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Abstract. We propose a new logic, called differential dynamic game
logic (dDGL), that adds several game constructs on top of differential
dynamic logic (dL) so that it can be used for hybrid games. The logic
dDGL is a conservative extension of dL, which we exploit for our imple-
mentation of dDGL in the theorem prover KeYmaera. We provide rules
for extending the dL sequent proof calculus to handle the dDGL con-
structs by identifying analogs to operators of dL. We have implemented
dDGL in an extension of KeYmaera and verified a case study in which
a robot satisfies a joint safety and liveness objective in a factory au-
tomation scenario, in which the factory may perform interfering actions
independently.
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1 Introduction

One relevant question when analyzing complex physical systems is whether one
component is able to meet a given safety requirement no matter what its environ-
ment does. Consider an autonomous robot moving around in a robotic factory
environment. Global decision planning is infeasible, so the robot has limited
knowledge about what the other elements of the factory will decide to do. If
there is any probabilistic information about the decisions of agents, stochastic
system models can be used for verification [9]. Otherwise, the question can be
considered as a game between the component and its environment. The mathe-
matical model for interacting discrete control and continuous evolutions is called
hybrid system [8]. The game theoretic extension is called hybrid games.

Hybrid games [12, 14, 4, 1, 15] have two types of actions: discrete jumps, which
update the value of a variable instantaneously, and continuous evolutions along
solutions of differential equations. Time only passes for the latter action. Hence,
hybrid games are a natural extension of timed games [5], which only support
clocks with differential equation x′ = 1 and only allow variables to be reset to 0
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and not assigned arbitrarily. Fairly restricted classes of hybrid games have been
shown to be decidable (see e.g. [4, 1, 15]), but the general case is undecidable.
Tomlin et al. [14] study hybrid games for controller synthesis. They give a nu-
merical algorithm for computing controllable predecessors and thus checking if
there is a controller that drives the system into a safe state.

Our approach to hybrid games is based on logic and built on top of differential
dynamic logic (dL) [7, 8], which is a dynamic logic [3] for hybrid systems instead
of the conventional discrete programs that dynamic logic has originally been
invented for. The logic dL has modal formulas [α]φ and 〈α〉φ for each hybrid
system α. The dL formula [α]φ expresses that all states reachable by following
hybrid system α satisfy φ and 〈α〉φ expresses that at least one state reachable
by α satisfies φ, where φ is an arbitrary dL formula. The logic dL is closed under
all operators of first-order logic and nesting of modalities.

With these operators, we can express simple games in dL [8]. For example,
when F is a hybrid system describing a factory and R a hybrid system describing
a robot, then a formula of the form [F ]〈R〉safe can be used to express that, for all
behaviors of a factory F , the robot R can choose at least one behavior ensuring
safety (represented by some dL formula safe). This is a simple game expressible
in dL, but it stops after one round of interactions by the factory player and the
robot player. In order to say that the robot is still safe if it reacts appropriately
after the factory changed its mind in response to the robot’s first choice, we can
use the formula [F ]〈R〉(safe ∧ [F ]〈R〉safe). We can do so for any given number of
rounds of interactions of F and R, but we typically want to say that the system
will be safe for any number of interactions of F and R, not just for 2.

In this paper, we propose a logic that can state those properties using several
game constructs on top of dL, including repetition operators (G)[∗] and (G)〈∗〉 to
say that game G repeats. The difference between both operators is which player
decides how often to repeat the game. They decide how often to repeat before
the game starts. For example, the dDGL formula ([F ]〈R〉)[∗]safe expresses that,
no matter how often the player responsible for (·)[∗] decides to repeat the game
[F ]〈R〉, the state resulting from those alternating choices by F and R is safe.

In order to prove such properties, we lift the induction principles of dL to
dDGL. A dDGL formula (G)[∗]φ behaves in some ways like the dL or dDGL formula
[α∗]φ (where α∗ is the hybrid system that repeats α). In both cases, we consider
all possible numbers of iterations, because we do not know how often it will be
repeated. The dDGL formula (G)〈∗〉φ has similarities to the dL formula 〈α∗〉φ,
since in both cases, we can choose some number of repetitions. Yet, G is a hybrid
game, whereas α is a hybrid system. Nevertheless, we show that the induction
principles of invariants and variants lift from dL to dDGL.

We prove that dDGL is a conservative extension of dL and, thus, our theorem
prover KeYmaera [11] for dL can be extended such that it can be used to prove
hybrid games expressible in dDGL. We develop a proof calculus for the specifics
of dDGL and implement it in KeYmaera. We develop and verify a case study in
which a mobile robot satisfies a joint safety and liveness objective in a factory
automation scenario, in which the factory may perform interfering actions.
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2 Hybrid Programs and dDGL

Syntax. We use the hybrid program (HP) notation for hybrid systems. We sketch
the syntax of these programs as defined in [7, 8]. The syntax of HPs is shown
together with an informal semantics in Tab. 1. The basic terms (called θ in the
table) are either rational numbers, real-valued variables or arithmetic expressions
(with operators +,−, ·, /) built from those.

Discrete jumps are modeled by x := θ. Their effect is to assign the value of the
term θ to the variable x. Continuous evolutions, on the other hand, are modeled
by x′ = θ&χ. Here, the variables evolve along the solution of the differential
equation (x′ denotes the derivative of x w.r.t. to time), without leaving the
evolution domain characterized by the formula χ. If there is no evolution domain
restriction, i.e., χ ≡ true, we just write x′ = θ. Note that x′ = θ can be a system
of differential equations.

To test conditions on the program flow the test action ?χ is used. If the for-
mula χ holds in the current state, the action has no effect. Otherwise, it aborts
the program execution and the execution is discarded. The nondeterministic
choice α ∪ β expresses alternatives in the behavior of the hybrid system. The
sequential composition α;β expresses that β starts after α finishes. Nondetermin-
istic repetition α∗ says that HP α repeats an arbitrary number of times. These
operations can be combined to form any other classical control structure [8].

The assignment x := ∗ nondeterministically assigns a real value to x, thereby
expressing unbounded nondeterminism. This nondeterminism can be restricted
by combining basic programs. For instance, the idiom x := ∗; ?φ assigns any value
to x such that the formula φ holds.

Based on this program notation for the behavior of hybrid systems, we sep-
arately define hybrid games. The idea behind our notion of hybrid games is to
use operators somewhat similar to those of hybrid programs, but for games on
top of full hybrid systems. The particular hybrid games that we consider here
are two-player games produced by the following grammar (α is a HP):

G ::= [α] | 〈α〉 | (G1 ∩G2) | (G1 ∪G2) | (G1G2) | (G)[∗] | (G)〈∗〉

By G, we denote the set of all such hybrid games. The intuition behind these
games is as follows. The game is played by two players, which we call Verifier

Table 1. Statements of hybrid programs (χ is a first-order formula, α, β are HPs)

Statement Effect

α; β sequential composition, performing first α and then β afterwards
α ∪ β nondeterministic choice, following either α or β
α∗ nondeterministic repetition, repeating α some n ≥ 0 times
x1 := θ1, .., xn := θn simultaneously assign θi to variables xi by a discrete assignment
x := ∗ nondeterministic assignment of an arbitrary real number to x(
x′1 = θ1, . . . , continuous evolution of xi along the differential equation system

x′n = θn &χ
)
x′i = θi, restricted to evolution domain χ

?χ test if formula χ holds at current state, abort otherwise
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and Falsifier who play by the following rules: In the game [α] Falsifier resolves
the nondeterminism whereas in the game 〈α〉 Verifier is allowed to do so. Observe
that our notion of hybrid games is built on top of full hybrid systems, that is,
every hybrid program α is, by way of [α] or 〈α〉, directly a hybrid game. The game
(G1G2) is the sequential composition of games, where game G2 is played right
after game G1 has finished. In a game (G1∩G2) Falsifier may decide whether the
game proceeds with G1 or with G2. In the game (G1∪G2) this choice is made by
Verifier. Repetitive game playing is possible using the iteration constructs (G)[∗]

and (G)〈∗〉, where, for the first one, Falsifier decides how many iterations are
played and, for the latter one, Verifier makes the choice. Note that the choice on
the number of iterations has to be made by advance notice. That is, the player
responsible for controlling the iteration decides how often G is repeated when
the game starts and announces it to the other player.

Winning conditions for the games are formulated in dDGL as postconditions
of games. A strategy for a player determines how to resolve the nondeterminism
under his control based on the result of the game played so far. The nondeter-
minisms inside a hybrid system are resolved by choosing which real values to
assign to x when executing x := ∗ statements, which branch to follow for choices
∪, the number of loop iterations, and how long to follow continuous flows.

The dDGL-formulas are first-order formulas over the reals extended by hybrid
games. They are defined by the following grammar (θi are terms, x is a variable,
∼ ∈ {<,≤,=,≥, >, 6=}, φ and ψ are formulas, and G is a hybrid game):

φ ::= θ1 ∼ θ2 | ¬φ | φ ∧ ψ | φ ∨ ψ | φ→ ψ | φ↔ ψ | ∀xφ | ∃xφ | G φ

A dDGL formula G φ is valid if Verifier has a strategy to ensure that φ holds
after playing the game G. Therefore, the goal of Verifier is to make φ true while
that of Falsifier is complementary, i.e., to make φ false. Note that the formula φ
itself might contain another game.

Consider the dDGL formula ([α])〈∗〉φ which expresses that there is a number
of repetitions n, such that the formula φ holds after n repetitions of α. Note that
this dDGL formulas is not equivalent to [α∗]φ, which would demand that it holds
for all possible numbers of executions of α. It is also not equivalent to 〈α∗〉φ as
this would give control to Verifier over the (possibly unbounded) nondeterminism
during the executions of α. A similar observation can be made for (〈α〉)[∗]φ
which says that the program α is always able to ensure φ by appropriate choices
of the nondeterminisms in α. Combining the repetition operator and the choice
operators we can express properties like (〈β〉 [α]∪[α] 〈β〉)[∗]φ. This formula means
that φ holds after any number of iterations (as Falsifier has control over the
number of iterations) while Verifier can control (by ∪) for each iteration if he
wants to move first according to β or Falsifier has to move first according to α.

Semantics. Next, we define the semantics of dDGL. For a set of variables V ,
denote by Sta(V ) the set of states, i.e., all mappings of type V → R. Let val(ν, θ)
denote the valuation of a term θ in a state ν.
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Definition 1 (Transitions of hybrid programs). The transition relation,
ρ(α), of a HP α, specifies which state ω is reachable from a state ν by operations
of the hybrid system α and is defined as follows

1. (ν, ω) ∈ ρ(x1 := θ1, . . . , xn := θn) iff ν[x1 7→ val(ν, θ1)] . . . [xn 7→ val(ν, θn)]
equals state ω. Particularly, the value of other variables z 6∈ {x1, . . . , xn}
remains constant, i.e., val(ν, z) = val(ω, z).

2. (ν, ω) ∈ ρ(x := ∗) iff state ω is identical to ν except for the value of x, which
can be any real number (could be identical to the previous valuation of x).

3. (ν, ω) ∈ ρ(x′1 = θ1, . . . , x
′
n = θn &χ) iff there is a continuous function f :

[0, r]→ Sta(V ) from f(0) = ν to f(r) = ω, which solves the system of
differential equations, i.e., for all i ∈ [1, n], val(f(ζ), xi) has a derivative of
value val(f(ζ), θi) at each time ζ ∈ (0, r). Other variables remain constant:
val(f(ζ), y) = val(ν, y) for y 6= xi, for all i ∈ [1, n] and ζ ∈ [0, r]. And the
evolution domain χ is respected: val(f(ζ), χ) = true for each ζ ∈ [0, r].

4. ρ(?χ) = {(ν, ν) : ν |= χ} where ν |= χ is defined as in first-order logic.
5. ρ(α ∪ β) = ρ(α) ∪ ρ(β)
6. ρ(α;β) = ρ(α)◦ρ(β) = {(ν, ω) : (ν, z) ∈ ρ(α), (z, ω) ∈ ρ(β) for some state z}
7. (ν, ω) ∈ ρ(α∗) iff there are n ∈ N and ν=ν0, . . . , νn=ω with (νi, νi+1) ∈ ρ(α)

for all 0 ≤ i < n.

The semantics of formulas of dDGL is defined as follows.

Definition 2 (Interpretation of dDGL formulas). The interpretation |= of
a dDGL formula w.r.t. state ν uses the standard meaning of first-order logic:

1. ν |= θ1 ∼ θ2 iff val(ν, θ1) ∼ val(ν, θ2) for ∼ ∈ {=,≤, <,≥, >}
2. ν |= φ ∧ ψ iff ν |= φ and ν |= ψ, accordingly for ¬,∨,→,↔
3. ν |= ∀xφ iff ω |= φ for all ω that agree with ν except for the value of x
4. ν |= ∃xφ iff ω |= φ for some ω that agrees with ν except for the value of x

Statements about hybrid games G and programs α have the following semantics

5. ν |= [α]φ iff ω |= φ for all ω with (ν, ω) ∈ ρ(α),
6. ν |= 〈α〉φ iff ω |= φ for some ω with (ν, ω) ∈ ρ(α),
7. ν |= (G1 ∪G2)φ iff ν |= G1φ or ν |= G2φ,
8. ν |= (G1 ∩G2)φ iff ν |= G1φ and ν |= G2φ,
9. ν |= (G1G2)φ iff ν |= G1(G2φ),

10. ν |= (G)[∗]φ iff ν |= (Gn)φ holds for all n ∈ N,
11. ν |= (G)〈∗〉φ iff ν |= (Gn)φ holds for some n ∈ N,

where Gn denotes the n-times sequential composition of G and G0φ ≡ φ.
A formula φ is valid (denoted by |= φ) iff ν |= φ holds for all states ν ∈ Sta(V ).

These definitions are abstract. They do not refer to how games are played. There-
fore, we now provide a structural operational semantics for games, formally define
the notions of play and strategy, and then prove that the existence of a winning
strategy for Verifier coincides with the notion of satisfaction in Def. 2. For a game
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(F1)
(ν, ω) ∈ ρ(α)

[α]@ν → ∗@ω (F2)
ρ(α) = ∅

[α]@ν → >@ν
(F3)

G@ν → G′@ω

G ∩H@ν → G′@ω

(F4)
G ∩H@ν → G′@ω

H ∩G@ν → G′@ω
(F5)

n ∈ N
(G)[∗]@ν → Gn@ν

(V1)
(ν, ω) ∈ ρ(α)

〈α〉@ν → ∗@ω (V2)
ρ(α) = ∅

〈α〉@ν → ⊥@ν
(V3)

G@ν → G′@ω

G ∪H@ν → G′@ω

(V4)
G ∪H@ν → G′@ω

H ∪G@ν → G′@ω
(V5)

n ∈ N
(G)〈∗〉@ν → Gn@ν

(S1)
G@ν → ∗@ω

(G H)@ν → H@ω
(S2)

G@ν → ⊥@ω

(G H)@ν → ⊥@ω
(S3)

G@ν → >@ω

(G H)@ν → >@ω

Fig. 1. Structural Operational Semantics of Hybrid Games (Verifier can only control
V and S rules and Falsifier can only control F and S rules)

G and a state ν, we use G@ν to denote that the game is in the position where
starting from state ν the game will follow the transitions of G.

The operational semantics for the games is structured into three types of
actions: those controllable by Falsifier (prefixed with F), those controllable by
Verifier (prefixed with V), and those for modelling sequential composition (pre-
fixed with S). We add special games ∗, >, and ⊥ to denote the possible outcomes
of a game. In the latter two cases either of the players was unable to make another
move. The game terminates in ∗ after the players played all their actions.

Definition 3 (Structural Operational Semantics of Games). For a game
G its operational semantics [[G]] is given by the rules defined in Fig. 1. Here,
Gn denotes the n-times sequential composition of G. The semantics provides a
relation between game positions, i.e. [[G]] ⊆ G × Sta(V )× G × Sta(V ).

Following the rules of the structural operational semantics defines a transition
system that is possibly uncountably branching, due to the non-determinism in
hybrid programs, e.g. in choosing evolution times. Observe that each path is of
finite length, because the number of iterations is chosen non-deterministically
but a priori. Note this semantics does not yet define who decides which options
to follow. In particular, the structural operational semantics of ∩ and ∪ is still
the same and that of (·)[∗] and (·)〈∗〉 is still the same, but they will differ as soon
as we define which player gets to choose. The Verifier can choose V rules and
the Falsifier can choose F rules. The S rules are determined anyway.

To determine whether a strategy is compatible with a game, we define the
closure of games under a subgame relation. This closure gives the set of all game
positions (ignoring the state of system variables) that can occur in a play.

Definition 4 (Closure under Subgame). For a game G its closure under
subgame, cl(G), is defined inductively as:

– cl([α]) = {[α]} and cl(〈α〉) = {〈α〉}
– cl(G1G2) = {G1G2} ∪ cl(G1) ∪ cl(G2)
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– cl(G1 ∪G2) = {G1 ∪G2} ∪ cl(G1) ∪ cl(G2)
– cl(G1 ∩G2) = {G1 ∩G2} ∪ cl(G1) ∪ cl(G2)
– cl((G)[∗]) = {(G)[∗]}∪

⋃
n∈N cl(G

n) and cl((G)〈∗〉) = {(G)〈∗〉}∪
⋃
n∈N cl(G

n)

Definition 5 (Strategy). A strategy s : G×Sta(V )→ (G∪{∗,>,⊥})×Sta(V )
is a mapping between game positions. A strategy s is called compatible with a
game G if its actions are allowed, i.e., ((g@ν)→ s(g@ν)) ∈ [[G]] for all g ∈ cl(G)
and for all ν ∈ Sta(V ).

Using this notion of strategy, we now formalize the rules of the game by deter-
mining which player gets to choose from the actions of the operational semantics.

Definition 6 (Play). Given a game G ∈ G, a state ν ∈ Sta(V ), and two com-
patible strategies (one for Falsifier f and one for Verifier v), a play pf,v(G@ν)
is defined by the following algorithm:

while G 6∈ {∗,⊥,>} do
Match the form of G:

Case [α], G1 ∩G2, or (G1)[∗] then G@ν := f(G@ν) // Falsifier chooses
Case 〈α〉,G1 ∪G2, or (G1)〈∗〉 then G@ν := v(G@ν) // Verifier chooses
Case G1G2 then do
G@ν := pf,v(G1@ν) // play G1

If G = ∗ then G := G2 // if G1 terminated with ∗ move to G2

od
od // the result is G@ν with G ∈ {∗,⊥,>}

Definition 7 (Winning). Given a game G and a dDGL formula φ as winning
condition. For an initial state ν, the game G is won by Verifier iff G ends in a
position H@ω where either H = ∗ and ω |= φ, or H = >. Otherwise, Falsifier
wins (i.e. the game is zero-sum). For a dDGL-formula φ a strategy s is called
winning in a game G if, by applying this strategy, Falsifier (resp. Verifier) wins
every play of G regardless of which strategy Verifier (resp. Falsifier) follows.

Lemma 1. For a state ν, ν |= Gφ iff Verifier has a strategy in the game G with
winning condition φ started in position G@ν such that he wins the game.

The proof of Lemma 1 can be found in [13].

Corollary 1. The formula Gφ is valid iff Verifier has a winning strategy in the
game G for the winning condition φ.

A crucial point for the design of dDGL is that we want it to be conservative with
respect to differential dynamic logic in the sense that all dL formulas are dDGL
formulas and that any dL formula is valid in the semantics of dDGL if and only
it was valid in the original semantics for dL. This allows us to transfer soundness
results for proof calculus rules from dL to dDGL and extend our theorem prover
KeYmaera with additional proof rules for handling the extra dDGL constructs.

Theorem 1 (Conservative Extension). Differential dynamic game logic is
a conservative extension of differential dynamic logic (A proof is in [13]).
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3 Proof Rules for dDGL

In this section, we present a sound but incomplete proof calculus for dDGL. It
is incomplete, because hybrid systems are not semidecidable [8]. The calculus
symbolically executes the hybrid games and hybrid programs. Thereby the dDGL
calculus reduces properties of hybrid games to dL properties of hybrid programs,
which it, in turn, reduces to validity questions of formulas in first-order logic over
the reals like the dL proof calculus does [7].

Substitutions are defined only on first-order formulas. Therefore, state changes
performed by assignments and continuous evolutions are kept as a simultane-
ous assignment J of the form x1 := θ1, . . . , xn := θn. When the formula was
successfully transformed into a first-order one, these jump sets are applied as
substitutions. See [7, 8] for more details on this matter. We denote by ∀Gφ the
universal closure of the formula φ w.r.t. the variables changed within the game G.
The sequent Γ ` ∆ is an abbreviation for

∧
φ∈Γ φ →

∨
ψ∈∆ ψ. Proof rules are

applied from the desired conclusion (goal below bar) to the resulting premises
(above bar) that need to be proved instead.

Definition 8 (Rules [8]). Calculus rules are defined from the rule schemata
presented in Fig. 2 using the following definitions:

1. If
φ1 ` ψ1 . . . φn ` ψn

φ0 ` ψ0

is an instance of a rule schema in Fig. 2, then

Γ, 〈J 〉φ1 ` 〈J 〉ψ1, ∆ . . . Γ, 〈J 〉φn ` 〈J 〉ψn, ∆
Γ, 〈J 〉φ0 ` 〈J 〉ψ0, ∆

can be applied as a proof rule, where Γ , ∆ are arbitrary (possible empty)
finite sets of context formulas and J is a (possibly empty) discrete jump set.

2. Symmetric schemata
φ

ψ

can be applied on either side of the sequent as

Γ, 〈J 〉φ ` ∆
Γ, 〈J 〉ψ ` ∆

or as
Γ ` 〈J 〉φ,∆
Γ ` 〈J 〉ψ,∆

Again they do not alter the context. Additionally, we use the abbreviation
〈[α]〉 if the rule is independent of the player controlling the action α.

3. The existential quantifier elimination rule applies to all goals containing vari-
able X at once: If φ1 ` ψ1, . . . , φn ` ψn is the list of all open goals (i.e., goals
that have not been proved yet) of the proof that contain the free variable X,
then the following instance can be applied as a proof rule:

` QE(∃X
∧
i(φi ` ψi))

φ1 ` ψ1 . . . φn ` ψn
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(D1)
φ ∧ ψ
〈?φ〉ψ

(D2)
φ→ ψ

[?φ]ψ

(D3)
〈[α]〉 〈[β]〉φ
〈[α;β]〉φ

(D4)
〈α〉φ ∨ 〈β〉φ
〈α ∪ β〉φ

(D5)
[α]φ ∧ [β]φ

[α ∪ β]φ

(D6)
φ ∨ 〈α;α∗〉φ
〈α∗〉φ

(D7)
φ ∧ [α;α∗]φ

[α∗]φ

(D8)
φθ1...θnx1...xn

〈[x1 := θ1, . . . , xn := θn]〉φ

(D9)
∀t[x := t]φ

[x := ∗]φ

(D10)
∃t[x := t]φ

〈x := ∗〉φ

(D11)
∃ t ≥ 0 ∀ 0 ≤ t̃ ≤ t

〈
x := yv(t̃)

〉
χ→ 〈x := yv(t)〉φ

〈x′ = θ&χ〉φ

(D12)
∀ t ≥ 0 ∀ 0 ≤ t̃ ≤ t

[
x := yv(t̃)

]
χ→ [x := yv(t)]φ

[x′ = θ&χ]φ

(D13)
` ∀[α](φ→ [α]φ)

φ ` [α∗]φ
(D14)

` ∀〈α〉∀n > 0(ϕ(n)→ 〈α〉ϕ(n− 1))

∃nϕ(n) ` 〈α∗〉 ∃n(n ≤ 0 ∧ ϕ(n))

(D15)
` φ(s(X1, . . . , Xn))

` ∀xφ(x)

(D16)
φ(s(X1, . . . , Xn)) `

∃xφ(x) `

(D17)
` φ(X)

` ∃xφ(x)

(D18)
` QE(∃X

∧
i(φi ` ψi))

φ1 ` ψ1 . . . φn ` ψn

(D19)
φ(X) `
∀xφ(x) ` (D20)

` QE(∀Xφ(X) ` ψ(X))

φ(s(X1, . . . , Xn)) ` ψ(s(X1, . . . , Xn))

(G1)
G1φ ∨G2φ

(G1 ∪G2)φ

(G2)
G1φ ∧G2φ

(G1 ∩G2)φ

(G3)
G1(G2φ)

(G1G2)φ

(G4)
φ ∧G (G)[∗]φ

(G)[∗]φ

(G5)
φ ∨G (G)〈∗〉φ

(G)〈∗〉φ

(G6)
` ∀G(φ→ ψ)

Gφ ` Gψ

(G7)
` ∀G(φ→ Gφ)

φ ` (G)[∗]φ
(G8)

` ∀G∀n > 0(ϕ(n)→ G (ϕ(n− 1)))

∃nϕ(n) ` (G)〈∗〉∃n(n ≤ 0 ∧ ϕ(n))

– t and t̃ are fresh logical variables, yv is the solution of the symbolic initial value problem
(ẋ = θ, x(0) = v).

– Logical variable n does neither occur in α nor G.
– φθ1...θnx1...xn

denotes the formula where each xi is substituted by θi simultaneously. The assignment

in rule D8 must be admissible [8], otherwise it is added to the jump context 〈J 〉.
– X is a new logical variable.
– QE: quantifier elimination procedure (can only be applied to first-order formulas).
– For D18 φi ` ψi are the only branches where X occurs as a free logical variable.

Fig. 2. Free-variable proof calculus for dDGL

Figure 2 shows a proof calculus for dDGL. Together with rules for dealing with
propositional logic (including a cut rule), the calculus rules D1-D20 form the
original proof calculus for dL [7, 8]. To handle the new game constructs appear-
ing in dDGL the rules G1-G8 are used. The rules D1-D12 are equivalences for
transforming and decomposing hybrid programs. The rules D13 (resp. D14) allow
reasoning about loops using induction (resp. proving convergence).

For handling first-order quantifiers, we use rules D15-D20 from dL [7]. They
perform Skolemization [8] to allow for removing the modalities within the for-
mulas using other rules. After the modalities are dealt with, the quantifiers are
reintroduced and quantifier elimination (QE) is performed.



10 Jan-David Quesel and André Platzer

The rules G1 and G2 are equivalences to reason about the choice operations
on games. They are the game-equivalents of D5 and D4. Rule G3 transforms
sequential compositions such that they can be handled by the original rules of the
dL calculus. It takes the form of D3. The rules G4-G5 allow for unwinding of the
game loops. Rule G7 follows the pattern of D13, but allows induction over game
loops that are under Falsifier’s control. If Verifier can establish that a formula
φ holds after any run of game G that started in an arbitrary state satisfying φ,
then, by induction, φ holds for an arbitrary number of plays. Rule G8 follows the
pattern of D14 and can be used to show properties of game loops that are under
Verifier’s control. We can be sure that there is a number of iterations after which
the postcondition ϕ(n) holds for some n ≤ 0 if G can be controlled by Verifier
such that the state converges w.r.t. ϕ(n). Here, the existence of some n such that
ϕ(n) holds serves as an induction anchor. As for each play started in an arbitrary
state where n > 0 and ϕ(n) holds, Verifier can assure that after playing the game
G the formula ϕ(n− 1) holds, thus the game can be forced to eventually reach
a state where n ≤ 0 and ϕ(n) holds. Note that n must not occur in the game G
as otherwise it would be bound by the game instead of the quantifier prefix in
the postcondition and thus falsify our induction. Additionally, the generalization
rule G6 can be used to strengthen postconditions. This rule can, for example,
be used to add induction anchors and use cases to the rules G7 and G8.

The purpose of the calculus is to provide a framework for deriving valid dDGL
formulas syntactically. A calculus is sound iff all formulas derived by applying
the calculus rules are indeed valid.

Definition 9 (Soundness). A calculus rule φ1,...,φn
ψ1,...,ψn

is sound iff validity of the
premises φ1 ∧ · · · ∧ φn implies the validity of the conclusions ψ1 ∧ · · · ∧ ψn.

Theorem 2. The dDGL calculus rules presented in Fig. 2 are sound.

The soundness proofs for the rules D1-D20 in [8] are valid for dDGL as well,
because dDGL is a conservative extension of dL (see Theorem 1).

The soundness of the rules G1 and G2 is obvious from the semantics of the
operators ∪ and ∩ on games. For the rule G3 the soundness follows directly from
the definition of the sequential composition. The soundness of the unwinding
rules G4 (resp. G5) is a direct consequence of the semantics of (G)[∗] (resp.
(G)〈∗〉). For proving soundness of rule G6 a similar pattern to that in [8] can be
applied. The game G can only change the variables that occur in G. Therefore,
if φ → ψ and Gφ holds independent of how the variables occurring in G are
evaluated, ψ also holds after playing G.

Soundness of the induction rule G7 and the convergence rule G8 can be
shown by induction over the number of executions of the loop, in analogy to the
soundness proofs for D13 and D14. The proof of Theorem 2 can be found in [13].

4 Case Study: Robotic Factory Automation

To demonstrate the applicability of our approach we model a factory automation
scenario in which an autonomous robot moves in an automatic factory. For
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scalability reasons, central coordination and planning become infeasible, so the
factory is set up as a collection of autonomous agents pursuing goals that may
not be known globally. The robot has a secondary objective of reaching certain
target positions, but its primary objective is to stay safe, i.e., neither leave the
factory site nor bump into its surrounding wall, which could damage the robot.

ey

fy

xb(lx, ly) ex fx

(rx, ry)

(vx, vy)

Fig. 3. Sketch of the robotic factory automation site

Model. We model a robot
with position (x, y), ve-
locity v = (vx, vy), and
acceleration a = (ax, ay)
on a 2 dimensional rect-
angular factory ground
(Fig. 3). There are two
conveyor belts. One point-
ing in x-direction and one pointing in y-direction. The factory may independently
decide to activate the conveyor belts, in which case they increase the velocity
of the robot. The robot may decide to move in any direction. Therefore, it can
decelerate to try to compensate for this increased speed. The goal of the robot
is to avoid crashing into any wall and avoid other machines using the belt.

A sketch of the factory site is provided in Fig. 3. One conveyor belt is of
y-width ey between positions lx and ex and moves in x-direction if activated.
Between ex and fx there is a belt of y-width fy moving in y-direction. The shaded
region in Fig. 3 indicates a region that has to be cleared within ε time units
after the system was started, because other robotic elements of the factory may
occupy this space then and not watch out for our robot. For simplicity, the robot
is initially located at the lower left end (lx, ly) of the factory site. The conveyor
belt in x-direction has a maximal velocity of cx and that in y-direction of cy. The
conveyor belts accelerate very quickly, so we simply consider them to accelerate
instantaneously. Thus, upon activation, their effect is to increase the velocity
of the robot by a discrete assignment instantaneously if the robot is currently
located on the conveyor belt that got activated. The robot itself can accelerate
with any acceleration of absolute value at most A = 2 and that acceleration
can be applied in x-direction (acceleration ax) or y-direction (acceleration ay)
or both. The robot can activate a brake that will slow it down. The difference
between braking and just accelerating in the opposite direction is that braking
does not allow changes of the sign of the velocity but instead stops at velocity 0.

Specification. As the robot is a moving object and cannot come to a standstill
instantaneously, certain conditions have to be satisfied to allow safe operation.
Therefore, we assume the following conditions on the scenario. We require that
the point xb can be reached by accelerating for at most time ε, the x-belt moves
to the right (if activated), and after passing the belts there is enough space to
brake from the velocity we reach by accelerating for four cycles (each of duration
≤ ε) and possible extra velocity gained when a conveyor belt activates:

xb <
1

2
Aε2 ∧ cx > 0 ∧ (cx + 4Aε)2 ≤ 2A(rx − fx) (1)
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For the y-direction we assume

cy > 0 ∧ c2y ≤ 2A(ry − ly) , (2)

i.e., the y-belt moves upwards (if activated) and there is enough space for the
robot to compensate for the effects of the conveyor belt by braking long enough
without having to leave the factory ground.

Even though these constraints limit the possible scenarios, we haven proven
that a strategy for the robot exists such that it meets its objectives. Figure 4
shows the hybrid game describing the robotic factory scenario. The game is
structured as follows. First the environment, i.e., Falsifier, chooses a number of
iterations. In each iteration, the environment may choose to activate one of the
conveyor belts if the robot is on it. Afterwards, the robot (i.e. Verifier) chooses
his accelerations in x and y-direction. The clock ts is reset to measure the cycle
time (i.e. ts ≤ ε), then the robot chooses if it wants to brake or possibly to drive
backwards (w.r.t. to its current direction). The time for the continuous evolution
is then chosen by the environment within the cycle time constraint and possibly
the zero crossing of one of the velocities. Thus, accelerating for ε time units can
take many iterations of the loop as ε only provides an upper bound on the cycle
time. Further, note that for the braking case if the velocity in a direction is 0 then
that acceleration is set to 0 as well to avoid time deadlocks. Also the robot has
to ensure that his choices for the acceleration are compatible with the current
velocities: for a velocity v and an acceleration a, if the robot wants to brake, i.e.
reduce the velocity to zero, then the product va has to be non-positive.

The winning condition for the robot is to stay safe, i.e.,:

lx ≤ x ≤ rx ∧ ly ≤ y ≤ ry ∧ (t ≥ ε→ (x ≥ xb ∨ y ≥ ey))

The robot must stay within the rectangle of the points (lx, ly) and (rx, ry)
but has to leave the rectangle (lx, ly) and (xb, ey) after ε time units. The lat-
ter requirement models that uncooperative robotic elements might enter that
region. Note that the number of iterations is chosen when the game starts not
when specifying the system. Sensor and communication delays are not modelled
explicitly here. Since they are beyond control for the robot, the number of iter-
ations and the evolution durations are chosen by the factory environment. How
long the robot needs to work in the factory is also decided by the factory, so
the robot needs to guarantee safety for all times. However, whether the robot
actually has a strategy is quite subtle. Simple strategies like always accelerating,
or always braking are bound to fail and accelerating for exactly ε time units is
not possible as the environment determines the actual cycle time and might not
allow changing the acceleration at that exact point in time. The robot has to
navigate the factory very carefully, react to changes in the conveyor belt acti-
vation as needed, and robustly adapt to the number of control loop repetitions
and (possibly erratic) cycle durations chosen by the factory environment.

Verification. We consider an instance of the case study that is parametric w.r.t.
ε, cx, cy, and xb, but we fix lx = ly = 0, rx = ry = 10, ex = 2, ey = 1, fx = 3,
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[ ?true ∪ (?(x < ex ∧ y < ey ∧ eff1 = 1); vx := vx + cx; eff1 := 0)

∪ (?(ex ≤ x ∧ y ≤ fy ∧ eff2 = 1); vy := vy + cy; eff2 := 0) ]

〈ax := ∗; ?(−A ≤ ax ≤ A); ay := ∗; ?(−A ≤ ay ≤ A); ts := 0 〉(
[x′ = vx, y

′ = vy, v
′
x = ax, v

′
y = ay, t

′ = 1, t′s = 1&ts ≤ ε ]

∪(〈?axvx ≤ 0 ∧ ayvy ≤ 0; if vx = 0 then ax := 0 fi; if vy = 0 then ay := 0 fi〉

[x′ = vx, y
′ = vy, v

′
x = ax, v

′
y = ay, t

′ = 1, t′s = 1&ts ≤ ε ∧ axvx ≤ 0 ∧ ayvy ≤ 0])
))[∗]

Fig. 4. Description of game for robotic factory automation scenario (RF )

fy = 10. We have verified the following propositions using KeYmaera [11], to
which we added dDGL proof rules. To establish the desired property, we first
show that the robot can stay within the factory site whatever the factory does.

Proposition 1. The following dDGL formula is valid, i.e., there is a strategy
for Verifier in the game depicted in Fig. 4 that achieves the postcondition:

(x = y = 0 ∧ (1) ∧ (2))→ (RF )(lx ≤ x ≤ rx ∧ ly ≤ y ≤ ry)

When proving this property, we focus on the case where the robot is not driving
towards the lower left corner; see Fig. 3.

Again allowing for arbitrary movement in x-direction, we analyze, for a pro-
jection to the x-axis, a more complex postcondition, where the robot has to leave
the shaded region but stay inside the factory site.

Proposition 2. The following dDGL formula is valid, i.e., there is a strategy
for Verifier in the game in Fig. 4 projected to the x-axis (denoted RF |x) that
achieves the postcondition:

(x = y = 0 ∧ (1))→ (RF |x)(lx ≤ x ≤ rx ∧ (t ≥ ε→ (x ≥ xb)))

In the proof of Proposition 2 we prove the following inductive invariant:

eff1 ∈ {0, 1} ∧ x ≥ lx ∧ vx ≥ 0 ∧ (t ≥ ε→ x ≥ xb) ∧ (vx + cxeff1)2 ≤ 2A(rx − x)

∧
(
x < xb → t ≤ ε ∧

(
xb − x ≤

1

2
Aε2 − 1

2
At2

∧ (eff1 = 1→ vx = At) ∧ (eff1 = 0→ vx = At+ cx)

∧ rx − x ≥
(vx + eff1cx)2

2A
+A(2ε− t)2 + 2(2ε− t)(vx + eff1cx)

))
(3)

The invariant says that enough space remains to brake before reaching the
right end of the factory ground. Additionally, if the point xb has not yet been
passed then the time is not up and the distance to the right wall is bounded
by the space the robot can cover by accelerating ε time units and the distance
it could already have covered within the current runtime. Further, the distance
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to the far right side is large enough to accelerate for another 2ε − t time units
and brake afterwards without hitting the wall. The 2ε time units are necessary
as Falsifier chooses how long to evolve and the robot may accelerate for ε time
units before it can react again. Therefore, the robot may have to accelerate when
clock t is almost ε and then may not react again within the next ε time units.

The KeYmaera proof [13] for Proposition 1 has 2471 proof steps on 742
branches, with 159 interactive steps. The proof for Proposition 2 has 375079 proof
steps on 10641 branches (1673 interactive steps). The interactive steps provide
the invariant and simplify the resulting arithmetic. Note that Proposition 1 is
significantly simpler than Proposition 2, because there is a simpler strategy that
ensures safety (Proposition 1), whereas the dDGL formula in Proposition 2 is only
valid when the robot follows a subtle strategy to leave the shaded region quickly
enough without picking up too much speed to get itself into trouble when con-
veyor belts decide to activate. Specifically, Proposition 2 needs the much more
complicated invariant (3). Also, the a priori restriction (and thus strategy choice)
to the case where the robot is driving in the direction towards larger x and larger
y values reduces the proof for Proposition 1 significantly.

As every strategy witnessing Proposition 2 is compatible with some strategy
witnessing Proposition 1, we claim that the robot meets its requirements.

5 Related Work

Our approach to hybrid games has some resemblance to Parikh’s propositional
game logic (GL) [6] for propositional games. But dDGL is a conservative extension
of dL [7] with hybrid programs as hybrid system models. We refer to [10] for an
identification of the fundamental commonalities and differences of GL versus
dL. Axiom K and Gödel’s generalization rule stop to hold for games [10], but
are used in KeYmaera, which had been designed for hybrid systems not games.
It is, thus, crucial that K and Gödel’s generalization are still sound for dDGL.
Unlike GL, dDGL has an advance notice semantics, i.e., the players announce the
number of repetitions of a loop when it starts.

Vladimerou et. al. [15] extended o-minimal hybrid games [1] to STORMED
hybrid games and proved decidability of optimal reachability. These hybrid
games are based on STORMED hybrid systems, which require that all system
actions point towards a common direction. Unfortunately, neither STORMED
hybrid games nor their special case of o-minimal hybrid games are expressive
enough for our needs. Our factory automation scenario is not STORMED, e.g.,
because some actions decrease the velocity (when the robot brakes) and some
trajectories increase it (when the conveyor belt activates).

Tomlin et. al. [14] present an algorithm to compute maximal controlled invari-
ants for hybrid games with continuous inputs. The class of games they consider
is more general than ours as they allow inputs to differential equations to be con-
trolled by both players, thereby added a differential game component. However,
the general class of games they consider is so large, the algorithm presented is
semi-decidable only for certain classes of systems, e.g., systems specified as timed
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or linear hybrid automata, or o-minimal hybrid systems. They further present
numerical techniques to compute approximations of their reach set computation
operators. However, these sometimes give unsound results. Additionally, it only
works for differentiable value functions. Extending these ideas, Gao et. al. [2]
present a different technique for the same approach. The drawback is that the
players can neither force discrete transitions to happen nor influence which lo-
cation is reached by a discrete transition.

In contrast to these automata-based approaches to hybrid games we do not
consider concurrent choices of actions. However, it is, for instance, possible to
model voting for the next evolution time, provided the players can announce
their choices in given orders. A precedence for player actions is often times
encoded into the semantics of hybrid game automata, e.g. controller actions have
precedence over environment actions in [15], whereas dDGL offers more flexibility
in modeling these syntactically for the particular needs of the application.
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