
 - 1 -

Anticipatory Configuration of
Resource-aware Applications

 Vahe Poladian, Joao Sousa, Frank Padberg, Mary Shaw
School of Computer Science, Carnegie Mellon University

{vahe.poladian, jpsousa, mary.shaw} at cs.cmu.edu, padberg at ira.uka.de

ABSTRACT

We propose an improved approach to dynamic
configuration of resource-aware applications. The new
anticipatory model of configuration maximizes utility based
on three inputs: user preferences, application capability
profiles, and resource availability. In this respect, the
proposed model is similar to a model of configuration
described in [2]. However, the latter addressed the dynamic
nature of the problem by reacting to changes (such as
decrease in resource availability), and maximized the utility
in a point-wise manner. The newly proposed anticipatory
approach explicitly models the duration of the task and
leverages possible information about the future (such as
stochastic resource availability over the expected duration
of the task).

We expect that the anticipatory model will improve user’s
utility, conserve scarce resources, and reduce the amount of
disruption to the user resulting from changes when
compared to the reactive model. However, the optimization
problem underlying the anticipatory model is
computationally more difficult than the problem underlying
the reactive model. We would like to investigate if the
anticipatory approach is feasible and efficient in practice
while delivering the above-mentioned improvements. In
this paper, we carefully state the model of anticipatory
configuration, highlight the sources of complexity in the
problem, propose an algorithm to the anticipatory
configuration problem, and provide a roadmap for research.

Keywords
Multi-dimensional utility, resource, stochastic process, dynamic
configuration, engineering for value.

1. INTRODUCTION
In [2], we presented a model of dynamic configuration.
This model takes three inputs and computes optimal
configurations. First input is a task request, which is an
abstract description of the capabilities that a user needs
(e.g., “browse web” and “play video”) and preferences for
the associated quality dimensions (e.g., “latency”, “frame
rate”, “color”). Second is a collection of capability profiles
of adaptive, resource-aware applications that describe the
runtime resource requirements for the various level of
quality of service that these applications can provide. And

third is a snapshot of available supply of scarce resources,
such as bandwidth and CPU. The reactive model
maximizes the function of user’s preferences (in other
words, user’s utility), subject to application capabilities and
available resources. The resulting algorithm computes a
near-optimal configuration: (1) an assignment of concrete
applications to abstract needs in the task, and (2) quality
level set-points for each application. For each selected
application, the near-optimal configuration also contains
resource allocation that can be used by the application and
supporting mechanisms for choosing adaptation strategies.

Recognizing that the computing environment changes over
time (e.g., resource availability might change, applications
might fail), the model in [2] proposes reacting to changes
as they occur, effectively maximizing utility in a point-wise
manner. To mitigate against the possibility of frequently
switching applications the reactive model applies penalties
every time a running application is switched without user’s
explicit request.

The reactive model of configuration has one primary
drawback. Since it computes near-optimal configurations
point-wise, the resulting sequence of near-optimal solutions
might fall far from being globally optimal. In other words,
the utility that the user gets over the duration of the task
might be far less than globally optimal, even though each
configuration is near-optimal at the time it is selected.

To alleviate this problem, we propose an anticipatory
model, which has the following new elements:

• Explicitly considers the duration of the task,

• Models utility accrual over time,

• Models the availability of resources as stochastic
processes,

• Considers non-perishable resources such as battery.

The anticipatory model of configuration maximizes the
expected accrued utility over the duration of the task given
the following inputs: (1) expected duration of the task, (2)
user’s preferences, (3) application profiles, and (4)
stochastic processes describing resource availability over
time. Furthermore, the anticipatory model can treat the
duration of the task as a decision variable, and optimize a
measure of utility that combines both task duration and

 - 2 -

dimensions of output quality in the presence of non-
perishable resource constraints (for example, battery).

We propose to model time discretely and use a dynamic
programming algorithm to solve the optimization problem.
While our solution is simple, the large number of states that
the algorithm needs to consider might make it infeasible.

We expect that an infrastructure based on the anticipatory
configuration model and solution can deliver benefits in the
following areas of supporting a user’s task:

• Improve quality of service of the task,

• Conserve scarce resources,

• Reduce configuration time and effort to start the task,

• Reduce configuration effort during the task,

• Reduce disruptive changes during the task,

We also expect that the anticipatory configuration model to
perform better in one or more of the above dimensions
when compared to the reactive model.

In Section 2, we present the details of the anticipatory
model of configuration. In Section 3 we outline a solution
to the optimization problem and present a roadmap for
research.

2. THE SKETCH OF THE MODEL
2.1 Model of a User Task
A task is T is a set of services: { }niST i ,...1,ˆ == . Each

service is an abstract description of capabilities: type (for
example, “play video”), and quality dimensions (for
example, “frame rate”, “image size”). Formally,

),(iii QS τ= , where iτ is the type of service, and iQ is

the Cartesian product of the quality dimensions, qij. Figure
1 shows a graphical representation of a task.

Figure 1: Visual representation of a task. A task is a set of
services. Each service is described by its type and quality

dimensions.

2.2 Time and Task Duration
We model time as small, discrete intervals. We assume that
the state of the world may only change at the beginning of
each interval and remains constant throughout the interval.
We denote time intervals using integers. For this paper, we
will use small letter m to index time and let the task
duration go from 0 to M.

2.3 Utility
Utility of service Si is computed by combining preferences
for quality of service and specific applications using
weigted sums. Specifically, the components of service
utility are the following:

• One preference function for each quality of
dimension. This can be an arbitrary function that
maps a quality level to a real number,

• One preference function for the choice of specific
application that provides the service type. This is
typically an enumerated function,

• One penalty function that captures user’s tolerance to
changing the application,

These functions are combined using weighted addition.

Utility of the task is the sum of service utilities. We denote
the utility of the task as Utask. The utility we have just
described is the point-wise (instantaneous) task utility.

Let the task start at time 0 and last until time M. We model
the utility accrual over time by taking time-discounted sum
of the instantaneous utility at each time window:

where the instantaneous utilities on the right-hand side of
the equation now have an additional argument showing time
and � is a discount factor between 0 and 1.

2.4 Application Profiles
An application profile describes the capabilities of a
specific application running on a particular piece of
hardware. This includes the name of the application,
version, the service type it supports. The profile also
includes a map that describes how efficiently the
application converts resources into quality of service.
Formally, this map a relation between the quality space of
the service and resources demanded. Each tuple in the
relation shows a possible level of service the application
can deliver, if the requisite vector of resources is available
for that application. Figure 2 shows the sketch of an
application profile.

“f
ra

m
e

si
ze

”

Task: “Movie Review”

Service 1: “play video” Service 2: “browse”

“f
ra

m
e

ra
te

”

”c
ol

or
”

“l
at

en
cy

”

“c
on

te
nt

”

() ()iUMAccU
M

i Task
m

Task �
−

=
= 1

0
δ

 - 3 -

Figure 2: A sketch of an application profile.

2.5 Resources
We model the availability of a resource as a stochastic
process over time. Formally, the availability of resource i is
a function of time Ri of a random variable. At time m the
value Ri|m is no longer random: all the uncertainty in the
value of the resource has been resolved.

Because of the discrete nature of the problem, we consider
discrete random processes.

2.6 Optimization Problems
Recall that a configuration is an assignment of applications
to the services in the task, together with a level of quality
service that each application should provide.

The optimization problem is to find a sequence of
configurations that maximizes the accrued utility over the
duration of the task, given the application profiles and
resource availability.

Solving the problem of optimal anticipatory configuration
requires solving a couple of sub-problems. Not
surprisingly, these are problem instances that are solved as
part of reactive optimal configuration. Next, we describe
those problem instances.

Best QoS Instantaneous. Given a fixed assignment of
applications, find a level of quality for each application,
together with the resource allocation, such that the
instantaneous task utility is maximized.

A scalable solution to this problem based on greedy
approximation is given in [1]. The solution has runtime
complexity O(N*LogN), where N is the aggregate number
of points in the quality-resource profiles of all the
applications in the assignment.

Optimal Reactive Configuration. Given multiple candidate
applications for each service in a task, find a configuration
such that the instantaneous task utility is maximized. An
efficient solution to this problem in the context of an
infrastructure for UbiComp is given in [2]. This solution
relies on the solution to Best QoS Instantaneous problem

instance and uses a heuristic to explore application
assignments that have high potential utility.

Optimal Anticipatory Configuration. Given multiple
candidate applications, a task duration, and stochastic
resource availability information, find a sequence of
configurations such that the accrued utility over the
duration of the task is maximized.

To our knowledge, this is a new problem instance.

The optimal anticipatory configuration problem may not be
computationally feasible without imposing additional
restrictions. In the next section we discuss the sources of
complexity in the problem and possible solutions.

3. PROPOSED SOLUTION
3.1 A Proposed Solution
We propose solving the Optimal Anticipatory
Configuration problem using dynamic programming. To
help illustrate the solution, we assume for simplicity that the
processes describing the availability of resources are non-
random (one can view this as a degenerate case of a random
process, when all the probability mass is assigned to one
point).

Let the number of distinct application assignments be P,
and the number of time windows be M. Let indices p, q
range over the application assignments and index m range
over the time intervals. Let BestQoS(p,m) denote the
solution to the Best QoS Instantaneous problem at time m if
the application assignment chosen is p. In the first phase of
the solution, we compute BestQoS solutions for all time
periods M and all assignments P. The runtime complexity
of computing this is O(M) * O(P) * O(BestQoS).

Next, we compute the penalty resulting from switching
application combination p to application combination q.
Note that such computation is independent of the resource
level or the time period. This computation requires O(P*P)
time, assuming the penalty computation for one pair can be
in done in O(1) time.

Next, we compute optimal sequence of configurations up to
time m, where m varies from 0 to M. Let Seq(p,m) denote
the sequence of configurations that maximizes the accrued
utility AccUTask(m) through time period m, with the
restriction that at time period m, application assignment
with index p is chosen (in other words, in Seq(p,m),
application assignment p is always chosen at time m).

Denote by M(p,m) the utility accrued from Seq(p,m).
Observe that the following recursive relationship holds:

M(p,m) = max1<=q<=P(M(q, m-1) + UTask(m)),

where UTask(m) is the maximum instantaneous utility that
the pth application assignment can deliver, given that in the

Application Profile

Name: “QuickTime”

Service Type: “play video”

QoS 1: “frame size”

QoS 2: “frame rate”

QoS 3: “color”

Quality to Resource Map

100x200, 12 fps, BW

100x200, 12 fps, 8bit

100x200, 24 fps, BW

80 Kpbs, 10% CPU

120 Kpbs, 12% CPU

144 Kpbs, 14% CPU

… …

 - 4 -

previous time window the qth application assignment was
chosen (in other words, UTask(m) depends on the choice of
q).

The formula above states that in order to compute
maximum utility accrued from Seq(p,m), we need to
consider the maximum utility possible for all sequences up
to time m-1, and then add the additional utility from
choosing combination p at time m. That latter term,
Utask(m), depends on the combination chosen at time m-1.

Once we have computed the values of M(p,m) for all p and
all m, we identify that p’ which delivers the maximum
M(p,M). We claim that the corresponding sequence
Seq(p’,M) is the solution to the Optimal Anticipatory
Configuration problem.

The recursive formula lends itself to a dynamic
programming solution that is linear in the number of time
periods considered. At each iteration of the dynamic
program, O(P) instances of Best QoS Instantaneous
problem need to be solved, one for each supplier
assignment. For the purposes of computing the change
penalties, Best QoS Instantaneous needs to be solved for
each pair of assignments. However, this can be done once,
because change penalties do not depend on the level of
resources, as mentioned above. Thus the overall
complexity of the solution is O(M) * O(P) * O(BestQoS) +
O(BestQoS) * O(P) * O (P).

We made a simplifying assumption that the resource paths
are non-random for the sole purpose of illustrating a
dynamic programming solution. When resources are
allowed to be adapted stochastic processes, the solution
needs to be refined appropriately. We believe this is
possible, but there are various computational issues.

3.2 Research Plan
When processes describing available resources are allowed
to be stochastic, the computational complexity of the
problem grows. However, it is realistic to assume that the
possible resource paths and their probabilities depend only
on the value of the resource in the present. Indeed, the
value of bandwidth in the next instance may depend on the
value of bandwidth now, but it should not depend on how
we arrived at the present value. This property of stochastic
processes is called Markov. This realistic assumption

allows us to maintain the problem computationally feasible
for interesting problem sizes.

Even with this assumption, there are a number of
parameters that significantly affect the complexity of the
computational problem:

• Granularity of the time window. At what granularity the
problem becomes computationally infeasible?

• The branching factor of the resource paths. In other
words, how many different values can the random
variable describing resource availability take?

• Non-perishable resources such as battery and the
relationship to other resources, such as maximum CPU
available. How does this affect the computational
complexity of the problem?

And lastly, we would like to compare the anticipatory and
reactive models of configuration. How does the
anticipatory model compare to the reactive model? Under
what circumstances does the reactive model provide good-
enough solutions?
We plan to investigate the boundary between computational
feasibility and efficiency of the optimization problems
underlying the anticipatory configuration problem.
Specifically, we propose to parameterize the variables
mentioned in the above list and perform experiments to
determine where the problem becomes infeasible in
practice. We would like to also investigate the
circumstances under which the anticipatory configuration
delivers really poor solution.

4. ACKNOWLEDGMENTS
This work has been funded in part by the National Science
Foundation under Grant CCF-0438929, by the Sloan
Software Industry Center at Carnegie Mellon, and by the
High Dependability Computing Program from NASA Ames
cooperative agreement NCC-2-1298.

5. REFERENCES
[1] Chen Lee, et al. A Scalable Solution to the Multi-Resource QoS

Problem. Proc IEEE Real-Time Systems Symposium (RTSS), 1999.
[2] Vahe Poladian, Joãa Pedro Sousa, David Garlan, Mary Shaw.

Dynamic Configuration of Resource-Aware Services. In Proc. 26th
Intl Conf. On Software Engineering (ICSE 2004). Edinburgh, May
2004.

