Meeting the Software Engineering Challenges
of Adaptive Mobile Applications

No Author Given

No Institute Given

Abstract. A critical factor for the commercial success of mobile and
task-specific devices is the fast turnaround time of software development.
However, developing software for mobile devices is especially hard since
applications need to be aware of and adapt to changing resources such
as bandwidth and battery.

In this paper we validate that the idea of stub generation can successfully
address the complexity introduced by resource adaptation. Our approach
is based on factoring generic resource-adaptation mechanisms out of the
applications and into operating system extensions. Rather than having to
deal with system-specific details, an application writer provides a high-
level description of the adaptation needs for each application. The gener-
ation of code stubs bridges such high-level descriptions to the adaptation
mechanisms specific to each platform.

We validated this approach against three representative applications: a
video streaming application, a natural language translator and an aug-
mented reality application. In all three cases, the effort for the applica-
tion writer was reduced by orders of magnitude. The cost of writing the
operating system extensions and the stub generator is amortized over
the many applications that can share the generic resource-adaptation
mechanisms.

1 Introduction

The proliferation of task-specific mobile and wearable devices with short lifetimes
places severe stress on the development and maintenance of adaptive mobile
applications. A critical factor limiting the commercial success of such a device is
the software development time needed to create useful applications for it. The
longer this development time, the shorter the useful life of the device in the
marketplace. Slow software development can make the device obsolete by the
time it emerges as a product. Business opportunities are measured in months
rather than years in this fast-paced field.

Developing mobile computing applications is especially difficult because they
have to be adaptive [9,13,21]. The resource constraints of mobile devices, the
uncertainty of wireless communication quality, the concern for battery life, and
the lowered trust typical of mobile environments all combine to complicate the
design of mobile applications. Only through dynamic adaptation in response to

varying runtime conditions can applications provide a satisfactory user expe-
rience. Unfortunately, the complexity of writing and debugging adaptive code
adds to the application software development time.

How can we reduce the software development time of adaptive mobile appli-
cations? In this paper, we describe our approach to solving this problem. It is
based on three observations that are derived from our first-hand experience with
building adaptive mobile applications.

— First, most applications for mobile devices can be created by modifying
existing applications rather than writing new applications from scratch.

— Second, the modifications for adaptation typically affect only a small frac-
tion of total application code size. Much of the complexity of implementing
adaptation lies in understanding the base code well enough to be confident
of the changes to make.

— Third, the changes for adaptation can be factored out cleanly and expressed
in a platform-neutral manner.

Our approach can be summarized as follows:

— We provide a lightweight semi-automatic process for customizing the adap-
tation API used by the application. Such customization is targeted to the
specific adaptation needs of each application.

— We provide a tool for automatic generation of code stubs that map the
customized API to the specific adaptation features of the underlying mobile
computing platform.

— We factor the run-time support for monitoring resource levels and triggering
adaptation out of applications and into a set of operating system extensions
for resource adaptation.

Each of these components plays an important role in the overall effectiveness
of our approach. The first component (semi-automatic process) amortizes the ef-
fort of understanding an application and extending it for adaptation. The second
component (stub generator) insulates application code from frequent changes of
the underlying mobile computing platform. The third component (OS support)
allows a clean separation of policy and mechanism — the OS monitors resource
levels and triggers adaptation, but it is the individual applications that decide
how to adapt. OS support also helps ensure that the adaptations of multiple
concurrently executing applications do not interfere with each other.

Our approach complements traditional software engineering techniques such
as code modularity. In addition, our approach takes into account the context-
sensitive nature of adaptation policies. In other words, high level attributes such
as a user’s location, physiological state, and cognitive load are often important
factors in determining how a low-level adaptation decision should be made [22].
This implies a bridging of system layers that is not common in non-mobile ap-
plications.

The rest of this paper is organized as follows. We describe our approach in
Section 2. Then, in Section 3, we illustrate how our approach can be applied to

three representative applications in mobile computing: data streaming, natural
language translation, and augmented reality. Next, in Section 4, we describe
how we incorporate context sensitivity into the choice of adaptation policy. We
conclude with a discussion of future work and related work.

2 Reducing Development Cost

Much of the cost of building and maintaining adaptive applications comes from
the low-level at which adaptation enhancements are captured. Understanding
the required adaptation features and implementing them over the APIs offered
by the underlying platform is a costly process. Currently, there is no effective way
to preserve such investment except in the form of embedded code modifications.
These are hard to maintain in the face of the fast rate of release of new platforms.

We propose to use a high-level declarative language to describe the adapta-
tion aspects of an application. That description is then compiled and a code stub
is generated. This code stub creates a customized API for the application, which
is derived from the high-level description of the adaptation requirements. This
customized APIT is much closer to the application’s needs than a generic low-
level adaptation API, and thus makes it much easier to integrate the adaptation
aspects with the bulk of the application code.

Furthermore, applications in the same domain, say video players, are likely to
have very similar adaptation requirements. Hence, adaptation descriptions can
be reused among such applications. For example, it would be easier to extend
the next video player for adaptation once we’ve completed the first one.

By having a compiler-based approach, we are able to amortize the effort
of retargeting a set of adaptive applications to a new platform. After all, it
is easier to retarget the code generation of a compiler than to modify each
application manually. The hypothesis here is that it will be easier to retarget
the code generation for a new platform, and recompile all the applications, than
retargeting every application.

The specific runtime targeted by our stub generator is Chroma: a resource
management and adaptation layer that we are developing. Chroma provides
generic support for adaptation in applications, including remote execution: the
ability to dynamically run portions of an application’s functionality on a fast
compute server [8].

A short description of Chroma is provided in Section 5. The reader is referred
elsewhere [1] for a more complete description of Chroma along with performance
results that show that Chroma is able to use the methods described in this paper
to provide excellent performance for resource-intensive applications even in a mo-
bile environment. In this paper, instead, we focus on our platform-independent
approach to building adaptive applications. The stub generator allows us to
potentially use any other OS or adaptation middleware [3,4,12,18], without
changes to the application source or description files. The stub generator would
need to be modified to generate interface code for these other runtimes but the
application source code and description files would remain un-modified.

(1) o
) Collaborate) Application

Stub generator
Domain @ xanim, Am-g» _
expert 4 K \ Application
Application | xanim |\ executable
description file Y _stub.cJ >
) 1\| xanim ;"
] stub.hji—>
Adaptation
experl"‘__‘\ Chroma stub code
1y . 4) Compiler
/ [xanim.c| (3) Modify |xanim.c “@ P
3 "V 7 "
{ | Modified
4 Ixanim.h| / source code N

Application source code

Fig. 1. Process for adding adaptation to an application

We now describe how application developers can create the application de-
scriptions and the corresponding application stubs. Figure 1 illustrates our 4-step
process:

1. The adaptation expert collaborates with a domain expert to produce an ap-
plication description that captures the information necessary for the appli-
cation to be adaptive. For instance, the description for XAnim contains the
adaptive variables relevant to adaptive video playing: frame rate, encoding,
frame quality, height, and width. This description is platform-independent,
and can be reused for other applications that provide adaptive video playing
capabilities. Le., it applies equally to XAnim and to MediaPlayer, to Linux
and to Windows.

2. A stub generator compiles the application description into a set of stubs that
interface between the application and the underlying runtime support.

3. The application is modified to invoke the functions provided by the stub
layer. This step is manual, and must be done for each application. However,
these changes are small and localized as demonstrated in our case studies,
and this fact makes it easy to preserve the adaptation enhancements in new
releases of the applications, as described in Section 1.

4. The application source code and stub are compiled, and linked together to
form the application binary. When executed, this binary invokes the runtime
support layer to make adaptive decisions.

3 Case studies

To validate our solution we applied it in three representative case studies. We
chose applications which are representative of the unique computational needs
of mobile users. As such, instead of typical desktop applications like Word or
Powerpoint, we have a video player (XAnim [14]), natural language translator
(Pangloss-Lite [10]) and an augmented reality application (GLVU [23]).

3.1 XAnim

The first case study is XAnim. XAnim is a video player that can be used to
play AVI format video files. It represents the class of applications that handle
streaming media and for whom bandwidth is a critical resource. This class of
applications is important for mobile users as mobile users would like the ability
to play video files while moving from place to place. In this section, we will show
how the process described in Section 2 can be used to make XAnim adaptive.

Creating the description file The version of XAnim that we are using receives
video streams from a server. The server can provide different quality levels of
the same video stream, which differ in their frame rate and compression level.
XAnim, to be adaptive, should be extended to automatically change the quality
requested from the server according to the current resource availability. This
decision is made periodically every few video segments.

APPLICATION XAnim;

0QUT DOUBLE frame_rate FROM O TO 60;
OUT DOUBLE compression FROM O TO 100;

IN STRING video_name;

IN ENUM encoding MPEG, MPEG2, QTCinepak;
IN INTEGER video_height;

IN INTEGER video_width;

Fig. 2. Description file for XAnim

Figure 2 shows the description file for XAnim. XAnim has two “OUT” vari-
ables and four “IN” variables. An OUT variable is a parameter that can be
adapted by the runtime. To make good adaptive decisions, the runtime needs
additional information from the application. For example, the runtime will need
to know the size of the video before it can decide what frame rate is appropriate
given the current bandwidth. IN parameters are used to specify this necessary
information.

params = xanim_playsegment_initialize ();

/* Main loop of video playback
This loop retrieves n segments of the video at a time
from the video server. */

while (video_needs_to_be_played) {

xanim_playsegment_set_video_height (params, height);
xanim_playsegment_set_...

xanim_playsegment_find_fidelity (params);
frame_rate = xanim_playsegment_get_frame_rate (params);

/* Retrieve video from video server using frame_rate */
} /* Exiting video playing loop */

xanim_playsegment_cleanup (params);

Fig. 3. Source code for the modified XAnim

Even though the description file shown in Figure 2 was created for XAnim,
it can also be used for other video players. This is because the description file
contains just the adaptation behaviour of XAnim and this is similar for other
video players as well. Every other video players will also have inputs consisting of
the video name, the encoding and the video dimensions and they will also require
a frame rate and a compression level for the video stream. Hence, our method
of extracting the adaptation behaviour of an application into a description file
allows us to reuse description files between similar applications. It is also possible
to specify constraints like ”don’t use more than X amount of bandwidth” in this
description file. At runtime, Chroma will pick the best settings for the application
that doesn’t violate the constraints.

Modifying the application Figure 3 shows the modifications made to XAnim.
Note that all that was needed to be done was to place these calls in the correct
places in XAnim (shaded lines).

The bulk of the modifications takes place in the part of the application that
does the work that can be adapted. In the case of XAnim, this is the video
playing loop.The methodology used for the modifications is as follows:

— An initialize function is called at the start of the application to create
and initialize all necessary variables for interfacing with Chroma. The initial-
ize call returns an opaque data structure, that contains all the information
relevant to XAnim, which is provided as an input to all subsequent stub
generated function calls.

— The find fidelity function is called within the video playing loop. This
function queries Chroma and figures out the fidelity level that the application

should use, given the current application settings (the IN parameter values)
and the current resource availability.

— The application sets all the IN parameters via set function calls before
calling find fidelity.

— After calling find fidelity, the application reads the values of all the OUT
parameters via get function calls. Using these values, the application per-
forms a chunk of work at the appropriate fidelity level.

— This process of setting the IN parameters, calling find fidelity, reading
the OUT parameters and then doing a chunk of work at the appropriate
fidelity level continues until the application exits.

APPLICATION panlite;
IN INTEGER nwords FROM O TO infinity DEFAULT 1;
RPC server_gbt (IN STRING line, OUT STRING gbt_out); // RPC spec. for the glossary engine

RPC server_ebmt (IN STRING line, QOUT STRING ebmt_out); // RPC spec. for the ebmt engine
RPC server_1lm (IN STRING gbt_out, IN STRING ebmt_out,

OUT STRING translation) ; // RPC spec. for the language modeler
TACTICS = gbt OR ebmt OR gbt_ebmt;
DEFINE gbt = server_gbt & server_lm; // glossary engine followed by language modeler
DEFINE ebmt = server_ebmt & server_lm; // ebmt engine followed by language modeler
DEFINE gbt_ebmt = (server_gbt, server_ebmt) & server_lm; // both engines run in parallel

Fig. 4. Description file for Pangloss-Lite

The stub generator automatically generates the initialize, cleanup and
find fidelity functions and the application specific params data structure. It
also automatically generates all the set and get functions required to manipulate
the IN and OUT parameters. This greatly reduces the amount of work involved
in modifying an application to be adaptive.

3.2 Pangloss-Lite

The second class of applications we consider is natural language translation as
characterized by Pangloss-Lite. Language translation is important for mobile
users as their mobility brings them into contact with documents and speech
composed in non native languages. The critical resource for this class of appli-
cations is computational power.

One important way that applications can adapt is to run pieces of code on
remote servers [8], taking advantage of computational resources in pervasive com-
puting environments. Natural language translation applications are well suited

for remote execution as they are CPU and memory intensive. In this second case
study, we show how to extend Pangloss-Lite, a natural language translator, to
adapt using remote execution. Remote execution services are accessed through
an RPC [6] interface.

Creating the Description File Pangloss-Lite [10] translates text from one
natural language to another. It can use multiple translation engines with vary-
ing degrees of accuracy and speed — and correspondingly, different resource
consumptions. Each engine returns a set of potential translations for phrases
contained within the input text. A language modeler combines the output of
the engines to generate the final translation. Since each translation engine con-
sumes different amounts of resources, Pangloss-Lite is enhanced for adaptation
by choosing the translation engines to use depending on the available resources.
In addition, the translation engines and the language modeler can also be re-
motely executed. The translation engines can also be executed in parallel. For the
purpose of this case study, we will use just two engines: EBMT (example-based
machine translation) and GBT (glossary-based translation).

Describing how an application can use remote execution requires two compo-
nents: enumerating the functions that can be remotely executed (keyword RPC)
and the permitted execution tactics. Each execution tactic specifies a way of
executing a set of functions in some parallel or sequential order. Naturally, each
of these tactics will have different resource requirements, corresponding to the
subset of functions that gets executed. Furthermore, the adaptation run-time
will also select whether to run each function locally on the mobile platform, or
remotely on some previously configured set of servers. This decision is based on
comparing the resource requirements of each tactic against the available CPU
cycles, battery charge, bandwidth to the remote servers, etc. It is up to the
adaptive system to pick the most appropriate tactic for each operation, given
the current resources and the constraints of the users task — see Section 4.

The description file for adaptive Pangloss-Lite is shown in Figure 4. There is
one IN variable that specifies the number of words in the input string. Chroma
uses this value to decide how much resources the translation will require. The
RPC definitions for Pangloss-Lite correspond to the GBT engine, EBMT engine
and the language modeler. As shown, Pangloss-Lite has three tactics for remote
execution: gbt, ebmt and gbt_ebmt. The gbt tactic executes just the GBT engine
and sends the output to the language modeler. The ebmt tactic executes only
the EBMT engine and sends the output to the language modeler. Finally, the
gbt_ebmt tactic executes both of the engines in parallel and sends the output to
the language modeler.

Modifying the Application Figure 5 shows the modifications that were made
to the Pangloss-Lite source. The methodology used to modify Pangloss-Lite to
make it adaptive is similar to XAnim.

— An initialize call is made at the start of the application with a corre-
sponding cleanup call at the end of the application.

params = panlite_translate_initialize_params ();
while (do_translation) {
/* read input into "line" and do other processing */

panlite_translate_set_nwords (params, value);
panlite_translate_find_fidelity (params);

panlite_translate_do_tactics (params, line, translation);

/* display translation and do other processing */
}

panlite_translate_cleanup_params (params);

Fig. 5. Modifications to Pangloss-Lite

— The single IN variable for Pangloss-Lite is set via a set function call before
calling find fidelity.

— A call to find fidelity is made to determine which tactic to use. This
choice is made by checking the resource availability of the local and remote
servers and the value of the IN parameter.

— The main difference is a do_tactics function call which is inserted after the
find fidelity call. The do_tactics function call (this function is also au-
tomatically generated by the stub generator) performs the remote execution
of Pangloss-Lite using the tactic decided by find _fidelity.

By separating the decision making of which tactic to use (done in find fidelity)
from the actual execution of the tactic (done in do_tactics), we allow the appli-
cation to cache the selected tactic. Deciding which tactic to use can be potentially
expensive as Chroma needs to search through all possible tactics and decide on
the optimal one given the values of all the IN variables and the resource avail-
ability on the local and remote machines. Caching the result thus allows the
application to tradeoff the overhead of computing a new tactic for every trans-
lation against the agility of adaptation to changing resource conditions.

3.3 GLVU

Our third case study looks at GLVU which represents the augmented reality
application class. Augmented reality applications allow a mobile user to access
information about his current environment on his mobile device or even via a
head mounted display. This information is superimposed over the current viewing
environment; hence the name augmented reality. This class is characterized by
strict performance constraints as large jitter or delays can have nauseating effects
on the user.

GLVU is a 3D graphics rendering application that uses the OpenGL library
to display 3D models of buildings. GLVU computes the image to display by
factoring in the current position of the viewer (in 3D space) and the current
maximum and minimum display co-ordinates. The quality of the final image,
the latency and the computational requirements of GLVU is highly dependent
on the number of polygons used to create the 3D model.

Creating the Description File The description file for GLVU is shown in
Figure 6. As shown, GLVU has nine IN variables and two QUT variables. The
nine IN variables are used to provide additional information about the current
state of GLVU to the runtime. In this case, the nine IN variables specify the
current minimum and maximum display co-ordinates as well as the current co-
ordinates of the viewer. The OUT variables are used by the runtime to tell GLVU
what resolution it should use to render the image and how polygons should be
used to construct the 3D model.

APPLICATION glvu

OPERATION draw

0UT double polygons FROM 0 TO infinity
0UT double resolution FROM O TO 1

IN double min_x FROM 0 TO infinity
IN double min_y FROM 0 TO infinity
IN double min_z FROM O TO infinity
IN double max_x FROM O TO infinity
IN double max_y FROM O TO infinity
IN double max_z FROM 0 TO infinity
IN double eye_x FROM 0 TO infinity
IN double eye_y FROM 0 TO infinity
IN double eye_z FROM O TO infinity

Fig. 6. Description file for GLVU

Modifying the Application The modifications that were made to GLVU are
shown in Figure 7. GLVU was modified using a methodology similar to XAnim.

— An initialize call is made at the start of the application with a cleanup
call made at the end of the application.
— The IN variables are assigned values using set functions.

params = glvu_render _initialize ();

/* Main loop of 3D rendering
This loop renders the 3D using the specified resolution
and number of polygons %/

while (model_needs_to_be_rendered) {

glvu_render_set_eye_x (params, user_x_position);
glvu_render_set_...

glvu_render_set_polygons (params, num_polygons);
glvu_render_find_fidelity (params);
resolution = glvu_render get_resolution (params);

polygons = glvu_render_get_polygons (params);

/* Render model using resolution and number of
polygons */

} /* Exiting 3D rendering loop loop */

xanim_render_cleanup (params);

Fig. 7. Source code for the modified GLVU

— The find fidelity function is called. This call invokes the runtime which
uses the values of the IN variables to determine the optimal fidelity for the
application given the current resource availability. The values of the OUT
variables are set by the runtime to reflect the optimal fidelity settings.

— The values of the OQUT variables are read via get function calls. These values
are then used by GLVU to render the image.

All the calls used above are generated automatically by the stub generator.

4 Adaptation policy

In Section 3, we presented three case studies to demonstrate that it is possi-
ble to extract the adaptive behavior of applications in a platform independent
manner. However, in reality, the exact decision of how to adapt an application
is frequently context sensitive and thus dynamic. For instance, would the user
of a language translator prefer accurate translations or snappy response times?
Should an application running on a mobile device use power-save modes to pre-
serve battery charge, or should it use resources liberally in order to complete
the user’s task before he or she runs off to board their plane? That knowledge
is very hard to obtain at the application level.

Does this dynamism mean that our static descriptions of adaptation are
inapplicable in real environments? We claim that this is not the case. Our ar-
chitecture allows us to specify various static policies for different contexts. The

exact policy to use is determined by the runtime based on the current environ-
mental conditions and user specified preferences. In general, we would need an
infinite number of policies to handle every possible context. However, in practice,
the situation is not so bad.

We claim that we can statically define a family of adaptation policies that
covers a satisfactory dynamic range. Choosing one particular instance from such
a family of policies is achieved by parameterization.

The key observations here are that, first, user expectations ultimately de-
termine which adaptation policies are appropriate. Second, these expectations
change as a function of the nature of the user’s task and of the physical con-
text around the user. Although describing how user expectations are captured
is beyond the scope of this paper, we briefly describe our approach to this prob-
lem, and give some detail on how user expectations are represented and used to
determine the adaptation policy enacted by the application.

The novelty in our approach is threefold:

— User expectations are captured outside the adaptive application, in a layer
that is aware of the user’s task and surrounding context. This layer builds
models of user expectations that can be passed to adaptive applications [2]
and is briefly explained in Section 6.

— User expectations are represented in an application-independent way, making
it easy to reuse models of user expectation across multiple applications. For
instance, a model of the expectations of the user when watching a video can
be used to drive adaptation in every video playing application equipped to
work in this framework.

— The representation we adopt is easy to pass to a running application, making
it easy to adjust adaptation policies on the fly to changes in user expecta-
tions.

4.1 Defining the adaptation policy

We use a simple model of user expectations based on wtility functions. These
functions take the user-perceived quality attributes as inputs and return a value
indicating their appropriateness. The higher the value the more appropriate the
combination is relative to the user’s expectations. For instance, utility functions
for watching a video would take frame-update rate and video quality as inputs.
Now, if the user is watching a sports video, an appropriate utility function is one
that is more sensitive to the frame-update rate than the video quality. However,
if the user is watching a tour of a museum, an appropriate utility function is one
that is more sensitive to the video quality, and not as sensitive to frame-update
rates.

The adaptation policy is implicitly defined by maximizing utility functions.
The values that maximize these utility functions give the fidelities that the ap-
plication should run at. These values are returned by the calls to find_fidelity
(in Figures 3 , 5 and 7) as values for the OUT parameters. Naturally, the maxi-
mization of the utility functions is constrained by the available resources.

APPLICATION XAnim;

OUT DOUBLE frame_rate FROM O TO 60;
0UT DOUBLE compression FROM O TO 100;

UTILITY = WSIGMOID(frame_rate) *
WSIGMOID (compression);

IN

Fig. 8. Utility function description for XAnim

The description for XAnim in Figure 8 extends the description in Figure 2
by defining the generic form of the utility functions driving the adaptation in
XAnim (and in fact in any video playing application that follows this model of
user expectations.) Each of the user-perceived quality attributes has a model of
utility: in this case a weighted sigmoid function. Sigmoid functions are step-like
functions that have a “bad” threshold, below which the function is exponen-
tially close to zero, and a “good” threshold, above which the function is expo-
nentially close to one. Between the “good” and “bad” thresholds the function
grows smoothly (and is roughly linear). A weighted sigmoid is raised to a power,
its weight, between 0 and 1. The overall utility is obtained by multiplying the
two weighted sigmoids. Note that assigning a small weight to a sigmoid tends
to make it flat, and hence reduces the sensitivity of the overall utility to the
corresponding quality attribute.

This representation allows utility functions to be encoded in a totally para-
metric way, which is a big advantage. For example, in Figure 8, a utility function
is encoded by six numeric parameters: the “good” and “bad” thresholds and the
weight for each of the sigmoids.

4.2 Enacting the adaptation policy

The stub generator takes the description of utility in the application description
file and generates an interface that allows an external source to set the corre-
sponding parameters. In our work, the information exchanged between the layer
modeling the user and the applications is encoded in XML. Therefore, the in-
terface produced by the stub generator includes a parser for the specific XML
format we are using. Note that the implicit assumption here is that the language
to build utility functions in the application description file is expressive enough
to represent the possible forms of user expectation for the relevant quality at-
tributes. In the case studies we analyzed so far we had no difficulty expressing
the form of utility functions using sigmoids for continuous attributes and simple
tables for discrete attributes.

For example, suppose that the user is watching a sports video and that the
layer in charge of capturing the user expectations has empirically determined the

range of quality attributes that makes the user happy in those circumstances.
Suppose that the range is as follows: the user is happy as long as the frame-
update rate is above 20 frames per second, and really unhappy if it drops below
5 frames per second. Video quality is expressed by the “compression” parameter
in Figure 8. Although higher quality is better, it is of secondary importance.

<utility combine="mult">

<wSigmoid attr="frame_rate" weight="0.8"
bad="5" good="20"/>

<wSigmoid attr="compression" weight="0.2"
bad="0" good="100"/>

</utility>

Fig. 9. XML encoding of utility function

This knowledge is encoded in a utility function composed of two weighted
sigmoids with the following parameters: for the frame rate sigmoid, set “bad”
to 5, “good” to 20 and weight to 0.8. For the compression sigmoid set “bad” to
0, “good” to 100 and weight to 0.2. Note that the sigmoid for the compression
attribute degenerates into a linear function by placing the thresholds at the
extremes of the scale for the attribute. Note also, that the relative weights of
the two sigmoids are empirically set by observing what makes the user happy.
Figure 9 shows the encoding of this utility function.

5 Chroma

In this section, we present a brief explanation of how Chroma works. A more
complete description along with performance results is available elsewhere [1].
Chroma consists of three major components; resource predictors, resource mon-
itors and a selection mechanism.

5.1 Resource Prediction

For a given application, Chroma needs to be able to predict the resources that
the application will require (for each tactic and fidelity setting). This information
is provided by resource demand predictors that use history based prediction [17].
The key idea here is that the resource usage of a particular fidelity setting of an
application can be predicted from its recent resource usage. The demand predic-
tion mechanisms are initialized by off-line logging. At runtime, these predictors
are updated using online monitoring and machine learning to improve accuracy.

5.2 Resource Monitoring

Chroma, uses multiple resource measurers to determine current resource avail-
ability. These resource measurers currently measure memory usage, CPU avail-
ability, available bandwidth, latency of operation, file cache state and battery
energy remaining. Chroma also has mechanisms to retrieve resource availability
information from remote servers.

5.3 Selection Process

Each time an application makes a find_fidelity call, Chroma determines the ex-
pected resource demand for each tactic and fidelity of the application by query-
ing the resource prediction component. At the same time, Chroma determines
the available resources via the resource monitoring component. These resource
monitors also query any available remote servers to determine the resource avail-
ability on those servers. This information is necessary as the latency of a tactic is
determined by where each individual remote call in that tactic is being executed.
Determining resource availability on demand can be a very time consuming op-
eration. Hence, to improve performance at the cost of accuracy, the resource
monitors perform these queries periodically in the background and cache the
results. While running this selection algorithm, Chroma will ensure that any
application constraints like maximum bandwidth usage etc. are not violated.

6 Future work and Limitations

For future work, we plan to integrate Chroma with a system called Prism [2]. One
key observation of our work is that determining appropriate adaptation policies
is critically dependent on the ability to capture user expectations. Capturing
user expectations is a hard problem that we plan to address in the Prism layer.
Prism treats user tasks as first class entities and interacts with context-aware
components to assess the physical context around the user. It determines the
most accurate models of user expectations using stochastic techniques to corre-
late the current user context to past experiences. By capturing user expectations
outside of applications, we enable the reuse of user expectation models. This al-
lows the migration of user tasks in pervasive computing environments. Chroma
and Prism are being developed as part of a larger framework (not named due to
the double blind review process) that aims to provide a complete pervasive com-
puting environment ranging from better user interfaces to low level intelligent
networking.

We also plan to expand Chroma’s resource management systems to better
handle global constraints like battery power. Finally, we plan to do more case
studies using our process to evaluate its effectiveness for a larger class of appli-
cations. This will allow us to refine our process and tools where necessary.

The main limitation of the process described in this paper is that it works only
for certain types of applications. These applications have to have a well defined
notion of work and have application ”"knobs” that can be adjusted to change the

application’s resource usage (at the expense of quality usually). However we fell
that this limitation is not fatal as a large number of applications fall into this
category.

7 Related work

Chroma builds on previous experience with Odyssey [18]. Odyssey provides sup-
port for mobile information access through application-aware adaptation, a col-
laborative partnership between the operating system and applications.

The technique of using stubs and a stub generator is derived from RPC [6].
RPC has shown the effectiveness of stubs in insulating system details from ap-
plications and the usefulness of a stub generator for automated code generation.
We have simply applied these techniques to the realm of adaptation in pervasive
computing.

The application description language addresses some of the same issues as
4GLs [15] and “little languages” [5]. The latter are task-specific languages that
allow developers to express higher level semantics without worrying about low
level details. Our description language is similar as it allows application devel-
opers to specify the adaptation capabilities of their applications at a higher level
without needing to worry about low level system integration details. Our stub
generator converts this high level description into low level code for interfac-
ing the application with the runtime. Another system that uses this method is
CORBA [19, 24]. However, our approach is focused towards adaptive systems.

Initial research [7] on adaptive multimedia applications concentrated on low-
level system parameters, while concern for user-perceived quality attributes ap-
peared later [16]. Expressing user satisfaction took an econometric slant, and
new expressive power, with the introduction of utility functions in resource allo-
cation systems in [20]. Capturing user goals and using that knowledge to drive
systems is a cornerstone of recent work on expert systems that provide assistance
to computer users. For example, Horvitz [11] uses Bayesian networks to perform
inference on user goals and utility functions to evaluate the relative merit of
alternative system actions.

8 Conclusion

In this paper we have shown an effective approach for reducing the cost of devel-
oping and maintaining mobile adaptive applications. Specifically, our approach
is:

— A description language for representing the adaptation features of applica-
tions in a platform and implementation-independent fashion. The descrip-
tion language is rich enough to describe features for adaptation by remote
execution and for driving the adaptation policies based on user expectations.

— A stub generator that produces an interface between the application and
the underlying runtime support for adaptation. Although the design of such

interfaces is applicable to a broad class of adaptive applications, the stub
generator tailors each generated interface to the specific adaptation features
of the application, thus making it easier to extend each application.

— A methodology for extending applications for adaptation.

We have implemented this approach for a video player (Xanim), a lan-
guage translator (Pangloss-Lite), a speech recognizer (Janus) and a 3-D viewer
(GLVU). We have reported three of these experiments as case studies in this
paper. From Figures 3, 5 and 7, we see that a small amount of manual effort
had to be done to modify XAnim, Pangloss-Lite and GLVU. These changes were
also systematic and very similar across all the three applications. This provides
preliminary evidence that our process minimizes the amount of work needed to
modify the application.

Although more case studies are needed to further validate our approach, we
are confident that the mechanisms that we have created can be used to extend
a broad class of applications for adaptability.

We have also shown how adaptive mobile applications can deal effectively
with the problem of adjusting adaptation policies to cope with dynamically
changing user expectations. We recognized that the appropriate policy is best
determined outside the application and designed an interface that allows an
adaptive application to receive a representation of that policy at runtime, as
often as required by the changes in user expectations.

References

1. Removed for double blind review.
. Removed for double blind review.

3. Amiri, K., Petrou, D., Ganger, G., and Gibson, G. Dynamic function placement
for data-intensive cluster computing. Proceedings of the USENIX 2000 Annual
Technical Conference, San Diego, CA, June 2000.

4. Basney, J. and Livny, M. Improving goodput by co-scheduling CPU and network
capacity. Intl. Journal of High Performance Computing Applications, 13(3), Fall
1999.

5. Bentley, J. Little languages. Communications of the ACM, 29(8):711-21, 1986.

6. Birrell, A. D. and Nelson, B. J. Implementing remote procedure call. ACM Trans-
actions on Computer Systems, 2(1):39-59, Feb. 1984.

7. Clark, D. D., Shenker, S., and Lixia, Z. Supporting real-time applications in an
integrated services packet network; architecture and mechanism. ACM SIGCOMM
92, 22(4):14-26, aug 1992.

8. Flinn, J., Narayanan, D., and Satyanarayanan, M. Self-tuned remote execution for
pervasive computing. Proceedings of the 8th Workshop on Hot Topics in Operating
Systems (HotOS-VIII), Schloss Elmau, Germany, May 2001.

9. Forman, G. and Zahorjan, J. Survey: The challenges of mobile computing. IEEE
Computer, 27(4):38-47, April 1994.

10. Frederking, R. and Brown, R. D. The Pangloss-Lite machine translation system.
Ezpanding MT Horizons: Proceedings of the Second Conference of the Association
for Machine Translation in the Americas, pages 268272, Montreal, Canada, 1996.

N

11.

12.

13.

14.

15.
16.
17.

18.

19.

20.

21.

22.

23.

24.

Horvitz, E. Principles of mixed-initiative user interfaces. Proceedings of CHI 99,
ACM SIGCHI Conference on Human Factors in Computing Systems, Pittsburgh,
PA, May 1999.

Hunt, G. C. and Scott, M. L. The Coign automatic distributed partitioning system.
Proceedings of the 3rd Symposium on Operating System Design and Implemetation
(0SDI), pages 187-200, New Orleans, LA, Feb. 1999.

Katz, R. H. Adaptation and mobility in wireless information systems. IEEFE
Personal Communications, 1(1):611-17, 1994.

Mark Podlipec. XANIM source code and online documentation.
http://smurfland.cit.buffalo.edu/xanim /home.html, Mar. 1999.

Martin, J. Fourth-Generation Languages, volume 1: Principles. Prentice-Hall, 1985.
McCanne, S. and Jacobson, V. Vic: A flexible framework for packet video. ACM
Multimedia, pages 511-522, Nov. 1995.

Narayanan, D. and Satyanarayan, M. Predictive resource management for wearable
computing. Proceedings of the 1st International Conference on Mobile Systems,
Applications, and Services (MobiSys), San Francisco, CA, May 2003.

Noble, B. D., Satyanarayanan, M., Narayanan, D., Tilton, J. E.; Flinn, J., and
Walker, K. R. Agile application-aware adaptation for mobility. Proceedings of the
16th ACM Symposium on Operating Systems Principles (SOSP), pages 276-287,
Saint-Malo, France, October 1997.

Object Management Group. The Common Object Request Broker: Architecture
and Specification, 1999. Revision 2.3.1, ftp://ftp.omg.org/pub/docs/formal /99-10-
07.ps.

Rajkumar, R., Lee, C., Lehoczky, J., and Siewiorek, D. Practical solutions for
QoS-based resource allocation. The 19th IEEE Real-Time Systems Symposium
(RTSS’98), pages 296-306, Dec. 1998.

Satyanarayanan, M. Mobile Information Access. IEEE Personal Communications,
3(1), February 1996.

Sousa, J. and Garlan, D. Aura: An architectural framework for user mobility in
ubiquitous computing environments. In Jan Bosch, Morven Gentleman, C. H.
and Kuusela, J., editors, Software Architecture, System Design, Development and
Maintenance, pages 29-43. Kluwer Academic Publishers, Aug. 2002.

The Walkthru Project. GLVU source code and online documentation.
http://www.cs.unc.edu/ walk/software/glvu/, Feb. 2002.

Vinoski, S. CORBA: Integrating diverse applications within distributed heteroge-
neous environments. IEEE Communications, 35(2):46-55, Feb. 1997.

