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ABSTRACT 
Recently there has been increasing interest in developing systems 
that can adapt dynamically to cope with changing environmental 
conditions and unexpected system errors. Most efforts for 
achieving self-adaptation have focused on the mechanisms for 
detecting opportunities for improvement and then taking 
appropriate action. However, such mechanisms beg the question: 
what is the system trying to achieve? In a given situation there 
may be many possible adaptations, and knowing which one to 
pick is a difficult question. In this paper we advocate the use of 
explicit representation of user task as a critical element in 
addressing this missing link. 

Categories and Subject Descriptors 
D.2.11 [Software Architectures] Patterns, D.2.1 [Requirements/ 
Specifications] Languages, D.2.5 [Testing and Debugging] 
Monitors, Error handling and recovery. 

General Terms 
Design, Reliability 

Keywords 
Self-adaptation, self-management, software architecture, task-
aware computing, utility-based optimization. 

1. INTRODUCTION 
Self-adaptive systems are becoming increasingly important. What 
was once the concern of specialized systems, with high 
availability requirements, is now recognized as being relevant to 
almost all of today’s complex systems, and particularly those 
where environmental resources can change radically (e.g., mobile 
computing) or where systems must continue to run in the presence 
of failures (e.g., space systems, e-commerce, medical systems). 
Currently adaptive systems tend to fall into two broad categories:  

1. Fault-tolerant systems: Fault-tolerant systems react to 
component failure, catching or compensating for errors using a 
variety of techniques such as redundancy and graceful 
degradation. Such systems have been prevalent in safety-critical 

systems or systems for which the cost of off-line repair is 
prohibitive (e.g., telecom, space systems, power control systems, 
etc.) Here the primary goal is to prevent or delay large-scale 
system failure. 

2. Resource-aware systems: Resource-aware systems react to 
resource variation, adapting components so they can function 
optimally with the current set of resources (bandwidth, memory, 
CPU, power, etc.) These systems emerged with the advent of 
mobile computing over wireless networks, where resource 
variability becomes a critical concern.  Adaptation may be local 
to a given component: for example, one might adjust the fidelity 
of a video player to accommodate a drop in bandwidth; or one 
might degrade the accuracy of speech recognition for the sake of 
response time [6]. Alternatively, adaptation may be global: for 
example, a system might reconfigure a set of clients and servers 
to achieve optimal load balancing. Typically, such systems use 
global system models, such as architectural models, to achieve 
these results [2][4] [5]. 
While these systems demonstrate important new capabilities, they 
tend to beg the important question: how do you choose the 
appropriate adaptation, given that there may be several 
possibilities. For example, in the presence of reduced bandwidth a 
video player might select any of several possible adaptations: 
reduce the frame rate; reduce the picture size; increase the 
granularity; eliminate color. Which is the right adaptation? 
Of course, the answer depends critically on the use of the system: 
what the user is trying to achieve with it. Unfortunately, most 
systems have no knowledge of user goals and intent.  
In this paper we describe an emerging complementary aspect of 
self-managed systems: task-aware adaptation. The key idea is for 
the system to maintain an explicit representation of user intent, 
including preferences for quality tradeoffs, and of the nature of 
the services required, which are contextual pre-conditions for 
adaptation. In the remainder of the paper we discuss some 
desirable characteristics of task-aware systems, outline key 
research questions that arise in developing those systems, and 
briefly describe the Aura approach to answering those questions. 

2. TASK-AWARE SYSTEMS 
The central tenet of task awareness is that systems are used to 
carry out high-level activities of users: planning a trip, buying a 
car; communicating with others. In today’s systems those 
activities and goals are implicit. Users must map them to 
computing systems by invoking specific applications (document 
editors, email programs, spreadsheets, etc.) on specific files.  
In a task-aware system user tasks are made explicit. They encode 
user goals, and provide a placeholder to represent the quality 
attributes of the services used to perform those tasks. So, for 
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example, for a particular task, in the presence of limited 
bandwidth, the user may be willing to live with a small video 
screen size, while in another task reducing the frame rate would 
be preferable. 
Once such information is represented a self-managing system can 
in principle query the task to determine both when the system is 
behaving within an acceptable envelop for the task, and also can 
choose among alternative system reconfigurations when it is not. 
However, a number of important research questions arise, and the 
way we answer them will strongly influence the way we look at 
and build task-aware systems: 

− How do we represent a task? What encoding schemes can 
best be used to capture the user’s requirements for system 
quality? 

− How should we characterize the knowledge for mapping a 
user task to a system’s configuration?  As a user moves from 
task to task, different configurations will be appropriate, 
even for the same set of applications. 

− Should we trigger an adaptation as soon as an opportunity 
for improvement is detected, or should we factor in how 
distracting the change will be to the user against how serious 
the fault is?  

− Is the binary notion of fault enough, or do we need to come 
up with a measure of fault “hardness” – a continuum 
between “all is well,” and “the system is down?” 

Over the past five years we have been experimenting with various 
answers to these questions. Centered on a large ubiquitous 
computing research project, Project Aura [3], we have evolved a 
system that, in brief, addresses these questions as follows: 

− We represent a task as a set of services, together with a set 
of quality attribute preferences expressed as multi-
dimensional utility functions, possibly conditioned by 
context conditions. 

− We define a vocabulary for expressing requirements, which 
delimits the space of requirements that the automatic 
reconfiguration can cover.   The set of requirements for a 
particular task expresses which services are needed from the 
system, as well as the fidelity constraints that make the 
system adequate or inadequate for the task at hand.  The 
required services are dynamically mapped to the available 
components and the fidelity constraints are mapped into 
resource-adaptation policies. 

− We incorporate the notion of cost of reconfiguration into the 
evaluation of alternative reconfigurations. A high cost of 
reconfiguration will make the system highly stable, but 
frequently less optimal; a low cost of configuration will 
permit the system to change frequently, but may introduce 
more user distraction from reconfigurations. 

− We invert the notion of fault by adopting an econometric-
based notion of system utility: ranging from 0 (system is not 
useful at all for the current task) to 1 (system is totally 
appropriate for the current task).  This enables an objective 
evaluation of configuration alternatives, regardless of the 
sources of change (either changes on the task/requirements 
or on the availability of resources and components). 

We now describe the architecture of the system that permits such 
task-based self-adaptation, and elaborate on the above decisions. 

3. THE AURA LAYERS 
The starting point for understanding Aura is a layered view of its 
infrastructure together with an explanation of the roles of each 
layer with respect to task suspend-resume and dynamic 
adaptation.  Table 1 summarizes the relevant terminology. 
The infrastructure exploits knowledge about a user’s tasks to 
automatically configure the environment on behalf of the user.  
First, the infrastructure needs to know what to configure for; that 
is, what the user needs from the environment in order to carry out 
his tasks.  Second, the infrastructure needs to know how to best 
configure the environment: it needs mechanisms to optimally 
match the user’s needs to the capabilities and resources in the 
environment. 
In our architecture, each of these two subproblems is addressed by 
a distinct software layer: (1) the Task Management layer 
determines what the user needs from the environment at a specific 
time and location; and (2) the Environment Management layer 
determines how to best configure the environment to support the 
user’s needs.   

Table 1.  Terminology.  

task An everyday activity such as preparing a presentation or 
writing a report.  Carrying out a task may require 
obtaining several services from an environment, as well 
as accessing several materials. 

environment The set of suppliers, materials and resources accessible 
to a user at a particular location. 

service Either (a) a service type, such as printing, or (b) the 
occurrence of a service proper, such as printing a given 
document.  For simplicity, we will let these meanings be 
inferred from context. 

supplier An application or device offering services – e.g. a 
printer. 

material An information asset such as a file or data stream. 

capabilities The set of services offered by a supplier, or by a whole 
environment. 

resources Are consumed by suppliers while providing services. 
Examples are: CPU cycles, memory, battery, bandwidth, 
etc. 

context Set of human-perceived attributes such as physical 
location, physical activity (sitting, walking…), or social 
activity (alone, giving a talk…). 

user-level 
state of a task 

User-observable set of properties in the environment that 
characterize the support for the task.  Specifically, the set 
of services supporting the task, the user-level settings 
(preferences, options) associated with each of those 
services, the materials being worked on, user-interaction 
parameters (window size, cursors…), and the user’s 
preferences with respect to quality of service tradeoffs. 

 
Table 2 summarizes the roles of the software layers in the 
infrastructure.  The top layer, Task Management (TM), captures 
knowledge about user tasks and associated intent.  Such 
knowledge is used to coordinate the configuration of the 
environment upon changes in the user’s task or context.  For 
instance, when the user attempts to carry out a task in a new 
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environment, TM coordinates access to all the information related 
to the user’s task, and negotiates task support with Environment 
Management (EM).  Task Management also monitors explicit 
indications from the user and events in the physical context 
surrounding the user.  Upon getting indication that the user 
intends to suspend the current task or resume some other task, TM 
coordinates saving the user-level state of the suspended task and 
instantiates the resumed task, as appropriate.  Task Management 
may also capture complex representations of user tasks (out of 
scope of this paper) including task decomposition (e.g., task A is 
composed of subtasks B and C), plans (e.g., C should be carried 
out after B), and context dependencies (e.g., the user can do B 
while sitting or walking, but not while driving). 

Table 2. Summary of the software layers in the infrastructure. 

The EM layer maintains abstract models of the environment.  
These models provide a level of indirection between the user’s 
needs, expressed in environment-independent terms, and the 
concrete capabilities of each environment. 
This indirection is used to address both heterogeneity and 
dynamic change in the environments.  With respect to 
heterogeneity, when the user needs a service, such as speech 
recognition, EM will find and configure a supplier for that service 
among the ones available in the environment.  With respect to 
dynamic change, the existence of explicit models of the 
capabilities in the environment enables automatic reasoning when 
those capabilities change dynamically.  Environment 
Management adjusts such a mapping automatically in response to 
changes in the user’s needs (adaptation initiated by TM), and 
changes in the environment’s capabilities and resources 
(adaptation initiated by EM).  In both cases adaptation is guided 
by the maximization of a utility function representing the user’s 
preferences. 
The Environment layer comprises the applications and devices 
that can be configured to support a user’s task.  Configuration 
issues aside, these suppliers interact with the user exactly as they 
would without the presence of the infrastructure.  The 
infrastructure steps in only to automatically configure those 
suppliers on behalf of the user.  The specific capabilities of each 
supplier are manipulated by EM, which acts as a translator for the 
environment-independent descriptions of user needs issued by 
TM. 
By factoring models of user preferences and context out of 
individual applications, the infrastructure enables applications to 

apply the adaptation policies appropriate for each task.  That 
knowledge is very hard to obtain at the application level, but once 
it is determined at the user level – by Task Management – it can 
easily be communicated to the applications supporting the user’s 
task. 
Each layer reacts to changes in user tasks and in the environment 
at a different granularity and time-scale.  Task Management acts 
at a human perceived time-scale (minutes), evaluating the 
adequacy of sets of services to support the user’s task.  
Environment Management acts at a time-scale of seconds, 
evaluating the adequacy of the mapping between the requested 
services and specific suppliers.  Adaptive applications (fidelity-
aware and context-aware) choose appropriate computation tactics 
at a time-scale of milliseconds.  A detailed description of the 
architecture, including the formal specification of the interactions 
between the components in the layers defined above, is available 
in 0. 
 

4. EXAMPLES OF SELF-ADAPTATION  
To clarify how this design works, we illustrate how the 
infrastructure outlined in Section 3 handles a variety of examples 
of self-adaptation, ranging from traditional repair in reaction to 
faults, to reactions to positive changes in the environment, to 
reactions to changes in the user’s task. 
To set the stage, suppose that Fred is engaged in a conversation 
that requires real-time speech-to-speech translation. For that task, 
assume the Aura infrastructure has assembled three services: 
speech recognition, language translation, and speech synthesis.  
Initially both speech recognition and synthesis are running on 
Fred’s handheld.  To save resources on Fred’s handheld, and since 
language translation is computationally intensive, but has very 
low demand on data-flow (the text representation of each 
utterance), the translation service is configured to run on a remote 
server. 
Fault tolerance.  Suppose now that there is loss of connectivity to 
the remote server, or equivalently, that there is a software crash 
that renders it unavailable.  Live monitoring at the EM level 
detects that the supplier for language translation is lost.  The EM 
looks for an alternative supplier for that service, e.g., translation 
software on Fred’s handheld, activates it, and automatically 
reconfigures the service assembly. 
Resource/fidelity-awareness.  Computational resources in Fred’s 
handheld are allocated by the EM among the services supporting 
Fred’s task.  For computing optimal resource allocation, the EM 
uses each supplier’s spec sheet (relating fidelity levels with 
resource consumption), live monitoring of the available resources, 
and the user’s preferences with respect to fidelity levels [7].  
Suppose that during the social part of the conversation, Fred is 
fine with a less accurate translation, but response times should be 
snappy.  The speech recognizer, as the main driver of the overall 
response time, gets proportionally more resources and uses faster, 
if less accurate, recognition algorithms.  When the translation 
service is activated on Fred’s handheld in response to the fault 
mentioned above, resources become scarcer for the three services. 
However, having the knowledge about Fred’s preferences passed 
upon service activation, each supplier can react appropriately by 
shifting to computation strategies that save response times at the 
expense of accuracy [1]. 
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Soft fault (negative delta).  Each supplier issues periodic reports 
on the Quality of Service (QoS) actually being provided – in this 
example, response time and estimated accuracy of 
recognition/translation.  Suppose that at some point during the 
conversation, Fred brings up his calendar to check his availability 
for a meeting.  The suppliers for the speech-to-speech translation 
task, already stretched for resources, reduce their QoS below what 
Fred’s preferences state as acceptable.  The EM detects this soft 
fault, and replaces the speech recognizer by a lightweight 
component, that although unable to provide as high a QoS as the 
full-fledged version when resources are plentiful, performs better 
under sub-optimal resource availability.1 
Soft fault (positive delta).  Suppose that at some point, the 
language translation supplier running on the remote server 
becomes available again.  The EM detects the availability of a 
new candidate to supply a service required by Fred’s task, and 
compares the estimated utility of the candidate solution against 
the current one.  If there is a clear benefit, the EM automatically 
reconfigures the service assembly.  In calculating the benefit, the 
EM factors in a cost of change, which is also specified in the 
user’s preferences associated with each service.  This mechanism 
introduces hysteresis in the reconfiguration behavior, thus 
avoiding oscillation between closely competing solutions.  See 0 
for the formal details about of this mechanism. 
Task QoS requirements change.  Suppose that at some point 
Fred’s conversation enters a technical core for which translation 
accuracy becomes more important than fast response times.  The 
TM provides the mechanisms, if not to recognize the change 
automatically based on Fred’s social context, at least to allow 
Fred to quickly indicate his new preferences; for instance, by 
choosing among a set of preference templates.  The new 
preferences are distributed by the TM to the EM and all the 
suppliers supporting Fred’s task.  Given a new set of constraints, 
the EM evaluates the current solution against other candidates, 
reconfigures, if necessary, and determines the new optimal 
resource allocation. The suppliers that remain in the 
configuration, upon receiving the new preferences, change their 
computation strategies dynamically; e.g., by changing to 
strategies that offer better accuracy at the expense of response 
time. 
Task suspend/resume.  Suppose that after the conversation, Fred 
wants to resume writing one of his research papers.  Again, the 
TM provides the mechanisms to detect, or for Fred to quickly 
indicate his change of task.  Once the TM is aware that the 
conversation is over it coordinates with the suppliers for capturing 
the user-level state of the current task, if any, and with the EM to 
deactivate (and release the resources for) the current suppliers.  
The TM then analyses the description it saved the last time Fred 
worked on writing the paper, recognizes which services Fred was 
using and requests those from the EM.  After the EM identifies 
the optimal supplier assignment, the TM interacts with those 
suppliers to automatically recover the user-level state where Fred 
left off. See 0 for a formal specification of such interactions. 
Task service requirements change.  Suppose that while writing 
his paper, Fred recognizes that it would be helpful to refer to a 
presentation he gave recently to his research group.  The TM 
                                                                 
1  Additionally, the EM uses these periodic QoS reports to 

monitor the availability of the suppliers, in a heartbeat fashion. 

enables Fred to explicitly aggregate viewing the presentation to 
the ongoing task.  As soon as a new service is recognized as part 
of the task, the TM requests an incremental update to the EM, 
which computes the optimal supplier and resource assignment for 
the new task definition, and automatically performs the required 
reconfigurations.  Similarly, if Fred decides some service is no 
longer necessary for his task, he can let the TM know, and the 
corresponding (incremental) deactivations are propagated to the 
EM and suppliers.  By keeping the TM up-to-date with respect to 
the requirements of his tasks, Fred benefits from both the 
automatic incremental reconfiguration of the environment, and 
from the ability to suspend/resume exactly the set of services that 
he considers relevant for each task. 

5. CONCLUSION & FUTURE WORK 
We have argued that an explicit representation of user tasks is a 
critical component for self-managed system, and outlined the way 
Project Aura has instantiated this concept in its layered 
architecture. The form of tasks that we capture in this research is 
relatively simple. Future work is needed to represent more 
complex user tasks with complex goal structures, ordering 
dependencies, and the capability of learning.  
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