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This paper investigates the impact of traffic aggregation on the performance of routing al-
gorithms that incorporate traffic information. We focus on two issues. Firstly, we explore the
relationship betweeaveragenetwork performance and the coarseness (granularity) of traffic
splitting across routes. Specifically, we are interested in how average network performance im-
proves with our ability to distribute traffic arbitrarily across multiple paths. Secondly, we shift
our attention fromaverageto short-termperformance, with again a focus on the impact of traf-
fic granularity. In particular, we explore the relation between the level of traffic aggregation and
its variability, which directly affects short-term routing performance. Our investigation relies
on traffic traces collected from an operational network, and its results provide insight into the
cost-performance trade-off associated with deploying “traffic aware” routing protocols.

1. Introduction

As IP networks become the life-line of business and commercial applications, the need for
better service guarantees and improved performance are driving the deployment of service dif-
ferentiation and traffic engineering in IP networks. Both typically invale¢a pathmecha-
nisms like packet classification etc. armhtrol pathmechanisms like signalling and extensions
to routing protocols. In this paper we focus on routing, in particular, on evaluating the trade-off
that exists between the added complexity and cost of the extensions required to accommodate
traffic engineering, and the performance benefits it affords. We believe that such an understand-
ing is important to decide whether or rtoaffic awarerouting is worth deploying.

Traffic aware routing consists of protocols and algorithms that incorporate in the computation
of routes the knowledge of both available network resources, e.g., available link bandwidth, and
traffic requirements. The goal is some optimization of network usage or service guarantees.
There have been many studies devoted to the design and evaluation of traffic aware routing
algorithms and protocols, and they can be broadly classified in two categories. Those with a
traffic engineerindocus, and those that target an-demandanodel (see [5,9,2] for examples of
the first, and [4,1] and [8] despite its title for examples of the second). The focus of this paper is
on the traffic engineering usage of routing, where a traffic matrix characterizing the bandwidth
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requirements between pairs of ingress-egress nodes is assumed lamolwmsed to compute
routes in an attempt to optimize network performance. The traffic information is typically
obtained bymeasuringat ingress nodes the amount of traffic headed to various destinations.
Our main goal is to gain a better understanding of the cost-benefit trade-off associated with
incorporating traffic information into routing for traffic engineering purposes. The two main
contributors to the cost of such traffic aware routing are: (1) matching traffic to routes (paths) so
as to achieve “optimal” network performance; (2) updating routes to accommodate variations
in traffic patterns or intensity.

The first cost can be further broken down into a traffic classification cost at the ingress router
and a forwarding state cost in the core network both of which are affected by the granularity
at which traffic needs to be split (classified) to achieve "optimal loads”. We address this cost
issue by evaluating the impactwéffic granularityon the performance of traffic aware routing.
Traffic granularity refers to the level of traffic (and route) aggregation that constrains the load
balancing ability of traffic aware routing. Coarse granularity aggregation bundles traffic into a
small number ofstreams” that must then be routed individually. This decreases classification
cost but may affect routing performance by limiting its ability to arbitrarily split traffic across
paths to achieveptimallink loads.

The second cost is related to the fact that traffic patterns, and hence traffic matrices, change
over time. Frequent updating of routing tables to reflect this change is not desirable and is best
kept as low as possible. To address the second cost issue regarding the frequency of routing
updates, we study the influencetohe granularityon routing performance. In particular, we
assume that routes are computed on the basis of (long term) average traffic measures, and remain
fixed for the duration of the experiments. We then evaluate network performance at different
time scales, when traffic is distributed over this fixed set of routes. By varying the granularity
of the time over which performance is measured, we want to capture the impact of the varia-
tions, from the measured long term averages, of traffic intensity over different time scales. The
magnitude of those variations depends on both the length of the time interval over which we
measure performance, and the granularity of the traffic streams that were available when com-
puting routes. Our goal is to understand this relationship as traffic granularity changes, as well
as investigate its impact on routing performance, and in particular short term performance, i.e.,
over shorter time intervals than the ones used by routing to compute optimal routes.

The interaction between traffic and time granularity in the context of traffic aware routing is
as follows. Optimal routing, ignoring for the time being granularity constraints, computes a set
of “optimal paths and associated link loads” based on long term average traffic intensities, e.g.,
daily averages. Achieving these optimal link loads often requires a fine grain splitting of traffic
into small streams, which in turn tends to increase traffic variability. As a result, fine grain
splitting of traffic, besides increasing classification cost, this can produce higher short term
traffic variability and, therefore, possibly more frequent transient link overloads (underloads).
This could then lead to poorer short term network performance. Note that this will obviously
depend on the extent to which the greater variablility of finer granularity streams also translates
into more variable link loads. This will depend on the assignment of streams to paths, and this is
one of the aspects we investigate. On the other hand, although using coarser traffic granularity,
e.g., using supernets, may not allow us to optimally distribute traffic over links, it forces traffic to

4How to acquire this information is discussed in Section 2.
5This is described in more detail in Section 4.



remain aggregated. This may then result in smaller short term traffic fluctuations and, therefore,
fewer periods of transient overload and better overall performance.

Understanding the extent to which these different parameters affect the trade-off between
performance and cost in the context of traffic aware routing is the main goal of this paper.
Our approach is based on evaluating the performance of two heuristic routing algorithms for
“optimally” routing traffic given certain granularity constraints. We evaluate both short term and
long term performance as we vary traffic granularity. There have been a number of previous
studies devoted to the design and evaluation of traffic engineering protocols and algorithms
[5,9,2] in the context of IP and MPLS networks that we assume here. They however represent
a different setting from the one we consider in this paper since none of them focuses on the
interaction of time and traffic granularity and their effect on routing performance.

The rest of this paper is structured as follows. Section 2, reviews the traffic measurement pro-
cedures we rely on to estimate the traffic matrices used in the paper. Section 3 focuses on the
impact of traffic granularity on routing performance. Section 4 investigates how routing perfor-
mance varies over time as a function of traffic granularity. In particular, it explores how traffic
granularity affects the difference that exists between short term and long term performance.
Finally, Section 5 summarizes the findings of the paper and points out potential extensions.

2. Traffic Measurement and Traffic Matrix Generation

The generation of traffic matrices for our study is based on measurements taken within
Sprint’s IP backbone. The Sprint IP backbone monitoring project [6] provided us with packet-
level traces from a single POP (called the “monitored POP”). Optical splitters and IPMON sys-
tems [6] are used on each of the monitored links to capture the first 44 bytes of every IP packet
traversing the link. These 44-byte headers include address and size information for each packet.
In addition, each IP packet is time-stamped using a globally synchronized clock (GPS based).
From this information, we can determine the number of bytes headed to other destinations
across the Sprint network during any time interval. This data forms the basis for determining
(i) traffic intensities between the monitored POP and the other 15 POPs in the Sprint backbone
(see [6] for a general description of the overall topology and the internal architecture of a POP),
and (ii) the variations of this traffic on different time scales and at different levels of granularity.

In this work, we used a trace that is 800 minutes long and was collected at a peering link.

In our traffic matrix, each row represents an ingress POP and each column represents an
egress POP. Thus in its simplest form an entry in the traffic matrix represents the total volume
of traffic flowing from the ingress POP to the egress POP over the duration of the trace. We
further break this data between pairs of POPs (in each direction) into multiple levles of time
granularity and stream granularity and thus end up with a multidimensional traffic matrix.

The first step in building such a matrix from data consists of identifying the egress POP for
each packet monitored at the ingress POP. We downloaded IBGP tables from the monitored
POP at the same time that the traffic traces were gathered. Using information in the IBGP
table in conjunction with detailed knowledge about the network topology, we used the method
described in [11] to identify the egress POP for every packet in the trace.

Traffic granularity refers to the level of aggregation used to determine which packets are
mapped onto a given stream. Packets between two POPs can be aggregated into streams ac-
cording to different criteria. For example, packets can be mapped to streams based on their



source and destination addresses, port numbers and protocol numbers. This would generate
relatively fine granularity streams. Alternatively, coarser granularity streams can be obtained
by aggregating packets on the basis of a common destination address prefix. By using multi-
ple prefix masks of specific lengths, it is possible to vary the level of aggregation (i.e., stream
granularity) over a pre-determined range. Because of its simplicity and the fact that it provides

a systematic approach to varying granularity, we use this approach.

In particular, we use prefix lengths of 0, 4, 6, and 8. A prefix length of ‘0’ corresponds
to aggregating all the traffic between two POPs onto a single stream. A prefix length of 4
aggregates all packets with the same first 4 bits in the IP destination address field into a single
stream. More levels of granularity are similarly defined using prefixes of length 6 and 8. (We
use the notation p0, p4, p6 and p8 to refer to each of these granularity levels.) The use of
longer prefix lengths leads to a larger number of individual streams which can then be routed
individually. In general, as the length of the address prefix used to aggregate packets increases,
so does the number of streams, and conversely, traffic granularity decreases.

At each traffic granularity, we also measured the bandwidth levels at different time granu-
larity. The time granularity refers to the length of the measurement interval over which the
average bandwidth per stream was calculated. Since our tracg0wasinutes long, ar800
minute average represents the coarsest time granularity. We also used 10 minute measurements
to capture the short term variability of streams. Measuring the average bandwidth of streams
on different time scales enables us to identify short-term fluctuations around longer-term av-
erages. For example, the eighty ten-minute estimates obtained for each stream, show how the
traffic associated with a given destination prefix varies around its 800 minutes average during
those eighty consecutive ten-minute measurement intervals. Table 1 summarizes some typical
numbers that this process yielded for our data. It indicates the range on the number of streams,
and the range of average bandwidth per stream, for each of the granularity levels.

More specifically, the traffic matrix “row” obtained as a result of this process provides us with
a set of bandwidth estimates of the forﬂff,j [n, m|, wherei = 1,...,16 identifies the egress
node;;j € {0,4,6,8} indicates the prefix length used to separate traffic into finer granularity
streams; and: € {10,800} identifies the time granularity at which traffic is being measured.

In particular, Bij g[., ] is itself a “matrix” of bandwidth estimates for traffic from the moni-
tored POP to egress POP number 10. Each row in this matrix corresponds to a single stream
associated with all the packets heading towards POP number 10 with the same 8-bit destina-
tion address prefix. Each column of this matrix corresponds to one of the eighty ten-minute
bandwidth estimates. As a resulty 4[5, 22] gives the average traffic intensity in the 22nd ten-
minute monitoring interval for stream number 5 associated with an 8-bit destination address
prefix for packets from the monitored POP to POP number 10.

Because monitoring equipment is expensive and very difficult to deploy in operational net-
works, we were only able to obtain traces from a single POP. This generates data for a single row
of our traffic matrix. In order to populate the other 15 rows of the traffic matrix we combined
coarse traffic information obtained for other POPs using SNMP, with the detailed structural in-
formation provided by the measurements done at the monitored POP. The remaining 15 rows
of the traffic matrix were constructed by using the complete rows as a template and creating
new streams by randomly selecting a stream from the original pool and applying random cyclic
shifts of the time slots and small random perturbations to the stream. Once an entire row is
completed, the intensity of the streams was scaled to match the average intensity of traffic ob-



granularity| number of|  bandwidth
level streams | ranges (Mbps
pO 1 [1-14]
p4 [5-10] [0-8]
p6 [10-25] [0-4]
p8 [25-64] [0-4]
Table 1

Traffic Characteristics for Different Granularity (800mins Time Granularity).

tained using SNMP data. The extrapolation of the original row to obtain a complete matrix is
done only for the finest granularity level. Coarser granularity levels are obtained by aggregating
traffic from finer granularity levels.

In a separate study [11] more focused on POP dynamics, we analyzed data from other links
(of different types) within this POP. We studied both geographic and temporal properties of the
data at both the POP and link level, and concluded that the link included herein is typical in
that it captures two of the more salient properties observed across traffic traces gathered from
all other links. The first property is that the distribution of traffic to egress POPs is highly
nonuniform. A few egress POPs sink a large amount of traffic while the rest sink small and
medium amounts of traffic (where the ratios of large/medium and medium/small are roughly
two). The second property is that the variability of the traffic measured over half-hour time
slots and headed towards a given egress POP, greatly depends on the selected POP. These two
properties are present in the measured row of our traffic matrix that is used to generate the
remaining rows of the matrix, so that they are preserved throughout the matrix.

Due to the lack of monitoring information from other POPs, we believe the approach de-
scribed above to be a reasonable alternative since it does not introduce any particular bias in the
traffic matrix other than that already present in the original row. Furthermore, multiple traffic
matrices were generated to reduce the probability of such events. We acknowledge that our
approximations can to some extent affect the validity of our conclusions. However, we also
believe that the use of actual measurements to generate partial traffic matrix data together with
“reasonable” extrapolation techniques make for a traffic model that is realistic and that at a
minimum provides meaningful insights.

3. On the Impact of Traffic Granularity

In the context of traffic engineering, the goal of traffic aware routing is to distribute network
traffic, so as to optimize network performance, e.g., minimize average network delay or max-
imum link load. In this work, we use a delay-based “cost” function that relies on a standard
M/M/1 queueing delay expression (see [3, Sections 5.4 to 5.7]). Specifically, the cost function
C(v) on which we rely, is of the form
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where S corresponds to the average packet sizés the average total traffic offered to the
network, E is the set of links in the network;; are the link capacities, ang, are the average



link loads achieved by routing. There are obviously many other cost functions that are possible,
but in the context of traffic engineering, minimizing the delay experienced by user packets
traversing the network is a reasonable target. In addition, other “typical” cost functions like
minimizing maximum link load, are known, e.g., [12] to yield results similar to those of a
minimum delay cost function. Most important, however, is the convex, non-linear nature of the
cost curve. In the rest of the paper, we limit ourselves to this specific cost function.

In that context, we explore the impact of traffic granularity on the achievable network delay
by analyzing the behavior of two heuristics, which are briefly described later in this section. We
use heuristics since it is well-known, e.g., [7], that computing optimal routes while satisfying
traffic granularity constraints is an NP-hard problem.

3.1. Heuristic Routing Algorithms

The two heuristics we describe next attempt to approach unconstrained, optimal perfor-
mances, while accounting for the traffic granularity constraints imposed by the existence of
individual unsplittable streams. We use them to evaluate the impact of traffic granularity on
our ability to approach the performance of an optimal routing algorithm. Note that our pri-
mary intent isnot to demonstrate the superior performance of one heuristic over the other, but
instead to assess the impact of traffic granularity on routing performance, and hence provide
motivations, or lack thereof, for moving towards finer granularity in the context of traffic aware
routing. Due to lack of space, and given the fact that our main focus is on the impgeinef
ularity, we only give a brief description of the algorithms. The interested reader is referred to
[10] for a more detailed discussion.

3.1.1. Heuristic 1

The first heuristic is a simple greedy method that adds streams one at a time, while each time
selecting a path that minimizes delay. This heuristic is inspired from methods used in an “on-
demand” model of traffic aware routing where requests are generated dynamically and need to
be routed one at at time. The main variations for this first heuristic are in terms ofdéein
which individual streams are routed, e.g., in ascending, descending, or random orders in terms
of their traffic intensity. In our experiments we found that sorting the streams in descending
order gives the best performance (for both heuristics) among the three orderings. Henceforth
we shall implicitly assume such an ordering.

A key feature of this heuristic is that it is independent of the actual traffic offered between
different nodes. This clearly makes for greater simplicity, but also points to a limitation of the
approach, as it does not exploit key information that is available to the routing algorithm.

3.1.2. Heuristic 2

The second heuristic takes into account the knowledge of the total traffic matrix, and in par-
ticular the output (set of paths and associated loads) generated by an optimal routing algorithm,
that ignores granularity constraints imposed by streams. The motivation for using this informa-
tion is that it represents the best performance achievable.We give a brief outline of the heuristic
and refer the reader to [10] for more details.

The optimal routing problem can be set up as a straightforward multi-commaodity flow prob-
lem [10] which is solved using PPRNThe heuristic proceeds by assigning streams to (optimal)

5The PPRN package is available latp://www-eio.upc.es/ Jjecastro/pprn.html and was developed
at the Statistics and Operations Research Dept. at Universitat Politecnica de Catalunya, Barcelona, Spain, by Jordi



paths in a manner that attempts to get as close as possible to the link loads achieved by the op-
timal algorithm. This relies on a two phase procedure. The first phase involves routing streams
one-by-one, as in the first heuristic, but on a network with (fictitious) link capacities initially set
equal to the desired optimal loads. As each stream is added, it is routed on the path that yields
the minimum “delay” given the assumed link capacities. In order to take the granular nature
of traffic into consideration we relax the “fictitious” capacity constraint while routing over this
network, by allowing a stream to be routed if it does not exceed the capacity of any link on that
path by more than a factor ¢f + A). The parametef controls the amount by which the link
constraint is violated. In the second phase, any stream for which no fégsétkewas found

during the first phase, is routed using a standard minimum delay algorithm, but using now the
actual link capacities together with the link loads that resulted from the first phase.

3.2. Performance Evaluation

In this section, we investigate the impact of traffic granularity on routing performance, where
performance is measured in terms of the total network average delay computed using the long-
term average load. First, we compare the performance of the two heuristics against the optimal
routing algorithm, while assuming the finest granularity available from our traffic measure-
ments. i.e., the use of an address prefix mask of length 8. This provides some insight into the
differences in performance that exist between heuristics that incorporate knowledge of the traf-
fic matrix (Heuristic 2) and those that don’t (Heuristic 1). Unless specified, the stream ordering
used for both the heuristics was in decreasing fashion, i.e., larger streams were routed first.

In order to compare the performance of the heuristics, we scaleavtdrageintensity of a
randomly selected set of source-destination pairs in the Traffic Matrix to create hot spots. We
show the performance of the two heuristics and of the optimal routing algorithm in Figure 1.
Note that while the two heuristics were constrained to routing individually streams generated
from length 8 prefixes, the optimal algorithm did not follow any such constraint. As can be seen,
Heuristic 2 outperforms Heuristic 1 and closely follows the optimal till the ’knee’, thereafter the
granularity of the streams forces a different sub-optimum allocation. The main reason for the
inability of both heuristics to approach the optimal performance, even at the finest granularity
level (p8) can be found in Table 1, which shows that large bandwidth streams remain. Those
large bandwidth streams affect the load balancing ability of any algorithm. This factor not-
withstanding, the better performance of heuristic 2 illustrates the fact that using the information
available from the traffic matrix can yield better performance. In what follows, we explore
further the impact that traffic granularity has on routing performance.

We start this comparison by using the different levels of traffic granularity generated from our
traffic measurements. Specifically, traffic can be aggregated onto streams using prefix of lengths
0, 4, 6, or 8, which, as shown in Table 1, translate into average number of streams ranging from
1 (prefix length of 0) ta64 (prefix length of 8). Clearly, one can expect a larger number of
streams to result in better performance, as it gives routing more flexibility in assigning traffic
to paths. The aspect we want to explore isekielutionof routing performance as the number
of streams varies, i.e., what is the magnitude of performance improvements as the number

Castro and Narcs Nabona for solving multi-commodity network flow problems with linear and non-linear cost
functions.

"Note that feasibility is only in the context of the fictitious link capacities, and a feasible path can typically be
found when using theeal link capacities.
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Granularity | Average No. off Max. No. of
Distinct Paths | Distinct Paths
Mask 0 (0) 1 1
Mask 4 p4) 2 7
Mask 6 (6) 2.3 12
Mask 8 (8) 2.5 16
Table 2

Statistics for The Number of Distinct Paths Used at Each Granularity Level for Topology 1
(Most Heavily Loaded).

of streams varies. We proceeded to do so, by computing the mean delay averaged over 30
traffic matrices for each granularity level, each of which was routed on 10 networks with the
same topology but increasing capacities (decreasing loads). Each traffic matrix was generated
using the method described in Section 2 and the total average intensities for each S-D pair (for
each matrix) were scaled to the values obtained using SNMP data to obtain a fair comparison.
Different load values were generated by scaling down link capacities.

The results are plotted in Figure 2, which shows the average network wide delay as a function
of network sizing. We immediately see that a large fraction of the performance gain is achieved
when going from a prefix length of O to one of 4, and subsequent improvements are much more
modest. This stands to reason, since the number of paths through the network is limited, so that
beyond a certain level, additional streams are still routed over the same set of paths. We justify
this claim by providing, in Table 2, statistics regarding the actual number of distinct paths used
for each granularity level. We notice that the average number of paths used doubles from Mask
0 to Mask 4, but increases slowly thereafter indicating the limited availability of paths for all the
source-destination pairs. We also note that the improvement in performance decreases rapidly
as we increase the capacity of the network, which is not unexpected.

4. On the Impact of Time Granularity

The purpose of this section is to explore another dimension of how performance is affected
by the granularity at which routing is performed. Specifically, we saw in Section 3 that finer
granularity leads to a loweveragdoad on the links, which translates into lovaereragedelay,
that is, better long term performance. However, performance measured over finer time scales
can be significantly different. The traffic, and hence link loads measured at finer time scales
fluctuate around the long term average values. This combined with the non-linear nature of the
delay function can result in significantly different performance as compared to that obtained us-
ing long term average load. This is because fluctuations at the higher end of the curve contribute
much more to the delay than those at the lower end due to the non-linear convex nature of the
curve. Hence, both the mean laaaddthe variability of the traffic determine how routing perfor-
mance, measured over short time intervals (10 minutes), differs from its expected value based
on the long term average load (800 minutes). The goal of this section is to shed some light on
how these different factors interact and ultimately affect routing performance. Especially since,
as we show in the next sub-section, splitting traffic into finer straanisasestheir variability.

This can potentially offset the advantage of a lower operating link load, and result in a higher



delay over smaller time scales as compared to that obtained with coarser granularity streams.

4.1. Evaluating the Impact of Time Variability
In order to investigate this potential trade-off between improved average performance and
greater traffic variability, we first proceed to evaluate how traffic granularity affects its vari-
ability. We do so by computing the coefficient of variation of the traffic intensity of individual
streams for different levels of granularity over 80 10-minute-interval measurement samples.
The results are summarized in Figure 3, which clearly indicates that as the number of streams
increases, i.e., from MasKp0) to Masks (p8), so does the variability of individual streams.
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Figure 3. Relation Between Traffic Variability and Stream Granularity.

This implies that the potential benefits of improved average performance may be offset by
the impact of this greater stream variability which could result in higher link load variations, if
it also translates into greater variability at tive level, i.e., after streams have been assigned



to paths. Note that greater stream variability need not necessarily imply glie&téraffic
variability. For example, routing all streams from the same S-D pair on the same path would
obviously result in (link) traffic characteristics that are identical to those observed without first
splitting the traffic into streams. However, such a scenario is unlikely, as the load balancing
decisions of routing will typically result in streams from the same S-D pair being routed over a
distinct set of paths. In that context, it is unclear how aggregating streams from different S-D
pairs will affect the variability of link traffic.

In order to asses the relative effect of these competing factors, we evaluated the network delay
averaged over all the 80 10-minute measurement intervals, for the 30 traffic matrices routed over
the 10 networks used in Figure 2. Recall that different network loads were achieved by scaling
link capacities and not traffic matrices, hence, preserving temporal traffic characteristics across
experiments. The results are shown in Figure 4.
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Figure 4. Delay Averaged Over Time Slots.

From comparing Figure 4 with Figure 2, we immediately observe that the benefits of lower
average link loads and, therefore, delay, do not always translate into visibly better performance
when time variability is taken into account. The figure shows the delay averaged over the 80
10-minute slots for the different levels of traffic granularity under consideration, i.e., masks 0,
4,6, and 8. We observe that when routing is limited to a single stream (mask 0), performance is
poor even on the shorter 10-minute time scale. This is because although link traffic may exhibit
smaller short term load variations, the higher average link loads amplify those variations when
it comes to delay because of the non-linear nature of the curve. As traffic granularity decreases,
i.e., to masks 4 or 6, we observe that the resulting lower average link loads manage to also



improve short term performance. This is because, despite the potentially larger short term
traffic fluctuations, the lower overall average link loads sufficiently dampen the impact of those
variations on short term delay. However, this improvement does not readily extend as traffic
granularity decreases further. Specifically, we see that routing using mask 8 streams often
results in worse average short term delays than when masks 4 or 6 are used. This is because,
as seen from Figure 2, the improvement in average link loads that mask 8 streams afford, is
marginal compared to what is achievable with mask 4 or 6. On the other hand, mask 8 streams
exhibit higher short term traffic fluctuations that result in degraded average short term delays.
Note that this behavior is observed even though, as shown in Table 2, the number of paths used
with mask 8 is similar to what is used with masks 4 and 6. This indicates that although the
number of paths is similar, the assignment of traffic (streams) to them is different.

The findings of Figure 4 indicate the existence of a trade-off between short-term and long-
term performance, when decreasing traffic granularity to achieve lower average link loads. The
figure suggests using the coarsest possible traffic granularity that achieves a “significant” de-
crease in average link loads, e.g., a mask of 4 in the current environment. Further reductions
in traffic granularity improve average loads only marginally, and the greater short term traffic
variability they induce often becomes the dominant effect, worsening short term performance.

5. Conclusion

We have investigated a new aspect of traffic aware routing in IP networks, namely, the impact
of traffic and time granularity on routing performance. Our performance measure was based
on a traditional delay based cost function, but we expect comparable findings with other cost
functions. The investigation was carried out using actual traffic and flow data collected on an
operational Internet backbone.

The main contributions of the paper consist of: (1) quantifying the impact of traffic granu-
larity on routing performance, and in particular that the bulk of the improvement occurs with a
relatively small number of streams; (2) designing and evaluating a routing heuristic (Heuristic
2) that approximates the performance of “optimal” routing reasonably well, while incorporat-
ing traffic granularity constraints; (3) observing that while finer granularity routing improves
average performance, this does not always carry over to smaller time scales, where the greater
variability of finer grain traffic can offset most of the resulting performance improvements.

This has been a preliminary investigation into the potential benefits and trade-offs related
to traffic aggregation. We are currently collecting more network traces that span over a few
days rather than hours to further investigate this topic and base our findings on a firmer footing.
Specifically, we intend to : (1) verify the stability of the traffic matrix (which affects routing
computation) over a large enough time scale ; (2) Explore the trade-off between long-term and
short-term performance over a sufficiently big data set; (3) extend the aggregation scheme to
use routing prefixes which is a practical and deployable alternative.
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