
MoDiShCa

Model Checking Discrete Shape Calculus

September 19, 2005

Jan-David Quesel

Carl von Ossietzky Universität Oldenburg

Fakultät II

Department für Informatik

Abteilung Entwicklung korrekter Systeme

Gutachter: Prof. Dr. Ernst-Rüdiger Olderog

Dipl. Inf. Andreas Schäfer

Abstract

This thesis describes how a decidable fragment of the Shape Calculus, an

extended Duration Calculus, can be translated into WS1S. WS1S is the monadic

second order logic with one successor. We generalise a translation for the two

dimensional case to an arbitrary number of dimensions and beyond an imple-

mentation of it will be presented: MoDiShCa. Also we will illustrate how this

tool can be used to verify complex systems by presenting a case study.

MoDiShCa: Model Checking Discrete Shape Calculus Individual Project

Contents

1 Introduction 5

2 Basics 5
2.1 Shape Calculus . 5

2.1.1 Syntax . 5
2.1.2 Semantics . 6
2.1.3 Abbreviations . 8

2.2 Weak S1S . 8
2.3 MONA . 8

3 Translation schema 9

4 Program 11
4.1 Features . 11
4.2 Usage . 11
4.3 Implementation . 12

5 Examples 15
5.1 Pure DC formulas . 15
5.2 SC formulas . 16
5.3 Derived operators . 17

6 Case Study 18
6.1 Description . 18
6.2 Modeling . 18
6.3 Result . 21

7 Conclusion 21

8 Appendix 22
8.1 Symbols . 22
8.2 Yacc grammar . 22

Jan-David Quesel 3 September 19, 2005

MoDiShCa: Model Checking Discrete Shape Calculus Individual Project

1 Introduction

This document describes how model checking of a decidable fragment of the spatio-
temporal logic Shape Calculus (SC) [Sch05] is possible using the Model Checker
[CGP99] MONA [EKM98]. This calculus is based on the Duration Calculus (DC)
[ZHR91]. As in the Duration Calculus, it is not possible to specify spatial constraints,
Shape Calculus adds such a possibility. DCVALID [Pan00] is a model checker for the
DC using MONA as back-end. It is able to check specifications of discrete DC. It has
some syntactical enhancements to make it easier to use.
The first chapter describes the SC and its features. To be able to model check the SC
using MONA, it is necessary to translate SC formulas into weak S1S [Tho97] formulas
(WS1S). The second chapter specifies an inductive translation of SC with an arbitrary
number of finite spatial dimensions and one infinite temporal dimension into weak S1S.
We use this fragment because it is decidable. The third chapter describes how the
implementation of this translation schema is achieved and the input format of the tool.
To illustrate how this translation is done a few examples will be given. A case study
will illustrate how MoDiShCa can be used to verify greater systems.

2 Basics

2.1 Shape Calculus

The Shape Calculus is an interval logic able to describe system behaviors in time and
space. As Shape Calculus itself is undecidable [Sch05], we only consider a decidable
fragment in this thesis. The fragment makes the following restrictions: Instead of
defining the interpretation function over R, we use N. Also we assume that the spatial
dimensions are finite and that the cardinality of each dimension d is given by card(d) ≥
1. The cardinality of a dimension is the scale of that direction. As dimension names we
use d0, . . . , dn. We only use boolean observables. Integer observables can be expressed
using the boolean observables and a binary encoding. The semantics of formulas is
defined over intervals. As an abbreviation for [x0

1, x
0
2] × · · · × [xn

1 , xn
2] we will write

[−→x1,
−→x2] and use the function proj to reference the components of a vector:

Definition 1 proj((x1, . . . , xn), i) := xi

For manipulating a vector we define a substitution:

Definition 2 (x1, · · · , xi−1, xi, xi+1, · · · , xn){xm, i} := (x1, · · · , xi−1, xm, xi+1, · · · , xn)

We define an ordering on n-dimensional vectors by:

Definition 3 −→x ≤ −→x ′ iff (x1, . . . , xn) ≤ (x′
1, . . . , x

′
n) iff ∀i ∈ [1, n] : xi ≤ x′

i and
−→x < −→x ′ iff (x1, . . . , xn) < (x′

1, . . . , x
′
n) iff ∀i ∈ [1, n] : xi < x′

i

2.1.1 Syntax

There are three types of constructs in the SC. Observables are used to model system
inputs and outputs.

Jan-David Quesel 5 September 19, 2005

MoDiShCa: Model Checking Discrete Shape Calculus Individual Project

State expressions are used to model system states and are generated by the abstract
syntax:

π ::= X | ¬π1 | π1 ∧ π2

where X is an observable.
Formulas are generated from state expressions using the following EBNF grammar:

F ::= ⌈π⌉ | ⌈π⌉di
| ⌈π⌉t | F 〈di〉G | F 〈t〉G | F ∧ G | ¬F | lt ∼ n | ldi

∼ n

where F and G are formulas, π is a state expression, n is an integer constant and
∼∈ {≤,≥, <, >, =}.

2.1.2 Semantics

Observables System behavior is modeled by observables. Its semantics is given by:
I[[X]](t,−→x) = 1 iff the observable X is true at the spatial point −→x at time t.

State Expressions
State expressions are predicates over a discrete point in space and time. They are
boolean combinations of observables. The semantics of the state expression is given
by the following function:

I[[π]] : N0 × N≤card(x0) × N≤card(x1) × · · · × N≤card(xn) → {0, 1}

where N≤i := N0\{m|m ∈ N ∧ m > i} such that
I[[π1 ∧ π2]](t,

−→x) = 1 iff the state expression π1 and the state expression π2 are both
evaluated to 1 at the spatial point −→x at the time t.
I[[¬π1]](t,

−→x) = 1 iff the state expression π is evaluated to 0 at the spatial point −→x at
the time t.

Formulas
Formulas are interpreted over spatio-temporal intervals, their semantics is given by a
function:

I[[F]] : [t1, t2] × [x0
1, x

0
2] × · · · × [xn

1 , xn
2] → B

where t1, t2 ∈ N0 and xi
1, x

i
2 ∈ N≤card(di).

We now inductively define this function using meta-quantifiers that should be inter-
preted as “for all” (∀) and “there is a” (∃):

• The first operator is everywhere X (⌈X⌉). It expresses that at every spatial
point, at every point in time X is true. So it is defined by

I[[⌈π⌉]]([t1, t2], [
−→x1,

−→x2]) := true iff ∀t ∈ [t1, t2]

∀−→x ∈ [−→x1,
−→x2] : I[[π]](t,−→x) = 1

Jan-David Quesel 6 September 19, 2005

MoDiShCa: Model Checking Discrete Shape Calculus Individual Project

• Everywhere X in direction di (⌈X⌉di
) means that for every possible value of xi,

the i-th component of the vecors, there is a point in time and there are values
for the other spatial dimensions such that X is true. This is a projection on the
di axis. Formally,

I[[⌈π⌉di
]]([t1, t2], [

−→x1,
−→x2]) := true iff

∀xi ∈ [proj(−→x1, i),
−→x2, i)] ∃t ∈ [t1, t2] ∃

−→x ′ ∈ [−→x1,
−→x2] : I[[π]](t,−→x ′{xi, i}) = 1

• All-the-time X means that for every point in time there is a point in the spatial
interval such that X is true. This is a projection on the time line.

I[[[π]t]]([t1, t2], [
−→x1,

−→x2]) := true iff

∀t ∈ [t1, t2]∃
−→x ∈ [−→x1,

−→x2] : I[[π]](t,−→x) = 1

• The chop in direction di means that it is possible to split the spatial interval in
the direction di such that on the first part F is true and on the second part G is
true.

I[[F 〈di〉G]]([t1, t2], [
−→x1,

−→x2]) := true iff

∃xm ∈ [proj(−→x1, i), proj(
−→x2, i)] : I[[F]]([t1, t2], [

−→x1,
−→x2{xm, i}]) = true and

I[[G]]([t1, t2], [
−→x1{xm, i},−→x2]) = true

• The time-chop means that it is possible to split the temporal interval such that
on the first part F is true and on the second part G is true.

I[[F 〈t〉G]]([t1, t2], [
−→x1,

−→x2]) := true iff

∃t ∈ [t1, t2] : I[[F]]([t1, t], [
−→x1,

−→x2]) = true and

I[[G]]([t, t2], [
−→x1,

−→x2]) = true

• Conjunction and negation are handled as usual.

I[[F ∧ G]]([t1, t2], [
−→x1,

−→x2]) := true iff

I[[F]]([t1, t2], [
−→x1,

−→x2]) = true and

I[[G]]([t1, t2], [
−→x1,

−→x2]) = true

and

I[[¬F]]([t1, t2], [
−→x1,

−→x2]) := true iff I[[F]]([t1, t2], [
−→x1,

−→x2]) = false

• The operator lt is introduced for statements about the length of the temporal

interval. It can be compared to an integer constant using ∼ which is an binary
relation from {≤,≥, <, >, =}.

I[[lt ∼ n]]([t1, t2], [
−→x1,

−→x2]) := true iff t2 − t1 ∼ n

Jan-David Quesel 7 September 19, 2005

MoDiShCa: Model Checking Discrete Shape Calculus Individual Project

• Similarly, the operator ldi
can be used for statements about the length of a

spatial interval.

I[[ldi
∼ n]]([t1, t2], [

−→x1,
−→x2]) := true iff proj(x2, i) − proj(x1, i) ∼ n

2.1.3 Abbreviations

To make formulas easier to read and modeling more intuitive, we introduce the following
abbreviations:

• ♦dim(F) abbreviates true 〈dim〉F 〈dim〉 true. The operator is called“eventually”.

• The dual operator �dim(F) is defined as ¬♦dim(¬F). The operator is called
“always”.

The dimension dim could either be some spatial or the temporal dimension.

2.2 Weak S1S

Weak second order logic with one successor (WS1S) is a subset of monadic second order
logic. Second order logic introduces in addition to first order logic the possibility to
use quantifiers over relations. The keyword monadic means that these relations can
only have the arity one. That means they are sets. In WS1S it is possible to express
some properties of arithmetic on natural numbers. The keyword weak in weak S1S
means that the interpretation of the second order quantifiers ∃X and ∀X are changed
into “there is a finite subset X of N. . . ” and “for all finite subsets X of N. . . ”. But
this restriction does not change the expressiveness of the logic as it can be proven that
WS1S and S1S have the same expressive power [Tho97]. In second order logic, other
than in first order logic, it is possible to derive ≤ and < from this successor predicate.
Weak S1S formulas can be constructed using the following EBNF grammar:

F := x ∈ X | ∃x : F | ∃X : F | F ∧ G | ¬F | S(x, y)

where X is a second order variable, x and y are first order variables, F and G are
formulas and S(x, y) is the mentioned successor predicate. The expression x ∈ X
means that the first order variable x is in the set X. S(x, y) is true iff x is the successor
of y and S(x, y) ∧ S(x, z) ⇒ y = z.
In WS1S we can define every ω-regular language [Tho97] and for every WS1S formula
there is an ω-regular language that characterizes it. As WS1S is a decidable logic
[Tho97], we use a direct translation from SC into WS1S to do the model checking.

2.3 MONA

MONA [HJJ+95] is a model checker for WS1S. The development of MONA started
1994 at BRICS [HJJ+95]. MONA translates the formulas into finite automata and is
able to decide if the language of these automata is empty or if a state is reachable.
MONA represents the automata as BDDs. This representation leads to a very efficient
implementation of the transformation from WS1S to finite automata and the decision
procedures.

Jan-David Quesel 8 September 19, 2005

MoDiShCa: Model Checking Discrete Shape Calculus Individual Project

3 Translation schema

To be able to use the model checker MONA, we need to translate the SC formulas
into WS1S. We assume that we have n + 1 spatial dimensions. Each point in space
is represented by a vector. To do the translation, we introduce for each observable X∏n

i=0 card(di) second order variables, such that X−→a models the truth value of X at
spatial position −→a on the time line. We define inductively the function SO to translate
a SC formula into a WS1S formula. To do the translation we need a temporal interval
[t1, t2] and a spatial interval [−→x1,

−→x2]. The WS1S formula generated by SO is satisfiable
iff the SC formula is satisfiable on these intervals, the formula is also valid iff the SC
formula is valid on these intervals.
We use the same names for the axes as in the previous section.
State expressions are handled by the translation schema on the lowest level into set
operations and boolean connections in second order logic. The state expression ¬X
is translated into tm /∈ X−→x and X ∧ Y is translated into tm ∈ X−→x ∧ tm ∈ Y−→x . In
the following we only mention the simple state expression X, which is translated into
tm ∈ X−→x , instead of duplicating the formulas three times.
First we translate everywhere X (⌈X⌉). The universal quantification over spatial points
is expressed as conjunction over all possible points (vectors). This conjunction is finite
because we only consider finite and discrete space.

SO(t1,
−→x1, t2,

−→x2)(⌈X⌉) = t1 < t2 ∧
−→x1 < −→x2∧

∀tm : t1 ≤ tm < t2 ⇒

−→x2−1∧

−→x =−→x1

tm ∈ X−→x

The operator everywhere X in direction di (⌈X⌉di
) means that for all possible values of

xi there is a point in time and there are values for the other directions such that X is
true. This is a projection to the di axis. Existential quantification over spatial points
is expressed as disjunction over all possible points (vectors). Its also finite because we
only consider finite and discrete space.

SO(t1,
−→x1, t2,

−→x2)(⌈X⌉di
) = t1 < t2 ∧

−→x1 < −→x2∧

proj(−→x2,i)−1∧

xi=proj(−→x1,i)

proj(−→x2,0)−1∨

x0=proj(−→x1,0)

proj(−→x2,1)−1∨

x1=proj(−→x1,1)

. . .

proj(−→x2,i−1)−1∨

xi−1=proj(−→x1,i−1)

proj(−→x2,i−1)−1∨

xi+1=proj(−→x1,i+1)

· · ·

proj(−→x2,n)−1∨

xn=proj(−→x1,n)

∃tm : t1 ≤ tm < t2 ∧ tm ∈ X(x0,x1,...,xi−1,xi,xi+1,...,xn)

The operator all-the-time X (⌈X⌉t) means that for every point in time there is a vector

Jan-David Quesel 9 September 19, 2005

MoDiShCa: Model Checking Discrete Shape Calculus Individual Project

−→x such that X is true at the point −→x . This is a projection to the time line.

SO(t1,
−→x1, t2,

−→x2)(⌈X⌉t) = t1 < t2 ∧
−→x1 < −→x2∧

∀tm : t1 ≤ tm < t2 ⇒
∨

−→x :−→x1≤
−→x <−→x2

tm ∈ X−→x

The temporal chop is defined as: there is a point t in the current interval such that
F is true in the interval [t1, t] and G is true in the interval [t, t2]. We translate it by
simply using ∧ and changing the time stamp parameters.

SO(t1,
−→x1, t2,

−→x2)(F 〈t〉G) = ∃tm : t1 ≤ tm ≤ t2 ∧ SO(t1,
−→x1, tm,−→x2)(F)∧

SO(tm,−→x1, t2,
−→x2)(G)

The chop operator in di direction is defined as: there is a point xm on the di-axis such
that in the interval [−→x1,

−→x2{xm, i}] F is true and on the interval [−→x1{xm, i}],−→x2] G is
true. To translate it, we use the same basic idea as for the translation of the temporal
chop, but we alter the vectors x1 and x2 instead of the timestamps.

SO(t1,
−→x1, t2,

−→x2)(F 〈di〉G) =

proj(−→x2,i)∨

xm=proj(−→x1,i)

(SO(t1,
−→x1, t2,

−→x2{xm, i})(F)

∧ SO(t1,
−→x1{xm, i}, t2,

−→x2)(G))

The translation of conjunction and negation are straight forward. Conjunction and
negation are handled the same in SC and WS1S so we just keep them.
Conjunction:

SO(t1,
−→x1, t2,

−→x2)(F ∧ G) = SO(t1,
−→x1, t2,

−→x2)(F) ∧ SO(t1,
−→x1, t2,

−→x2)(G)

Negation:

SO(t1,
−→x1, t2,

−→x2)(¬F) = ¬SO(t1,
−→x1, t2,

−→x2)(F)

The operator l is able to determine the length of observation intervals. With lt ∼ n
with ∼∈ {≤,≥, <, >, =} we can determine the length of the temporal interval.

SO(t1,
−→x1, t2,

−→x2)(lt ∼ n) = t2 − t1 ∼ n

We translate the same operator for the spatial dimensions ldi
.

SO(t1,
−→x1, t2,

−→x2)(ldi
∼ n) = proj(x2, i) − proj(x1, i) ∼ n

Jan-David Quesel 10 September 19, 2005

MoDiShCa: Model Checking Discrete Shape Calculus Individual Project

Finally we define the constants true and false with the same meaning as in WS1S.

SO(t1,
−→x1, t2,

−→x2)(true) = true

SO(t1,
−→x1, t2,

−→x2)(false) = false

4 Program

4.1 Features

MoDiShCa is able to translate a textual representation of the SC into MONA syntax,
such that it can be model checked. It supports the discrete SC as described in section
2.1. Beyond the operators defined in section 2.1 some more operators are implemented
to enhance the usability of the program. Operators added are implication, biimplica-
tion, disjunction and the operators always and eventually as defined in 2.1.3.
Additionally MoDiShCa supports formula variables, constants and integer variables for
easier modeling. Formula variables are used to make the specification easier to read.
The value of a formula variable is a formula. See section 6 for an example how to use
these formula variables.

4.2 Usage

MoDiShCa reads its input from the standard input and places its output on the
standard output. This makes it possible to use pipes to preprocess the input or post
process the output. The shell script modishca.sh needs two parameters: inputfile

and outputfile. It will call MoDiShCa using the specified input file as input and it
will redirect the output to the specified output file.
The input format of MoDiShCa is simple. There are a few declarations: observables,
dimensions with its cardinalities and constants. The observables can either be boolean
or restricted integers. Restricted means that you have to specify the maximum value.
The minimum value is always 0. In the declaration part you can also define formula
variables. The formula to check is introduced by the keyword verify: as the last
line in the file. The following tabular shows how the declaration part should be used.
Declaration Keyword Example
Boolean observable bool bool X

Integer observable int int a[5]

Constant const const ten = 10

Spatial dimension dim dim x = 3

Formula variable $assumption = [X]<t>[a = 3]

The declarations are separated by a ;. Formula variables have to be defined af-
ter the other declarations. The name of every formula variable starts with a $. They
can be used from the moment they were defined such that you can use one formula
variable to define another one. They are referenced with there full name including the
leading $.
The translation can be done in two modes. We can either check satisfiability or

Jan-David Quesel 11 September 19, 2005

MoDiShCa: Model Checking Discrete Shape Calculus Individual Project

validity. By default, the translation is done in the satisfiability mode. We can enable
the other mode by adding the keyword validity into the declaration part of the input
file.
The operators that can be used are the following:

Name SC syntax MoDiShCa syntax
Everywhere ⌈π⌉ [pi]

Everywhere in direction x ⌈π⌉x [pi]_x

All-the-time ⌈π⌉t [pi]_t

Temporal-chop 〈t〉 <t>

Spatial-chop 〈x〉 <x>

Length of observation intervals lt or lx l_t or l_x
Always �t or �x []_t or []_x
Eventually ♦t or ♦x <>_t or <>_x
Conjunction of state expression or formulas ∧ &

Disjunction of state expression or formulas ∨ |
Implication of state expression or formulas ⇒ ->

Biimplication of state expression or formulas ⇔ <->

Negation of state expression or formulas ¬ not

where pi is a state expression, x is a spatial dimension. The associativity is
left for the binary operators and right for the unary ones. For the state expressions
we have the following binding preferences for the operators beginning with the highest
priority: negation, conjunction, disjunction, implication, biimplication. For formulas
they are: always, eventually and negation with same priority followed by: chop,
conjunction, disjunction, implication and biimplication with decreasing priorities.

4.3 Implementation

The implementation is done using flex and bison as generators for scanner and parser.
The parser is programmed in C++ while the scanner is in simple C.
To represent the syntax tree, there is a data type called NODE and one called SYM-
BOL. NODE contains the elements of the formula (as tree structure), while SYMBOL
is a connected list containing the declared observables, dimensions and sub formulas.
At parsing time we use the linked list FORMLIST to store the subtrees that are refer-
enced by the formula variables. After parsing is done, a class named SCToSOTranslator
is instantiated. This class handles the translation by traversing the syntax tree and
using the translation schema of section 3 to translate the formula into WS1S. It uses
two std::streams, one for the declarations and one for the formula.
Figure 1 illustrates the data flow. The input data is translated into symbols by the
scanner and the parser generates the syntax tree and a symbol table. Then the trans-
lator generates output data, in our case WS1S formulas which are passed to MONA
for model checking. MONA generates an output, which is either that the formula is
satisfiable, then MONA will produce a satisfying example and a counter example. Or
the formula is unsatisfiable, then MONA will produce a counter example, or the for-
mula is valid, then MONA will produce a satisfying example.

Jan-David Quesel 12 September 19, 2005

MoDiShCa: Model Checking Discrete Shape Calculus Individual Project

Scanner

Parser

Translator

MONA

Input Data
SC formulas

Symbols

Syntax Tree
Symbol Table

WS1S representation

Result

Figure 1: Data flow

The class structure of the program is illustrated in figure 2. The main class is the
SCToSOTranslator. It implements the translation schema described in section 3.
The implementation provides some operators not mentioned in the translation schema

of section 3 such as implication (->), biimplication (<->), disjunction (|), always

([]_dim) and eventually (<>_dim). Implication, biimplication and disjunction are
handled the same in SC as in WS1S so they were promoted like conjunction and
negation. Eventually (♦dimF) is syntactically replaced by its definition in 2.1.3 while
parsing the formula. The dual operator always (�dimF) is also syntactically replaced
at parsing time.
The inductive definition of the translation schema is implemented as a recursive func-
tion, named recTranslate which looks at the root of a formula (sub-)tree and decides
how to handle that type of node.
As MONA cannot handle an equation like t2 − t1 ∼ n we need to translate this into a
form MONA understands. MONA can solve t2 ∼ t1 +n so we just change the formula
to this format.
It is easier to implement ldi

∼ n because we can determine if it is true or false at com-
pile time because the spatial dimensions are finite. The possibility to have restricted
integer variables is implemented by translating the integer into its binary representa-
tion and use a boolean observable for every bit. The integer variables can be compared
to integer constants with the operations {≤,≥, <, >, =}.

Jan-David Quesel 13 September 19, 2005

MoDiShCa: Model Checking Discrete Shape Calculus Individual Project

SCToSOTranslator

#_dcl: ostringstream

#_dimDepth: int*

#_dimOrd: char**

#_dimOrdLn: int

#_frm: ostringstream

#_null: int*

#_timeChopCount: int

#addBools(name:char*)

#between(int*,int*,std::vector<int*>*)

#boolFuncs(char*:const,char*:const,NODE*,int*,notIn:bool=false)

#copyVector(int*): int*

#equalVector(int*,int*): bool

#everywhere(t1:const char*,x1:int*,t2:const char*,x2:int*,what:NODE*)

#everywhereX(t1:const char*,x1:int*,t2:const char*,x2:int*,what:NODE*)

#intFuncs(actNode:NODE*): NODE*

#minusOne(int*): int*

#recAddBools(s:string,i:int): string

#recBetween(int*,int*,std::vector<int*>*,int): std::vector<int*>

#recEverywhereX(t1:const char*,x1:int*,t2:const char*,x2:int*,what:NODE*,x:int,dim:int)

#recExistsX2(t1:const char*,x1:int*,t2:const char*,x2:int*,what:NODE*,dim:int)

#recTranslate(t1:const char*,x1:int*,t2:const char*,x2:int*,actNode:NODE*)

+SCToSOTranslator(startVertex:NODE*,dclVertex:SYMBOL*,type:int)

+translate()

Translator

#_dclVertex: SYMBOL*

#_startVertex: NODE*

#_type: int

+translate()

NODE

+left: NODE*

+right: NODE*

+type: char*

+value: char*

+dim: char*

+intValue: int

SYMBOL

+next: SYMBOL*

+name: char*

+type: char*

+value: int

FORMLIST

+next: FORMLIST*

+name: char*

+tree: NODE*

Tree structure

Linked list

Linked list

Figure 2: UML Classdiagram

Jan-David Quesel 14 September 19, 2005

MoDiShCa: Model Checking Discrete Shape Calculus Individual Project

The satisfiability and validity check is implemented by adding t1 ≤ t2∧ for satisfiability
and t1 ≤ t2 ⇒ for the validity check and genarating the formulas for different lengths of
the spartial interval. These formulas are connected by a disjunction for the satisfiabil-
ity check, because we search one spatial interval to satisfy the formula. A conjunction
of these formulas is generated for the validity check as every possible interval has to
satisfy the formula if it is valid.

5 Examples

In this section we illustrate how to do specifications in SC, how the syntax of the input
files for MoDiShCa looks like and what kind of output is produced.

5.1 Pure DC formulas

As SC is an extention of DC, MoDiShCa is able to handle pure DC formulas like
DCVALID.

a) ⌈X⌉ ⇒ (⌈X⌉ 〈t〉 ⌈X⌉)
In MoDiShCa syntax this formula would look like this: [X]->([X]<t>[X]). To do the
translation we also need an declaration part. This formula is an DC formula so we
do not need to define a spatial dimension. A complete input file for MoDiShCa would
look like this:

bool X;

verify: [X]->([X]<t>[X])

The formula expresses that if X is globally true, then it is possible to split the temporal
interval at a discrete point into two parts such that at one side, X is globally true and
on the other side the same holds. This formula is satisfiable but not valid. So if we
run MONA on the output, we get a satisfying example and a counter example. If we
run the validity check by adding the keyword validity in the declaration block, the
output of MONA still contains a counter example.
The counter example looks like this:

A counter-example of least length (2) is:

t1 X 1X

t2 X 01

X X 1X

t1 = 0

t2 = 1

X = {0}

This means that for a temporal interval of length 1 (because t2 is 1 and t1 is 0, these
are the borders of the temporal interval), the formula is not satisfiable, because if X is
true at the point 0 the first part of the formula is true, but there is no discrete point

Jan-David Quesel 15 September 19, 2005

MoDiShCa: Model Checking Discrete Shape Calculus Individual Project

t

false

true

X

0 1 2 3

Figure 3: Interpretation function to the counter example

to chop such that we get l ≥ 1 〈t〉 l ≥ 1. This form is needed because ⌈X⌉ requires
a temporal interval greater than zero. As we need to satisfy it two times we need a
temporal interval greater than 1. Figure 3 illustrates how the interpretation function
looks like.

b) (⌈X⌉ 〈t〉 ⌈X⌉) ⇒ ⌈X⌉
The formula expresses that if it is possible to split the temporal interval into two parts
such that on one side X is globally true and on the other side the same holds, X is
globally true on the complete temporal interval. If we run the validity check on this
formula, we get a different from case a) result.

bool X;

validity;

verify:

([X]<t>[X])->[X]

MONA correctly reports that the formula is valid.

5.2 SC formulas

a) ⌈X⌉ ⇒ (⌈X⌉ 〈x〉 ⌈X⌉)
This formula is satisfiable but not valid as the formula in section 5.1 a) is.
The input file would look like this:

dim x = 3;

bool X;

validity;

verify: [X] -> ([X]<x>[X])

MONA reports the following counter-example:

A counter-example of least length (2) is:

t1 X 1X

t2 X 01

Jan-David Quesel 16 September 19, 2005

MoDiShCa: Model Checking Discrete Shape Calculus Individual Project

X_0 X 1X

X_1 X XX

X_2 X XX

t1 = 0

t2 = 1

X_0 = {0}

X_1 = {}

X_2 = {}

This means that the length of the observation interval in direction x is 1 (lx = 1), such
that we cannot find a position for the spatial chop.

b) (⌈X⌉ 〈x〉 ⌈X⌉) ⇒ ⌈X⌉
This is not a DC formula because it uses a chop in a spatial direction x. The formula
says that if it is possible to split the spatial interval into two parts such that on the
first part X is globally true and on the other part X is also globally true, then X is
globally true on the complete interval.

dim x = 3;

bool X;

validity;

verify:

([X]<x>[X])->[X]

With this input file MONA reports that the formula is valid. In this example we
consider the cardinality of the spatial dimension x to be 3.

5.3 Derived operators

The examples shown in this section are all valid and MONA reports this as aspected.

a) ⌈X⌉ ⇒ (♦t⌈X⌉)
The next two examples illustrate how the diamond operator works. If always X is true,
there is an interval where X is true.

bool X;

validity;

verify:

([X]) -> (<>_t [X])

b) (⌈X⌉ ⇒ (♦x⌈X⌉))
We can prove the same in a spatial dimension:

dim x = 4;

bool X;

Jan-David Quesel 17 September 19, 2005

MoDiShCa: Model Checking Discrete Shape Calculus Individual Project

validity;

verify:

(([X]) -> (<>_x [X]))

c) (♦t⌈X ∧ Y ⌉ ⇒ (♦t⌈X⌉) ∧ (♦t⌈Y ⌉))
The next example illustrates that if there is an interval where X and Y are true, there
are intervals where X is true and where Y is true, is valid.

bool X,Y;

validity;

verify:

((<>_t [X & Y]) -> ((<>_t [X]) & (<>_t [Y])))

d) ⌈X⌉ ⇒ (lt = 0 〈t〉 ⌈X⌉ 〈t〉 lt = 0)
We can chop lt = 0 as often as we like. It does not change the satisfiability.

bool X;

$isnull = (l_t = 0);

verify:

[X]->($isnull<t>[X]<t>$isnull)

This example also demonstrates the use of formula variables to shorten the formula to
check and make it easier to read.

6 Case Study

6.1 Description

The generalized railroad crossing [HL94] is used to verify an implementation of a train
gate controller. We model a railroad crossing and the controller should close the gates
when a train is approaching early enough to ensure that the train cannot reach the
gate while it is open. The controller has a sensor that shows him if the rails are empty
or if there is a train approaching to the gate or crossing the gate. Figure 4 illustrates
the different zones. We use the SC to do this specification because we can model the
railroad behavior very naturally by using a spatial dimension for the rails.

6.2 Modeling

We model the rails as one spatial dimension and employ 2 observables: train and
open. The observable train is true at a spatial point at a given time iff the train is
there at that time. The other observables models the gate status, it is true iff the gate
is open. The sensor is modelled by one formula for each state

empty := (⌈¬train⌉ ∧ lx ≥ 10) 〈x〉 true

appr := (⌈¬train⌉x ∧ lx < 10 ∧ lx ≥ 2) 〈x〉 ⌈train⌉x 〈x〉 true

cross := ((⌈train⌉x ∨ ((⌈¬train⌉x ∧ lx < 2) 〈x〉 ⌈train⌉x))) 〈x〉 true

Jan-David Quesel 18 September 19, 2005

MoDiShCa: Model Checking Discrete Shape Calculus Individual Project

010

x
crossingapproachingfree

2

Train gate

Figure 4: The train gate zones

The state empty is defined as the train is 10 or more spatial units away. The train
is considered to be approaching (appr) if it is in the spatial interval [2, 10[and it is
crossing if it is in the interval [0, 2[.
We model the train with one state: run. The formula run is true iff the train is moving
with maximum speed (maxspeed−1). We model the speed to be maxspeed−1 because
we need an interval where there is no train.

run := (�t(�x(((((⌈¬train⌉ ∧ lx = maxspeed) 〈x〉 ⌈train⌉) ∧ lt = 1) 〈t〉 (lt = 1))

⇒ (lt = 1 〈t〉 (⌈¬train⌉ ∧ lx = 1) 〈x〉 ⌈train⌉ 〈x〉 true))))

The formula run describes that, if there is an interval in time and space where there is
no train in space for maxspeed spatial units and behind that point there is the train,
if this interval has the temporal length one and there is an interval of the length one
afterwards, we could also split the interval such that after one time unit the spatial
interval could be split such that the train is only one spatial unit away.
We need the following assumptions about the environment: At the initial state, the
gate should be open and there is a train in the interval [10, max], so that the rails
are considered empty by the controller initially. Also there should only be one train.
Furthermore, we assume that the gates need closeT ime time units to close.

initOpen := ((⌈open⌉t 〈t〉 true) ∨ lt = 0)

existsTrain := (lt > 0) ⇒ ((lt = 1 ∧ ((⌈¬train⌉ ∧ lx = 9) 〈x〉 ⌈train⌉)) 〈t〉 true)

onlyOnetrain := �t(�x(¬(⌈train⌉ 〈x〉 ⌈¬train⌉ 〈x〉 ⌈train⌉)))

closeT ime := (¬♦t(⌈¬open⌉ 〈t〉 (⌈open⌉ ∧ lt < closeT ime) 〈t〉 ⌈t⌉))

∧ (¬((⌈open⌉ ∧ l < closeT ime) 〈t〉 true))

After we have modeled the environment needed, we can now specify the controller. The
controller needs to close the gates if a train is approaching or crossing within reactT ime
time units. Another requirement is that the gates should be open if not safety critical
such that the gates can be opened when empty is true. In this example we abstract

Jan-David Quesel 19 September 19, 2005

MoDiShCa: Model Checking Discrete Shape Calculus Individual Project

bool train;

bool open;

dim x = 10;

const closeTime = 1;

const maxSpeed = 2;

const reactTime = 2;

validity;

$empty = ([not train] & l_x >= 10)<x>true;

$appr = ([not train]_x & l_x < 10 & l_x >= 2)<x>[train]_x<x>true;

$cross = (([train]_x | (([not train]_x & l_x < 2)<x>[train]_x)))<x>true;

$run = ([]_t ([]_x ((((([not train] & l_x = maxSpeed)

<x>[train])& l_t = 1)<t>(l_t=1)

-> (l_t = 1 <t> ([not train] & l_x = 1)<x>[train]_x<x>true))));

$safety = not (<>_t(<>_x ($cross & [open])));

$reactAppr = ([]_t ((($appr | $cross) & l_t > reactTime)

-> ((l_t = reactTime)<t>[not open])));

$openIfPossible = ([]_t ($empty -> [open]_t));

$closeTime = (not (<>_t (([not open]<t>([open]

& l_t < closeTime)<t>[not open]))))

& (not (([open] & l_t<closeTime)<t>true));

$existsTrain = (l_t > 0)

-> ((l_t=1 & (([not train] & l_x = 9) <x> [train]))<t>true);

$onlyOnetrain = []_t([]_x (

not ([train] <x> [not train] <x> [train])));

$initOpen = (([open]_t<t>true) | l_t=0);

$assumptions = $closeTime & $initOpen & $run & $onlyOnetrain

& $existsTrain & $reactAppr & $openIfPossible;

$safetyQuest = $assumptions -> $safety;

verify: $safetyQuest

Figure 5: Railroad crossing in MoDiShCa syntax

from the time the gate would need to open because this is not safty critical.

reactAppr := (�t(((appr ∨ cross) ∧ lt > reactT ime)

⇒ ((lt = reactT ime) 〈t〉 ⌈¬open⌉)))

openIfPossible := (�t(empty ⇒ ⌈open⌉t))

The safety requirement to verify is:

safety := (¬♦t(cross ∧ ⌈open⌉t))

The full specification in MoDiShCa syntax is shown in figure 5.

Jan-David Quesel 20 September 19, 2005

MoDiShCa: Model Checking Discrete Shape Calculus Individual Project

6.3 Result

Using MoDiShCa and MONA to check the specification in figure 5 we can prove that
the system is safe meaning the gates are always closed while the train is crossing. The
satisfying example given by MONA is the trivial case where lt = 0 = lx. Checking
this specification with MoDiShCa and MONA takes about 5.708 seconds on a Athlon
XP 2200+ with 512 MB RAM. MoDiShCa needs about 1.891 seconds to generate the
WS1S formulas and MONA needs about 3.817 seconds to check this WS1S formula. If
we change the model by using the projection to the x axis in the formulas for empty,
run and existsTrain the model checking needs more than 1.5 GB RAM and aborts
with an out of memory error. This problem occurs due to the fact that if we use the
projections there are more possible solutions to the formula.

7 Conclusion

In this project we have shown how a decidable fragment of the SC looks like and
how the translation into WS1S for the two dimensional case can be generalized to an
arbitrary number of dimensions. We have implemented a tool that is able to do the
translation and pass it to the model checker MONA. To demonstrate that the tool
can be used to verify complex systems we presented an application to a case study.
MoDiShCa is an efficient tool also for the discrete DC because of the optimizations
implemented in MONA. Using MONA as back-end was a good decision because MONA
has an efficient implementation of the automaton in BDD representation and the tool
is already approved.
For future work, the output format could be enhanced. The output generated for
MONA is just an interchange format at the moment. There are only a few comments
in the generated MONA input file and the line breaks are not optimized yet. For
debug purposes this interchange format could be made more human readable. Also
some parts of the formula that are generated could be simplified to true and false at
compile time but this is not done yet. Another enhancement could be to introduce
quantified integer variables that can be used to store the length of an interval. This
would enhance the expressiveness of the fragment that we were able to check. The case
study could be extended by – for example – adding a spatial dimension for the gate
such that the opening and closing process can be easily modeled.

Jan-David Quesel 21 September 19, 2005

MoDiShCa: Model Checking Discrete Shape Calculus Individual Project

8 Appendix

8.1 Symbols

Symbol name Regular Expression
INT int
CONST const
LENGTH l
VERIFY verify:
REL <= | >= | < | >
EQUAL =
DECLARATION BEGIN
END END
SEMICOLON ;
COMMA ,
BIIMPL <->
IMPL ->
NOT not
BOOL bool
DCL dim
AND &
OR |
USCORE _

CHOP <[a-zA-Z][a-zA-Z0-9]*>
BOX <>
DIAMOND []
GLBRACE [
GRBRACE]
LBRACE (
RBRACE)
VALIDITY validity
TRUE true
FALSE false
FORMVAR $[a-zA-Z][a-zA-Z0-9]*
WORD [a-zA-Z][a-zA-Z0-9]*
NUMBER [0-9]+

8.2 Yacc grammar

S is the start symbol.

S ::= declaration VERIFY expr
S ::= DECLARATION declaration END expr
S ::= VERIFY expr
S ::= forms VERIFY expr
declaration ::= dclrtn
declaration ::= dclrtn forms

Jan-David Quesel 22 September 19, 2005

MoDiShCa: Model Checking Discrete Shape Calculus Individual Project

dclrtn ::= dclrtn SEMICOLON dclrtn
dclrtn ::= dclrtn SEMICOLON
dclrtn ::= DCL WORD EQUAL NUMBER
dclrtn ::= BOOL WORD
dclrtn ::= BOOL WORD booldec
dclrtn ::= VALIDITY
dclrtn ::= CONST WORD EQUAL NUMBER
dclrtn ::= INT WORD GLBRACE NUMBER GRBRACE
booldec ::= COMMA WORD booldec
booldec ::= COMMA WORD
forms ::= forms SEMICOLON forms
forms ::= FORMVAR EQUAL expr
forms ::= forms SEMICOLON
expr ::= expr IMPL expr
expr ::= biimpform
biimpform ::= biimpterm BIIMPL biimpform
biimpform ::= termform
termform ::= termform OR termform
termform ::= productform
productform ::= productform AND productform
productform ::= chopform
chopform ::= chopform CHOP chopform
chopform ::= sexpr
sexpr ::= NOT sexpr
sexpr ::= DIAMOND USCORE WORD sexpr
sexpr ::= BOX USCORE WORD sexpr
sexpr ::= GLBRACE bexpr GRBRACE
sexpr ::= GLBRACE bexpr GRBRACE USCORE WORD
sexpr ::= LBRACE expr RBRACE
sexpr ::= FORMVAR
sexpr ::= LENGTH USCORE WORD EQUAL NUMBER
sexpr ::= LENGTH USCORE WORD REL NUMBER
sexpr ::= LENGTH USCORE WORD EQUAL WORD
sexpr ::= LENGTH USCORE WORD REL WORD
sexpr ::= TRUE
sexpr ::= FALSE
bexpr ::= impterm
impterm ::= impterm IMPL impterm
impterm ::= biimpterm
biimpterm ::= biimpterm BIIMPL biimpterm
biimpterm ::= term
term ::= term OR term
term ::= product
product ::= product AND product
product ::= factor

Jan-David Quesel 23 September 19, 2005

MoDiShCa: Model Checking Discrete Shape Calculus Individual Project

factor ::= NOT factor
factor ::= WORD
factor ::= LBRACE impterm RBRACE
factor ::= WORD EQUAL NUMBER
factor ::= WORD REL NUMBER

Jan-David Quesel 24 September 19, 2005

MoDiShCa: Model Checking Discrete Shape Calculus Individual Project

List of Figures

1 Data flow . 13
2 UML Classdiagram . 14
3 Interpretation function to the counter example 16
4 The train gate zones . 19
5 Railroad crossing in MoDiShCa syntax 20

Jan-David Quesel 25 September 19, 2005

MoDiShCa: Model Checking Discrete Shape Calculus Individual Project

References

[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model Checking.
The MIT Press, Cambridge, Massachusetts, 1999.

[EKM98] Jacob Elgaard, Nils Klarlund, and Anders Moller. Mona 1.x: new techniques
for ws1s and ws2s. In Computer Aided Verification, CAV ’98, Proceedings,
volume 1427 of LNCS. Springer Verlag, 1998.

[HJJ+95] J.G. Henriksen, J. Jensen, M. Jørgensen, N. Klarlund, B. Paige, T. Rauhe,
and A. Sandholm. Mona: Monadic second-order logic in practice. In Tools

and Algorithms for the Construction and Analysis of Systems, First Inter-

national Workshop, TACAS ’95, LNCS 1019, 1995.

[HL94] Constance L. Heitmeyer and Nancy A. Lynch. The generalized railroad cross-
ing: A case study in formal verification of real-time systems. In IEEE Real-

Time Systems Symposium, pages 120–131. IEEE Computer Society, 1994.

[Pan00] P. Pandya. Specifying and deciding quantified discrete-time duration calculus
formulae using DCVALID. Technical Report TCS00-PKP-1, Tata Institute
of Fundamental Research, 2000.

[Sch05] A. Schäfer. A Calculus for Shapes in Time and Space. In Z. Liu and K. Araki,
editors, ICTAC 2004, volume 3407 of LNCS, pages 463–478. Springer, 2005.

[Tho97] W. Thomas. Handbook of formal languages, vol. III, pages 389–455. Springer-
Verlag New York, Inc., New York, NY, USA, 1997.

[ZHR91] Zhou Chaochen, C.A.R. Hoare, and A.P. Ravn. A calculus of durations. IPL,
40(5):269–276, 1991.

Jan-David Quesel 26 September 19, 2005

Hiermit versichere ich, dass ich diese Arbeit selbstständig verfasst und keine anderen
als die angegebenen Hilfsmitteln und Quellen benutzt habe.

Ort Datum Unterschrift

