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Abstract.

In this paper, we study traffic demands in an IP bacbkone, identify the routes used by these demands, and evaluate
traffic granularity levels that are attractive for improving the poor load balancing that our study reveals. The data used
in this study was collected at a major POP in a commercial Tier-1 IP backbone. In the first part of this paper we ask
two questions. What is the traffic demand between a pair of POPs in the backbone? How stable is this demand? We
develop a methodology that combines packet-level traces from access links in the POP and BGP routing information
to build components of POP-to-POP traffic matrices. Our analysis shows that the geographic spread of traffic across
egress POPs is far from uniform. In addition, we find that the time of day behaviors for different POPs and different
access links also exhibit a high degree of heterogeneity. In the second part of this work, we examine commercia routing
practices to assess how these demands are routed through the backbone. We find that traffic between a pair of POPsis
engineered to be restricted to a few paths and that this contributes to widely varying link utilization levels. The natural
question that follows from these findings is whether or not there is a better way to spread the traffic across backbone
paths. We identify traffic aggregates based on destination address prefixes and find that this set of criteriaisolates a few
aggregates that account for an overwhelmingly large portion of inter-POP traffic. We demonstrate that these aggregates
exhibit stability throughout the day on per-hour time scales, and thus form anatural basis for splitting traffic over multiple

paths to improve load balancing.

1 INTRODUCTION

Internet backbones continue to grow at explosive rates,
fueled by the bandwidth demands of new applications and
by the advent of faster access technologies. To accomo-
date such growth while preserving the robustness of the
network, most | P backbone operators have chosen asimple
approach to traffic engineering: overprovisioning. Over-
provisioning is the adopted approach because very little
information exists today about the dynamics of the traffic
in an IP backbone. This is primarily due to the lack of
measurement infrastructure and techniques for collecting
and processing data from backbones. To address this defi-
ciency, we study traffic traces collected at a Point of Pres-
ence (POP) in a commercia Tier 1 IP backbone network.
A passive monitoring system is used to collect packet-level
traces on a number of access links within the POP [1]. The
datais then analyzed offline in order to understand the dy-
namics of traffic entering the backbone at this POP. We
describe a methodology for extracting information about
routing and traffic flow within the backbone. This method-

ology formsthe basis for building components of POP-to-
POP level traffic matrices, which are key to studying avari-
ety of traffic engineering and routing issues. We investigate
how much can be said about the traffix matrix just from the
data collected at a single POP.

It has been observed ([2, 3, 4]) that obtaining informa-
tion about traffic patterns in both time and space is criti-
cal for most traffic engineering functions. Traffic engineer-
ing typically operates on long time-scal es such as minutes,
hours, weeks or longer. Examples of traffic engineering
functions include dimensioning, provisioning, route opti-
mization, where to best add new customer links, load bal-
ancing policies, designing POP architectures, and selecting
failover strategies. The particular application determines
thelevel of information needed about traffic patterns. Since
IP networks do not typically generate feedback state in-
formation, traffic engineering has to rely on traffic mea-
surements [2]. It has been observed that smulation data
cannot provide substitutes [5]. Therefore collecting traf-
fic measurements spanning multiple hoursin order to build
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network-wide views of the traffic flows is central to being
ableto efficiently engineer an IP backbone.

A network-wideview istypically expressed in the form
of atraffic matrix ([6, 3, 7]). A variety of information can
be represented in it. For example, the traffic volume cap-
tured in the matrix can refer to any level of flow granularity.
A traffic matrix also has an associated time granularity that
specifies the measurement interval over which bandwidth
measurements were averaged. The choice of exactly what
is represented in the matrix depends upon the traffic engi-
neering task to be performed with this matrix. In a POP-to-
POP traffic matrix the rows represent ingress POPs and the
columns represent egress POPs. Since our data was col-
lected at a single POP in our network, we build one row
of a POP-to-POP traffic matrix. Due to the cost of such
equipment, the enormous difficulties involved in deploy-
ing the equipment in commercial backbonesand the scarce
availability of this backbone data, even this component of
a traffix matrix constitutes a significant amount of useful
information.

We decompose and study this data along a number of
different dimensions. The work in this paper can be viewed
as a search of answers to the following questions, each of
which logically follows from the next. In the first part we
ask, what is the traffic demand between a pair of POPs?
How stable is this demand? The traffic matrix compiled
in this part only describes the demand or how much traf-
fic wants to go from one POP to another; it says nothing
about how the traffic is routed. Thus in the second part
we ask, how are these demands routed in our commercial
backbone? Are link utilization levels similar throughout
the backbone? Our observations from these two parts are
that traffic is highly non-uniform in a geographic sense yet
the ranking of POPs (in terms of volume) remains fairly
stable in time; and that few routes are used and link uti-
lization levelsvary widely throughout the backbone. These
findings motivate the third part which asks, is there a bet-
ter way to spread the traffic across the paths? And at what
level of granularity should this be done?

For the first part, we proceed to study the partition of
traffic throughout the backbone as follows. We examine
incoming traffic at a single POP at different levels of gran-
ularity. First, we analyze the spatial characteristics of POP-
level traffic. We discover a large disparity in the spatial
distribution of the ingress POP's traffic across the egress
POPs. Second, we break up the ingress POP’s traffic ac-
cording to access link, and examine the spatial distribution
of the traffic from specific types of access links across the
egress POPs. We find that the same disparity appears at
this level of granularity. We compare the access links and
find that they behave differently from one another with re-
spect to three metrics considered. For example, wefind that
one cannot isolate a single probability distribution to char-
acterize the geographical fanout of the traffic from access
links. We also examine time of day behavior of the traffic
at both the POP-level and access link level. We find that

egress POPs can be ranked roughly into three categories
(large, medium and small) based on the amount of traffic
they receive from the ingress POP, and that POPs gener-
aly remain in the same category through the entire day. A
stronger statement can be made about many of the POPs
- if they are ranked by the volume of traffic they receive,
they maintain their ranking throughout the day. We also
find that at night the overall traffic load is reduced by only
15-50% depending upon the access link.

For the second part of our work, we begin by checking
whether or not overprovisioning has led to a disparate use
of resources on a network-wide basis. By examining both
SNMP data, we do indeed find that the amounts of excess
link capacities are inequitably distributed throughout our
backbone. We then study |S-IS routing behavior to under-
stand how 1S-1S is engineered to influence path selection,
and how the routing impacts the link utilization levels. We
find that the backbone is carefully engineered using 1S-1S
weights to restrict traffic between POP pairsto afew paths
even though many alternate paths exist.

In the third part of our study, we return to our traffic
data to assess at what granularity level it is desirable to do
load balancing. We want to determine a traffic granularity
that definesaunit of flow (or stream) that could be rerouted
on an dternate path. Having examined our data at both the
POP-level and the access-link-level, we now study the data
at the granularity level of destination address prefixes. We
find that a small number of these aggregate streams, called
elephants, generatealargefraction of thetotal traffic, while
a large number of these streams, called mice, generate a
small fraction of the total traffic. The elephants and mice
phenomenon has been observed beforein Internet traffic at
the inter-AS level [4], at the level of multipoint demands
from one router node to a set of router nodes [3] and in
the Internet as it was many years ago [8]. Here we demon-
strate this phenomenon at the granularity level of specific
prefixes. We also demonstrate the stability of these aggre-
gates throughout the day. The stability of these elephants
makes them well-suited as a basis for routing traffic on al-
ternate paths and thus improving the load balance in the
backbone.

Therest of the paper is organized as follows. Our mea-
surement infrastructure is briefly presented in Section 2.
Section 3 describes a methodology for building a POP-to-
POP view of traffic flow across the backbone, based on
observations at an ingress POP. Our technique makes ex-
tensive use of BGP and 1S-IS routing information. The
space and time characteristics of traffic at the POP-level
and the access link level are analysed in Section 4. In Sec-
tion 5 we study IS-IS routing in order to understand how
routing practices influence the partition of traffic acrossthe
backbone. In Section 6 we aggregate the traffic based on
destination address prefixes, and demonstrate the existence
of the elephants and mice phenomenon at this granular-
ity level. We analyze properties of these aggregates and
discuss their application to load balancing. Section 7 dis-
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Link TraceLength | Trace Size | # Packets
(hours) (10%)
Peer 1 16 51 GB 853
Peer 2 24 47 GB 794
Web Host 1 19 51 GB 853
Web Host 2 13 51 GB 853
Tier 2I1SP 8 17GB 284

Figure 2: Summary of Data
cusses related work, and Section 8 discusses some of the
implications of our results and identifies directions for fu-
ture work. This paper is an extended version of the results
publishedin [9].

2 MEASUREMENT INFRASTRUCTURE

The data used for this study was gathered from an op-
erational 1P backbone using the passive monitoring infras-
tructure described in [1]. The backbone topology consists
of aset of nodes known as Points-of -Presence (POPs) con-
nected together by high bandwidth backbone links. Each
POP aso locally connects customers through access links,
ranging from large corporate networksto regional | SPs and
webservers. Peering at a POP is provided either through
dedicated links to another backbone (private peering) or
through public Network Access Points (NAPs). Each POP
has a two-level hierarchica structure (Figure 1). At the
lower level, customer links are connected to access routers.
These access routers are in turn connected to the backbone
routers. The backboneroutersprovide connectivity to other
POPs and to the peers. The backbone links connecting the
POPs are optical fibers with bandwidths of 2.5 Gbps (OC-
48). They carry IP traffic using the Packet-over-SONET
(POS) protocol. The exterior and interior gateway proto-
cols for the backbone are Border Gateway Protocol (BGP)
and I1S-1S respectively.

The infrastructure developed to monitor this network
consists of passive monitoring systems that collect packet

traces and routing information on the links located between
the access routers and the backbone routers, or on the peer-
ing links. The monitoring systems tap onto the selected
link using optical splitters, and collect the first 44 bytes of
every packet on these links. Every packet record is times-
tamped using a GPS clock signal which provides accurate
and fine-grained timing information. The format of the
packet record is as follows.

e GPStimestamp: 8 bytes

e Sizeof record : 4 bytes

e Size of POSframe: 4 bytes
e HDLC header : 4 bytes

o |P packet header : 44 bytes

BGP tables were downloaded from one router® in the
POP once per hour during the time the packet traces were
collected. Inthis study, we used datafrom five access links,
collected on August 9, 2000, starting at 10:00am US Pacific
Standard Time (UTC-7). The arrows in Figure 1 indicate
themonitored links used in thisstudy. Thetablein Figure2
provides a summary of our traces. The traces are of differ-
ent lengths because packets were collected until the hard
disk in each monitoring system filled up. Therefore heav-
ily loaded links filled up the disk faster than lightly loaded
links. We have collected many other traces during August
and September 2000. The results in this paper have been
verified against one other day. We present the data from
asingle day to avoid overloading the paper with excessive

graphs.

3 METHODOLOGY

In this section we explain how we constructe the row of
our POP-to-POP traffic matrix representing our backbone
traffic. Thisrow in the traffic matrix corresponds to data
that originates at the monitored POP (i.e., the ingress POP)
and leaves the network through each of the other egress
POPs (including itself). To do this, we need to map each
packet received at the monitored POP, to the egress POP
through which it leaves the network. All backbone routers
participate in the BGP protocol and exchange information
with each other about routes learned from routers external
to the network, called external peers. This information is
kept in the BGP table of each router and can be used to
determinethe last egressrouter for each packet destination.
However, information on mapping an egress router to an
egress POP is not readily available and has to be derived
from the values of standard BGP attributes.

We start by illustrating how we map a packet to an
egress POP through an example (Figure 3). Consider a
packet with a destination address of 1.1.1.1. Suppose that

Lall routers in the POP have the same view of BGP routes
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Destination Network

BACKBONE

Ingress POP Egress POP

BGP Table
Destination | Next Hop
111024 | 3333
3333 | 2222

External Peer

Figure 3: Example of destination to egress POP mapping

the BGPtable at theingressrouter (7.7.7.7 inthefigure) for
this packet, identifies the destination subnet for this packet
as 1.1.1.0/24. The BGP table entry at the ingress router,
which corresponds to this subnet contains a Next-Hop en-
try which is typically the address of the external BGP peer
from which a border router in our backbone first |earned
the route to the destination and injected it into the I-BGP
mesh. This border router is in the egress router for desti-
nation 1.1.1.1, since it is the router that packets for subnet
1.1.1.0/24 need to go through in order to reach the exter-
nal peer on their way to the destination network. Suppose
the address of the border router is 2.2.2.2 and that the ad-
dress of the external peer recorded in the Next-Hop en-
try in the BGP table is 3.3.3.32. The BGP table at 7.7.7.7
also contains an entry for 3.3.3.3 (or the subnet contain-
ing it), whose Next-Hop field identifies the address of the
border router, i.e. the egress router for this packet. To find
the egress POP for the packet destination, we use the BGP
Community Id attribute which is an identifier shared by all
routers at a POP. This attribute is recorded in each BGP ta-
ble entry and identifies the egress POP for al destinations
that map to that entry. In our example, the Community Id
alows us to identify the POP to which the egress router
2.2.2.2 belongs.

However, that are many cases when the Community |d
attribute for a route is not set to an identifier that speci-
fies the egress POP (due to internal policies) for the BGP
entry it belongsto. In such cases, we extract the Origina-
tor attribute for the route announcement to a given Next-
Hop. The Originator attribute value corresponds to the
address of arouter in our backbone. In the above example,
the router 2.2.2.2 would be the Originator for the route
to 3.3.3.3. Querying the BGP table returns the Commu-
nity Id attribute associated with the Originator, and hence
the POP at which the Originator islocated. This POP is
the egress POP associated with the Next-Hop that we are
interested in (3.3.3.3 in our example).

Note that there are a few cases, when BGP attributes
fail to reveal the POP name. In these cases, we perform

2Typically a BGP table will contain a number of alternate paths for a
destination subnet. However we consider here only the route chosen asthe
"best” or "preferred” route based on BGP policies and attribute values.

a Traceroute to the Next-Hop router address associated
with the BGP entry for the packet destination. We can ex-
tract the name of the last hop router within the backbone
from the output of Traceroute, and derive the identity of
the POP from the name. The name of each router at a POP
contains a sub-string that is derived from the name of the
city in which the POP containing the router is located (for
example, arouter’snamein aPOP in Miami would contain
the string mia).

The complete algorithm for determining the egress
POPs for destination networks in the BGP table is de-
scribed in Figure 1. The BGP tables were downloaded
from core routers using the show ip bgp facility. For
ease of exposition we introduce the functions Nexthop(R),
community(R) and originator (R), which return the val-
ues of the Next-Hop address, Community Id attribute and
the Originator attribute respectively for aroute R.

Recall that the BGP tableswe used were collected once
an hour, atime-scale on which they have been observed to
be relatively stable [10]. The number of unique Next-Hop
entries in each table was on the order of a few thousands.
Of these, about 98% were resolved to egress POPs using
BGP attributes, and the rest were resolved using Tracer-
oute. Overall, more than 99% of the destination networks
in the BGP tables were resolved to egress POPs using our
technique.

Once we obtain a mapping of destination networks to
egress POPs, we can apply it to the packet traces to deter-
mine the traffic flowing from the monitored POP to each
other POP. This task is analogous to the problem of per-
forming lookups on packets arriving at a router to deter-
mine the egress port. For this purpose, we used the IP
lookup technique described in [11]. This technique uses
an LC trie-based longest prefix match and a software im-
plementation is publicly available®. We modified this soft-
ware to perform alongest prefix match on packetsin atrace
using our destination-to-POP map. The output consists of
per-egress-POP packet traces. These can be further ana-
lyzed to understand the dynamics of traffic between any
two POPs in the network. We have developed tools to sub-
divide the traffic between two POPs based on various cri-
teria such protocol number, destination prefix, etc. Tools
have also been designed and implemented, to study the
variation of traffic on different timescales. These analy-
sis tools were used to compute all of the results presented
in this paper.

4 TRAFFIC IN SPACE AND TIME

4.1 GEOGRAPHIC SPREAD

POP-L evel. Welook at the geographical spread of traf-
fic demands across egress POPs, or fanout, first at the POP-

3http://www.nada.kth.se/ snilsson/public/soft.html.



L={}
For every destination d in the BGP table do
next_hop = NextHop(d).
if (next_hop & L)
L =L U {next_hop}
endif
endfor
For every next_hop in L do
POP(next_hop) = 0.
extract RA,eqt_nop, the route advertisement for next _hop.
pop_id = community(RA ezt _hop)-
if pop_id € { list of known POP identification numbers } then
POP(next_hop) = pop_id.
else
O = originator(RAext_hop)-
pop_id = community(O).
if  pop_id € { list of known POP identification numbers } then
POP = pop_id.
endif
if (POP(next_hop) == 0) then
run tracerouteto next_hop.
egress_router = last Sprint router on the traceroute path to next _hop.
egress_router_name = well known name for router r.

Parse egress_router_name to determine the id of the POP egress_router belongs to.

POP(next_hop) = pop_id.
endif
endfor
For the entry for every destination d in the BGP table do
next_hop = NextHop(d).
POP(d) = POP(next_hop).
endfor

Table 1: Destination to Egress POP Mapping Algorithm.
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level and then on an access-link level. Since most of our
traces span from 13 to 24 hours each (depending upon the
link), we are also able to study the time of day behavior
for these demands. Our goal in this section is to classify
the basic behaviors we observe into a few categories, and
to understand the range of behaviorsthat can occur. We are
also interested in comparing different types of access links
and different egress POPs to see if and where commonali-
tieslie.

First we consider the traffic demands on all five access
linkstogether asoneinput stream. Notethat this constitutes
a significant portion of the input traffic at our monitored
POP. Given the variety of access links chosen, thisis also
highly representative of the total input traffic entering the
POP. The monitored POP is henceforth refered to as the
ingress POP.

We use the methodol ogy described in the previous sec-
tion to classify all the packets in a trace by their egress
POPs. We then determine the total number of bytes headed
towards each egress POP using the packet length informa-
tion in the IP header of each packet record. This gives us
the fanout of traffic demands by volume (Figure 4). The
values presented in this figure are bandwidth values that
were averaged over the duration of the entire trace for ev-
ery link. This fanout constitutes the row on our POP-to-
POP traffic matrix.

For the purposes of display we have organized the POPs
into 3 groups. the west, midwest and east regions of the
United States. The monitored POP is located in the west
coast of the US. For proprietary reasons the POPs are only
identified with numbers. Within each of the 3 regions the
ordering is arbitrary and does not have any geographic sig-
nifigance.

We observe that there are two POPs that are clearly
dominant, and receive a large amount of traffic (over 35
Mbps). Among the remaining POPs about half receive
quiteasmall amount of traffic (under 5 Mbps) and the other
half receive a moderate amount of traffic (10-20 Mbps).
Our data suggests that ingres POPs could be roughly cate-
gorized as large, medium and small, where (i) roughly the
same number of POPs fall into the small and medium cat-
egories and only afew fall into the large category; and (ii)
each category carries approximately twice the volume of
the category below it. This simple characterization will
prove useful in our interpretation of other data below. (We
will discuss the stability of these characteristicsin the next
subsection.)

Often in simulation environments, researchers assume
a traffic matrix. In the past, in absence of data, the most
common model is, given asource, pick adestination at ran-
dom according to a uniform distribution. This histogram
reveals that such an approach does not at all match Inter-
net behavior. Moreover, thinking about how the Internet
is designed, it is easy to understand why we see this non-
uniform behavior. First, one would expect that some POPs
would sink higher traffic demands than others because of

their geographiclocation. For example, dominant POPs are
expected to be located on the two coasts of United States
because this is typically where international trunks termi-
nate, and because the coasts are more heavily populated
than the center of the country. Secondly, one would ex-
pect this distribution to exhibit a significant degree of vari-
ation. The volume of traffic an egress POP receives (from
other ingress POPs) depends upon a large number of fac-
tors, such asthe number and type, of customersand servers
attached to it. Similarly, the amount of traffic an ingress
POP generates can aso vary enormously depending upon
the number and type, of customers and servers, on its ac-
cess links. Thus we expect the inter-POP flows to vary
dramatically from one to another, and to depend on the
(ingress POP, egress POP) pair. Our final observation on
this fanout is that the ratio of the largest POP-pair to the
smallest POP-pair is approximately 40:1.

Recall that the data in our fanout plot describes the
amount of traffic exiting Sprint’s network at a given POP;
however this only includes traffic that originated at the
monitored POP. In order to see whether our observations
about traffic egressing POPs hold independently of the par-
ticular ingress POP monitored, we did the following. We
collected the SNMP data (i.e., average link utilization lev-
els) from all links at al POPs. We can thus compute the
average amount of flow entering and exiting any given
POP based on the links attached to the POP. (Recall that
the SNMP data does not given any information about the
ingress or egress point of the traffic.) There are 3 kinds
of links exiting a POP: customer links, peering links and
inter-POP links. To assess the amount of traffic egressing
a POP we only consider the first two types of links. Thus
Figure 6 describesthe rate of traffic egressing a given POP,
summing the averagerate of all customer and peering links
exiting the POP. For each link the rate is averaged over a
2 1/2 month period, as indicated in the figure. Data was
unavailable for POPs numbered 10 and 16.

We see from this figure, that the relative sizes of
POPs remains unchanged. In other words, the large POPs
(namely numbers4, 7, 8, 12 and 14) remain large over the
many months considered. Also, the small POPs (namely
numbers 5, 6 9) remain small over time. The others could
be categorized as medium sized POPs. There are, of
course, afew odd data points. For example, POP #11 expe-
rienced a large growth in the January-March 2001 period.
Otherwise it remains consistenly in the medium category.
Note that the ordering of POP sizes in this figure need not
correspond to the ordering in Figure 4, because the data
in Figure 4 represents the data originating from a single
POP while the data in Figure 6 includes the data originat-
ing fromall POPs. We also notethat the difference between
the largest POP and the smallest can be quite dramatic. Fi-
nally we point out that afew POPs experienced areduction
in size during the last 2 1/2 month period considered. We
suspect that thisis due either to the movement of customer
links or to the addition of new links elsewhere in the net-
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Ingress peer | peer | ISP | webhost | webhost
Link #1 #2 #1 #2
volume 40 22 | 32 50 70
(Mbps)
max/min 13 50 | 13 35 63
Table 2: Comparison of Access Links
work.

Access-Link-Level. For the purposes of bandwidth
prediction, the (ingress POP, egress POP) pair might rep-
resent a level of granularity that is too coarse for accurate
traffic estimation. It is natural to hypothesize that the ac-
cess links at the ingress POP may differ from one ancther,
and may affect the traffic flowing to each egress POP dif-
ferently. We thus next consider the fanout of traffic at the
ingress POP on a per-access-link-type basis. To compare
these links we considered three metrics. (i) the total vol-
ume of traffic per link (summing across all egress POPs);
(it) the max/min ratio of the average bandwidth headed to-
wards an egress POP # and (iii) the distribution among the
egress POPs. The total volume and max/min ratios are
given in Table 2. We see that the access links differ from
one another with respect to these simple measuresthat span
arange of values.

Figure 5 demonstrates that the rough categorization we
applied to egress POPs at the POP-level (i.e., the large,
medium and small categories) continuesto hold at the level
of input access link type. (The sameis true for the peering
links, however we exclude the fanout plot due to space re-
strictions.) In other words, a very small number (between
1-3) of POPs receive a large amount of traffic and the rest
of the POPs are evenly split between the medium and small
categories. To compare the fan-out of the different access
links numerically, we normalize and convert the fan-out in-
formation per link into a probability distribution. Let b;;
denote the average bandwidth that access link ¢ sends to
POP j during one day. For a given link 4, the probability
that a byte of data chosen at random gets sent to POP j is
givenby P;(j) = bi;/ 3_; bij. The density curvesfor each
of the five links is given in Figure 7. The ordering of the
POPs hereis different than in the previous graphs, and thus
it no longer represents an east/midwest/west organization.
This ordering was selected to try to isolate a pattern.

To facilitate the discussion, we use the term popular-
ity of a POP to refer to the likelihood that a byte of data

4In computing the max/min ratio we ignored the three smallest POPs
for a given access link because there were typicaly a few POPs that re-
ceive a negligible amount of traffic and this creates ratios that are not
representative.
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Figure 7: Probability density of POP fanout per access link type

from an ingress access link will be sent to that egress POP.
On the one hand, we see a few similarities among the five
links. The first two POPs are the most popular among all
the access links. POPs #11-16 are fairly unpopular for all
links. For al other POPs, the popularity ordering jumps
around quite a bit for each link. For example, the likeli-
hood that a packet on a given link will choose POP #4 can
vary from 0.02 to 0.17. This graph indicates that POP #3
is most likely to be chosen by our ISP link, POPs #4 and
#5 are most likely to be chosen by the peer 2 link, POPs
#6 and #7 are most likely to be chosen by the peer 1 link,
and #8 and #9 by the second web host link. In general,
for POP's #3-#10, the likelihood of being chosen can vary
about 10%. We believe that these differences are substan-
tial and that the fanouts from the different links are suffi-
ciently different so that one cannot conclude that thereis a
single underlying distribution that represents al the access
links. Note that the categorization of egress POPs accord-
ing to large/medium/small is the same for different access
links. The access links differ in their geographic spread
primarily in how they distribute traffic among the medium
sized POPs.

We thus infer that when studying traffic demands for
load balancing, and more generally, when designing band-
width predictors for traffic engineering, the pair (ingress
POP access link type, egress POP) should be explicitly
accounted for rather than simply using the (ingress POPR,
egress POP) pair.

From this section, we conclude that in terms of geo-
graphic distribution there is a large disparity among the
traffic sent to the egress POPs from a single ingress POPR,
and that the access links differ from one another signif-
icantly according to three different metrics. The excep-
tion is for the two web host access links, however, these
two links carry traffic from the same client, which rein-
forces our notion that links generate different traffic de-
mands based on their types.
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trace peer | peer | webhost | web host
#1 #2 #1 #2
% reduction | 30% | 30% 50% 16%

Table 3: Night vs. Day Traffic
4.2 TIME OF DAY BEHAVIOR

In the previous section, the fanouts we examined were
computed based on day-long averages. In order to examine
the consistency of the fanout throughout the day, we look
at inter-POP flows on an hourly basis. In Figure 8 we con-
sider just four of our input links (because the 5th has too
few hours) and examine the behavior throughout the day of
three representative POPSs, one in the large category, onein
the medium and one in the small. First, we observethat the
large POP isthe most vol atile, that the medium POP experi-
encesalong slow small decline, and that the small POP re-
mains fairly stable. We examined a number of other POPs
and found this behavior to be consistent of POPs within
their respective categories. Second, we observe that during
the day the distinction between large, medium and small
remains, whereas at night the large and medium POPs be-
come less distinguishable.

Figure 8 indicates that some POPs do not experience
much decrease in traffic volume at night, while others (par-
ticularly those in the large category) do. When we con-
sidered traffic volume between 10 AM to 6 PM (daytime)
and 6 PM to 6 AM (nightime) separately, we found that the
nighttime pesk traffic is about 30 Mbps, about half of the
daytime peak. The average percent reduction on a per-link
basisis shown in Table 3. Thetableindicates that the aver-
age volume of night time traffic is anywhere from 15-50%
less than the average volume of day time traffic. Thisis
surprising since it is counter to the widely held belief that
traffic in the backbone reduces by a few factors at night.

This may arise from an increase in international traffic and
night-time backup activities.

We now examine time of day behavior (Figures 9-12)
at the access link level to examine the variations and if
our previous observations hold at the access link level as
well. In order to compare different access links, we pro-
vide a separate figure for each of four access links (identi-
fied in the figure caption). For each access link, we plot the
hourly bandwidth averages for six different POPs, hence
each curve correspondsto asingle egress POP. Some of the
curveson these graphs exhibit a sharp drop around 2:00am.
Thisisdueto maintenance activities at the POP. From these
four plots we observe the following:

e A number of POPs have traffic that remains fairly
constant throughout the day.

A number of POPs experience along slow decline of
loading throughout the day.

e Themost popular POPs are usually the most volatile.

e If we were to rank the POPs by volume received,
then most of the POPs (excepting the few large ones)
maintain their rank throughout the day.

e POPs can experience an increase at night (see Fig-
ure 11 and 12).

These observations are interesting in that they reved
counter-intuitivethings about busy periods. Our experience
from telephone networks leads us to expect peak period be-
haviorsin time-of-day plots. Thesefiguresreveal that some
POPs do not experience any busy periods, some POPs ex-
perience one busy period, and others can experience two.

We see that the category that an egress POP falls into
can depend upon the access link. For example, consider
POP #13. On the two peering links, this POP is a small
one. Onthetwo web hosting links, it would be considered a
medium one. Thisindicates that the fraction of traffic than
an egress POP draws from an ingress POP depends upon
the number and type of input access links. An aternative
way to see thisis given in Figures 13 and 14. In these
plots we compare the traffic destined for a single egress
POP originating from each of the access links. Thisillus-
tratesthat an egress POP's behavior can differ dramatically
depending upon which access link on an ingress POP it re-
ceives traffic from. For some access links, an egress POP
receives aroughly constant amount of traffic while for oth-
ersitstraffic experiences peaks and dips over the course of
the day. Thus the incoming traffic on an egress POP is di-
rectly dependent upon the type of accesslink at the ingress
POP.
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Figure 15: Average Link Load Levels

5 OBSERVATIONS ABOUT IS-1S ROUTING
IN THE BACKBONE

In the previous section we examined properties of traf-
fic demands, i.e. how much traffic wants to go from one
end of our network to another end. This says nothing about
how that demand is routed through our network. The inte-
rior gateway protocol used for routing traffic in a backbone
has a direct effect on link load levels. We thus study how
IS-1Sisconfigured in our backboneto understand how traf-
fic demands are routed through the backbone, and thus how
IS-1S may contribute to any imbalance in link load levels.
Before doing so, we first present the average link load lev-
els from all the backbone links in our network (collected
via SNMP data). Figure 15 provides a histogram of this
data, averaged over an entire day. We find that the majority
of the links have an average utilization under 25%, and that
the link utilization levels can vary from 3% to 60%. This
histogram reveals (i) the extent of link underutilization and
(ii) the extent of the disparity in the utilization levels of the
backbone links.

ISISis alink state routing protocol where each link
in the network is assigned a weight. Every router broad-
casts information about its connectivity to other links and
routers, including the costs of paths to reach them. The
cost of any path is the sum of the weights of all the links
that constitute that path. Once a router has received path
cost information from all other routers, it constructs a map
of the entire network and then routes data to every other
router using the minimum cost path.

We start our study of 1S-1S routing by constructing a
detailed topol ogy map of the backbone based on precisein-
formation about all the links in the backbone and the IS-1S
weights assigned to them. This enables us to determine the
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minimum cost path (as would be seen by 1S-1S) between
these router pairs. We found the following. A packet’s
path has three components: the path through the ingress
POP, the path through the backbone and the path through
the egress POP. Typically, a packet enters an ingress POP
at an access link and traverses a number of hops within the
ingress POP. Recall that POPs themselves usually contain
alarge number of routers. Once a packet |eaves the ingress
POP, it traverses a number of intermediate POPs, but usu-
aly travels through a single core router at each of these.
At the egress POP, the packet again traverses multiple hops
beforeit exits the backbone.

Wefind that the backboneis carefully engineered using
ISIS weights. ISIS weights on links between POPs are
chosen such that traffic between an ingress-egress POP pair
is constrained to a few paths across the backbone. More-
over these paths are usually partially overlapping and have
nearly the the same costs. The choice of which path to take
among the few options is thus heavily determined by the
number of hops the packet has to traverse at the ingress
and egress POPs and the link weights within these POPs.
In other words, we find that the POP links weights and
POP architecture have a strong influence on how equal cost
paths through the backbone are used.

Let usillustrate these observations with a case study of
traffic flow between a particular ingress-egress POP pair in
the backbone (Figure 16). The ingress and egress POPs (1
and E respectively) are expanded to show the generic POP
architecture ® while all intermediate POPs are represented
assingle nodes. The names of al core routers start with the
letter “R”, access routers start with an “A”, and intermedi-
ate POPs start with an “H”. A packet traverses only core
routers at the intermediate POPs. For reasons of confiden-
tiality, al link weights have been adjusted by a constant
value.

Consider a packet that enters the network at router A1
and leaves the backbone at router A2. There are two equal
cost paths through the backbone, namely (H1, H2, R4)
and (H1,H3, R4) indicated via thick lines in the fig-
ure. Using the backbone segment (H1,H2, R4), a
packet can travel over either of the following full paths:
(R1,R3,H1,H2,R4) or (R2,R3,H1,H2, R4). These
two equal cost paths differ only by the accesslink traversed
after leaving A18. Thistype of an architecture, with two ac-
cess links connecting an access router to two different core
routerswithin aPOPisvery common, and is meant for fault
tolerance and load balancing. We found many instances of
apair of accesslinks, interconnecting asingle access router
to multiple core routers, having the same weights.

Because of these equal cost links, IS-IS will split in-
coming traffic evenly over these two links. Unfortunately,
thiskind of load balancing is only effective within the POP,

5In reality the POP architecture is much more complex.
6The existence of the other equal cost backbone segment does not

change the point we are trying to illustrate.
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Figure 16: 1SIS-Routing in the Backbone : A case study

since in either case packets from A1 will exit the POP at
R3. In our study of POP-level traffic below, we will in-
deed see traffic streams for which this happens. This kind
of load balancing is extremely sensitive to changes in the
POP architecture or changesin IS-1S weights - if even one
additional router is added along the path through R1, al of
thetraffic from A1 will be diverted to the path through R2.

Let us next look at paths across the backbone be-
tween POPs. We find that a large number of aternate
paths are available, but the assignment of 1SS weights
constrains packets from A1l to take one of the two paths
(R3,H1,H2,R4) or (R3,H1,H3,R4). 1SS will split
the traffic across these two equal cost paths at POP H1.
However, note that |S-1S load balancing works only if two
paths have exactly the same cost - any differencein cost be-
tween two paths canresult in all of thetraffic being diverted
to the lower cost path. We now describe a case where this
limitation is evident.

The more common (and perhaps more interesting) case
that we encounter is one where traffic is divided (though
not equally) over two or more backbone paths based on
the architecture of the egress POP. For ease of exposition,
we do not present a separate case to illustrate this point;
instead, we consider a slight modification to the case al-
ready under consideration. Suppose that the link from H3
were connected to router R5 instead of router R4. When
we calculate the path costs we see that all of the traffic to

A2 (henceto al subnetsreachablevia A2 will beroutedvia
H?2whileall of thetrafficto A3 (henceto all subnetsreach-
able via A3) will be routed via H3. In this case, there are
no equal cost paths to either destination over which IS-IS
can load balance. Furthermore, any division of traffic that
happens on the inter-POP paths is static - a change in this
division can be only effected through physical aterations
to the configuration of POP E.

We have studied a number of cases of routing across
the backbone and have reached a few conclusions about
current | S-ISrouting practices. First, the backboneis care-
fully engineered using 1S-1Sweights. This has two ramifi-
cations: (i) theweights are chosen such that traffic between
any ingress-egress POP pair isrestricted to only afew paths
through the backbone; and (ii) the intra-POP link weights
can heavily influence the path chosen to traverse the back-
bone. This has certain advantages such as ease of manage-
ment. However, this approach can certainly drive up link
utilization levels on these paths when the inter-POP traffic
demands are heavy.

Second, wefind that there do exist many alternate paths
between POP-pairs, and that many of these paths are un-
derutilized. This observation, plus our observations about
the imbalance of link load levels, plus our findings about
highly disparate inter-POP demands (Section 4) indicate
that there is a lot of room for improved load balancing in
today’s networks.
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Improving the load balancing by manipulating SIS
weights is not really a viable option for now. 1S-1S does
not have the capability to balance traffic across all of these
paths unless they all have exactly the same cost. Currently,
the 1SS weights are handcrafted by network operations
experts. It would be very difficult to assign link weights so
as to create multiple equal cost paths between every POP
pair in the network [12]. Moreover altering SIS weights
has repercussions on the entire traffic matrix. We therefore
search for an approach to load balancing that sets up poli-
ciesthat function on top of IS-IS.

Clearly using some of the underutilized paths, will of-
ten result in paths that have a larger number of hops than
the minimum cost path. It is important to ensure that sig-
nificant delays are not introduced to traffic that is rerouted
on longer paths. We believe that this will not happen for
two reasons. First, the backbone is highly meshed, and
thus most alternate paths between an ingress-egress POP
pair are likely to be only one or two hops longer than the
min-hop path. Second, [1] shows that the average delay
across routersin the backboneis on the order of afew mil-
liseconds. Therefore, the additional delay that a packet will
incur by traversing afew moreroutersislikely to be within
acceptable limits.

6 TRAFFIC AGGREGATES FOR LOAD BAL-
ANCING

In order to realize effective load balancing in the back-
bone, it is necessary to understand how traffic should be
split over multiple alternate paths. In this section, we ad-
dress this issue by examining techniques for creating ag-
gregate traffic streams between (ingress link, egress POP)
pairs. The aggregation of packetsinto streams can be based
on avariety of criteriaand can lead to streams with differ-
ent levels of granularity. At the coarsest level, we can ag-
gregate all the packets into a single stream. On the other
hand, using the classic five-tuple of (source address, des-
tination address, source port, destination port, protocol)
leads to very fine-grained streams. The criteria used for
creating traffic aggregates depends largely on the purpose
of such aggregation. For example, when the goa isto pro-
vide different levels of service to different types of traffic,
packets may be aggregated based on the (TOS) field or the
protocol field in the packet |P header. Since we are inter-
ested in the routing of these aggregate streams across the
backbone, it is natural to consider the destination address
of packets as the basis for aggregation. Moreover routes
are determined according the destination subnets (as ad-
vertised through BGP), each of which is an aggregate over
arange of |P addrreses. Subnets in turn can be grouped
on the basis of |P address prefixes. Therefore we consider
destination address prefixes of different lengthsasthe basis
for aggregating POP-to-POP traffic. For example, streams
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may be created based on an 8-bit destination address pre-
fix, in which case all packets sharing the same first octet
value for their IP address belong to one stream. We shall
henceforth refer to such a stream as a p8 stream. In gen-
eral, when an V-bit prefix is used for aggregation, we refer
to the aggregate stream asap/N stream.

Aggregate traffic streams thus created would be as-
signed to different paths in order to balance the network
load. Before adopting this approach to load balancing, we
need to examine properties of these aggregates such astheir
traffic volume and their stability over the time interval for
which such load balancing would be carried out.

We first consider p8 streams and rank them in decreas-
ing order of traffic volume (so that stream #1 isthe largest).
Figure 17 shows the cumulative percentage of traffic of
p8 streams from the private peer access link and the web-
host access link 1, respectively. For this access link, the
traffic demand to three of the busiest egress POPs is pre-
sented. We see that for every egress POP pair, a few of
the top-ranked flows account for an overwhelmingly large
share of traffic. We have observed that this phenomenon
is widespread across most other (ingress POP access link,
egress POP) pairs. This brings us to an important result
- the existence of a few very high-volume traffic streams,
and many low-volume traffic streams in the backbone. We
refer to the former as elephantsand to the latter asmice. As
mentioned in Section 1, the phenomenon of “elephantsand
mice” has been reported at other granularity levelsin other
traffic studies [4, 3, 8]. Here we demonstrate the existence
of elephants and mice at specific | P destination address pre-
fix levelsin acommercial |P backbone.

The existence of elephants has important implications
for traffic engineering in general, namely that in order to
realize most of the benefits, we can focus primarily on en-
gineering the network for the elephants. Many of the dif-
ficulties in providing quality of service in the Internet to-
day stem from scalability issues. One cannot exert fine
grained control because of scalability problems that arise
with keeping too much state information. The elephants
and mice phenomem means that one can try to exert more
careful control on the elephants and that coarse control is
sufficient for the mice. Although this has been observed
before, we are not aware of any concrete suggestions or ex-
amples of using this traffic behavior to influence control.
Elephants streams provide a basis for load balancing since
once the elephants are identified, they can be rerouted over
underutilized portions of the network. The criterion for
identifying the elephants — destination address prefix — is
simple enough for use in practice without new and com-
plex protocols.

For simplicity of implementation, it is attractiveto have
a load balancing policy that is applicable over long time
scales, such as afew hours, or even potentially throughout
the day-time. Of course, our approach of load balancing
viarerouting elephants, cannot be applied unless the rank-
ing of elephants and mice remains fairly stable on these
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Figure 17: Distribution of traffic across p8 streams for Web-
host accesslink 1

timescales. Figure 18 show the time-of-day variation of
bandwidth for some of the elephants and mice to a busy
POP from webhost 1 access link. In the graph, the one-
hour average of the bandwidths of these streamsis plotted
against time for 18 hours. We find that throughout this pe-
riod, the elephants retain a large share of the bandwidth,
and that they maintain their relative ordering. In other
words, the el ephants remain elephants and the mice remain
mice. We have verified this behaviour for a large number
of ingress-egress POP pairs. This result encourages us to
focus our attention on just a few streams in the backbone
for the purposes of load balancing.

Interestingly, we discover that the phenomenon of ele-
phantsand miceisrecursive. In other words, if we consider
ap8 elephant stream, and then further subdivideit into sub-
streams based on say a 16 bit prefix, then we find el ephants
and mice again among these substreams. In Figurel9 we
consider the three largest elephants to each of the POPs
4 and 12 for the peer 1 access link, subdivide each into
pl6 streams, rank them, and plot the cumulative volume
for the ordered streams. Thus each curve in Figure 19 cor-
respondsto the p16 substreams from asingle p8 stream for
a given POP. We find that 10 of the largest flows account
for 80% or more of the bandwidth in every case. Aswith
the p8 streams, these p16 elephants and mice exhibit sta-
ble behavior over many hours (figures omitted due to space
considerations), even though the bandwidth of some of the
elephants decreases substantially at night.

We further examine this recursive behaviour by tak-
ing some of the p16 streams from the previous step and
dividing them into substreams based on a 24-bit prefix.
We find that although the elephants and mice phenomenon
still exists, it becomes less pronounced as traffic becomes
somewhat more uniformly distributed across streams (Fig-
ure 20). Although we investigate 1, 2 and 3 byte masks,
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Figure 18: Time of day variations for p8 elephants and mice
for Webhost access link 1

there is no particular association with Class A, B and C
addresses that have become less meaningful with the ad-
vent of CIDR. In fact, we expect that this phenomenon will
manifest itself at other prefix levels aswell, certainly those
between 8-24, but probably less so at prefixes longer than
24,

A different way of studying the stability of elephants
and mice is to look at the frequency and size of rank
changesat agiven prefix level. Supposethat we dividetime
into equal-sized slots and compute the average bandwidth
for al the streams in each time slot. We can then rank the
streams according to bandwidths and examine the change
in rank of streams from one time slot to another. More
precisely, let R;(n) be the rank of flow ¢ in time slot n,
wheren =1,2,--- Nandi=1,2,---, M. Let usdefine
0(i,n, k) = |Ri(n) — R;(n+k)|,wherel < k < (N —n).
For a given value of k, we examine the probability distri-
butionfor é(-, -, k).

Figure 21 applies this technique for p8 traffic streams
between the peer 1 accesslink and POP 12 for an averaging
interval of 30 minutes,and & = 1,2, 4,6,8 and 10. There-
sults show that most of the rank changes are small —infact,
rank changes of size 5 or less account for about 70% of the
changes. Moreover, thisis true for rank changes over dif-
ferent time intervals ranging from 30 minutesto five hours.
Besides the obviousimplication for load balancing, thisre-
sult hasa powerful implication for building traffic matrices.
It providesadirection for predicting the rank of a stream at
a future time based on the current rank. Development of
such prediction techniques requires extensive analysis and
sophisticated statistical models, and is beyond the scope of
the current paper.

This distribution contains al the elephants and mice
mixed together. To isolate the rank change behavior of the
elephants alone, we checked the ranking of particular ele-
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phants over entire traces. We found that 70% of the top 15
elephants remain among the top 15 streams throughout the
day. We verified this behavior for a number of p8 streams
and a number of egress POPs.

In summary, we demonstrate the existence of the ele-
phants and mice phenomenon at the granularity of p8, p16
and p24 prefixes. We show that this phenomenon is re-
cursive in that elephants themselves are composed of ele-
phants and mice at alower granularity level. We verify the
stability of the ranking of streams afew ways. by examing
the time-of-day behavior, by calculating the density on the
change of rank process over multipletimeintervals, and by
examining the top elephants and their ranking throughout
the day. Our results indicate there exist natural and smple
aggregates, based on p8 and p16 aggregates, that constitute
alargefraction of traffic and that remain stable throughout
the day. Many of today’s routers provide the capability to
do per-prefix load balancing over equal/unequal cost links
(e.g., Cisco’s Express Forwarding). Load balancing at the
traffic granularity that weidentify here can beimplemented
by extending this capability.

7 RELATED WORK

Starting with pioneering work by Paxson ([13,
14]), network measurement and monitoring has received
widespread attention from Internet researchers and practi-
tioners ([15, 3, 16, 4]). However, much of this work re-
lies on data collected at public peering points, edge routers
and from academic networks. Our work is unique in that
the analysis is based on traces and routing tables collected
from a operational 1P backbone. In this respect, our paper
comes closest to the work in ([2, 3]). In [2] Grossglauser
et. al. propose a method for following the trajectories of a
subset of the packets flowing through a backbone network.
The method is based on using a single hash function, based
on packet content, at multiple nodes in the network. It has
direct applicability to the problem of determining traffic de-
mands on different paths through a network.

Internet measurement data can be broadly divided into
routing data and traffic data. The former consists of data
about routing protocols and their behaviour. Enormous
amounts of such data has been collected and analysed to
understand the behaviour of large-scale routing in the In-
ternet ([10, 15, 13, 16]). Traffic data, consisting of packet
traces, is not as widely available, especially from opera-
tional backbones. However, both traffic and routing data
are need to construct traffic matrices. The use of traffic ma-
trices as asystematic way of representing and analyzing In-
ternet traffic has been gaining attention recently ([3, 17, 7]),
and [3] is an important recent work in this area. There are
strong similaritiesin the overall goal of thework in [3] and
our work — collecting and processing data from an oper-
ational backbone in order to understand traffic demands

and improve traffic engineering. However our work dif-
fers from [3] in a number of ways. First, [3] uses data
from peering links at different points in the backbone to
construct point-to-multipoint traffic demands across these
peering links. These traffic demands comprise only of the
transit traffic through their backbone. On the other hand,
we collect data from a diverse set of access links (peer-
ing, web-hosting, ISPs, etc.) in our backbone, and study
the geographic spread of this traffic over the entire back-
bone. Aswe showed in this paper, the spatial and temporal
characteristics of traffic depends on the type of originating
access link; this makes it important to study traffic from
different types of access links. Secondly, [3] seeksto build
a traffic matrix representing multipoint demands from one
router to a set of egress router nodes; this captures all the
alternate egress points to a destination network beyond the
backbone. In our backbone, I-BGP policies are used to pick
one of many egress points to a destination network at any
given time. We are interested in studying internal routing
and traffic behaviour, given that this egress point has al-
ready been determined by I-BGP. Hence we focus only on
point-to-point POP-level flows. These differences notwith-
standing, both our work and [3] represent important first
effortsin understanding backbone traffic demands.

8 CONCLUSIONS

In this paper, we used packet-level traces collected at a
large POP of atier-1 1P backboneto understand the dynam-
ics of ingress traffic at a backbone POP. In order to study
geographical and temporal properties of POP-to-POP traf-
fic, we introduced a methodology for combining our data
with BGP information to classify the incoming traffic ac-
cording to egress POPs. We found that there is a wide
disparity in the volume of traffic headed towards different
egress POPs. We analyzed the traffic at three granularity
levels, the POP level, the access link level, and the desti-
nation prefix level. A contribution was to demonstrate dif-
ferent types of temporal stability for each of these on long
time scales.

We aso examined our network to see how the traffic
demands are routed through the backbone. We found that
the POP topology and IS-1S link weights are carefully cho-
sen to constrain traffic between most ingress-egress POP
pairsto afew paths across the backbone. The combined ef-
fect of such routing practices and overprovisioning means
that thereis alot of excess capacity in the core that results
in (i) underutilized links, (ii) a wide range of link levels
within the underutilized range, and (iii) some links being
consistenly underutilized. Our findings on the disparate
geographic spread of traffic demands combined with cur-
rent routing practicesindicate that thereisalot of room for
improvement in load balancing in the backbone. Current
routing practices today do not take into consideration the
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traffic demand matrix because such matrices are typically
not available. We believe thisis one of the key reasonswhy
we see large variation in link load levels.

Our main findings can be summarized as follows.

e The geographic spread of traffic from one ingress
POP across all egress POPs is far from uniform. A
few egress POPs sink large amounts of traffic, while
the majority sink either small or medium amounts
of traffic. Our initial assessment of POPs indicates
that a simple categorization, in which each category
draws about twice the volume of traffic as the one
below it (i.e. large/medium and medium/small ratios
are approximately two), is possible. Further work
needs to be done to model POPs in finer detail. This
data is important in that it confirms empirically our
intuition (based on internet practices) about how traf-
fic is distributed across backbones. However, it aso
contradictsthe widely used simulation model that as-
sumes uniform distribution of traffic among destina-
tion nodes.

e Accesslinks do not distribute traffic similarly across
egress POPs; some access links are more likely to
send to one set of POPs, while others are more likely
to sendto adifferent set of POPs. Thisdifferentiation
occurs mostly in medium sized egress POPs, and not
inlarge or small POPs.

e We found that the large egress POPs can exhibit a
large variability during the day, whereas the medium
and small POPs exhibit little variability over a full
day. More importantly, we found that when POPs
are ranked according to volume, then they maintain
their rank throughout the day. With respect to their
rank, POPs appear quite stable.

¢ The elephants and mice phenomenon that we found
among streams aggregated on destination prefixesis
anatural basisfor splitting traffic over multiple paths
in the backbone, using routing policies. ldentifying
reroutable flows at this level of traffic granularity is
attractive because such flows exhibit stable behavior
throughout the day. Load balancing this way would
reguire early identification of the elephantsin the ac-
cess links of the ingress POPs.

The value of our methodol ogy, observations and analy-
sis extends beyond load balancing to other aspects of back-
bone engineering. For example, we found a close con-
nection between traffic patterns amongst POPs and the ar-
chitecture of the POPs themselves. This can help in ar-
chitecting POPs, or in adding new customers and provi-
sioning backbone capacity when the backboneis upgraded.
Also, our analysisof POP behavior, its spatial and temporal
characteristics, and its underlying dependence upon access
links can be incorporated into capacity planning models.
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