval between the maximum
deceleration and the maximum acceleration.

Example 12. In the following diagram the area of valid extensions of the move-
ment authority is marked red. It extends to left and upwards. The gray line is a
possible movement of the train. The train could move below the red line, but the
minimum slope of the trains speed is given by the slope of the border line of the
area of valid extensions.

distance

velocity

mold

dold

To get an idea of the possible train behavior have a look at the next plot.

distance

velocity

vdes

Jan-David Quesel 87 April 17, 2007

Diploma Thesis CHAPTER 5. CASE STUDY

system :
(
poll; (negot ∪ (speedControl; speedSup; move))

)∗
init : drive := 0; brake := 1

poll : SB := v2−d2
2b

+
(
amax

b
+ 1

)(
amax

2
ε2 + εv

)
; ST := ∗

negot : (?m− z > ST) ∪ (?m− z ≤ ST ; rbc)
rbc : (vdes := ∗; ?vdes > 0) ∪ (state := brake)

∪
(
dold := d; mold := m; m := ∗; d := ∗;

?d ≥ 0 ∧ d2
old − d2 ≤ 2b(m−mold)

)
speedControl :

(
?state = brake;

(
(?v > 0; a := −b) ∪ (?v = 0; a := 0)

))
∪

(
?state = drive;(
(?v ≤ vdes; a := ∗; ?− b ≤ a ≤ amax)

∪(?v ≥ vdes; a := ∗; ?0 > a ≥ −b)
))

speedSup :
(
?m− z ≤ SB;

(
(?v > 0; a := −b) ∪ (?v = 0; a := 0)

))
∪(?m− z > SB))

move : t := 0; {ż = v, v̇ = a, ṫ = 1, (v ≥ 0 ∧ t ≤ ε)}

Table 5.1: System specification

Specification In table 5.1 the formal model of the system is shown. The system
process first polls its current speed and target speed to calculate the size of the
safety envelope.

At the point SB the train has to start braking. The distance between SB
and the end of the movement authority m is given by the minimum braking
distance needed to brake from the current speed v to the target speed d and
additionally the distance the train covers within one controller cycle with the
resulting braking distance extension for the maximal speed that the train could
reach within that cycle. The minimum braking distance can be calculated by
v2−d2

2b
. The train can accelerate with a maximum acceleration of amax and brake

with a maximum deceleration of b. Assuming that the train accelerates with its
maximum acceleration it covers a distance of

(
amax

2
ε2 + εv

)
within ε time units.

As the train needs to brake down from the speed it could reach within this time,
we need to add the ratio between the maximum acceleration and the maximum
deceleration for this distance as well. In combination this means that we need to
extend the safety distance by

(
amax

b
+ 1

)(
amax

2
ε2 + εv

)
. This constraints is taken

from [DMO+07].

After the polling it is non-deterministically chosen if there is a negotiation
phase or if the train is moving. While the negotiation phase no time does elapse.
The negotiation phase simply checks whether the train has passed the point ST ,
which marks the point from which the train may communicate with the RBC,
or not. If the train has passed the point the RBC is invoked. The RBC can
either choose to adjust the desired speed, force braking or extend the movement
authority. An extension has to satisfy two constraints. First, the target speed
must be greater as or equal to zero. Second, it must be possible to brake down
from the previous target speed to the new one within the extension distance. For

Jan-David Quesel 88 April 17, 2007

Diploma Thesis CHAPTER 5. CASE STUDY

the case that the case that the new end of the movement authority is closer to
the train than the previous one, the target speed has to increase such that the
train can brake from the new target speed down to the previous one within the
“extension” distance.

In the other case, the case in which the train is moving and time can pass, the
speed control is invoked first. The speed control initiates braking if the train is
in state brake and it is still moving. In the state drive it regulates the speed
depending on a desired speed. If the speed is less or equal to the desired speed
the acceleration is chosen from the interval [−b, amax], otherwise it is chosen from
[−b, 0[. The next component to invoked is teh speed supervision. This is a simple
controller that monitors the distance to the end of the movement authority and
compares it to the point SB. If SB is passed braking with maximum deceler-
ation is forced. Last instance is the moving stage. Here the train moves for a
maximum of ε time units with the chosen acceleration from the current speed
and the current position. This is modelled with the differential equation system
{ż = v, v̇ = a, ṫ = 1, (v ≥ 0 ∧ t ≤ ε)}. For this differential equation system it is
invariant that the velocity of the train is a non-negative real number.

We want to verify that the trains velocity is always sound with respect to the
distance profile chosen by the RBC. To assure this, we need to verify that the
train has a maximum speed of d at the point m and beyond this position if no
extension of the movement authority is granted. Therefore we need to proof that
for all traces of the system the following postcondition holds.

(m ≥ z → v ≤ d)) (5.1)

We assume that the reaction time of the train is greater zero. The same as-
sumption is made about the maximum deceleration. We further assume that the
initial velocity is greater or equal two zero, i.e. the train is not moving backward
and the initial target speed is greater or equal to zero as well.

From an altered train model in which the train always chooses it brake with
the maximum braking force we can derive that initially either the distance to the
end of the movement authority is large enough to brake down from the current
speed to the target speed, or the velocity of the train is below the target speed
already. This is expressed by the following constraint.

v2 − d2 ≤ 2b(m− z) (5.2)

The constraint says that there is enough room to brake from the current speed
down to the target speed before reaching the end of the movement authority.
v2−d2

2b
is the distance needed to brake from a speed v down to a speed d with a

deceleration of b. This approach to find this constraint is taken from [Pla07c].
The same pattern of constraint can be found in the RBC component in the

case, where it is extending the movement authority. It is necessary that the train
can brake from the previous target speed down to the new one on the extension
distance. It would be sufficient if it could brake down from its current speed to
the new target speed from its current position to the new end of the movement
authority, but this would require the RBC to know the exact position of the train

Jan-David Quesel 89 April 17, 2007

Diploma Thesis CHAPTER 5. CASE STUDY

and the communication overhead would be too big. As the train asserts that its
movement complies with the previous movement authority, the RBC knows the
maximum speed of the train at the end of the movement authority and can use
it for its calculations easily.

Our proof obligation is

[init]
((
ε > 0 ∧ b > 0 ∧ v2 − d2 ≤ 2b(m− z) ∧ v ≥ 0 ∧ d ≥ 0

)
→ [system](m ≥ z → v ≤ d)

)
(5.3)

The modality [init] is only used for initializing our enumeration types for the
train controller states.

5.3 Verification

For proving that formula (5.3) is valid, we need a system invariant that is strong
enough to imply all necessary properties. In this section we present a proof draft
that is using the following invariant:

v2 − d2 ≤ 2b(m− z) ∧ d ≥ 0 ∧ v ≥ 0 (5.4)

A draft of the first proof steps is presented below.

inv ` ∀ST2[negot]inv inv ` {SB}[speed; move]inv
R7 inv ` ∀ST2[negot]inv ∧ {SB}[speed; move]inv)

inv ` {SB}∀ST2(([negot]inv) ∧ [speed; move]inv)
inv ` [poll; (negot ∪ (speed; move)]inv

∗
initial ` post inv ` [system]inv

∗
inv ` post

R29 initial ` [system]post
` proofObligation

We use the following abbreviations:

proofObligation stands for equation (5.3)

initial abbreviates the constraints for the initial state

post is the postcondition (equation (5.1))

inv is the system invariant (equation (5.4))

{SB} is the update that sets the new value for SB

speed is an abbreviation for speedControl; speedSup

Jan-David Quesel 90 April 17, 2007

Diploma Thesis CHAPTER 5. CASE STUDY

On the right side of the sequent are the hidden formulas b > 0 and ep > 0.
The proof proceeds as follows. First the initial assignments are converted into

updates. Afterwards the sequent is sorted using the rules for propositional for-
mulas. This results in the following sequent:

initial ` [system]post

If we eliminate some abbreviations we get:

ε > 0, b > 0, v2 − d2 ≤ 2b(m− z), v ≥ 0, d ≥ 0 ` [system](m ≥ z → v ≤ d)

Now the invariant rule R29 is applied. This leads to three new proof goals.
The first is to show that the invariant is initially valid.

ε > 0, b > 0, v2 − d2 ≤ 2b(m− z), v ≥ 0, d ≥ 0

`v2 − d2 ≤ 2b(m− z) ∧ d ≥ 0 ∧ v ≥ 0

This goal can be closed by applying ReduceSequence and let Mathematica find
out that this is a tautology or by applying rules for propositional logic and close
the three resulting branches.

The other two open goals are the following. We have to show that the invariant
is preserved by the loop body and we have to show that the invariant is strong
enough to imply the postcondition.

The latter one is simple again. The sequent looks like this (we removed the
formulas that cannot lead to closure of this goal):

ε > 0, b > 0 ` (v2 − d2 ≤ 2b(m− z) ∧ d ≥ 0 ∧ v ≥ 0) → (m ≥ z → v ≤ d)

Applying the rule R3, two times R6, and R3 again we get:

ε > 0, b > 0, v2 − d2 ≤ 2b(m− z), d ≥ 0, v ≥ 0,m ≥ z ` v ≤ d

This sequent can be reduced to true by Mathematica.
The last open goal, the induction step is not that simple to prove. This

goal splits into two major proof obligations. This split is caused by the non-
deterministic choice between the RBC behavior and the train movement. We
have to show that the system is safe if the RBC performs actions, as well if the
train control is working and the train is potentially moving.

5.3.1 RBC Behavior

Applying our proof strategy, it is possible to show automatically that the RBC
behavior is not harmful to the safety of the system. This is the case in the proof
draft where we have to show that

inv ` {SB}∀ST2[negot]inv

Jan-David Quesel 91 April 17, 2007

Diploma Thesis CHAPTER 5. CASE STUDY

holds. As SB does not occur neither in inv nor in negot, we just drop the update.

∗
R11inv,∆ > sk ` inv

inv ` [(?∆ > sk)]inv
inv, sk ≥ ∆ ` [rbc]inv

inv ` [?∆ ≤ sk; rbc]inv
R7 inv ` [(?∆ > sk)]inv ∧ [?∆ ≤ sk; rbc]inv
R21 inv ` [(?∆ > sk) ∪ (?∆ ≤ sk; rbc)]inv
R12 inv ` ∀ST2[(?∆ > ST2) ∪ (?∆ ≤ ST2; rbc)]inv

inv ` ∀ST2[negot]inv

∆ is used to abbreviate the difference between the end of the movement authority
m and the current position z

The quantifier over ST2 is handled using Skolemization. Afterwards the proof
splits depending on if the point ST has been passed. If the train has not passed
it yet. The modality does not alter any variables, thus the sequent becomes true
and this branch can be closed. If the train has passed the point ST, the RBC is
invoked.

∗
inv ` [(vdes := ∗; ?vdes > 0) ∪ (state := brake)]inv

inv ` [extend]inv

inv, sk ≥ ∆ ` [(vdes := ∗; ?vdes > 0) ∪ (state := brake) ∪ extend]inv

inv, sk ≥ ∆ ` [rbc]inv

extend is used to abbreviate(
dold := d; mold := m; m := ∗; d := ∗; ?d ≥ 0

∧ d2
old − d2 ≤ 2b(m−mold)

)
As the variable sk does not occur in the RBC specification we can hide the

constraints. The RBC model has 3 possible choices. It can either choose a new
desired speed, force braking or extend the movement authority. The first two cases
can be easily handled as they do not alter variables occurring in the invariant.
The third case does alter the variables d and m that are part of the invariant.

inv ` ∀m2∀d2(d2 ≥ 0 ∧ d2 − d2
2 ≤ 2b(m2 −m) → invS

inv ` [extend]inv

invS is the abbreviation for inv[m 7→ m2][d 7→ d2]

After Skolemization this goal can be split into three branches, one for each part
of the invariant. The branches are (hiding the unnecessary formulas).

Jan-David Quesel 92 April 17, 2007

Diploma Thesis CHAPTER 5. CASE STUDY

The first goal is:

v2 − d2 ≤ 2b(m− z) ∧ d ≥ 0 ∧ v ≥ 0 ` v ≥ 0

This is obviously be true. The second goal is:

inv, skd ≥ 0 ` skd ≥ 0

This as well is true and can be closed. The symbol skd is the Skolem symbol for
d2. The third goal is:

inv, d2 − sk2
d ≤ 2b(skm −m) ` v2 − sk2

d ≤ 2b(skm − z)

Here we use skm as the name for the Skolem symbol introduced for the quantified
symbol m2.

This goal can be closed as well. The invariant says that we can brake down
from the position z and the speed v down to the speed d. The other constraint
on the left side says that we can brake down from the speed d to the speed skd on
a distance of skm −m. Putting this two constraints together we can derive that
the train can brake from a speed v down to a speed skd on a distance of skm − z
which is the succeedent of the sequent.

5.3.2 Train Controller

A draft of the first steps in the branch aiming at the verification of the train
controller is presented below.

inv ` {SB}[doBrake]ϕ inv ` {SB}[doDrive]ϕ
inv ` {SB}[(?state = brake; doBrake) ∪ (?state = drive; doDrive)]ϕ

inv ` {SB}[speedControl][speedSup][move]inv

inv ` {SB}[speed; move]inv

doBrake is the abbreviation for
(
(?v > 0; a := −b) ∪ (?v = 0; a := 0)

))
doDrive abbreviates the acceleration choice depending on the desired speed

ϕ is used to abbreviate [speedSup][move]inv

For the case in which the speedControl behavior is determined by doBrake, we
can close the branch easily using the braking constraint (5.2). This constraint
guarantees that the distance to the end of the movement authority is always large
enough to brake down to the target speed.

For the other case, the case where doDrive is executed, it is more difficult to
show that no unsafe state can be reached.

Here the proof splits as the behavior of the speed control depends on the relation
between the current speed and the desired speed. If the train passed the point SB,

Jan-David Quesel 93 April 17, 2007

Diploma Thesis CHAPTER 5. CASE STUDY

we can hide the formula for SB. This is possible as in this case the acceleration
is set to the maximum deceleration by the speed supervision component. We can
close this branch using mainly the knowledge from the braking constraint (5.2).

For the other case we have to show that the knowledge that the train has not
passed the point SB is enough for asserting that the system is still safe. In this
case the speed supervision component does not react and two cases result from
the speed control component again.

The two goals are:

inv,∆ > SB, vdes ≥ v ` ∀a(−b ≤ a ≤ amax → [move]inv)

inv,∆ > SB, v ≥ vdes ` ∀a(−b ≤ a < 0 → [move]inv)

This can be proven again using Skolemization in the first place and eliminating
the quantifiers for the time and for the acceleration at once.

The two sequents we have to prove valid are:

(
0 ≤ t ≤ ε ∧ a+

v

t
≥ 0 ∧m− z >

v2 − d2

2b
+ (

amax
b

+ 1)
(amax

2
ε2 + εv

)
∧ −b ≤ a ≤ amax ∧ 2b(m− z) ≥ v2 − d2 ∧ d ≥ 0 ∧ v ≥ 0 ∧ ε ≥ 0

∧ b ≥ 0 ∧ amax ≥ 0
)
→ (at+ v)2 + 2b(

a

2
t2 + 2vt+ 2z − 2m) ≤ d2

and

(
0 ≤ t ≤ ε ∧ a+

v

t
≥ 0 ∧m− z >

v2 − d2

2b
+ (

amax
b

+ 1)
(amax

2
ε2 + εv

)
∧ −b ≤ a < 0 ∧ 2b(m− z) ≥ v2 − d2 ∧ d ≥ 0 ∧ v ≥ 0 ∧ ε ≥ 0

∧ b ≥ 0 ∧ amax ≥ 0
)
→ (at+ v)2 + 2b(

a

2
t2 + 2vt+ 2z − 2m) ≤ d2

These sequents only differ in the constraints for the current acceleration. It
can either be a ∈ [−b, amax] or a ∈ [−b, 0[. In both cases the constraint on the
right side of the sequent specifies that the braking constraint still holds after
performing a accelerated movement for t time units with t ∈ [0, ε] from the speed
v with the acceleration a. As the constraint for SB specifies that it is always
safe to perform an accelerated movement with the maximum acceleration from
the current velocity for ε time units, we can close both of these goals.

While performing the verification of the case study, we have observed that
there are cases where Mathematica needs significantly more time to eliminate
one variable instead of two.

Example 13. Calling reduce on the following formula with either the target
set {t} or {a} does not produce an result within 2 hours, whereas the target set
{t, a} lets Mathematica simplify this formula to true within less than 2 minutes.
Another important point is the order of the reintroduced quantifiers. Adding the

Jan-David Quesel 94 April 17, 2007

Diploma Thesis CHAPTER 5. CASE STUDY

quantifier prefix as ∀a∀t leads to a significant performance gain in comparison
with the case where we add it as ∀t∀a. This is a surprising result, as the prefixes
are equivalent.

(
0 ≤ t ≤ ε ∧ a+

v

t
≥ 0 ∧m− z >

v2 − d2

2b
+ (

amax
b

+ 1)
(amax

2
ε2 + εv

)
∧ 0 ≤ a ≤ amax ∧ 2b(m− z) ≥ v2 − d2 ∧ d ≥ 0 ∧ v ≥ 0 ∧ vdes ≥ 0 ∧ ε ≥ 0

∧ b ≥ 0 ∧ amax ≥ 0
)
→ (at+ v)2 + 2b(

a

2
t2 + 2vt+ 2z − 2m) ≤ d2

Statistics To give an idea how long it takes to proof the case study in our tool
we present a few statistics at this point. The whole proof of the case study can
be performed with 266 rule applications. These rule applications resulted in 17
branches and we performed 56 interactive steps. The proof can be performed
automatically to the point where the invariant rule has to be applied. After this
step the user should hide the unnecessary formulas in the induction step branch.
Now the proof can be performed automatically again until there are 3 open goals
left. Up to this point 9 goals could already be closed automatically. The goals
that cannot be closed automatically within certain time bounds contain huge
formulas containing many quantifiers. One of this targets is the case the train
is in the state brake in the other cases the train is in the case drive. The case
where the train is already in the state brake can be closed with by performing
a few steps manually. It is necessary to hide the constraint for SB as it is
unnecessary for the closure of this branch but causes the Mathematica calculation
to take significantly longer. With another 12 user interactions it is possible to
reduce the open goals to the cases where the train is driving and has chosen
either an acceleration between −b and 0 or up to amax. These branches can
be closed with about 41 user interactions. Most of these are applying basic
rules to be able to hide formulas that only consume calculation time. The two
user interactions are of capital importance. These are the two applications of
EliminateQuantifierWithContext with a given set of variables (see the example
above). Overall it takes about ten minutes to perform this proof when trying to
let the prover run in automatic mode most of the time. About five minutes are
calculation time.

Jan-David Quesel 95 April 17, 2007

Diploma Thesis CHAPTER 5. CASE STUDY

Jan-David Quesel 96 April 17, 2007

Diploma Thesis CHAPTER 6. RELATED WORK

Chapter 6

Related Work

In this chapter we compare our approach of the verification of hybrid systems
with other projects to give an idea of the context of our work.

Theorem Provers Implemented in Mathematica

There are two approaches to implemented a theorem prover directly into Mathe-
matica. One is Analytica [CZ92] the other is Theorema [BJK+97].

Analytica was developed for Mathematica 1.2. It is a theorem prover for the
19th century mathematics. In 2003 an approach was made to port Analytica
to the new version of Mathematica (version 5). This approach is called Analyt-
ica 2 [CKOS03]. Major code cleanups have been made and Analytica 2 can prove
the same theorems as its predecessor. A major problem with this prover is the
lack of documentation.

Theorema delivers an approach for the integration of a computer algebra system
with a theorem prover which is different from Analytica. Theorema is a theorem
prover written in the programming language provided by Mathematica but it does
not rely on the algebraic algorithms library [BJK+97]. Theorema provides various
natural deduction theorem provers for special classes of higher-order logic as well
as first-order logic. The authors decided to use the user interface provided by
Mathematica. The project aims at the combination of functor style programming
with proving. A functor is a construct used in category theory. In Theorema
functors are used to, given a domain, define new domains and transport knowledge
to these new domains [BJK+97].

Theorema does not aim at the verification of programs, but an experimental
approach has been developed in 2004 [JKP04].

As both approaches do not aim at the verification of hybrid systems and the
logics used are not similar to dL, they are far from our needs.

Model Checkers for Hybrid Systems

Model checker [CGP99] for hybrid systems aim at verification by exploring the
state space of the system. HyTech [HHWT97] is a familiar model checker for this
purpose. It is capable of checking linear hybrid automata [HHWT97,ACHH92].
A hybrid automaton is a finite automaton with a finite number of real-valued
variables. These variables may change continuously along differential equations

Jan-David Quesel 97 April 17, 2007

Diploma Thesis CHAPTER 6. RELATED WORK

or within the range defined by differential inequalities. Therefore hybrid automata
are a generalization of timed automaton [AD94], where the value of the variables
(clocks) change with the constant slope of 1. A linear hybrid automaton is a
hybrid automaton where all predicates are convex, i.e. they are conjunctions
of inequalities over a set of variables. HyTech works fully automatically and
checks a given system for correctness with respect to a given requirement. The
requirements are specified in a temporal logic. As the state space of linear hybrid
automata is infinite, symbolic methods are used to handle it. HyTech needs
concrete numbers for most of the parameters. With our approach it is possible
to derive parameter constraints and abstract from concrete numbers.

Another model checker for hybrid systems is PHAVer [Fre05]. PHAVer also
aims at the verification of safety properties of linear hybrid automata. It extends
the automata model by allowing affine dynamics that are handled by on-the-fly
overapproximation.

André Platzer presented in [Pla07c] a translation from linear hybrid automaton
into dL, thus in general it should be possible to verify the same examples in KeY
as in HyTech and PHAVer.

Integration of Maple and PVS

Adams, Dunstan et al. provide a description how Maple [CGG83] and
PVS [ORS92] were integrated to prove certain properties of mathematical func-
tions in [ADG+01]. Maple is a computer algebra system like Mathematica and
PVS is a theorem prover for higher-order logic with support for predicate and
dependent sub-typing. Their approach is giving the user access to the theorem
prover from the Maple working perspective, thus one can prove e.g. if a func-
tion is continuous using PVS. This information may be necessary to verify the
correctness of the results supplied by Maple. They integrated a special PVS
library for proving properties like continuity or convergence of transcendental
functions [Got00].

The main difference in their approach is that they only use the theorem prover
to verify properties like continuity of functions, whereas we use the theorem prover
as our main component. Furthermore, they utilize the CAS as user interface,
because they employ the theorem prover for supporting the user while performing
mathematical calculations. Another difference is that they use the theorem prover
to check the results of the CAS, whereas we rely on the results of the black-box
application Mathematica. It may be noted that there are also approaches to
verify Java programs using PVS [Hui01], but they use higher-order logic instead
of dynamic logic, thus it is not as close as KeY to our needs.

Verification of Hybrid Systems using PVS

In [ÁMSH01b] Erika Ábrahám-Mumm, Ulrich Hannemann and Martin Steffen
presented a deductive proof method for the verification of hybrid systems. For

Jan-David Quesel 98 April 17, 2007

Diploma Thesis CHAPTER 6. RELATED WORK

the representation of hybrid systems they use hybrid automata [ACHH92] with
step semantics. The step semantics defines that a run of a hybrid automaton
is the union of discrete state changes and time steps, i.e. the transitions of the
hybrid system where time passes and the variables may change. The verification of
properties is based on the inductive assertion method [Flo67]. They use inductive
assertion networks for the representation of system invariants. An assertion on a
location of the hybrid automaton is a boolean predicate over the variables of the
automaton. An assertion network assigns assertions to locations of the hybrid
automaton [ÁMSH01a]. An assertion network is called inductive if it holds for
all initial states of the hybrid automaton and is preserved under the transition
relation [ÁMSH01a].

The authors have integrated a model for hybrid automata, as well as for its
semantics into PVS. The user has to provide the automaton and can use the
description of the system as hybrid automaton. They prove that the given asser-
tion network is invariant and inductive for the given automata by projecting the
automaton on its semantics and applying proof rules provided by PVS. This way
they can verify safety properties of hybrid systems.

They also integrated a proof rule for reducing the complexity of verification of
parallel systems into PVS.

The main difference to our approach is the input language. They use hybrid
automaton and higher-order logic, whereas we use a dynamic logic (dL). Also
they use the higher-order facility of PVS to handle arithmetics, whereas we in-
tegrated the prover with an external program for solving the arithmetics. The
handling of the parallel composition of hybrid systems is another advantage of
their implementation, as at the moment it is necessary in our implementation to
compute the parallel composition of the system components by hand. Another
difference is the fact that they translate the automaton into higher-order logic in
one step, whereas we inductively process the input formula.

STeP

STeP [BBC+96] is a combined system of a deductive prover and a model checker.
The basic idea is to model a system using transition systems and verify it on
the basis of verification rules and verification diagrams. It reduces temporal
properties to first-order conditions, thus the deductive prover component can
handle them. The verification diagrams are designed for proof monitoring of
the user. STeP integrates a automatic prover, an interactive prover and a
model checker. The interactive theorem prover is a Gentzen-style first-order
prover [BBC+96, Gal87]. STeP also uses certain techniques for automatic de-
tection of local, linear or polyhedral invariants [BBM97].

In [MS98] Zohar Manna and Henny B. Sipma presented a way to verify safety
properties of hybrid systems using STeP. They use Phase Transition Systems to
model the systems. A Phase Transition System is a transition system extended
by activities [MS98]. These activities are differential inclusions of variables. The
functions used to specify the bounds of the variable evolution may not contain

Jan-David Quesel 99 April 17, 2007

Diploma Thesis CHAPTER 6. RELATED WORK

variables that are bounded by differential inclusions themselves. Trace seman-
tics are used to verify safety properties of these systems. Using trace semantics
means that the logic can specify properties that hold in any state of the system.
Temporal properties are reduced to a set of first-order verification conditions by
an invariant rule. An extended version of dL is presented in [Pla07a] that also
uses trace semantics for the verification of temporal properties.

In [SSM04] the methods for finding invariants in hybrid systems are described.
The authors reduce the problem of finding invariants to a constraint solving prob-
lem. Redlog [DS97] is used to handle non-linear clauses. In [MS98] a plan is
illustrated to integrate STeP with Redlog. We have found no indices that this
has ever happened.

One advantage of STeP are the procedures for finding invariants automatically.
The integration of Redlog would be similar to our integration of Mathematica
and one could think of integrating Redlog with KeY as well. The trace semantics
make it possible to use modalities to formalize propositions about every state
of a system, whereas in the current implementation, we cannot assert that a
solution to a differential equations is not totally out of bounds while evolving, i.e.
we can only make propositions about the initial values and the values after the
continuous evolution is performed. As said earlier theories have been developed
to overcome this [Pla07a] and one can think of extending KeY, thus it can check
these properties too.

Comparison between STeP and the PVS approach

We have remarked that the approaches for the verification of hybrid systems
using STeP [MS98] and PVS [ÁMSH01b] have some properties in common. Both
approaches base on a transition system description of the hybrid system. The
phase transition systems are, beside the restrictions of the differential inclusions,
very much like hybrid automata. Both approaches use a translation step from the
input to easier proof goals formulated in a logic. They both supply an invariant
rule to enable the user to proof safety properties. No rules are supplied that aim
at the verification of liveness properties.

Compared to our approach, the most obvious difference is the translation to a
logic level at once. As we use a dynamic logic that is used to specify the system
as well as the property to proof, we can perform the proof inductively. Also it is
possible to use our calculus to proof liveness properties, but as our implementation
lacks of general handling of existential quantifiers on the right side of the sequent
we must admit that this makes verification of liveness properties very difficult
and in many cases impossible.

Jan-David Quesel 100 April 17, 2007

Diploma Thesis CHAPTER 7. CONCLUSIONS

Chapter 7

Conclusions

Results

This thesis aims at the development of a software system for the computer aided
verification of hybrid systems. We use the logic dL [Pla07c,Pla07b,Pla07a] as a
semantically well-founded specification language to describe both hybrid system
behaviours and correctness statements. For the deductive verification of hybrid
systems, we implement the dL calculus in the theorem prover KeY [BHS07].

In chapter 2 we recapitulate the definition of the logic dL as well as a sound
sequent calculus that can be used to perform proofs on a syntactical level. We
have discussed different ways to handle quantifiers. For the universal fragment
of dL, that is, the fragment containing only universal quantifiers on the right
and existential quantifiers on the left side of the sequent, we have shown that
Skolemization [Fit96] can be used. This way we can avoid a side deduction in
these cases. Existential quantifiers on the right side and universal quantifiers on
the left side of the sequent could be handled using side deduction [Pla07c] as a
complementary technique. Further we have presented our design for a verification
tool based on this calculus in chapter 3 and we described the implementation using
the theorem prover KeY and the computer algebra system Mathematica [Wol03]
in chapter 4.

With the current implementation it is not possible to check formulas outside
the universal fragment like ` ∃x[α∗]ϕ. Still most safety properties depend on
universal quantification of the system parameters within a certain range, so that
there often is no need for an existential quantifier. If the existential quantifier
does not occur in front of a loop, we can already handle it by processing the
modalities using rewrite rules and by eliminating the existential quantifier in the
resulting first-order formula using Mathematica.

The logic dL is able to identify the natural numbers, thus our deductive sys-
tem cannot be complete [Pla07b], but we have shown that it is possible to prove
interesting properties of realistic systems in chapter 5. Therefore we have ex-
tended a case study [Pla07c, Pla07a] from the context of the European Train
Control System [ERT02,DMO+07,DHO06]. The development of this case study
has furthermore shown that large parts of the proof construction which had to
be performed manually in [Pla07c] can be performed fully automatically in our
theorem prover implementation.

Jan-David Quesel 101 April 17, 2007

Diploma Thesis CHAPTER 7. CONCLUSIONS

Future Work

It has to be discussed if an extension of KeY may be feasible to check the re-
sults of Mathematica similar to the integration of Maple and PVS described in
section 5.3.2.

Furthermore it may be interesting to implement calculus rules for handling
existential quantifiers on the right side of the sequent and universal quantifiers
on the left side beyond the universal fragment. There are two challenges for
the implementation of these rules. First, in KeY, a proof is a tree and not a
general directed acyclic graph. Therefore the rules that create the input for the
quantifier elimination would have to close the branches that are reintegrated,
when using the simultaneous branch closing approach. Additionally, there is no
support for side deductions in KeY up to now, consequently greater changes would
be necessary to implement this approach as well. Second, the check whether the
rule for reintroduction of the quantifier is applicable is very expensive, as we have
to check properties of all formulas in all branches below the rule application that
has dropped the quantifier. It is necessary to find an implementation for this
check that can be performed quickly, because every time the user clicks on a
prior quantified symbol this check is performed.

As hybrid systems often consists of parallel components calculus rules should
be integrated that could handle parallel systems explicitly. Currently parallelism
has to be expressed either using the non-deterministic choice or the parallel com-
position of the components has to be precomputed by hand.

Another extension that is worth discussion is the integration of the calculus
presented in [Pla07a]. It features extended modalities providing e.g. the possi-
bility to specify that throughout a continuous evolution certain properties hold
which can be useful for analysing safety at intermediate states.

Jan-David Quesel 102 April 17, 2007

Diploma Thesis

Appendices

Jan-David Quesel 103 April 17, 2007

Diploma Thesis

Jan-David Quesel 104 April 17, 2007

Diploma Thesis APPENDIX A. DESIGN PATTERNS

Appendix A

Design Patterns

In this section we describe the patterns [GHJV95] we use in our design.

A.1 Architectural Patterns

Architectural patterns are employed to describe the interaction between system
components. For the Mathematica integration we apply the Client Server Pat-
tern.

The Client Server Pattern is used to share responsibilities between different
computes using a network. It defines two types of components. One is the
server which waits for request from clients. The other is the client which is in
most cases guided by an user. The client requests services from the server. The
server processes the requests and replies. A common example for a client server
architecture is the web browser/web server architecture used on the internet.

A.2 Fundamental Patterns

Fundamental Patterns are patterns that describe basic object oriented program-
ming paradigms. In our context Delegation is used in the Mathematica interface
to keep code readable. Immutable Object is used in the Term data structures, for
easily comparing the data structures. To keep the code readable Marker Inter-
faces are also used.

A.2.1 Delegation

The Delegation Pattern enables one object to delegate requests to other objects.
The requesting object does not know that the request is delegated.

A.2.2 Immutable Object

An Immutable Object is an object which state is set on construction time and
cannot be changed. Equality checks can be performed more efficient on immutable
objects. This speedup goes at cost of alternation time of this object, as it needs to
be recreated if the data should be changed. A common example for an Immutable
Object is the Java String class.

Jan-David Quesel 105 April 17, 2007

Diploma Thesis APPENDIX A. DESIGN PATTERNS

A.2.3 Marker Interface Pattern

Marker Interfaces are used to identify groups of objects that have common meth-
ods. An (marker) interface defines method stubs. A class that implements the
interface has to provide the methods specified in the interface. On class inter-
action it can be tested whether a class implements a certain interface, thus we
know that it provides certain methods.

There are also special marker interfaces, called tagging interfaces. Tagging
interfaces are interfaces without method stubs. These interfaces are used to utilize
polymorphism e.g. to get a common return type for a method.

The marker interface pattern is an integral part of the Java programming
language.

A.3 Creational Patterns

Creational Patterns are patterns that deal with the creation of objects. We utilize
three well known pattern in our design. First there is Abstract Factory which is
useful for creating data structures. Singleton is used to restrict the number of
instances of a class to one. Lazy Initialization is often used in combination with
the singleton pattern.

A.3.1 Abstract Factory

The Abstract Factory Pattern is a design pattern used to make different imple-
mentations of data structures possible. An abstract factory is used as interface for
creation of the data structures. There is also an interface structure that describes
the data structures. The concrete implementation of the data structures is only
referenced by the concrete factory, which is responsible for object creation. This
way the implementation can be replaced by only using another concrete factory.
An abstract representation of the pattern is shown in figure A.1.

A.3.2 Lazy Initialization

Lazy Initialization delays the creation of an object until it is needed. This is
useful if an object is not always needed and the creation on run time does not
brake time constraints.

A.3.3 Singleton

The Singleton Pattern is used when there should be only one instance of a class.
This is for example useful for a class managing the available arithmetic solvers
as two instances would supply exactly the same information but would cost more
memory. The Singleton Pattern is often combined with Lazy Initialization since
otherwise the object is created on system start up by the class loader and it is
not necessarily used. Figure A.2 illustrates the combination of singleton and lazy
initialization.

Jan-David Quesel 106 April 17, 2007

Diploma Thesis APPENDIX A. DESIGN PATTERNS

Figure A.1: Abstract class diagram for the abstract factory pattern

Figure A.2: Abstract class diagram for the singleton pattern with lazy initializa-
tion

Jan-David Quesel 107 April 17, 2007

Diploma Thesis APPENDIX A. DESIGN PATTERNS

A.4 Behavioral Pattern

Behavioral Patterns are abstract realizations of common problems occurring on
object interaction.

A.4.1 Visitor

The visitor pattern is a useful pattern for separating algorithms from data struc-
tures. The elements of the data structure all implement a common interface that
provides an accept method. The concrete implementation of this method calls a
special method of a visitor interface that handles the concrete object. The visitor
can iterate over the data structure and handle objects differently without using
the reflection API to get informations about the object type. The visitor pattern
is illustrated in figure A.3. An example for the use of the visitor pattern is the
PrettyPrinter which is responsible for the output of formulas. The indention
level can be considered the state of the PrettyPrinter. This is a huge advantage
over just calling polymorphic methods [Wik07]. They would have to carry the
current indention level from one method to another and would have to rely on
the method implementation for handling the parameter correctly.

Figure A.3: Abstract class diagram for the visitor pattern

A.4.2 Iterator Pattern

The Iterator Pattern describes how data structures can be sequentially accessed
without concrete knowledge about the structure itself. Therefore a so called
iterator is provided together with the data structures that can be used it iterate
over the data.

Jan-David Quesel 108 April 17, 2007

Diploma Thesis APPENDIX A. DESIGN PATTERNS

The iterator pattern is supported by Java and used in the Java class library.
In Java 1.5 a foreach loop is introduced that utilizes the iterator pattern and
makes code easier to write and more readable.

Jan-David Quesel 109 April 17, 2007

Diploma Thesis Bibliography

Bibliography

[ABB+05] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard Bubel,
Martin Giese, Reiner Hähnle, Wolfram Menzel, Wojciech Mostowski,
Andreas Roth, Steffen Schlager, and Peter H. Schmitt. The KeY tool.
Software and System Modeling, 4:32–54, 2005.

[ACHH92] Rajeev Alur, Costas Courcoubetis, Thomas A. Henzinger, and Pei H.
Ho. Hybrid automata: An algorithmic approach to the specification and
verification of hybrid systems. In Hybrid Systems, pages 209–229, 1992.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, 1994.

[ADG+01] Andrew Adams, Martin Dunstan, Hanne Gottliebsen, Tom Kelsey,
Ursula Martin, and Sam Owre. Computer algebra meets automated
theorem proving: Integrating maple and pvs. In TPHOLs ’01: Proceed-
ings of the 14th International Conference on Theorem Proving in Higher
Order Logics, pages 27–42, London, UK, 2001. Springer-Verlag.

[ÁMSH01a] Erika Ábrahám-Mumm, Martin Steffen, and Ulrich Hannemann.
Assertion-Based Analysis of Hybrid Systems with PVS. In Computer
Aided Systems Theory - EUROCAST 2001-Revised Papers, pages 94–
109, London, UK, 2001. Springer-Verlag.

[ÁMSH01b] Erika Ábrahám-Mumm, Martin Steffen, and Ulrich Hannemann.
Verification of Hybrid Systems: Formalization and Proof Rules in PVS.
In ICECCS, pages 48–57. IEEE Computer Society, 2001.

[BBC+96] Nikolaj Bjørner, Anca Browne, Edward Y. Chang, Michael Colón,
Arjun Kapur, Zohar Manna, Henny Sipma, and Tomás E. Uribe. Step:
Deductive-algorithmic verification of reactive and real-time systems. In
Rajeev Alur and Thomas A. Henzinger, editors, CAV, volume 1102 of
Lecture Notes in Computer Science, pages 415–418. Springer, 1996.

[BBM97] Nikolaj Bjørner, Anca Browne, and Zohar Manna. Automatic gener-
ation of invariants and intermediate assertions. Theor. Comput. Sci.,
173(1):49–87, 1997.

[Bec01] Bernhard Beckert. A dynamic logic for the formal verification of Java
Card programs. In I. Attali and T. Jensen, editors, Java on Smart Cards:
Programming and Security. Revised Papers, Java Card 2000, Interna-
tional Workshop, Cannes, France, volume 2041, pages 6–24. Springer-
Verlag, 2001.

Jan-David Quesel 111 April 17, 2007

Diploma Thesis Bibliography

[BHS07] Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt, editors. Ver-
ification of Object-Oriented Software: The KeY Approach. LNCS 4334.
Springer-Verlag, 2007.

[BJK+97] Bruno Buchberger, Tudor Jebelean, Franz Kriftner, Mircea Marin,
Elena Tomuta, and Daniela Vasaru. A survey of the theorema project.
In ISSAC, pages 384–391, 1997.

[BPSM97] Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen. Extensible
markup language (xml). World Wide Web Journal, 2(4):27–66, 1997.

[BSC06] Borland Software Corporation. Borland Together. http:/www.borland.
com/together/, 2006. Last visited 12-15-2006.

[CGG83] Bruce Char, Keith Geddes, and Gaston Gonnet. The Maple sym-
bolic computation system. SIGSAM Bulletin (ACM Special Interest
Group on Symbolic and Algebraic Manipulation), 17(3–4):31–42, Au-
gust/November 1983.

[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model Checking.
The MIT Press, Cambridge, Massachusetts, 1999.

[Che00] Zhiqun Chen. Java Card Technology for Smart Cards: Architecture and
Programmer’s Guide. Java Series. Addison-Wesley, June 2000.

[CKOS03] E. Clarke, M. Kohlhase, J. Ouaknine, and K. Sutner. System
description: Analytica 2. http://www.cs.cmu.edu/~emc/papers/

Conference%20Papers/1System%20description_Analytica%202.pdf,
Last visited 04-09-2007, 2003.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In
STOC ’71: Proceedings of the third annual ACM symposium on Theory
of computing, pages 151–158. ACM Press, 1971.

[CZ92] Edmund M. Clarke and Xudong Zhao. Analytica - a theorem prover
in mathematica. In CADE-11: Proceedings of the 11th International
Conference on Automated Deduction, pages 761–765, London, UK, 1992.
Springer-Verlag.

[DHO06] W. Damm, H. Hungar, and E.-R. Olderog. Verification of cooperat-
ing travel agents. International Journal of Control, 79(5):395–421, May
2006.

[DMO+07] Werner Damm, Alfred Mikschl, Jens Oehlerking, Ernst-Rüdiger
Olderog, Jun Pang, André Platzer, and Boris Wirtz. Automating ver-
ification of automating verification of applications. Unpublished data,
2007.

[DS97] Andreas Dolzmann and Thomas Sturn. Redlog: computer algebra meets
computer logic. SIGSAM Bull., 31(2):2–9, 1997.

Jan-David Quesel 112 April 17, 2007

http:/www.borland.com/together/
http:/www.borland.com/together/
http://www.cs.cmu.edu/~emc/papers/Conference%20Papers/1System%20description_Analytica%202.pdf
http://www.cs.cmu.edu/~emc/papers/Conference%20Papers/1System%20description_Analytica%202.pdf

Diploma Thesis Bibliography

[EFI05] Eclipse Foundation Inc. Homepage der Eclipse-Community, November
05, 2005. http://www.eclipse.org.

[ERT02] ERTMS User Group, UNISIG. ERTMS/ETCS System requirements
specification. http://www.aeif.org/ccm/default.asp, 2002. Version
2.2.2.

[Fit96] Melvin Fitting. First-Order Logic and Automated Theorem Proving.
Springer-Verlag, New York, second edition, 1996.

[Flo67] R. W. Floyd. Assigning meanings to programs. Proceedings Symposium
on Applied Mathematics, 19:19–31, 1967.

[Fre05] Goran Frehse. PHAVer: Algorithmic Verification of Hybrid Systems Past
HyTech. In Manfred Morari and Lothar Thiele, editors, HSCC, volume
3414 of Lecture Notes in Computer Science, pages 258–273. Springer,
2005.

[Gal87] Jean H. Gallier. Logic for Computer Science. Foundations of Automatic
Theorem Proving. John Willey and Sons, Inc., 1987.

[Gen35] Gerhard Gentzen. Untersuchungen über das logische Schließen II. Math-
ematische Zeitschrift, 39, 1935.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns. Addison-Wesley Professional, January 1995.

[GHT07] Tobias Gutzmann, Dirk Heuzeroth, and Mircea Trifu. RECODER hom-
page, March 14, 2007. http://recoder.sourceforge.net.

[Got00] Hanne Gottliebsen. Transcendental functions and continuity checking in
PVS. In Mark Aargaard and John Harrison, editors, Theorem Proving
in Higher Order Logics: 13th International Conference, TPHOLs 2000,
volume 1869 of Lecture Notes in Computer Science, pages 197–214, Port-
land, OR, August 2000. Springer-Verlag.

[Hen96] Thomas Henzinger. The theory of hybrid automata. In Proceedings of
the 11th Annual IEEE Symposium on Logic in Computer Science (LICS
’96), pages 278–292, New Brunswick, New Jersey, 1996.

[HHWT97] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi.
HYTECH: A Model Checker for Hybrid Systems. International Journal
on Software Tools for Technology Transfer, 1(1–2):110–122, 1997.

[HKT00] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic logic. MIT
Press, 2000.

[Hui01] Marieke Huisman. Java Program Verification in Higher-Order Logic with
PVS and Isabelle. PhD thesis, University of Nijmegen, The Netherlands,
2001.

Jan-David Quesel 113 April 17, 2007

http://www.eclipse.org
http://www.aeif.org/ccm/default.asp
http://recoder.sourceforge.net

Diploma Thesis Bibliography

[HWL+02] Marc Hoy, Dave Wood, Marc Loy, James Elliot, and Robert Eckstein.
Java Swing. O’Reilly & Associates, Inc., Sebastopol, CA, USA, 2002.

[Int83] International Organization for Standardization. ISO Standard 646, 7-Bit
Coded Character Set for Information Processing Interchange. Interna-
tional Organization for Standardization, Geneva, Switzerland, second
edition, 1983. Also available as ECMA-6.

[JKP04] T. Jebelean, L. Kovacs, and N. Popov. Experimental Program Verifica-
tion in the Theorema System. In T. Margaria and B. Steffen, editors,
Proceedings ISOLA 2004, pages 92–99, Paphos, Cyprus, November 2004.

[JP04] Jörn Pachl. Systemtechnik des Schienverkehrs – Bahnbetrieb planen,
steuern und sichern. Teubner, Stuttgart, Germany, 2004.

[KeY07] The KeY Project – Integrated Deductive Software Design. http://www.
key-project.org/, 2007. Last visited 04-10-2007.

[LPC+07] Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon, Clyde
Ruby, David R. Cok, Peter Müller, Joseph Kiniry, and Patrice Chalin.
JML reference manual. Department of Computer Science, Iowa State
University. Available from http://www.jmlspecs.org, February 2007.

[MS98] Zohar Manna and Henny Sipma. Deductive verification of hybrid systems
using step. In HSCC ’98: Proceedings of the First International Work-
shop on Hybrid Systems, pages 305–318, London, UK, 1998. Springer-
Verlag.

[Old02] Ernst-Rüdiger Olderog. Logik – Vorlesungsskript zum Modul
Theoretische Informatik I. Vorlesungsskript, Universität Olden-
burg, 2002. In German. Available at: http://csd.informatik.

uni-oldenburg.de/~skript/Logik/SS02/Skript/logik.pdf.

[ORS92] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification
system. In Deepak Kapur, editor, 11th International Conference on
Automated Deduction (CADE), volume 607 of Lecture Notes in Artificial
Intelligence, pages 748–752, Saratoga, NY, June 1992. Springer-Verlag.

[Pau94] Lawrence C. Paulson. Isabelle: a generic theorem prover. In Lecture
Notes in Computer Science, volume 828, New York, NY, USA, 1994.

[Pla04] André Platzer. An object-oriented dynamic logic with updates. Master’s
thesis, University of Karlsruhe, Department of Computer Science. Insti-
tute for Logic, Complexity and Deduction Systems, September 2004.

[Pla07a] A. Platzer. A temporal dynamic logic for verifying hybrid system
invariants. In S. Artemov and A. Nerode, editors, Logical Founda-
tions of Computer Science, International Symposium, LFCS 2007, New
York, USA, Proceedings, volume 4514 of LNCS, pages 457–471. Springer,

Jan-David Quesel 114 April 17, 2007

http://www.key-project.org/
http://www.key-project.org/
http://www.jmlspecs.org
http://csd.informatik.uni-oldenburg.de/~skript/Logik/SS02/Skript/logik.pdf
http://csd.informatik.uni-oldenburg.de/~skript/Logik/SS02/Skript/logik.pdf

Diploma Thesis Bibliography

2007. http://www.springer.com/comp/lncs/index.html(c) Springer-
Verlag.

[Pla07b] A. Platzer. Towards a hybrid dynamic logic for hybrid dynamic sys-
tems. In Patrick Blackburn, Thomas Bolander, Torben Braüner, Vale-
ria de Paiva, and Jørgen Villadsen, editors, Proc., LICS International
Workshop on Hybrid Logic, HyLo 2006, Seattle, USA, ENTCS, 2007. To
appear at http://www.elsevier.nl/locate/entcs/ENTCS.

[Pla07c] André Platzer. Differential dynamic logic for verifying parametric hybrid
systems. In Nicola Olivetti, editor, TABLEAUX, LNCS. Springer, 2007.

[PQ95] Terence J. Parr and Russell W. Quong. ANTLR: A predicated-LL(k)
parser generator. Software Practice and Experience, 25(7):789–810, 1995.

[SSM04] Sriram Sankaranarayanan, Henny Sipma, and Zohar Manna. Construct-
ing invariants for hybrid systems. In Rajeev Alur and George J. Pappas,
editors, HSCC, volume 2993 of Lecture Notes in Computer Science, pages
539–554. Springer, 2004.

[Sun05] Sun Microsystems, Inc. Swing (Java Foundation Classes). http://java.
sun.com/javase/6/docs/technotes/guides/swing/index.html,
2005. Last visited 03-21-2007.

[Tar51] A. Tarski. A Decision Method for Elementary Algebra and Geometry.
University of California Press, 2d edition, 1951.

[Wik07] Wikimedia Foundation, Inc. Visitor pattern – Wikipedia, the free en-
cyclopedia. http://en.wikipedia.org/wiki/Visitor_pattern, 2007.
Last visited 03-21-2007.

[WK03] Jos Warmer and Anneke Kleppe. The Object Constraint Language: Get-
ting Your Models Ready for MDA. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2003.

[Wol03] Stephen Wolfram. The Mathematica Book. Wolfram Media, Incorpo-
rated, 2003.

[Wol07] Wolfram Research, Inc. Java Toolkit: J/Link: Integrating Mathemat-
ica and Java, March 08, 2007. http://www.wolfram.com/solutions/

mathlink/jlink.

Jan-David Quesel 115 April 17, 2007

http://www.springer.com/comp/lncs/index.html
http://www.elsevier.nl/locate/entcs/
http://java.sun.com/javase/6/docs/technotes/guides/swing/index.html
http://java.sun.com/javase/6/docs/technotes/guides/swing/index.html
http://en.wikipedia.org/wiki/Visitor_pattern
http://www.wolfram.com/solutions/mathlink/jlink
http://www.wolfram.com/solutions/mathlink/jlink

Hiermit versichere ich, dass ich diese Arbeit selbstständig verfasst und keine
anderen als die angegebenen Hilfsmitteln und Quellen benutzt habe.

Ort Datum Unterschrift

	Introduction
	Overview
	Basic Definitions
	Propositional Logic
	Syntax
	Semantics

	First-Order Logic
	Syntax
	Semantics

	KeY

	Differential Dynamic Logic
	Overview
	Syntax
	Semantics
	Sequent Calculus for
	Sequent Calculi
	Rules for Propositional Logic
	Rules for FOL
	Rules for Hybrid Programs
	Soundness Proofs

	Design
	Overview
	Architecture of the KeY Prover
	Calculus Embedding

	Integration
	Java Embedding of Hybrid Programs
	Abstract Syntax of Formulas in KeY
	Syntax Tree
	Data Structures for Hybrid Programs

	Mathematica Integration

	Implementation
	Overview
	KeY Extension
	Parsing
	Calculus Embedding
	Integration Challenges
	Strategy

	Mathematica Integration
	Usage
	Input Format
	Tool Overview

	Case Study
	Overview
	Formal Model
	Verification
	RBC Behavior
	Train Controller

	Related Work
	Conclusions
	Appendices
	Design Patterns
	Architectural Patterns
	Fundamental Patterns
	Delegation
	Immutable Object
	Marker Interface Pattern

	Creational Patterns
	Abstract Factory
	Lazy Initialization
	Singleton

	Behavioral Pattern
	Visitor
	Iterator Pattern

