in Software Architecture: System Design, Devel opment, and Maintenance (Proceedings of the 3rd Working |EEE/IFIP Conference on
Software Architecture) Bosch, Gentleman, Hofmeister, Kuusela (Eds), Kluwer Academic Publishers, pp. 29-43, August 2002.

Aura: An Architectural Framework for User M obility
in Ubiquitous Computing Environments

Jodo Pedro Sousa and David Garlan
School of Computer Science

Carnegie Méllon University

5000 Forbes Ave

Pittsburgh PA 15213 USA
{jpsousa,garlan}@cs.cmu.edu

Abstract: Ubiquitous computing poses a number of challenges for software architecture.
One of the most important is the ability to design software systems that ac-
commodate dynamically-changing resources. Resource variability arises natu-
rally in a ubiquitous computing setting through user mobility (a user moves
from one computing environment to another), and through the need to exploit
time-varying resources in a given environment (such as wireless bandwidth).
Traditional approaches to handling resource variability in applications attempt
to address the problem by imposing uniformity on the environment. We argue
that those approaches are inadequate, and describe an alternative architectural
framework that is better matched to the needs of ubiquitous computing. A key
feature of the architecture is that user tasks become first class entities. User
proxies, or Auras, use models of user tasksto set up, monitor and adapt com-
puting environments proactively. The architectural framework has been im-
plemented and is currently being used as a central component of Project Aura,
a campus-wide ubiquitous computing effort.

Key words: Ubiquitous computing, mobility, architectural framework, architectural style.

1 INTRODUCTION

Fuelled by Moore’s Law, technology is moving towards a world popu-
lated with increasing numbers of heterogeneous computing devices, services
and information sources. This emerging world of ubiquitous computing
poses a number of significant challenges for software systems, and software
architecture in particular.

One of the most important challenges for architectural design is to sup-
port the relatively new quality attribute of user mobility. Ideally, a ubiqui-

1

2 Jodo Pedro Sousa and David Garlan

tous computing infrastructure would allow users to move their computational
tasks easily from one environment® to another. Moreover, users should be
able to take full advantage of the local capabilities and resources within a
given environment, even as other users and devices enter and leave that envi-
ronment, and as resources (like available bandwidth) change [30].

Current approaches to user mobility are based on one of four techniques,
none of which fully achieves these goals. One approach is to support as
much of a user’s computing needs as possible on a mobile machine. A sec-
ond approach is to compute via remote access to a computing server that
stores a users personal state and preferences, much as X-terminals do. A
third approach is to provide standard applications that are ported to and in-
stalled in all environments. Those applications are extended to become
aware of user intention and mobility. A fourth approach is to provide stan-
dard virtual platforms (such as the Java Virtual Machine) that enable mobile
code to follow the user as needed.

There are two problems with these approaches. First, since to some de-
gree they assume a homogenous computing baseline, they cannot take full
advantage of the diverse capabilities of each environment, such as external
displays, processors, and I/O devices. Second, they lack the ability to handle
dynamic variations of capabilities and resources in the environment without
overburdening the user with manual tuning and reconfiguration.

In this paper we propose an alternative approach that enables mobile us-
ersto make the most of ubiquitous computing environments, while shielding
those users from managing heterogeneity and dynamic variability of capa-
bilities and resources. Specifically, we describe an architectural framework?
for ubiquitous computing applications with the following key features: first,
user tasks become first class entities that are represented explicitly and
autonomously from a specific environment. Second, user tasks are repre-
sented as coalitions of abstract services. Third, environments are equipped
to self-monitor and renegotiate task support in the presence of run time
variation of capabilities and resources.

As we will see, this architectural framework has a number of important
benefits. By representing user tasks explicitly, we provide a placeholder to
capture user intent. This knowledge is used to guide the search for suitable
configurations in each new environment. By representing tasks as service
coalitions, the infrastructure can recognize when all the essential services in
a task can be supported, instantiating them jointly, or otherwise provide early
warning to the user that that is not possible. By providing an abstract char-
acterization of the services in a task, the infrastructure can search heteroge-
neous environments for appropriate matches to supply those services. By
providing the environment with self-monitoring capabilities, the infrastruc-

L In this paper, we define “environment” informally as the set of devices and applications

that are accessible to a user standing at a particular location.

By “architectural framework” we mean an architectural style for applications and services
together with supporting run-time infrastructure (or middleware) that supports their invo-
cation, interaction, and reconfiguration.

Aura: An Architectural Framework for User Mobility in Ubiquitous 3
Computing Environments

ture can detect when task requirements (such as minimum response time) are
not met, and search and deploy alternative configurations to support the task.

Section 2 describes the proposed architectural framework, making it con-
crete how the intended features are supported by the architectural design.
Section 3 illustrates the workings of the framework using a task migration
scenario as an example. Section 4 details the current state of our research,
discusses the benefits and limitations of what has been achieved, and out-
lines future research. Section 5 describes related work, while Section 6
summarizes the main results.

2. AURA’S ARCHITECTURE

The central architectural challenge in supporting computational needs of
mobile usersis to satisfy two competing goals. The first is to maximize the
use of available resources — that is, effectively exploiting the increasingly
pervasive computing and communication resources in our environments.
The second is to minimize user distraction and drains on user attention.

Today, a major source of user distraction arises from the need for users to
manage their computing resources in each new environment, and from the
fact that the resources in a particular environment may change dynamically
and frequently.

In Project Aura at Carnegie Mellon University we are developing a new
solution to this problem based on the concept of personal Aura. The intui-
tion behind a personal Aura is that it acts as a proxy for the mobile user it
represents: when a user enters a new environment, his or her Aura marshals
the appropriate resources to support the user’s task. Furthermore, an Aura
captures congtraints that the physical context around the user imposes on
tasks (more on this below). Examples of user tasks (or simply tasks) are:
writing a paper, preparing a presentation or buying a house. Each of these
tasks may involve several information sources and applications.

To enable the action of such a personal Aura, we need an architectural
framework that clarifies which new features and interfaces are required at
system- and application-level. The framework must also define placeholders
for capturing the nature of the user’s tasks, personal preferences, and inten-
tions. This knowledge is key to configure and monitor the environment, thus
shielding the user from the heterogeneity of computing environments, as
well as from the variability of resources.

Figure 1 shows a bird’s-eye view of our architectural framework. There
are four component types: first, the Task Manager, called Prism, embodies
the concept of personal Aura. Second, the Context Observer provides in-
formation on the physical context and reports relevant events in the physical
context back to Prism and the Environment Manager. Third, the Environ-
ment Manager embodies the gateway to the environment; and fourth, Suppli-
ers provide the abstract services that tasks are composed of: text editing,
video playing, etc. From a logical standpoint, an environment has one in-
stance of each of the types: Environment Manager, Context Observer and

4 Jodo Pedro Sousa and David Garlan

Task Manager.® Although the boundaries of an environment are defined
administratively, they typically correspond to some physical area, like a
floor or a building. Each environment may have severa service Suppliers:
the more it has, the richer the environment is. Much like naming servers on
networks do today, Environment Managers cooperate to find and marshal
remote Suppliers when that is required by the user’s task.

Task Manager (Prism)

-i—
>
>

2 A
[3] A A A
%) amm
o
o v \ 4 \ 4
% ; ™ V)
= . <] Supplier Supplier
c Environment ;

text -— video
8 < Manager >

Emacs Xanim
—

Operating System

Figure 1. Aura bird’s-eye view

2.1 Task Manager (Prism)

Prism embodies the concept of a personal Aura. It strives to minimize
user distractionsin the face of the following four kinds of change:
e The user moves to another environment: Prism coordinates the migration
of al the information related to the user task to the new environment, and
negotiates the task support with the new Environment Manager.

» The environment changes: Prism monitors Quality of Service information
provided by the Suppliers supporting the user’s task. Whenever that in-
formation becomes incompatible with the requirements of the current
task, or the monitored Supplier fails, Prism queries the Environment
Manager to find an alternative configuration to support the task.

e The task changes: Prism monitors explicit indications from the user and
events announced by the Context Observer. Upon getting indication that
the user intends to interrupt the current task or to switch to a new task,
Prism coordinates saving the state of the interrupted task and instantiates
the intended new task, as appropriate.

» The context changes: task descriptions include constraints on the context,
capturing requirements on privacy, user activity (sitting, driving...) etc.
When these constraints are not met, Prism coordinates the suspension of
the executing task, or adjusts the parts that are affected by the context
change; for instance, hiding the display of sensitive data when someone
else comes into the user’s office.

The key idea behind Prism is a platform-independent description of user
tasks [29]. Earlier research in this area treated tasks as a cohesive collection
of applications. When a user refers to a particular task, the system automati-
cally brings up all the applications (and files) associated with that task. This

3 An environment may have redundancy of these components for the sake of robustness.

Aura: An Architectural Framework for User Mobility in Ubiquitous 5
Computing Environments

mechanism relieves the user from finding files and starting applications in-
dividually [18]. In our work, we extend this notion by describing atask as a
coalition of abstract services, such as “edit text” and “play video.” This
form of abstraction allows such tasks to be successfully instantiated in dif-
ferent environments using different supporting applications. For example, in
a Windows environment Microsoft Word and Media Player might be used to
provide the edit text and play video services, whereas in a Unix environment
Emacs and Xanim could be used.

2.2 Service Suppliers

Suppliers provide the abstract services that tasks are composed of. In
practice, these abstract services are implemented by wrapping existing appli-
cations and services to conform to Aura APIs. For instance Emacs, Micro-
soft Word and Notepad can each be wrapped to become a supplier of text
editing services.

Such wrappers play a fundamental role while instantiating a task based
on its platform-independent description: the wrappers map the abstract ser-
vice descriptions into application-specific settings. Note however, that dif-
ferent suppliers for the same type of service will typically have different ca-
pabilities. For instance, a basic text editor may not support spell checking,
or even be aware of what spell checking means. Therefore, the description
of the service must be such that a Supplier is able to extract the information
it can recognize, without having to deal with information it does not know
how to handle.

We address this requirement by using markup formats, specifically
XML-based, for the description of services. The underlying assumption is
that Suppliers of a given service type share a vocabulary of tags and the cor-
responding interpretation. Naturally, each service type is characterized by a
distinct vocabulary of tags corresponding to the information relevant for the
service, although there are some commonalities across service types.

2.3 Context Observer

Context Observers provide information about the physical context and
report events in the physical context back to Prism and the Environment
Manager. Examples of such information are user location, recognition (au-
thentication,) activity, other people in the vicinity, etc. Context Observers in
each environment may have different degrees of sophistication, depending
on the sensors deployed in that environment. The more sophisticated a Con-
text Observer, the less Prism has to rely on explicit indications from a user
concerning his intentions. For the purpose of the points illustrated in this
paper, we will not discuss Context Observers in further detail.

2.4 Environment Manager

The Environment Manager component embodies the gateway to the envi-
ronment: it is aware of which Suppliers are available to supply which ser-

6 Jodo Pedro Sousa and David Garlan

vices, and where they can be deployed. It also encapsulates the mechanisms
for distributed file access.*

When Suppliers are installed in an environment, they become registered
with the local Environment Manager. Such a registry is the base for match-
ing requests for services. For Suppliers with limited sharing capacity, such
as those that involve input/output devices, the registry also keeps track of the
available capacity. When instantiating a task in a new environment, the reg-
istry is consulted by location mechanisms for abstract services. Those
mechanisms are built on top of currently available tools[1,4].

In addition to individual service discovery, a sophisticated Environment
Manager evaluates each aternative configuration of service suppliers to se-
lect the one that presents a better match to the user’s preferences.

2.5 Addressing Ubiquity

When Prism migrates a task from one environment to another, the de-
ployment of the Suppliers across devices may be very different. Moreover,
even within the same environment, that deployment may change dynami-
cally, as component reachability changes.

For example, suppose the user stops typing at a desktop, takes hold of a
wireless PDA, and goes down the hall for coffee. Initially, Prism and the
supplier of text editing were probably both running on the desktop. When
the user leaves the office, Prism has to communicate with a supplier for text
editing on the PDA. From a task viewpoint, however, Prism is still coordi-
nating a supplier of text editing, regardless of the particular application that
is providing the service or on which device that application is deployed.
Furthermore, in one environment the available interaction mechanism may
be CORBA, while in another environment it may be COM or RPC.

We use a technique, similar to stub generation, to insulate the compo-
nents both from dynamic redistribution and from alternative interaction
mechanisms. That technique is the explicit implementation of connectors.

There are four types of connectors in Aura: between Prism and an arbi-
trary Supplier, between Prism and the Environment Manager, between the
Context Observer and Prism, and between the Context Observer and the En-
vironment Manager. Each of these connector types is defined by an interac-
tion protocol appropriate to the component type it connects. For instance,
the connector type between Prism and the Suppliers supports protocols to
capture and recover the execution state of services.> All the component
types in Aura’s architecture have standard interfaces, or ports (represented
by the triangles in Figure 1). For instance, all the ports of Prism that attach
to Suppliers have the same API.

Each connector type may have many implementations, each appropriate
to a specific low-level interaction mechanism and to the distribution of the

* The choice of the actual mechanisms for file access is an implementation issue: one Envi-
ronment Manager might require the files to be sent over some protocol like ftp, while an-
other might rely on adistributed file system.

5 For space reasons, we do not detail the protocols further.

Aura: An Architectural Framework for User Mobility in Ubiquitous 7
Computing Environments

components it connects. For example, if the two ends of the connector are
deployed on the same device, an implementation that uses local method calls
is appropriate. If the connector is between two different devices, its imple-
mentation is comprised of two code stubs, one in each device. Each of the
stubs makes loca method calls to the corresponding port in the attached
component, and uses environment-specific communication mechanisms to
pass control and data to the other end of the connector.

When Prism requests support for a task to the Environment Manager, the
latter annotates each service request with three things: a handle for the ap-
propriate connector to reach the supplier, supplier location information, and
a handle for the supplier proper. Prism uses the first handle to dynamically
load its end of the connector, and then uses the second and third pieces of
information to initialise that end of the connector. Thereafter, Prism com-
municates with the supplier through the connector, oblivious of distribution
issues. If a supplier becomes unable to continue to support the task (e.g.,
because the user left his desk) Prism just requests for another supplier sub-
ject to the new context constraints to the Environment Manager — and again
initialises it and uses it seamlessly. Thus, Aura components need not be
aware of distribution issues: the Environment Manager takes charge of as-
sembling and adapting the configurations using the appropriate connectors.

3. AURA AT WORK

To illustrate how the Aura architecture achieves its goal of supporting
user mobility, we now describe a simple scenario of task migration, focusing
on the interactions among the components identified in Section 2.

Fred is at home working on the organization of a conference in a remote place.
He’s gathering information on possible venues and getting budgets for catering.
The web pages of some of the hotels include short videos featuring virtual visits to
the premises and Fred already downloaded some of these for reference. Fred is
also taking notes on a spreadsheet concerning his appraisal of each venue along
with the alternative catering budgets.

Fred leaves home and heads to his office. Since Fred intends to continue working
on the organization of the conference, Aura sets up that task at Fred’s office so that
he can resume his work as soon as he is recognized entering the office: a web
browser over the recently visited pages, the downloaded videos paused at the same
places, and a spreadsheet containing all the entered figures. Since there is a big
screen on the wall of Fred’s office, that is preferred to stage the video and web
browsing, releasing monitor space for the spreadsheet.

Fred is working at home when the Home Context Observer® notices Fred
leaving the house. The Context Observer lets Prism know that Fred is leav-
ing — interaction (1) in Figure 2, and that causes Prism to undergo state tran-
sition (a), where it realizes it should suspend the task ongoing at home.
Prism then requests to checkpoint the state of each of the services being pro-

5 For convenience, we refer to “component at location,” for instance “Home CO,” meaning
“the Context Observer at Fred’s home.”

8 Jodo Pedro Sousa and David Garlan

vided as part of the ongoing task — interaction (2). In interaction (3), the
Home Prism tells the Home Environment to deallocate those services and to
store all the involved files back into a globally accessible file server — inter-
action (4).

After checking Fred’s schedule, Prism infers that he is likely to head to
the office, and (5) conveys that information along with an estimated time of
arrival to the TM at the office. That triggers state transition (b) in the TM at
the office, causing it to request the Office EM (6) to retrieve the updated de-
scription of the tasks Fred has been working on — interaction 7.

Home Prism

Home context
observer
e
YN ="0 (o)
1X2IU02 31O

Fred’s home Fred’s office

Figure 2. Fred goes from home to the office

Given that description, Prism at the office extracts which files will be
necessary for Fred to work on, and requests the Office EM to retrieve them —
interaction (8). The Office EM checks if the copies stored locally are up-to-
date, retrieving updated copies as necessary (9). As soon as the Context Ob-
server at the office recognizes Fred coming into his office, it informs Prism
of that (10) causing Prism to undergo state transition (c). This triggers the
request of suppliers for the services involved in the task (11) and the subse-
guent restoring of the execution state at the allocated suppliers (12).

Upon instantiating a task, Prism slices the task description in order to
pass the relevant service descriptions to each of the suppliers. Figure 3
shows an example of the service description exchanged between Prism and a
supplier of text editing services. Notice the two top-level elements, one de-
scribing the service, the other the data that the service must access. Within
the service description, there are elements that are specific to the service type
(in the example, pane settings, spelling etc.), and others that are common to
all service types: an estimate of the duration of the service supply. In the
example, the user will be happy if the service is provided for 30 minutes or
more, but would rather seek an alternative if it cannot by provided for at
least 10 minutes. This kind of indication can be used to manage finite re-
sources like battery charge in mobile platforms [10], giving the user an early
warning when the requirements of the task cannot be met. The material de-
scription identifies the origin of the data — typically a file name or URL —
and format. Additionally, the material element includes a description of
where the user left off: in the case of text, the cursor, scrolling and zoom fac-
tor in effect when the editing was interrupted.

Service suppliers parse these descriptions when instantiating a task, ex-
tracting as much information as they can map to the settings of the specific

Aura: An Architectural Framework for User Mobility in Ubiquitous 9
Computing Environments

application. Such descriptions are updated when Prism requests a service
checkpoint. The update process is conservative with respect to the existing
information. For instance, even if a simple text editor could not instantiate
the spell-check settings, it preserves that part of the description so that a
more sophisticated editor in another environment can use it down the line.

<aur aTask id="denp">
<service type="editText">
<duration unit="m nutes" bad="10" good="30"/>
<settings pane_hei ght="360" pane_w dt h="200">
<spel l i ng enabl ed="yes" ignoreAll Caps="yes"/>
<editing overstrike="no" replaceSel ecti on="yes"/>
</ settings>
</ servi ce>
<material origin="nyTextFile" format="txt">
<state cursor="104" scroll="28" zoom="100"/>
</ material >
</ auraTask>

Figure 3. Description of atext editing service

4, DISCUSSION AND FUTURE WORK

The current implementation of the architecture in Figure 1 supports the
migration of simple user tasks interchangeably between personal computers
running Windows or Linux. Asaproof of concept, we have wrapped Micro-
soft Word and Emacs as suppliers of text editing services, and Media Player
and Xanim as suppliers of video playing services. The current implementa-
tion of the Environment Manager has rudimentary service registry abilities,
and relies on distributed file systems like Coda or AFS [23,24] for file access
across environments. We have not yet integrated research on context obser-
vation: Prism reacts to explicit task suspend and resume commands issued
by the user.

By describing tasks as coalitions of abstract services, we rely on the abil-
ity to migrate those descriptions between resource-rich environments. This
approach imposes fewer requirements on platform compatibility than an ap-
proach that relies on the ability to migrate executable code.

While the current implementation shows the feasibility of automated task
migration, it is limited by the granularity of the task components (full appli-
cations working separately from each other) and by its inability to anticipate
or infer what the user wants to do next. To address these problems, we have
begun to develop support for finer-grained tasks and richer models of user
intent. In its ultimate form we anticipate the need for Aura to support a
spectrum of task models ranging from simple invocation of applications to
sophisticated models that can anticipate immediate needs of users, or even
assist them in accomplishing some complex multi-step activity (like finan-
cial planning, travel assistance, or health management.) Ongoing work on

10 Jodo Pedro Sousa and David Garlan

Project Aura builds on research in computer-human interaction and machine
learning, exploring semiautomatic learning of richer models of tasks [16,26].

A key enabler both for capturing sophisticated models of tasks and for
enacting them is the integration of physical context observation: the user lo-
cation, what activities are competing for a user’s attention, who else is in the
vicinity, etc. [5,8,14]. If the user has to specify every detail of a task, then
no one will use Aura. On the other hand, systems are notoriously poor at
automatically capturing user intent. Hence, Aura must strike a balance be-
tween user involvement and automatic inference of user intent. Our assump-
tion is that an Aura should prove useful even with no deeper knowledge of
the task beyond the coalition of services currently being used. Furthermore,
our approach should prove useful only with rudimentary context awareness,
specifically recognizing a user entering and leaving a given environment.

The self-awareness and adaptability of the environment is addressed at
two levels. At the higher level, the infrastructure monitors the availability
and performance of whole components and of the communications infra-
structure, evaluating possible alternatives for supporting a user task when the
requirements for such a task are not met by the current configuration. This
coarse-grain adaptation builds on monitoring and adaptation mechanisms
like the ones described in [9] and is currently subject of research for integra-
tion into the architecture described in Section 2.

At the lower level, system components themselves are endowed with the
ability to adjust their operation following the variation of available resources
like CPU, bandwidth, battery charge, etc. Aura’s architecture addresses the
problem of representing the adaptation policy that is appropriate to a user’s
intent using the notion of utility functions — see for instance [22]. Suppose,
for example, that a user is viewing a video over a network connection for
which the bandwidth suddenly drops. A fidelity-aware component can deal
with resource limitations by reducing the fidelity of (the results of) the com-
putation, but in the example should it reduce the frame-update rate or the
image quality? For watching a sports video, it should preserve higher frame-
rates at the expense of image quality; but for watching a tour of a museum, it
should do the opposite.

We are currently working on the integration of mechanisms for coarse-
grained adaptation of configurations [9], and for fine-grained adaptation of
computation fidelity in components [6]. The latter is closer to being fully
integrated into the architecture described in Section 2. Both mechanisms are
driven by representations of user intent that reside at the task level. By pro-
viding a placeholder to capture user intent, task descriptions enable a clean
separation of concerns between determining the appropriate fidelity-
adaptation policies, at task description level, and the mechanisms to enact
those policies, at the level of applications and operating system extensions.

5. RELATED WORK

Flexible partitioning of applications in a wide-area setting is addressed by
research in distributed computing [11,17,28]. However, applying those re-

Aura: An Architectural Framework for User Mobility in Ubiquitous 11
Computing Environments

sults in ubiquitous computing environments is likely to lead to systems that
are hard to deploy and manage. Thisis due to scale, heterogeneity, and rate
of change within those environments. Other infrastructures that specificaly
target ubiquitous computing take the approach of deploying standard virtual
platformsin every device [12,13]. Such infrastructures enable code mobility
and therefore enable applications to follow and serve mobile users. It is not
clear, however, how much such mobile applications will be able to leverage
the diversity of devices and available interaction modes in local environ-
ments. On the other hand, trying to build super-applications that deal with a
multitude of device capabilities and interaction modalities has obvious soft-
ware engineering implications.

Applications can aso be extended to capture models of user intent [2,15].
However, addressing this problem at the application level has obvious limi-
tations in the face of user mobility through heterogeneous environments.
For instance, if the user intent information concerning text editing is cap-
tured within Microsoft Word, it cannot be used when the user comes into an
environment where Emacs is the only available text editor. By having the
knowledge captured in an application-independent way by the infrastructure,
we are able to use that knowledge in heterogeneous environments.

Another example comes from research in fidelity-aware computing.
With the goal of providing better quality of service to the user and better re-
source management, applications are commonly extended to incorporate the
mechanisms for resource adaptation [10,20]. Determining the adaptation
policy that best serves the intent of the user then becomes a hard problem.
We claim that such problemis best addressed at the task level [6].

To the authors® best knowledge, Aura’s approach is novel in building
high-level, application-independent models of user tasks, and in using those
models to setup and adapt ubigquitous computing environments.

Aura’s architecture uses connectors as first-class entities not only at the
design level, but also at the implementation level [25,27]. The explicit en-
coding of connectors delivers encapsulation of interaction mechanisms and
of distribution issues, making it much easier to design and build the compo-
nents. Of course, middleware and distributed computing infrastructures have
addressed such issues in a generic form [7,21]. However, we pull the use of
such generic mechanisms out of the application and infrastructure compo-
nents, and into architecture-specific connectors. By doing so, we create
added flexibility to adapt to the existence of different interaction mecha-
nisms in different environments, and to dynamically choose the most appro-
priate mechanism to reach a particular component.

6. CONCLUSION

In this paper we have described an architectural framework that solves
two of the hard problems in developing software systems for ubiquitous
computing. First, it attacks the problem of allowing a user to preserve conti-
nuity in his/her work when moving between different environments. The key

12 Jodo Pedro Sousa and David Garlan

advantage of this framework over other traditiona approaches is that it al-
lows the system to tailor the user’s task to the resources in the environment.
Second, it attacks the problem of adapting the on-going computation of a
particular environment in the presence of dynamic resource variability. As
resources come and go, the computations can adapt appropriately.

The key ingredients of the architectural framework are explicit represen-
tations of user tasks as collections of services, context observation that al-
lows the task to be configured in a way that is appropriate to the environ-
ment, and environment management that assists with resource monitoring
and adaptation. Each of these capabilities is encapsulated in a component of
the architectural framework (the task manager, environment manager, and
context observer, respectively). The services needed to support a user’s task
are carried out by a set of components termed service suppliers. Service sup-
pliers typically are implemented as wrappers of more traditional applications
and services. Finally, interactions between the parts are carried out by ex-
plicit connectors that hide details of distribution and heterogeneity of service
suppliers.

The architecture has been implemented in prototype form, permitting task
migration for a small set of services between Unix- and Windows-based en-
vironments. While this implementation is only a first step, already it demon-
strates that certain kinds of task migration and adaptation can be supported
in the Aura architecture. However, complete evaluation of the architecture
will only be possible once we have populated the environment with addi-
tional service suppliers, increased the number of environments supported by
the framework (e.g., PDAs and smart rooms), and developed a number of
more complex task descriptions.

ACKNOWLEDGEMENTS

We thank Takahide Matsutsuka and Tadashi Okoshi for implementing
the supplier wrappers in the current prototype. We would also like to thank
Rajesh Balan, Jason Flinn, Dushyanth Narayanan, SoYoung Park, Mahadev
Satyanarayanan, and Bradley Schmerl for fruitful discussions. This research
is supported by DARPA under Grants N66001-99-2-8918 and F30602-00-2-
0616. Views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies,
either expressed or implied, of DARPA.

REFERENCES

1. W.Adjie-Winoto, E. Schwartz, H. Balakrishnan, J. Lilley. The design and implementa-
tion of an intentional haming system. Proceedings of the Seventeenth Symposium on
Operating System Principles. Kiawah-l1sland Resort, North Carolina, December 1999.

2. D.Albrecht, I. Zukerman, A. Nicholson, A. Bud. Towards a Bayesian model for key-
hole plan recognition in large domains. Proc. 6th Int. Conference on User Modeling
(UM "97), pp 365-376. SpringerWien, Jameson, Paris and Tasso (Eds.) New York, 1997.

Aura: An Architectural Framework for User Mobility in Ubiquitous 13
Computing Environments

3. V. Ambriolg P. Ciancarini, C. Montenegro. Software Process enactment in Oikos. Pro-
ceedings of the Fourth ACM SIGSOFT Symposium on Software Development Envi-
ronments. SIGSOFT Software Engineering Notes, pp 183-192, Irvine, California, 1990.

4. K. Arnold, B. O’Sullivan, R. Scheifler, J. Waldo, A. Wollrath. The Jini Specification.
Addison-Wesley, 1999.

5. S. Baker, T. Kanade. Hallucinating faces. Proceedings of the Fourth International Con-
ference on Automatic Face- and Gesture-Recognition, Grenoble, France, March 2000.

6. R.Balan, J. Sousa, M. Satyanarayanan. Meeting the Software Engineering Challenges
of Adaptive Mobile Applications. Submitted for publication, March 2002.

7. A. Birrell, B. Nelson. Implementing remote procedure call. ACM Transactions on Com-
puter Systems, 2(1), pp 39-59, ACM Press, New York, February 1984.

8. P. Castro, P. Chiu, T. Kremenek, R. Muntz. A Probabilistic Room Location Service.
Proc. Ubicomp 2001: Ubiquitous Computing. Atlanta, Georgia, September 2001.

9. S.Cheng, D. Garlan, B. Schmerl, J. Sousa, B. Spitznagel, P. Steenkiste, N. Hu. Software
Architecture-based Adaptation for Pervasive Systems. International Conference on Ar-
chitecture of Computing Systems Trends in Network and Pervasive Computing,
Karlsruhe, Germany, April 8-11, 2002. To appear in LNCS, Volume 2299.

10. J. Flinn, M. Satyanarayanan. Energy-aware adaptation for mobile applications. Pro-
ceedings of the 17th ACM Symposium on Operating Systems Principles, Kiawah Island
Resort, South Carolina, December 1999.

11. 1. Foster, C. Kesselman. Globus: A metacomputing infrastructure toolkit. International
Journal of Super-computer Applications and High Performance Computing, 11(2), pp
115-128, 1997.

12. J. Gosling, B. Joy, G. Steele. The Java Language Specification. Addison-Wesley, 1996.

13. R. Grimm, T. Anderson, B. Bershad, D. Wetherall. A system architecture for pervasive
computing. Proceedings of the 9th ACM SIGOPS European Workshop, pp 177-182,
Kolding, Denmark, September 2000.

14. A. Harter, A. Hoper, P. Steggles, A. Ward, P. Webster. The Anatomy of a Context-
Aware Application. Proceedings of the Fifth ACM/IEEE International Conference on
Mobile Computing and Networking, pp 59-68, Seattle, Washington, August 1999.

15. E. Horvitz, J. Breese, D. Heckerman, D. Hovel, K. Rommelse. The Lumiere project:
Bayesian user modeling for inferring the goals and needs of software users. Proceedings
of the Fourteenth Conference on Uncertainty in Artificial Intelligence, pp 256-265,
Madison, Wisconsin, 1998.

16. N. Kushmerick, S. Hanks, D. Weld. An Algorithm for Probabilistic Least-Commitment
Planning. Proceedings of the Twelfth National Conference on Atrtificial Intelligence. Se-
attle, Washington, July 1994.

17. M. Lewis, A. Grimshaw. The core Legion object model. Proceedings of the Fifth IEEE
International Symposium on High Performance Distributed Computing, pp 551-561,
Syracuse, New York, August 1996.

18. B. Maclntyre, E. Mynatt, S. Voida, K.Hansen, J. Tullio, G. Corso. Support For Multi-
tasking and Background Awareness Using Interactive Peripheral Displays. Proc. ACM
User Interface Software and Technology (UIST’01), Orlando, Florida, November 2001.

19. H. Nii. Blackboard Systems. Al Magazine, 7(3), pp 38-53 and 7(4), pp 82-107, 1986.

20. B. Noble, M. Satyanarayanan, D. Narayanan, J.E. Tilton, J. Flinn, K. Walker. Agile
Application-Aware Adaptation for Mobility. Proceedings of the 16th ACM Symposium
on Operating System Principles, October 1997, St. Malo, France.

21. Object Management Group. The Common Object Request Broker: Architecture and
Specification, 2.6 edition,
http://www.omg.org/technology/documents/formal/corba_iiop.htm, 2001.

22. R.Rajkumar, C. Lee, J. Lehoczky, D. Siewiorek. Practical Solutions for QoS-Based
Resource Allocations. Proceedings of the 19 th IEEE Real-Time Systems Symposium,
Madrid, Spain, December 1998.

23. M. Satyanarayanan. Mobile Information Access. IEEE Personal Communications, Vol.
3, No. 1, February 1996.

14

24,

25.

26.

27.

28.
29.

30.

Jodo Pedro Sousa and David Garlan

M. Satyanarayanan. Scalable, Secure, and Highly Available Distributed File Access.
|EEE Computer, May 1990, Val. 23, No. 5.

M. Shaw. Procedure Calls are the Assembly Language of Software Interconnection:
Connectors Deserve First-Class Status. Studies of Software Design, Proc. 1993 Work-
shop, LNCS No. 1078, Springer-Verlag, D.A. Lamb (Ed.), 1996.

S. Shearin, H. Lieberman. Intelligent Profiling by Example. Proc. International Confer-
ence on Intelligent User Interfaces (IUl 2001). Sante Fe, New Mexico, January 2001.

B. Spitznagel, D. Garlan. A Compositional Approach for Constructing Connectors. Pro-
ceedings Working | EEE/IFIP Conference on Software Architecture (WICSA'01), Royal
Netherlands Academy of Arts and Sciences Amsterdam, The Netherlands, August 2001
M. van Steen, P. Homburg, A. Tanenbaum. Globe: A wide-area distributed system. |IEEE
Concurrency, 7(1), pp 70-78, 1999.

Z. Wang, D. Garlan. Task Driven Computing. Carnegie Mellon University Technical
Report CMU-CS-00-154, http://reports-archive.adm.cs.cmu.edu/cs2000.html, May 2000.
M. Weiser. The Computer for the Twenty-First Century. Scientific American, pp 94-100,
September 1991.

