
Submitted for publication.

Task-based Self-adaptation
David Garlan, Vahe Poladian, Bradley Schmerl, João Pedro Sousa

Carnegie Mellon University
Computer Science Department

Pittsburgh, PA 15213, USA
+1-412-268-5056

[garlan | poladian | schmerl | jpsousa]@cs.cmu.edu

ABSTRACT
Recently there has been increasing interest in developing systems
that can adapt dynamically to cope with changing environmental
conditions and unexpected system errors. Most efforts for
achieving self-adaptation have focused on the mechanisms for
detecting opportunities for improvement and then taking
appropriate action. However, such mechanisms beg the question:
what is the system trying to achieve? In a given situation there
may be many possible adaptations, and knowing which one to
pick is a difficult question. In this paper we advocate the use of
explicit representation of user task as a critical element in
addressing this missing link.

Categories and Subject Descriptors
D.2.11 [Software Architectures] Patterns, D.2.1 [Requirements/
Specifications] Languages, D.2.5 [Testing and Debugging]
Monitors, Error handling and recovery.

General Terms
Design, Reliability

Keywords
Self-adaptation, self-management, software architecture, task-
aware computing, utility-based optimization.

1. INTRODUCTION
Self-adaptive systems are becoming increasingly important. What
was once the concern of specialized systems, with high
availability requirements, is now recognized as being relevant to
almost all of today’s complex systems, and particularly those
where environmental resources can change radically (e.g., mobile
computing) or where systems must continue to run in the presence
of failures (e.g., space systems, e-commerce, medical systems).
Currently adaptive systems tend to fall into two broad categories:

1. Fault-tolerant systems: Fault-tolerant systems react to
component failure, catching or compensating for errors using a
variety of techniques such as redundancy and graceful
degradation. Such systems have been prevalent in safety-critical

systems or systems for which the cost of off-line repair is
prohibitive (e.g., telecom, space systems, power control systems,
etc.) Here the primary goal is to prevent or delay large-scale
system failure.

2. Resource-aware systems: Resource-aware systems react to
resource variation, adapting components so they can function
optimally with the current set of resources (bandwidth, memory,
CPU, power, etc.) These systems emerged with the advent of
mobile computing over wireless networks, where resource
variability becomes a critical concern. Adaptation may be local
to a given component: for example, one might adjust the fidelity
of a video player to accommodate a drop in bandwidth; or one
might degrade the accuracy of speech recognition for the sake of
response time [6]. Alternatively, adaptation may be global: for
example, a system might reconfigure a set of clients and servers
to achieve optimal load balancing. Typically, such systems use
global system models, such as architectural models, to achieve
these results [2][4] [5].
While these systems demonstrate important new capabilities, they
tend to beg the important question: how do you choose the
appropriate adaptation, given that there may be several
possibilities. For example, in the presence of reduced bandwidth a
video player might select any of several possible adaptations:
reduce the frame rate; reduce the picture size; increase the
granularity; eliminate color. Which is the right adaptation?
Of course, the answer depends critically on the use of the system:
what the user is trying to achieve with it. Unfortunately, most
systems have no knowledge of user goals and intent.
In this paper we describe an emerging complementary aspect of
self-managed systems: task-aware adaptation. The key idea is for
the system to maintain an explicit representation of user intent,
including preferences for quality tradeoffs, and of the nature of
the services required, which are contextual pre-conditions for
adaptation. In the remainder of the paper we discuss some
desirable characteristics of task-aware systems, outline key
research questions that arise in developing those systems, and
briefly describe the Aura approach to answering those questions.

2. TASK-AWARE SYSTEMS
The central tenet of task awareness is that systems are used to
carry out high-level activities of users: planning a trip, buying a
car; communicating with others. In today’s systems those
activities and goals are implicit. Users must map them to
computing systems by invoking specific applications (document
editors, email programs, spreadsheets, etc.) on specific files.
In a task-aware system user tasks are made explicit. They encode
user goals, and provide a placeholder to represent the quality
attributes of the services used to perform those tasks. So, for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WOSS, October 31 - November 1, 2004, Newport Beach, CA, USA.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

Submitted for publication.

example, for a particular task, in the presence of limited
bandwidth, the user may be willing to live with a small video
screen size, while in another task reducing the frame rate would
be preferable.
Once such information is represented a self-managing system can
in principle query the task to determine both when the system is
behaving within an acceptable envelop for the task, and also can
choose among alternative system reconfigurations when it is not.
However, a number of important research questions arise, and the
way we answer them will strongly influence the way we look at
and build task-aware systems:

− How do we represent a task? What encoding schemes can
best be used to capture the user’s requirements for system
quality?

− How should we characterize the knowledge for mapping a
user task to a system’s configuration? As a user moves from
task to task, different configurations will be appropriate,
even for the same set of applications.

− Should we trigger an adaptation as soon as an opportunity
for improvement is detected, or should we factor in how
distracting the change will be to the user against how serious
the fault is?

− Is the binary notion of fault enough, or do we need to come
up with a measure of fault “hardness” – a continuum
between “all is well,” and “the system is down?”

Over the past five years we have been experimenting with various
answers to these questions. Centered on a large ubiquitous
computing research project, Project Aura [3], we have evolved a
system that, in brief, addresses these questions as follows:

− We represent a task as a set of services, together with a set
of quality attribute preferences expressed as multi-
dimensional utility functions, possibly conditioned by
context conditions.

− We define a vocabulary for expressing requirements, which
delimits the space of requirements that the automatic
reconfiguration can cover. The set of requirements for a
particular task expresses which services are needed from the
system, as well as the fidelity constraints that make the
system adequate or inadequate for the task at hand. The
required services are dynamically mapped to the available
components and the fidelity constraints are mapped into
resource-adaptation policies.

− We incorporate the notion of cost of reconfiguration into the
evaluation of alternative reconfigurations. A high cost of
reconfiguration will make the system highly stable, but
frequently less optimal; a low cost of configuration will
permit the system to change frequently, but may introduce
more user distraction from reconfigurations.

− We invert the notion of fault by adopting an econometric-
based notion of system utility: ranging from 0 (system is not
useful at all for the current task) to 1 (system is totally
appropriate for the current task). This enables an objective
evaluation of configuration alternatives, regardless of the
sources of change (either changes on the task/requirements
or on the availability of resources and components).

We now describe the architecture of the system that permits such
task-based self-adaptation, and elaborate on the above decisions.

3. THE AURA LAYERS
The starting point for understanding Aura is a layered view of its
infrastructure together with an explanation of the roles of each
layer with respect to task suspend-resume and dynamic
adaptation. Table 1 summarizes the relevant terminology.
The infrastructure exploits knowledge about a user’s tasks to
automatically configure the environment on behalf of the user.
First, the infrastructure needs to know what to configure for; that
is, what the user needs from the environment in order to carry out
his tasks. Second, the infrastructure needs to know how to best
configure the environment: it needs mechanisms to optimally
match the user’s needs to the capabilities and resources in the
environment.
In our architecture, each of these two subproblems is addressed by
a distinct software layer: (1) the Task Management layer
determines what the user needs from the environment at a specific
time and location; and (2) the Environment Management layer
determines how to best configure the environment to support the
user’s needs.

Table 1. Terminology.

task An everyday activity such as preparing a presentation or
writing a report. Carrying out a task may require
obtaining several services from an environment, as well
as accessing several materials.

environment The set of suppliers, materials and resources accessible
to a user at a particular location.

service Either (a) a service type, such as printing, or (b) the
occurrence of a service proper, such as printing a given
document. For simplicity, we will let these meanings be
inferred from context.

supplier An application or device offering services – e.g. a
printer.

material An information asset such as a file or data stream.

capabilities The set of services offered by a supplier, or by a whole
environment.

resources Are consumed by suppliers while providing services.
Examples are: CPU cycles, memory, battery, bandwidth,
etc.

context Set of human-perceived attributes such as physical
location, physical activity (sitting, walking…), or social
activity (alone, giving a talk…).

user-level
state of a task

User-observable set of properties in the environment that
characterize the support for the task. Specifically, the set
of services supporting the task, the user-level settings
(preferences, options) associated with each of those
services, the materials being worked on, user-interaction
parameters (window size, cursors…), and the user’s
preferences with respect to quality of service tradeoffs.

Table 2 summarizes the roles of the software layers in the
infrastructure. The top layer, Task Management (TM), captures
knowledge about user tasks and associated intent. Such
knowledge is used to coordinate the configuration of the
environment upon changes in the user’s task or context. For
instance, when the user attempts to carry out a task in a new

Submitted for publication.

environment, TM coordinates access to all the information related
to the user’s task, and negotiates task support with Environment
Management (EM). Task Management also monitors explicit
indications from the user and events in the physical context
surrounding the user. Upon getting indication that the user
intends to suspend the current task or resume some other task, TM
coordinates saving the user-level state of the suspended task and
instantiates the resumed task, as appropriate. Task Management
may also capture complex representations of user tasks (out of
scope of this paper) including task decomposition (e.g., task A is
composed of subtasks B and C), plans (e.g., C should be carried
out after B), and context dependencies (e.g., the user can do B
while sitting or walking, but not while driving).

Table 2. Summary of the software layers in the infrastructure.

The EM layer maintains abstract models of the environment.
These models provide a level of indirection between the user’s
needs, expressed in environment-independent terms, and the
concrete capabilities of each environment.
This indirection is used to address both heterogeneity and
dynamic change in the environments. With respect to
heterogeneity, when the user needs a service, such as speech
recognition, EM will find and configure a supplier for that service
among the ones available in the environment. With respect to
dynamic change, the existence of explicit models of the
capabilities in the environment enables automatic reasoning when
those capabilities change dynamically. Environment
Management adjusts such a mapping automatically in response to
changes in the user’s needs (adaptation initiated by TM), and
changes in the environment’s capabilities and resources
(adaptation initiated by EM). In both cases adaptation is guided
by the maximization of a utility function representing the user’s
preferences.
The Environment layer comprises the applications and devices
that can be configured to support a user’s task. Configuration
issues aside, these suppliers interact with the user exactly as they
would without the presence of the infrastructure. The
infrastructure steps in only to automatically configure those
suppliers on behalf of the user. The specific capabilities of each
supplier are manipulated by EM, which acts as a translator for the
environment-independent descriptions of user needs issued by
TM.
By factoring models of user preferences and context out of
individual applications, the infrastructure enables applications to

apply the adaptation policies appropriate for each task. That
knowledge is very hard to obtain at the application level, but once
it is determined at the user level – by Task Management – it can
easily be communicated to the applications supporting the user’s
task.
Each layer reacts to changes in user tasks and in the environment
at a different granularity and time-scale. Task Management acts
at a human perceived time-scale (minutes), evaluating the
adequacy of sets of services to support the user’s task.
Environment Management acts at a time-scale of seconds,
evaluating the adequacy of the mapping between the requested
services and specific suppliers. Adaptive applications (fidelity-
aware and context-aware) choose appropriate computation tactics
at a time-scale of milliseconds. A detailed description of the
architecture, including the formal specification of the interactions
between the components in the layers defined above, is available
in 0.

4. EXAMPLES OF SELF-ADAPTATION
To clarify how this design works, we illustrate how the
infrastructure outlined in Section 3 handles a variety of examples
of self-adaptation, ranging from traditional repair in reaction to
faults, to reactions to positive changes in the environment, to
reactions to changes in the user’s task.
To set the stage, suppose that Fred is engaged in a conversation
that requires real-time speech-to-speech translation. For that task,
assume the Aura infrastructure has assembled three services:
speech recognition, language translation, and speech synthesis.
Initially both speech recognition and synthesis are running on
Fred’s handheld. To save resources on Fred’s handheld, and since
language translation is computationally intensive, but has very
low demand on data-flow (the text representation of each
utterance), the translation service is configured to run on a remote
server.
Fault tolerance. Suppose now that there is loss of connectivity to
the remote server, or equivalently, that there is a software crash
that renders it unavailable. Live monitoring at the EM level
detects that the supplier for language translation is lost. The EM
looks for an alternative supplier for that service, e.g., translation
software on Fred’s handheld, activates it, and automatically
reconfigures the service assembly.
Resource/fidelity-awareness. Computational resources in Fred’s
handheld are allocated by the EM among the services supporting
Fred’s task. For computing optimal resource allocation, the EM
uses each supplier’s spec sheet (relating fidelity levels with
resource consumption), live monitoring of the available resources,
and the user’s preferences with respect to fidelity levels [7].
Suppose that during the social part of the conversation, Fred is
fine with a less accurate translation, but response times should be
snappy. The speech recognizer, as the main driver of the overall
response time, gets proportionally more resources and uses faster,
if less accurate, recognition algorithms. When the translation
service is activated on Fred’s handheld in response to the fault
mentioned above, resources become scarcer for the three services.
However, having the knowledge about Fred’s preferences passed
upon service activation, each supplier can react appropriately by
shifting to computation strategies that save response times at the
expense of accuracy [1].

layer mission roles

T
as

k
M

an
ag

em
en

t

what does
the user need

• monitor the user’s task, context and preferences
• map the user’s task to needs for

services in the environment
• complex tasks: decomposition, plans,

context dependencies

E
nv

ir
on

m
en

t
M

an
ag

em
en

t

how to best
configure

the
environment

• monitor environment capabilities and resources
• map service needs, and user-level state of tasks

to available suppliers
• ongoing optimization of the utility of the

environment relative to the user’s task

E
nv

. support the
user’s task

• monitor relevant resources
• fine grain management of

QoS/resource tradeoffs

Submitted for publication.

Soft fault (negative delta). Each supplier issues periodic reports
on the Quality of Service (QoS) actually being provided – in this
example, response time and estimated accuracy of
recognition/translation. Suppose that at some point during the
conversation, Fred brings up his calendar to check his availability
for a meeting. The suppliers for the speech-to-speech translation
task, already stretched for resources, reduce their QoS below what
Fred’s preferences state as acceptable. The EM detects this soft
fault, and replaces the speech recognizer by a lightweight
component, that although unable to provide as high a QoS as the
full-fledged version when resources are plentiful, performs better
under sub-optimal resource availability.1
Soft fault (positive delta). Suppose that at some point, the
language translation supplier running on the remote server
becomes available again. The EM detects the availability of a
new candidate to supply a service required by Fred’s task, and
compares the estimated utility of the candidate solution against
the current one. If there is a clear benefit, the EM automatically
reconfigures the service assembly. In calculating the benefit, the
EM factors in a cost of change, which is also specified in the
user’s preferences associated with each service. This mechanism
introduces hysteresis in the reconfiguration behavior, thus
avoiding oscillation between closely competing solutions. See 0
for the formal details about of this mechanism.
Task QoS requirements change. Suppose that at some point
Fred’s conversation enters a technical core for which translation
accuracy becomes more important than fast response times. The
TM provides the mechanisms, if not to recognize the change
automatically based on Fred’s social context, at least to allow
Fred to quickly indicate his new preferences; for instance, by
choosing among a set of preference templates. The new
preferences are distributed by the TM to the EM and all the
suppliers supporting Fred’s task. Given a new set of constraints,
the EM evaluates the current solution against other candidates,
reconfigures, if necessary, and determines the new optimal
resource allocation. The suppliers that remain in the
configuration, upon receiving the new preferences, change their
computation strategies dynamically; e.g., by changing to
strategies that offer better accuracy at the expense of response
time.
Task suspend/resume. Suppose that after the conversation, Fred
wants to resume writing one of his research papers. Again, the
TM provides the mechanisms to detect, or for Fred to quickly
indicate his change of task. Once the TM is aware that the
conversation is over it coordinates with the suppliers for capturing
the user-level state of the current task, if any, and with the EM to
deactivate (and release the resources for) the current suppliers.
The TM then analyses the description it saved the last time Fred
worked on writing the paper, recognizes which services Fred was
using and requests those from the EM. After the EM identifies
the optimal supplier assignment, the TM interacts with those
suppliers to automatically recover the user-level state where Fred
left off. See 0 for a formal specification of such interactions.
Task service requirements change. Suppose that while writing
his paper, Fred recognizes that it would be helpful to refer to a
presentation he gave recently to his research group. The TM

1 Additionally, the EM uses these periodic QoS reports to

monitor the availability of the suppliers, in a heartbeat fashion.

enables Fred to explicitly aggregate viewing the presentation to
the ongoing task. As soon as a new service is recognized as part
of the task, the TM requests an incremental update to the EM,
which computes the optimal supplier and resource assignment for
the new task definition, and automatically performs the required
reconfigurations. Similarly, if Fred decides some service is no
longer necessary for his task, he can let the TM know, and the
corresponding (incremental) deactivations are propagated to the
EM and suppliers. By keeping the TM up-to-date with respect to
the requirements of his tasks, Fred benefits from both the
automatic incremental reconfiguration of the environment, and
from the ability to suspend/resume exactly the set of services that
he considers relevant for each task.

5. CONCLUSION & FUTURE WORK
We have argued that an explicit representation of user tasks is a
critical component for self-managed system, and outlined the way
Project Aura has instantiated this concept in its layered
architecture. The form of tasks that we capture in this research is
relatively simple. Future work is needed to represent more
complex user tasks with complex goal structures, ordering
dependencies, and the capability of learning.

6. ACKNOWLEDGMENTS
This work was supported by the NASA High Dependability
Computing Program under cooperative agreement NCC-2-1298,
the National Science Foundation under Grant ITR-0086003, and
DARPA under grants N6601-99-02 and F30602-00-2-061.

We thank Mary Shaw and members of CMU’s Coda and Aura
projects for insights that enabled the architecture presented here to
dovetail with research in ubiquitous and resource-aware systems.

7. REFERENCES
[1] Balan, R., Sousa, J.P., Satyanarayanan, M. Meeting the

Software Engineering Challenges of Adaptive Mobile
Applications. Tech. Report, CMU-CS-03-11, CMU,
Pittsburgh, PA, 2003.

[2] Cheng, S.-W. et al. Software Architecture-based Adaptation
for Pervasive Systems. Proc of the International Conf. on
Architecture of Computing Systems: Trends in Network and
Pervasive Computing, April 2002. Springer LNCS Vol.
2299, Schmeck, H., Ungerer, T., Wolf, L. (Eds), 2002.

[3] Garlan, D., Siewiorek, D., Smailagic, A., Steenkiste, P.
Project Aura: Toward Distraction-Free Pervasive
Computing. IEEE Pervasive Computing, April-June 2002.

[4] Garlan, D., Cheng, S.-W., Schmerl, B. Increasing System
Dependability through Architecture-Based Self-repair. In
Architecting Dependable Systems, R. de Lemos, C. Gacek,
A. Romanovsky (Eds), Springer-Verlag, 2003.

[5] Georgiadis, I., Magee, J., Kramer, J. Self-Organising Soft-
ware Architectures for Distributed Systems. Proc. ACM
SIGSOFT Wksp on Self-Healing Sys. (WOSS’02). Nov. 2002.

[6] Noble, B., et al. Agile Application-Aware Adaptation for
Mobility. Proc. of the 16th ACM Symp. on Operating Systems
Principles (SOSP’97) October 1997. Operating Systems
Review 31(5), ACM Press, 276-287.

[7] Poladian, V., Sousa, J.P., Garlan, D., Shaw, M. Dynamic
Configuration of Resource-Aware Services. Proceedings of
the 26th International Conf. on Software Engineering (ICSE
2004). May 2004. IEEE Computer Society, 604-613.

Submitted for publication.

[8] Sousa, J.P., Garlan, D. The Aura Software Architecture: an
Infrastructure for Ubiquitous Computing. Tech. Report,

CMU-CS-03-183, CMU, Pittsburgh, PA, 2003.

