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ABSTRACT 

We propose an improved approach to dynamic 
configuration of resource-aware applications.  The new 
anticipatory model of configuration maximizes utility based 
on three inputs: user preferences, application capability 
profiles, and resource availability.  In this respect, the 
proposed model is similar to a model of configuration 
described in [2].  However, the latter addressed the dynamic 
nature of the problem by reacting to changes (such as 
decrease in resource availability), and maximized the utility 
in a point-wise manner.  The newly proposed anticipatory 
approach explicitly models the duration of the task and 
leverages possible information about the future (such as 
stochastic resource availability over the expected duration 
of the task). 

We expect that the anticipatory model will improve user’s 
utility, conserve scarce resources, and reduce the amount of 
disruption to the user resulting from changes when 
compared to the reactive model.  However, the optimization 
problem underlying the anticipatory model is 
computationally more difficult than the problem underlying 
the reactive model.  We would like to investigate if the 
anticipatory approach is feasible and efficient in practice 
while delivering the above-mentioned improvements.  In 
this paper, we carefully state the model of anticipatory 
configuration, highlight the sources of complexity in the 
problem, propose an algorithm to the anticipatory 
configuration problem, and provide a roadmap for research. 
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1. INTRODUCTION 
In [2], we presented a model of dynamic configuration. 
This model takes three inputs and computes optimal 
configurations.  First input is a task request, which is an 
abstract description of the capabilities that a user needs 
(e.g., “browse web” and “play video”) and preferences for 
the associated quality dimensions (e.g., “latency”, “frame 
rate”, “color”).  Second is a collection of capability profiles 
of adaptive, resource-aware applications that describe the 
runtime resource requirements for the various level of 
quality of service that these applications can provide.  And 

third is a snapshot of available supply of scarce resources, 
such as bandwidth and CPU.  The reactive model 
maximizes the function of user’s preferences (in other 
words, user’s utility), subject to application capabilities and 
available resources.  The resulting algorithm computes a 
near-optimal configuration: (1) an assignment of concrete 
applications to abstract needs in the task, and (2) quality 
level set-points for each application.  For each selected 
application, the near-optimal configuration also contains 
resource allocation that can be used by the application and 
supporting mechanisms for choosing adaptation strategies. 

Recognizing that the computing environment changes over 
time (e.g., resource availability might change, applications 
might fail), the model in [2] proposes reacting to changes 
as they occur, effectively maximizing utility in a point-wise 
manner.  To mitigate against the possibility of frequently 
switching applications the reactive model applies penalties 
every time a running application is switched without user’s 
explicit request. 

The reactive model of configuration has one primary 
drawback.  Since it computes near-optimal configurations 
point-wise, the resulting sequence of near-optimal solutions 
might fall far from being globally optimal.  In other words, 
the utility that the user gets over the duration of the task 
might be far less than globally optimal, even though each 
configuration is near-optimal at the time it is selected. 

To alleviate this problem, we propose an anticipatory 
model, which has the following new elements: 

• Explicitly considers the duration of the task, 

• Models utility accrual over time, 

• Models the availability of resources as stochastic 
processes, 

• Considers non-perishable resources such as battery. 

The anticipatory model of configuration maximizes the 
expected accrued utility over the duration of the task given 
the following inputs: (1) expected duration of the task, (2) 
user’s preferences, (3) application profiles, and (4) 
stochastic processes describing resource availability over 
time.  Furthermore, the anticipatory model can treat the 
duration of the task as a decision variable, and optimize a 
measure of utility that combines both task duration and 
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dimensions of output quality in the presence of non-
perishable resource constraints (for example, battery). 

We propose to model time discretely and use a dynamic 
programming algorithm to solve the optimization problem.  
While our solution is simple, the large number of states that 
the algorithm needs to consider might make it infeasible. 

We expect that an infrastructure based on the anticipatory 
configuration model and solution can deliver benefits in the 
following areas of supporting a user’s task: 

• Improve quality of service of the task, 

• Conserve scarce resources, 

• Reduce configuration time and effort to start the task, 

• Reduce configuration effort during the task, 

• Reduce disruptive changes during the task, 

We also expect that the anticipatory configuration model to 
perform better in one or more of the above dimensions 
when compared to the reactive model. 

In Section 2, we present the details of the anticipatory 
model of configuration.  In Section 3 we outline a solution 
to the optimization problem and present a roadmap for 
research. 

2. THE SKETCH OF THE MODEL 
2.1 Model of a User Task 
A task is T is a set of services: { }niST i ,...1,ˆ == .   Each 

service is an abstract description of capabilities: type (for 
example, “play video”), and quality dimensions (for 
example, “frame rate”, “image size”).  Formally, 

),( iii QS τ= , where iτ is the type of service, and iQ  is 

the Cartesian product of the quality dimensions, qij.  Figure 
1 shows a graphical representation of a task. 

 
Figure 1: Visual representation of a task.  A task is a set of 
services.  Each service is described by its type and quality 

dimensions. 

2.2 Time and Task Duration 
We model time as small, discrete intervals.  We assume that 
the state of the world may only change at the beginning of 
each interval and remains constant throughout the interval.  
We denote time intervals using integers.  For this paper, we 
will use small letter m to index time and let the task 
duration go from 0 to M. 

2.3 Utility 
Utility of service Si is computed by combining preferences 
for quality of service and specific applications using 
weigted sums.  Specifically, the components of service 
utility are the following: 

• One preference function for each quality of 
dimension.  This can be an arbitrary function that 
maps a quality level to a real number, 

• One preference function for the choice of specific 
application that provides the service type.  This is 
typically an enumerated function, 

• One penalty function that captures user’s tolerance to 
changing the application, 

These functions are combined using weighted addition. 

Utility of the task is the sum of service utilities.  We denote 
the utility of the task as Utask.  The utility we have just 
described is the point-wise (instantaneous) task utility. 

Let the task start at time 0 and last until time M.  We model 
the utility accrual over time by taking time-discounted sum 
of the instantaneous utility at each time window: 

where the instantaneous utilities on the right-hand side of 
the equation now have an additional argument showing time 
and � is a discount factor between 0 and 1. 

2.4 Application Profiles 
An application profile describes the capabilities of a 
specific application running on a particular piece of 
hardware.  This includes the name of the application, 
version, the service type it supports.  The profile also 
includes a map that describes how efficiently the 
application converts resources into quality of service.  
Formally, this map a relation between the quality space of 
the service and resources demanded.  Each tuple in the 
relation shows a possible level of service the application 
can deliver, if the requisite vector of resources is available 
for that application.  Figure 2 shows the sketch of an 
application profile. 
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Figure 2: A sketch of an application profile. 

2.5 Resources 
We model the availability of a resource as a stochastic 
process over time.  Formally, the availability of resource i is 
a function of time Ri of a random variable.  At time m the 
value Ri|m is no longer random: all the uncertainty in the 
value of the resource has been resolved. 

Because of the discrete nature of the problem, we consider 
discrete random processes. 

2.6 Optimization Problems 
Recall that a configuration is an assignment of applications 
to the services in the task, together with a level of quality 
service that each application should provide.  

The optimization problem is to find a sequence of 
configurations that maximizes the accrued utility over the 
duration of the task, given the application profiles and 
resource availability. 

Solving the problem of optimal anticipatory configuration 
requires solving a couple of sub-problems.  Not 
surprisingly, these are problem instances that are solved as 
part of reactive optimal configuration.  Next, we describe 
those problem instances. 

Best QoS Instantaneous. Given a fixed assignment of 
applications, find a level of quality for each application, 
together with the resource allocation, such that the 
instantaneous task utility is maximized. 

A scalable solution to this problem based on greedy 
approximation is given in [1].  The solution has runtime 
complexity O(N*LogN), where N is the aggregate number 
of points in the quality-resource profiles of all the 
applications in the assignment. 

Optimal Reactive Configuration. Given multiple candidate 
applications for each service in a task, find a configuration 
such that the instantaneous task utility is maximized.  An 
efficient solution to this problem in the context of an 
infrastructure for UbiComp is given in [2].  This solution 
relies on the solution to Best QoS Instantaneous problem 

instance and uses a heuristic to explore application 
assignments that have high potential utility. 

Optimal Anticipatory Configuration. Given multiple 
candidate applications, a task duration, and stochastic 
resource availability information, find a sequence of 
configurations such that the accrued utility over the 
duration of the task is maximized. 

To our knowledge, this is a new problem instance. 

The optimal anticipatory configuration problem may not be 
computationally feasible without imposing additional 
restrictions.  In the next section we discuss the sources of 
complexity in the problem and possible solutions. 

3. PROPOSED SOLUTION 
3.1 A Proposed Solution 
We propose solving the Optimal Anticipatory 
Configuration problem using dynamic programming.  To 
help illustrate the solution, we assume for simplicity that the 
processes describing the availability of resources are non-
random (one can view this as a degenerate case of a random 
process, when all the probability mass is assigned to one 
point). 

Let the number of distinct application assignments be P, 
and the number of time windows be M.  Let indices p, q 
range over the application assignments and index m range 
over the time intervals.  Let BestQoS(p,m) denote the 
solution to the Best QoS Instantaneous problem at time m if 
the application assignment chosen is p.  In the first phase of 
the solution, we compute BestQoS solutions for all time 
periods M and all assignments P.  The runtime complexity 
of computing this is O(M) * O(P) * O(BestQoS). 

Next, we compute the penalty resulting from switching 
application combination p to application combination q.  
Note that such computation is independent of the resource 
level or the time period.  This computation requires O(P*P) 
time, assuming the penalty computation for one pair can be 
in done in O(1) time. 

Next, we compute optimal sequence of configurations up to 
time m, where m varies from 0 to M.  Let Seq(p,m) denote 
the sequence of configurations that maximizes the accrued 
utility AccUTask(m) through time period m, with the 
restriction that at time period m, application assignment 
with index p is chosen (in other words, in Seq(p,m), 
application assignment p is always chosen at time m). 

Denote by M(p,m) the utility accrued from Seq(p,m).  
Observe that the following recursive relationship holds: 

M(p,m) = max1<=q<=P(M(q, m-1) + UTask(m)), 

where UTask(m) is the maximum instantaneous utility that 
the pth application assignment can deliver, given that in the 

Application Profile 

Name: “QuickTime” 

Service Type: “play video” 

QoS 1: “frame size” 

QoS 2: “frame rate” 

QoS 3: “color” 

Quality to Resource Map 

100x200, 12 fps, BW 

100x200, 12 fps, 8bit 

100x200, 24 fps, BW 

80 Kpbs, 10% CPU 

120 Kpbs, 12% CPU 

144 Kpbs, 14% CPU 

… … 
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previous time window the qth application assignment was 
chosen (in other words, UTask(m) depends on the choice of 
q). 

The formula above states that in order to compute 
maximum utility accrued from Seq(p,m), we need to 
consider the maximum utility possible for all sequences up 
to time m-1, and then add the additional utility from 
choosing combination p at time m.  That latter term, 
Utask(m), depends on the combination chosen at time m-1. 

Once we have computed the values of M(p,m) for all p and 
all m, we identify that p’ which delivers the maximum 
M(p,M).  We claim that the corresponding sequence 
Seq(p’,M) is the solution to the Optimal Anticipatory 
Configuration problem. 

The recursive formula lends itself to a dynamic 
programming solution that is linear in the number of time 
periods considered.  At each iteration of the dynamic 
program, O(P) instances of Best QoS Instantaneous 
problem need to be solved, one for each supplier 
assignment.  For the purposes of computing the change 
penalties, Best QoS Instantaneous needs to be solved for 
each pair of assignments.  However, this can be done once, 
because change penalties do not depend on the level of 
resources, as mentioned above.  Thus the overall 
complexity of the solution is O(M) * O(P) * O(BestQoS) + 
O(BestQoS) * O(P) * O (P). 

We made a simplifying assumption that the resource paths 
are non-random for the sole purpose of illustrating a 
dynamic programming solution.  When resources are 
allowed to be adapted stochastic processes, the solution 
needs to be refined appropriately.  We believe this is 
possible, but there are various computational issues. 

3.2 Research Plan 
When processes describing available resources are allowed 
to be stochastic, the computational complexity of the 
problem grows.  However, it is realistic to assume that the 
possible resource paths and their probabilities depend only 
on the value of the resource in the present.  Indeed, the 
value of bandwidth in the next instance may depend on the 
value of bandwidth now, but it should not depend on how 
we arrived at the present value.  This property of stochastic 
processes is called Markov.  This realistic assumption 

allows us to maintain the problem computationally feasible 
for interesting problem sizes. 

Even with this assumption, there are a number of 
parameters that significantly affect the complexity of the 
computational problem: 

• Granularity of the time window.  At what granularity the 
problem becomes computationally infeasible? 

• The branching factor of the resource paths.  In other 
words, how many different values can the random 
variable describing resource availability take? 

• Non-perishable resources such as battery and the 
relationship to other resources, such as maximum CPU 
available.  How does this affect the computational 
complexity of the problem? 

And lastly, we would like to compare the anticipatory and 
reactive models of configuration.  How does the 
anticipatory model compare to the reactive model?  Under 
what circumstances does the reactive model provide good-
enough solutions? 
We plan to investigate the boundary between computational 
feasibility and efficiency of the optimization problems 
underlying the anticipatory configuration problem.  
Specifically, we propose to parameterize the variables 
mentioned in the above list and perform experiments to 
determine where the problem becomes infeasible in 
practice.  We would like to also investigate the 
circumstances under which the anticipatory configuration 
delivers really poor solution. 
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