
Crossing the bridge between similar games?

Jan-David Quesel, Martin Fränzle, Werner Damm

University of Oldenburg, Department of Computing Science, Germany
{quesel,fraenzle,damm}@informatik.uni-oldenburg.de

Abstract. Specifications and implementations of complex physical sys-
tems tend to differ as low level effects such as sampling are often ignored
when high level models are created. Thus, the low level models are of-
ten not exact refinements of the high level specification. However, they
are similar to those. To bridge the gap between those models, we study
robust simulation relations for hybrid systems. We identify a family of
robust simulation relations that allow for certain bounded deviations in
the behavior of a system specification and its implementation in both val-
ues of the system variables and timings. We show that for this relaxed
version of simulation a broad class of logical properties is preserved. The
question whether two systems are in simulation relation can be reduced
to a reach avoid problem for hybrid games. We provide a sufficient con-
dition under which a winning strategy for these games exists.

Keywords: formal verification of hybrid systems, robust simulation,
logics for hybrid systems, hybrid games

1 Introduction

Hybrid systems provide a mathematical model for systems with interacting dis-
crete and continuous dynamics. Examples include controllers for trains, cars, and
airplanes. In many cases, these controllers are critical for the system operation
and safety. Thus, verification is a crucial task during the design of those systems.
Unfortunately, verification approaches do not scale well enough to directly tackle
the whole implementation of such controllers.

Different approaches have been taken to overcome this issue so far. Refine-
ment between a relaxed model and a synthesized discrete implementation is
established by Stauner [21]. His method relies on models that obey certain re-
strictions. For example the invariants and guards must be overlapping in a single
point. Stauner then constructs a sampled implementation that is a refinement
of a relaxed version of the model where the guards and invariants overlap in a
larger region. The gap from timed systems to implementations was bridged by
De Wulf et.al. [25] in a similar way. They provide a relaxed semantics for timed
automata that ensures implementability and preservation of LTL properties. Gi-
rard et. al. [12] presented an approach how to construct approximately bisimilar
symbolic models for switched dynamical systems.

? This work was partially supported by the German Research Council (DFG) as part
of the Transregional Collaborative Research Center “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS).

2 Jan-David Quesel, Martin Fränzle, Werner Damm

Thrane et. al. [22] studied different types of simulations that allow for some
deviations of the costs in weighted timed automaton. A notion of simulation
in the presence of spatial deviations that allows to related hybrid systems with
identical control graphs is presented by Girard et. al. [11].

As effects like sampling that often occur in implementations influence the
timing behavior similarity notions have been studied that allow for some devi-
ation in the timing behavior as well. Davoren [5] presented an approach gener-
alizing Skorokhod-metrics and provided conditions under which these initially
pseudo-metrics induce topologies which are Hausdorff and are thus indeed met-
rics. However, she does not present a constructive method for determining the
values assigned to two concrete system by the metric.

Inspired by the simulation notion presented by Girard et. al. [11] and the
more general similarity notion in Davoren’s work [5], (a) we study a simulation
relation that allows one system to simulate another in a robust way, where
deviations in continuous variable valuations, and in timing behavior are subject
to constant bounds, and (b) we then investigate properties preserved under such
a simulation relation. Additionally, we drop the requirement inherent to the work
in [11] that the discrete behavior must have the same control graph.

We model hybrid systems using a notion of hybrid automata [13]. However,
the formalism allows for some specifications that lack real-world realizability. As
we want to bridge the gap between specifications and implementations, we do nei-
ther consider runs of a system that are Zeno, i.e. an infinite number of transitions
is taken within a finite amount of time, nor behaviors that are time blocking.
Time blocking means that at a certain point in time, no future evolution of the
system is possible due to an invariant preventing any continuous evolution and
no transition guard being satisfied. Also, as valuations of transient intermediate
variables in internal calculations are not observable, we consider systems similar
as long as their outputs are similar, even if transient intermediate values differ.

To determine whether two systems are related by our simulation relation, we
build up a two player hybrid game where the existence of a winning strategy
for the second player coincides with the fact that the systems are in simula-
tion relation. Hybrid games are a natural extension of timed games [18] where
derivatives are no longer restricted to 1 and resets can exhibit a more complex
structure. Different types of hybrid games have been studied in the literature
so far. Restricted classes of hybrid games have been proven to be decidable (see
e.g. [14, 2, 24]). Unfortunately, the games expressive enough for our purpose do
not fall into such a class. Tomlin et. al. [23] study hybrid games for controller
synthesis. They give an algorithm how to compute controllable predecessors and
thus checking if there is a controller that drives the system into a safe state.

To express properties of real-time as well as hybrid systems a variety of dif-
ferent logics have been proposed (see [1] for a survey). We choose to use a variant
of the future fragment of MTL [16] to specify properties of our systems. As ba-
sic propositions we use expressions that are evaluated on the system variables.
This gives us a nice partitioning between temporal and spatial propositions on a
syntactical level which we will exploit when proving that certain properties are

Crossing the bridge between similar games 3

preserved by our simulation relation. Henzinger et. al. [15] studied the relation
between a timed variant of CTL and a notion of simulation that allows for some
bounded deviation in the timing behavior of the timed automaton under consid-
eration. They prove that a certain modification function applied to the temporal
operators of their logic ensures that properties can be transfered using this simu-
lation relation. We will use a similar transformation but add some modifications
to the basic propositions as well to capture the deviations in space.

With Fainekos and Pappas [7] and Donzé and Maler [6] we share the goal
of defining robust satisfaction of linear-time metric temporal logic formulas in
a form permitting the generalization of findings obtained on one trajectory to
“close-by” trajectories, where “close-by” refers to both space—as already ad-
dressed by Fainekos and Pappas—and time—a combination also covered by
Donzé and Maler. Our work, however, is notably different from theirs in that
they deal with instance properties while we deal with ensemble properties: while
theirs robustly evaluates a given formula over a given (sampled) trajectory, we
are concerned with computing a simulation relating every trajectory of a given
concrete system to a robustly corresponding abstract counterpart such that the
robust semantics of every temporal-logic formula is preserved up to a given tol-
erance. The latter constitutes a natural notion of system refinement which can
help bridge the gap between the abstract models used in system verification
and their actual implementations, while the former is the adequate setting for
assessing observed trajectories against a given set of requirements.

Contributions. We study a similarity of hybrid systems. In contrast to many
other approaches, we do not restrict ourselves to classical refinement, but develop
a notion of similarity that relates systems based on behavioral distance so that
we can transfer properties even if the behavior is slightly different. We allow the
system behavior to differ in both valuations of the system variables as well as
timings. We give a sufficient criterion under which a system A is simulated by
another system B using our notion of simulation and prove that for all formulas
that are satisfied by B there is a “similar” formula that is satisfied by A.

Structure of this Paper. In Sect. 2 we give the formal basis for specifying hybrid
systems and properties of those. Section 3 provides a motivating example for
the study of system similarity which is examined further in Sect. 4. In Sect. 5 we
give sufficient conditions under which we can assert that systems are similar and
study what properties are preserved by this relation in Sect. 6.

2 Basics

To specify systems, we use a standard notion called hybrid automata. The syntax
is similar to the syntax for hybrid automata originally defined by Henzinger
in [13].

Definition 1. A hybrid automaton is a tuple H = (U,X,L,E, F, Inv, Init)
where

4 Jan-David Quesel, Martin Fränzle, Werner Damm

– V := U ∪̇ X is a set of real-valued variables where U is the set of external
variables and X contains the internal ones.

– L is the set of locations.
• Invariants are provided by a mapping Inv of locations to predicates over

variables in V .
• Flows are given by F , which is a mapping of locations to predicates of

the form
∧
x∈Ẋ ẋ = ex where ex are expressions over V . Here, Ẋ denotes

the derivatives of the variables in X.
– E ⊆ L × G × L are discrete transitions, where G denotes predicates over
V ∪X ′. The variables in X ′ are valuated with the values of the variables in
the post-state.

– Init is a mapping of locations to predicates over V , which characterizes the
initial condition to start in the specific location.

We use a hybrid time model that is the cross product of the non-negative real
numbers (denoted by R for real numbers and R+ for the non-negative subset)
and the natural numbers (denoted by N). The natural number component allows
arbitrarily many discrete jumps at a single real-valued point in time. Further,
we use | · | to denote the cardinality of sets or the absolute value of numbers and
∪̇ to denote the disjoint union of sets.

The semantics of a hybrid automaton is given by a set of runs. A run maps
a state to each point in time, which is pair of a non-negative real number and
a natural number. A state consists of a discrete location and a valuation of the
system variables. Every run of the system starts in some location and has a
valuation of the variables that satisfies the initial condition. If there is a discrete
jump, meaning an increase of the second argument leads to a changed valuation,
then there was an edge leading from the previous to the current location, whose
guard was satisfied. This also means that the current valuation of variables are
subject to certain restrictions based on this guard. Continuous flows range over
real-valued time-points. They change the variables based on the solution of the
flow predicate. While time is passing, the variable values change continuously,
and each of the valuations has to satisfy the location invariant.

Let π denote the projection to specific components of our hybrid automaton.
For example πV (s) gives us the valuation of the variables in state s whereas
πL(s) returns the location.

Definition 2. The semantics of a hybrid automaton is given by a set of runs

generated by a function Ξ : ((R+ × N) → R|U |) → 2(R
+×N)→L×R|X|

. Here, for
some input stream ι, which is a total function ι : (R+ × N) → R|U |, we say
the output stream ω is possible for ι, i.e. ω ∈ Ξ(ι), iff there is a run, i.e. total
function, ξ(x, y) := (ι(x, y), ω(x, y)) such that:

1. ξ(0, 0) |= Init
2. If ξ(t, n + 1) 6= ξ(t, n) then there is an edge from l = πL(ξ(t, n)) to l′ =

πL(ξ(t, n+ 1)) and πV (ξ(t, n)) satisfies the invariant of l and πV (ξ(t, n+ 1))
satisfies the invariant of l′. Additionally, the guard on this edge is satisfied
by using the values of ξ(t, n) for V and πX(ξ(t, n+ 1)) for X ′.

Crossing the bridge between similar games 5

3. There is an upper bound on the number of discrete changes at each real-
valued point in time: ∀t : ∃n : ∀n′ > n : ξ(t, n) = ξ(t, n′). For each t, we call
the smallest n for which this condition holds nt.

4. During continuous evolutions from some real-valued time point t to some t′

the location stays constant and no discrete computations change any values.
They start after the discrete computations stabilized, i.e. at (t, nt), and all
intermediate states t′′ satisfy the invariant of the current location: ∀t : ∃t′ >
t : ∀t < t′′ ≤ t′ : πL(ξ(t′′, 0)) = l ∧ (t′′ < t′ → ∀n′′ : ξ(t′′, 0) = ξ(t′′, n′′)) ∧
ξ(t′′, 0) |= Inv(l) ∧ πV (ξ(t′′, 0)) = s(t′′ − t) where l = πL(ξ(t, nt)) and s is a
solution to the initial value problem s(0) = πV (ξ(t, nt)) of the flow predicate
F (πL(ξ(t, n))).

Note that this definition of the semantics explicitly excludes runs where there
is an infinite number of different states at a single real-valued point in time.
It, thus, ensures that every instantaneous discrete calculation comes to a result
after a finite number of steps. However, Zeno behavior can still occur, as the
delays between calculation steps might go to zero in the limit. As such systems
would not be implementable, we assume in the following that those effects do
not occur. For example the models could be altered in a way that between every
two discrete transitions there is some small constant delay.

To describe properties of hybrid systems we need a logic that is able to express
temporal relations of real-valued states. Therefore, we study the following real-
valued real-time linear time temporal logic that we call L\ in this paper.

First, let us define what a Lipschitz continuous function is.

Definition 3 (Lipschitz continuity). We say that a function f : Rn → R is
Lipschitz continuous, iff there is some constant M such that for all x1, . . . , xn,
and all y1, . . . , yn holds:

|f(x1, . . . , xn)− f(y1, . . . , yn)| ≤M · ||(x1, . . . , xn), (y1, . . . , yn)|| ,

where ||·, ·|| denotes the Euclidean distance. We call the smallest M that has this
property the Lipschitz constant of f .

Now, based on this definition to restrict the possible basic terms, the syntax of
our logic is defined as follows:

Definition 4 (Syntax). The basic formulas are defined by

φ ::= x ∈ I | f(x1, . . . , xn) ≤ 0 | ¬φ | φ1 ∧ φ2 | φ1 UJ φ2

where I ⊆ R, J ⊆ R+, f is a Lipschitz continuous function and the xi are
variables.

We interpret this metric variant of LTL on runs of hybrid systems. However, as
transient states of the automaton are not observable in the real world, we project
the runs on a continuous domain. This gives us a valuation function which maps
a value to each variable at each real-valued point in time.

6 Jan-David Quesel, Martin Fränzle, Werner Damm

Definition 5 (Valuation). We define the valuation of a variable x at time t
on a run ξ as

ζξ(t, x) := lim
n→∞

ξ(t, n)|x ,

where y|x denotes the projection of the vector y to its component associated with
the variable name x.

If the run is obvious from the context we just write ζ(t, x).
Note that this definition is well defined as property 3 of our semantics of

hybrid automaton demands that the number of discrete changes to the vari-
ables is finite at each real-valued point in time. For the original semantics of
hybrid automaton by Henzinger [13] the limit might not exist, as a countably
infinite number of transitions might be taken at a real-valued time-point and
each might assign new values to the variables. However properties of these runs
cannot be observed in the real world, and we, thus, drop them from our focus.

t

x

Fig. 1: Example trajectory

In Fig. 1 an example trajectory of a hybrid sys-
tem is shown. Here, squares mark values that are
omitted by our valuation function.

We now turn our focus to the semantics of the
logical formulas. The semantics of the basic terms
imposes bounds on the valuations of the system
variables. This can either be done by restricting the
values of a variable to be within some real-valued set or by imposing a Lipschitz
continuous constraint on multiple variables. The variables are connected to the
system state using the valuation function just defined. Boolean connectives are
defined as usual, and the until operator provides us with the possibility to ex-
press both the temporal order of states as well as postulate time bounds on these
orders. The set annotation forces the postcondition to hold at some point in time
that lies within this set.

Definition 6 (Semantics). We define for a run ξ and some t ∈ R+ the se-
mantics of a formula φ by:

ξ, t |= x ∈ I iff ζ(t, x) ∈ I (1)

ξ, t |= f(x1, . . . , xn) ≤ 0 iff f(ζ(t, x1), . . . , ζ(t, xn)) ≤ 0 (2)

ξ, t |= ¬φ iff not ξ, t |= φ (3)

ξ, t |= φ ∧ ψ iff ξ, t |= φ and ξ, t |= ψ (4)

ξ, t |= φUJ ψ iff ∃t′ ∈ J : ξ, t′ + t |= ψ and ∀t ≤ t′′ < t′ + t : ξ, t′′ |= φ (5)

Additionally we define for a set of runs Ξ:

Ξ, t |= φ iff for all runs ξ ∈ Ξ holds ξ, t |= φ (6)

A hybrid system Sys satisfies a formula denoted by Sys |= φ iff ΞSys, 0 |= φ.

Obviously, true and false can be expressed in various ways using this logic.
Additionally, we define the eventually modality by 3J φ ≡ trueUJ φ and the
always modality as abbreviation 2J φ ≡ ¬3J¬φ.

Crossing the bridge between similar games 7

3 Running Example

To further motivate the study of similarity and to illustrate how our results can
be applied, we present a specification of a cruise controller taken from [4] and
provide a very basic implementation that we use for comparison.

The goal of the cruise controller is to stabilize the system at a velocity dif-
ference of v = 0 to some target velocity within a certain time bound if it was
started with a velocity difference v between −30 and 30. If the velocity difference
is below −15 the controller just chooses the maximum acceleration 1.5. In the
range of −15 to 15 a proportional-integral (PI) controller takes over. It controls
the acceleration proportional to the current and the accumulated velocity dif-
ference since this mode was entered. The velocity difference is accumulated by
integration over v. We, here, write the integral implicitly as differential equation
ẋ = v. The integral part is used by the PI controller to smoothen the velocity
trajectory as it is approaching its target, i.e. a velocity difference of v = 0.

If the difference is above 15 the controller enforces braking with maximal
deceleration of −2. Figure 2a shows the corresponding automaton. The model
consists of three modes. Depending on the initial velocity difference, exactly one
of these is enabled. The variable x is used to track the integral over v such that
the PI control used in the central mode can access this data.

ẋ = v
v̇ = −0.001x− 0.052v

−15 ≤ v ≤ 15

v̇ = 1.5
−30 ≤ v ≤ −15

v̇ = −2
15 ≤ v ≤ 30

v ≥ −15
x := 0

v ≤ −15
x := 0

v ≥ 15
x := 0

v ≤ 15
x := 0

2a: Original specification

v̇ = a
ṫ = 1
t ≤ τ

t ≥ τ ∧−30 ≤ v < −15
t := 0∧a := 1.5∧x := 0

t ≥ τ ∧−15 ≤ v ≤ 15
t := 0

x := x+ τv
a := −0.001x− 0.052v

t ≥ τ ∧ 15 < v ≤ 30
t := 0∧a := −2∧x := 0

2b: Implementation

Fig. 2: Cruise controller variants

A sampling implementation is provided by the automaton depicted in Fig. 2b.
Here, a single mode is sufficient and the acceleration is updated depending on
the current velocity difference with a sampling rate of τ := 10 time units. The
two systems do not produce identical trajectories and the implementation is not
a classical refinement of the specification. Still, they are similar in their behavior.

8 Jan-David Quesel, Martin Fränzle, Werner Damm

4 Similarity

To introduce a notion of similarity, we compare the observable values of the
system trajectories. Like in the definition of the logic, we restrict our focus to
a single valuation of variable at each real-valued point in time. Now, the idea is
to say that two runs are similar if both evolve in a similar fashion by comparing
variable valuations of one system with valuations of the other that might be
shifted in time. This means given a valuation of the variables of one system at
some point in time, there is within close distance in time a point where the
valuation of the variables of the other system is close. We restrict the temporal
distance by a constant ε and the spatial distance by another constant δ.

Definition 7. For two streams σi : R+×N→ Rp with i ∈ {1, 2}, given two non-
negative real numbers ε, δ, we say that σ1 is ε-δ-simulated by stream σ2 (denoted
by σ1 Eε,δ σ2) iff there is some left-total, surjective relation r ⊆ R+ × R+ with

∀(t, t̃) ∈ r : |t− t̃| < ε ∧ ∀(t′, t̃′) ∈ r : (t ≤ t′ → t̃ ≤ t̃′) (7)

and

∀(t, t̃) ∈ r : ||c(σ1)(t), c(σ2)(t̃)|| < δ (8)

where for k ∈ {1, 2}: c(σk) is defined by c(σk)(t) := limq→∞ σk(t, q).

As r allows stretching or compressing the time line, we call it a retiming relation.
An example for such a relation is depicted in Fig. 3. The relation is motivated
by the fact that slight variations in the switching points of the system as those
variations should not endanger the safety of any robust real-world system.

0 1 2 3 4 5 6 7 8 9
t

0 1 2 3 4 5 6 7 8 9
t

Fig. 3: Example for a retiming relation r

In some cases it is sufficient to use a slightly weaker notion of similarity. This
can be obtained by dropping the bound on the temporal distance. If we do not
impose an upper bound on the temporal distance, we can still get useful insights.
When comparing systems where the timing behavior is of limited interest, to
prove that, for instance, the one system works within certain spatial bounds
compared to the other one, it is sufficient to use the following notion of similarity.

Definition 8. For two streams σi : R+ × N → Rp with i ∈ {1, 2}, given a
non-negative real number δ, we say that σ1 is weakly δ-simulated by stream σ2

Crossing the bridge between similar games 9

(denoted by σ1 Eδ σ2) iff there is some left-total, surjective relation r ⊆ R+×R+

with
∀(t, t̃) ∈ r : ∀(t′, t̃′) ∈ r : (t ≤ t′ → t̃ ≤ t̃′) (9)

and (8) holds.

We apply the same definitions to output streams as well, by ignoring the location
component of those. Now we introduce the main similarity notion on hybrid
systems used in this paper using the notion of the stream similarity.

Definition 9. A hybrid system A is ε-δ-simulated by another system B (denoted
by A Eε,δ B) iff for all input streams ιA and for all input streams ιB for which
ιA Eε,δ ιB and for all output streams ωA ∈ Ξ(ιA) of A, there is an output
stream ωB ∈ Ξ(ιB) of B such that ωA Eε,δ ωB holds. And similarly, A is weakly
δ-simulated by B (denoted by A Eδ B) iff the above conditions hold for weak
δ-simulations on the streams.

Note that if a system has no input variables, then it still has a possible input
stream of type R+ × N → ∅. Therefore, in the absence of input variables, the
whole relation is determined by the system outputs.

5 Determining Similarity

In this section we present a sufficient criterion for determining whether two
systems are similar. We assume that the system inputs can be described by
differential equations. This way we can add these differential equations to each
mode and further assume inputless systems.

Now, we give an encoding of the question whether a system A is ε-δ-simulated
by a system B into a two player game. The idea is that if there is a winning
strategy for the second player then the systems are in simulation relation.

First, we give the general definition of hybrid games.

Definition 10 (Hybrid Game). A hybrid game HG = (S,Ec, Uc, l) consists
of a hybrid automaton S = (U,X,L,E, F, Inv, Init), a set of controllable tran-
sitions Ec ⊆ E, a set of controllable variables Uc ⊆ U , and a location l ∈ L.

The game is played on the states of the hybrid system denoted by S. The
possible moves of the first player are determined by the uncontrollable transitions
E \Ec and the corresponding invariants and guards. The second player plays on
the controllable transitions Ec. In addition, the second player always proposes a
function that gives the future valuations of the variables in Uc until the next move
is determined. At every state of the game each player chooses an action that is
either a finite number of discrete transitions (uncontrollable transitions for the
first player and controllable ones for the second player) or a time period they
want to let pass. If both players choose discrete transitions then the first player
gets precedence and all transitions of the first player are executed. Afterwards the
transitions proposed by the second player are executed, if they are still enabled.
If both players choose to let time pass, the smaller amount of time is taken. In

10 Jan-David Quesel, Martin Fränzle, Werner Damm

case one chooses a discrete transition and the other one chooses to let time pass,
the discrete transition gets precedence.

The first player wins, if he can force the game to enter the location l or if
the second player does not have any more moves. The second player wins, if he
can assert that the location l is avoided.

The case where the second player has no more moves can happen if for example
the system is on the edge of an invariant region and thus a discrete transition
has to happen, but no controllable transition is enabled.

To translate the question whether two systems are in simulation relation into
such a hybrid game, we encode the restrictions of the simulation relation into a
hybrid automaton that is able to check whether either the distance between the
system states is too large, or whether we are not able to find a suitable retiming
at a certain point. The retiming is modeled by speeding up/slowing down the
system dynamics by multiplying them with either s for the dynamics of the first
system or 2 − s for those of second one. As s can be altered arbitrarily we can
emulate all possible retiming relations. We keep track of the temporal distance
of the systems in the variable r that represents the integral over 2s− 2. That r
indeed models the temporal distance can be seen if one considers the evolution
of local clocks. A clock in the first system evolves with rate s while a clock in a
second system evolves with 2 − s. In case s = 1 both evolve with speed 1. Else
we have a clock drift of s− (2− s) = 2s− 2.

The spatial distance can be checked directly. We add invariants that force
the automaton to go to the bad location if the distance is too large. Most of
the controllable transitions are only enabled as long as the system variables
and timings are close. Only in cases, where the second player reacts on some
action performed by an uncontrollable transition this is not directly enforced.
Therefore, all uncontrollable transitions lead to a location (second component is
in L̂) where the second player might react. However, in these locations no time
must pass which is enforced using the fresh clock c.

Formally this gives:

Definition 11 (Simulation Game). Given two real numbers ε, δ, a hybrid
system A = (UA, XA, LA, EA, FA, InvA, InitA), and another hybrid system B =
(UB , XB , LB , EB , FB , InvB , InitB), we define, w.l.o.g. assuming VA ∩ VB = ∅,
a hybrid game SG = (AlB,Ec, {s}, bad) in the following way:

– AlB = (Ul, Xl, Ll, El, Fl, Invl, Initl)
– The variables of the resulting system are given by Ul = UA ∪ UB ∪ {s} and
Xl = XA ∪XB ∪ {r, c} where w.l.o.g. (VA ∪ VB) ∩ {s, r, c} = ∅ holds.

– The locations are given by Ll = LA × (LB ∪ L̂B) ∪̇ {bad}, where L̂B are
duplicates of the original locations in LB.

– Let χ be the following formula: ||xA, xB || < δ ∧ |r| < ε, where xA and xB
are the state vectors of the systems A and B respectively.

– The discrete transitions El are the smallest set such that:
• If (lA, φ, l

′
A) ∈ EA then for all lB ∈ LB,

((lA, lB), φ ∧ χ ∧ c′ = 0, (l′A, l̂B)) ∈ El .

Crossing the bridge between similar games 11

• If (lB , φ, l
′
B) ∈ EB then for all lA ∈ LA,

((lA, lB), φ ∧ χ, (lA, l′B)) ∈ (El ∩ Ec)

and

((lA, l̂B)), φ, (lA, l
′
B)) ∈ (El ∩ Ec) .

• For all lA ∈ LA and all lB ∈ LB, ((lA, lB),¬χ, bad) ∈ El.

• For all lA ∈ LA and all lB ∈ LB, ((lA, l̂B), true, (lA, lB)) ∈ (El ∩ Ec).
– For all l = (lA, lB) ∈ Ll or l = (lA, l̂B) ∈ Ll we construct Fl(l) as
ṙ = 2s − 2 ∧ ċ = 1 ∧mod(FA(lA), s) ∧mod(FB(lB), 2 − s) where mod(F, x)
alters f by multiplying the right side of each differential equation occurring
in F with x.

– The invariants of the locations are given by Invl which assigns each location
(lA, lB) or (lA, l̂B) an invariant of the form InvA(lA) ∧ InvB(lB) ∧ χ ∧ 0 ≤
s ≤ 2. If l = (lA, l̂B) we further add c ≤ 0.

– Initl = {((lA, lB), InitA(lA) ∧ InitB(lB)) | lA ∈ LA ∧ lB ∈ LB}

Using this game, we can determine whether two systems stand in simulation
relation as defined in Def. 9.

Theorem 1. Given two hybrid systems A and B. If there is a winning strategy
for the second player in the game (AlB,Ec, {s}, bad) then A Eε,δ B holds.

Proof. Assume that there is a winning strategy but A Eε,δ B does not hold.
From the latter, we know that there is a run of system A such that, no matter
which retiming is applied, system B cannot stay close enough. Let this run
be ξ. We now construct a winning strategy for the first player using ξ. The
first player chooses his actions in a way that the valuations of the variables
of the first system at time t coincide with ξ(t − r). The second player is not
able to influence the valuations of the variables at those points, as the discrete
transitions that it can choose from are those of B. He is also not able to restrict
the movement of the first player, as the intermediate locations only allow him
to react on actions performed by the first player and as he looses if there is a
time deadlock, he can also not avoid time going to infinity. This, as there was
no run of B that stays close enough to ξ, eventually leads to a state where the
condition ||xA, xB || < δ ∧ |r| < ε is violated. In this state the first player can
choose to enter the location bad. This contradicts the assumption that there is
a winning strategy for the second player and thus concludes the proof. 2

Note that the reverse implication does not hold, as the game demands a tighter
coupling of the system behaviors with regard to branching than our notion of
ε-δ-simulation.

Corollary 1. If we restrict the possible moves of the second player by adding
differential equations describing the evolution of s and he is still able to win the
game, then the systems are in simulation relation.

12 Jan-David Quesel, Martin Fränzle, Werner Damm

This follows directly from the fact that Theorem 1 demands the existence of a
winning strategy. Now, if we can find a winning strategy for a system where
the control of s is further restricted, we still can assert that there is a winning
strategy for the original system.

A good strategy to use for controlling s is optimal control with the goal of
minimizing the value of ||xA, xB ||. As the Euclidean distance contains a square
root we w.l.o.g. take the square of the distance as minimization target. This
yields equivalent results as the square root is a monotone transformation. For
xA = (xA,1, . . . , xA,n) and xB = (xB,1, . . . , xB,n), the square of the distance
evolves as follows:

d(||xA, xB ||)2
dt

=
d(
√

((xA,1 − xB,1)2 + · · ·+ (xA,n − xB,n)2)
2
)

dt

=
d((xA,1 − xB,1)2 + · · ·+ (xA,n − xB,n)2)

dt

= Σn
i=1(2(xA,i − xB,i) · (s

dxA,i
dt
− (2− s)dxB,i

dt
))

Let smin be the s that minimizes this term. Now choose s in the following way:
If r < ε ∧ smin > 1 or r > −ε ∧ smin < 1 choose s = smin. Otherwise choose
s = 1. The resulting strategy, for controlling s can then be encoded into a hybrid
automaton and included into the original automaton.

The choice of the strategy is motivated by the fact that the location bad can
only be entered if the distances between the two systems become too large. As
we might be able to trade spatial distance against temporal distance we choose
to minimize the spatial distance. However, this strategy is only an heuristic as
there are systems, where it is necessary to let the spatial distance increase a bit
to for example unify switching timings, as the guard effects might otherwise lead
to a violation of the bounds on the spatial distance.

Definition 12. A hybrid automaton is considered deterministic if (1) all of its
transitions are urgent, i.e. all the guards of the transitions are overlapping in
a singular point with the border of its sources invariant and all trajectories of
the mode are pointing outwards of the invariant region at that point, and (2) for
each point in time, at most one transition is enabled.

Let A be a hybrid automaton and B be a deterministic hybrid automaton. If
we modify A l B in a way that the assumptions of Corollary 1, assume that
the system values are identical at the initial locations, and are able to show
that on all runs of this modified version of A l B the location bad is avoided,
then, by Corollary 1, A Eε,δ B holds. The assumptions of Corollary 1 could, e.g.,
be satisfied by using the optimal control strategy. Thus, we can use a model
checker (e.g. FOMC [3], PHAVer [8], SpaceEx [9], or HSolver [20], depending
on the system class and complexity) to search for a certificate for the fact that
bad is unreachable. Provided that suitable inductive invariants can be found,
we could also prove that the trajectories of these two uncontrolled systems stay
close using a theorem prover for hybrid systems like KeYmaera [19].

Crossing the bridge between similar games 13

On a similar line of thought, if one can prove that the systems stabilize
within a certain time, as it is the case for our running example, it also possible
to use bounded model checking up until the time of stabilization. This could be
performed, e.g., using iSAT [10].

0 20 40 60

0

5

10

15

4a: Velocity under continuous control

0 20 40 60

0

5

10

15

4b: Velocity under sampled control

Fig. 4: Simulated velocities over time

Let us now consider our example presented in Sect. 3 with respect to these
results. Using MATLAB Simulink we can determine that the maximum distance
between these two systems if started in the initial state v = 16 is 12.7. The
velocity trajectories of the two systems are shown in Fig. 4a and Fig. 4b. A plot
of the resulting differences is depicted in Fig. 5a.

Using optimal control to keep the distance between the two systems minimal
as long as the retiming bounds allow and the fact that both systems stabilize
at v = 0 we can also show that there is a 5-6.61-simulation, if the initial region
is restricted to this singular point v = 16. This enables us to transfer more
knowledge from one model to the other than the previous observation. The
resulting trajectory corresponds to applying a retiming relation that results in
the temporal differences depicted in Fig. 5c to the original trajectories and we
get the smaller differences (compared to Fig. 5a) shown in Fig. 5b.

0 20 40 60
0

5

10

5a: Without retiming

0 20 40 60
0

5

10

5b: With retiming

0 20 40 60
0

2

4

6

5c: Temporal differences

Fig. 5: Maximal differences of the system velocities over time

14 Jan-David Quesel, Martin Fränzle, Werner Damm

6 Preservation of Logical Properties

Now that we have identified sufficient conditions for our simulation relation, we
study what properties are preserved by the relation.

The similarity notion defined in Def. 9 can be used to transfer properties from
one system to another. As we have upper bounds on the deviations we can use
those to weaken the formulas to be sure that they still hold in similar systems.

Theorem 2. If hybrid systems A and B satisfy A Eε,δ B and B |= φ then
A |= φ+δ+ε where φ+δ+ε := reε,δ(φ) and reε,δ is defined by:

– reε,δ(x ∈ I) := x ∈ I ′, where I ′ = {a | ∃b ∈ I : a ∈ [b− δ, b+ δ]}.
– reε,δ(f(x1, . . . , xn) ≤ 0) := f(x1, . . . , xn)−δ·M ≤ 0 where M is the Lipschitz

constant for f .
– reε,δ(¬φ) := ¬roε,δ(φ).
– reε,δ(φ ∧ ψ) := reε,δ(φ) ∧ reε,δ(ψ).
– reε,δ(φUJ ψ) := reε,δ(φ)UJ ′ reε,δ(ψ), where J ′ = {a | ∃b ∈ J : a ∈ [b −
ε, b+ ε] ∩ [0,∞)}.

The transformation function roε,δ is given by:

– roε,δ(x ∈ I) := x ∈ I ′, where I ′ = {a | ∃b ∈ I : a ∈ [b+ δ, b− δ]}.
– roε,δ(f(x1, . . . , xn) ≤ 0) := f(x1, . . . , xn)+δ·M ≤ 0 where M is the Lipschitz

constant for f .
– roε,δ(¬φ) := ¬reε,δ(φ).
– roε,δ(φ ∧ ψ) := roε,δ(φ) ∧ roε,δ(ψ).
– roε,δ(φUJ ψ) := roε,δ(φ)UJ ′ roε,δ(ψ), where J ′ = {a | ∃b ∈ J : a ∈ [b +
ε, b− ε] ∩ [0,∞)}.

As before I ⊆ R and J ⊆ R+ hold.

The function reε,δ is applied if the current subformula is in a context of an even
number of negation, whereas the function roε,δ is applied to subformulas under
an odd number of negations. Note that if the set indexing an until operator
becomes empty, the formula is trivially false.

Our notion of similarity can be seen as a decrease of the resolution of the
image we have of the system behavior thus blurring the borders. If we originally
knew that at some time between t and t′ some event would happen, we now
have to account for the timing deviations that might occur. Thus, if the event
originally happened at time t it might now occur in the worst case already at
t − ε. If it originally occurred at time t′, the worst case we have to consider is
that it now might occur as late as t′ + ε. This widens the set of possible time
points for the event, thus reducing our knowledge about exact timings. A similar
effect happens on the variable valuations.

This theorem can be proven by induction over the formula structure and the
time. The induction base is formed by showing that the modified formulas hold
at time 0. One important argument for this is the fact that (0, 0) ∈ r and of
course the bounds on the deviations. Now the only operation that modifies the

Crossing the bridge between similar games 15

time at which the formulas are evaluated is the until operator. As stated in the
previous paragraph, from the fact that the systems are in simulation relation,
we know that the postcondition was originally satisfied during some point in the
set annotation, the modified version of the formula might now hold a bit earlier
or a bit later but is forced to hold at some point. Up until this point, all the
values have to be similar to those originally satisfying the precondition.

The other crucial point is to prove that negated formulas can be transfered.
This can be shown by another induction. Again the difficult part is to show that
the proposition holds for the until operator. If we assume, the modified formula
would not hold, we can use our relation r that gives us a point in time where
the original pre- and postconditions touches. This, however, is a contradiction
to the fact that the until is not satisfied for the original system.

Using the weaker version of similarity we can also transfer some properties.
The version is weaker with respect to knowledge about timing. Those timings
are only present in the intervals indexing the until-operators in the formulas.
Thus weakening these operators by replacing those intervals by [0,+∞) removes
all exact timing informations. Only temporal properties are preserved in that
case, e.g. we could still retain knowledge about event orders.

Theorem 3. If for hybrid systems A and B holds A Eδ B and B |= φ, where φ
does not contain any until-operations in a negative context, then A |= φ+δ∼ where
φ+δ∼ = w(re0,δ(φ)) and w replaces the index of every until operator by R+.

The proof follows easily from the proof for Theorem 2 by altering the induction
steps for the until operator. Unfortunately, we here loose to much information
about the timings to keep knowledge about until operations in a negative context,
i.e. under an odd number of negations, thus the restriction to positive contexts
in this theorem.

7 Summary

In this paper we presented our notion of similarity for hybrid systems that we
call ε-δ-simulation. We have given a translation of the question whether one
system simulates another into hybrid games and given sufficient conditions under
which a winning strategy for these games exists. Further, we have studied what
properties are preserved under this notion of similarity.

Currently, we can only determine similarity of a restricted class of models
and the approach itself has a large complexity making it easier in many cases to
check the properties one wants to transfer on the implementation directly. For
future work, we will study how we can incorporate system decompositions into
our approach. For this goal, we need to find a way to determine whether two
open-loop systems are in simulation relation.

Acknowledgments. We like to thank Ernst-Rüdiger Olderog and Anders Ravn
for the fruitful discussions, and Sven Linker, Johannes Faber, and Mani Swami-
nathan for reading preliminary versions of this paper.

16 Jan-David Quesel, Martin Fränzle, Werner Damm

References

1. Alur, R., Henzinger, T.A.: Logics and models of real time: A survey. In: Proceedings
of the Real-Time: Theory in Practice, REX Workshop, London, UK, Springer-
Verlag (1992) 74–106

2. Bouyer, P., Brihaye, T., Chevalier, F.: O-minimal hybrid reachability games. Log-
ical Methods in Computer Science 6(1) (2009)

3. Damm, W., Dierks, H., Disch, S., Hagemann, W., Pigorsch, F., Scholl, C., Wald-
mann, U., Wirtz, B.: Exact and fully symbolic verification of linear hybrid au-
tomata with large discrete state spaces. Science of Computer Programming, Special
Issue on Automated Verification of Critical Systems (2011) (to appear).

4. Damm, W., Dierks, H., Oehlerking, J., Pnueli, A.: Towards component based
design of hybrid systems: Safety and stability. In Manna, Z., Peled, D., eds.:
Essays in Memory of Amir Pnueli. Volume 6200 of Lecture Notes in Computer
Science., Springer (2010) 96–143

5. Davoren, J.M.: Epsilon-tubes and generalized skorokhod metrics for hybrid paths
spaces. [17] 135–149

6. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In Chatterjee, K., Henzinger, T.A., eds.: FORMATS. Volume 6246 of Lecture Notes
in Computer Science., Springer (2010) 92–106

7. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for
continuous-time signals. Theor. Comput. Sci. 410(42) (2009) 4262–4291

8. Frehse, G.: Phaver: algorithmic verification of hybrid systems past hytech. STTT
10(3) (2008) 263–279

9. Frehse, G., Guernic, C.L., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: Spaceex: Scalable verification of hybrid systems.
In Gopalakrishnan, G., Qadeer, S., eds.: CAV. Volume 6806 of Lecture Notes in
Computer Science., Springer (2011) 379–395

10. Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving
of large non-linear arithmetic constraint systems with complex boolean structure.
Journal on Satisfiability, Boolean Modeling and Computation 1 (2007) 209–236

11. Girard, A., Julius, A.A., Pappas, G.J.: Approximate simulation relations for hybrid
systems. Discrete Event Dynamic Systems 18(2) (2008) 163–179

12. Girard, A., Pola, G., Tabuada, P.: Approximately bisimilar symbolic models for
incrementally stable switched systems. In Egerstedt, M., Mishra, B., eds.: HSCC.
Volume 4981 of Lecture Notes in Computer Science., Springer (2008) 201–214

13. Henzinger, T.A.: The theory of hybrid automata. In: LICS, IEEE CS Press (1996)
278–292

14. Henzinger, T.A., Horowitz, B., Majumdar, R.: Rectangular hybrid games. In
Baeten, J.C.M., Mauw, S., eds.: CONCUR. Volume 1664 of Lecture Notes in Com-
puter Science., Springer (1999) 320–335

15. Henzinger, T.A., Majumdar, R., Prabhu, V.S.: Quantifying similarities between
timed systems. In Pettersson, P., Yi, W., eds.: FORMATS. Volume 3829 of Lecture
Notes in Computer Science., Springer (2005) 226–241

16. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Systems 2(4) (1990) 255–299

17. Majumdar, R., Tabuada, P., eds.: Hybrid Systems: Computation and Control,
12th International Conference, HSCC 2009, San Francisco, CA, USA, April 13-15,
2009. Proceedings. In Majumdar, R., Tabuada, P., eds.: HSCC. Volume 5469 of
Lecture Notes in Computer Science., Springer (2009)

Crossing the bridge between similar games 17

18. Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed
systems (an extended abstract). In: STACS. (1995) 229–242

19. Platzer, A., Quesel, J.D.: Keymaera: A hybrid theorem prover for hybrid systems
(system description). In Armando, A., Baumgartner, P., Dowek, G., eds.: IJCAR.
Volume 5195 of Lecture Notes in Computer Science., Springer (2008) 171–178

20. Ratschan, S., She, Z.: Safety verification of hybrid systems by constraint propaga-
tion based abstraction refinement. ACM Journal in Embedded Computing Systems
6(1) (2007)

21. Stauner, T.: Discrete-time refinement of hybrid automata. In Tomlin, C., Green-
street, M.R., eds.: HSCC. Volume 2289 of Lecture Notes in Computer Science.,
Springer (2002) 407–420

22. Thrane, C.R., Fahrenberg, U., Larsen, K.G.: Quantitative analysis of weighted
transition systems. J. Log. Algebr. Program. 79(7) (2010) 689–703

23. Tomlin, C., Lygeros, J., Sastry, S.: A Game Theoretic Approach to Controller
Design for Hybrid Systems. Proceedings of IEEE 88 (July 2000) 949–969

24. Vladimerou, V., Prabhakar, P., Viswanathan, M., Dullerud, G.E.: Stormed hybrid
games. [17] 480–484

25. Wulf, M.D., Doyen, L., Raskin, J.F.: Almost asap semantics: from timed models
to timed implementations. Formal Asp. Comput. 17(3) (2005) 319–341

