
Thesis Defense:
Adaptive Binary Search Trees

Jonathan C. Derryberry

Department of Computer Science
Carnegie Mellon University

December 16, 2009

Thesis Committee:

Daniel Sleator (chair), Guy Blelloch, Gary Miller, Seth Pettie (Michigan)

J. Derryberry Adaptive Binary Search Trees 1 / 45

The Search Problem

Membership-testing, dictionary, successor/predecessor, etc.

Sequence of queries σ1 · · ·σm

Assume each σj ∈ {1, . . . , n}

J. Derryberry Adaptive Binary Search Trees 2 / 45

The Search Problem

Membership-testing, dictionary, successor/predecessor, etc.

Sequence of queries σ1 · · ·σm

Assume each σj ∈ {1, . . . , n}

J. Derryberry Adaptive Binary Search Trees 2 / 45

The Search Problem

Membership-testing, dictionary, successor/predecessor, etc.

Sequence of queries σ1 · · ·σm

Assume each σj ∈ {1, . . . , n}

J. Derryberry Adaptive Binary Search Trees 2 / 45

Outline

1 Introduction

2 Lower Bounds and Competitiveness

3 The Unified Bound and Splay Trees

4 Cache-Splay Trees

5 Conclusion

J. Derryberry Adaptive Binary Search Trees 3 / 45

Outline

1 Introduction

2 Lower Bounds and Competitiveness

3 The Unified Bound and Splay Trees

4 Cache-Splay Trees

5 Conclusion

J. Derryberry Adaptive Binary Search Trees 4 / 45

Which Computational Model?

Hashing (RAM): O(1)

(but no successor)

vEB/Fusion Trees (RAM): O(
√

lg n)

(requires integers, no augmenting)

Comparison model: O(lg n)

(no augmenting)

BST model: O(lg n)

(supports augmenting)

J. Derryberry Adaptive Binary Search Trees 5 / 45

Which Computational Model?

Hashing (RAM): O(1)
(but no successor)

vEB/Fusion Trees (RAM): O(
√

lg n)

(requires integers, no augmenting)

Comparison model: O(lg n)

(no augmenting)

BST model: O(lg n)

(supports augmenting)

J. Derryberry Adaptive Binary Search Trees 5 / 45

Which Computational Model?

Hashing (RAM): O(1)
(but no successor)

vEB/Fusion Trees (RAM): O(
√

lg n)

(requires integers, no augmenting)

Comparison model: O(lg n)

(no augmenting)

BST model: O(lg n)

(supports augmenting)

J. Derryberry Adaptive Binary Search Trees 5 / 45

Which Computational Model?

Hashing (RAM): O(1)
(but no successor)

vEB/Fusion Trees (RAM): O(
√

lg n)
(requires integers, no augmenting)

Comparison model: O(lg n)

(no augmenting)

BST model: O(lg n)

(supports augmenting)

J. Derryberry Adaptive Binary Search Trees 5 / 45

Which Computational Model?

Hashing (RAM): O(1)
(but no successor)

vEB/Fusion Trees (RAM): O(
√

lg n)
(requires integers, no augmenting)

Comparison model: O(lg n)

(no augmenting)

BST model: O(lg n)

(supports augmenting)

J. Derryberry Adaptive Binary Search Trees 5 / 45

Which Computational Model?

Hashing (RAM): O(1)
(but no successor)

vEB/Fusion Trees (RAM): O(
√

lg n)
(requires integers, no augmenting)

Comparison model: O(lg n)
(no augmenting)

BST model: O(lg n)

(supports augmenting)

J. Derryberry Adaptive Binary Search Trees 5 / 45

Which Computational Model?

Hashing (RAM): O(1)
(but no successor)

vEB/Fusion Trees (RAM): O(
√

lg n)
(requires integers, no augmenting)

Comparison model: O(lg n)
(no augmenting)

BST model: O(lg n)

(supports augmenting)

J. Derryberry Adaptive Binary Search Trees 5 / 45

Which Computational Model?

Hashing (RAM): O(1)
(but no successor)

vEB/Fusion Trees (RAM): O(
√

lg n)
(requires integers, no augmenting)

Comparison model: O(lg n)
(no augmenting)

BST model: O(lg n)
(supports augmenting)

J. Derryberry Adaptive Binary Search Trees 5 / 45

BST Model [Wil89]

x

y

y

x

A B

C A

B C

rotate x

rotate y

Binary tree in symmetric order

Modifiable with BST rotations

Must rotate queried node to root

J. Derryberry Adaptive Binary Search Trees 6 / 45

BST Model [Wil89]

x

y

y

x

A B

C A

B C

rotate x

rotate y

Binary tree in symmetric order

Modifiable with BST rotations

Must rotate queried node to root

J. Derryberry Adaptive Binary Search Trees 6 / 45

BST Model [Wil89]

x

y

y

x

A B

C A

B C

rotate x

rotate y

Binary tree in symmetric order

Modifiable with BST rotations

Must rotate queried node to root

J. Derryberry Adaptive Binary Search Trees 6 / 45

Flexibility of the BST Model

Can easily do O(lg n) worst-case

Can adapt to sequences with patterns

To adapt, rotate nodes likely to be accessed to near the root

J. Derryberry Adaptive Binary Search Trees 7 / 45

Flexibility of the BST Model

Can easily do O(lg n) worst-case

Can adapt to sequences with patterns

To adapt, rotate nodes likely to be accessed to near the root

J. Derryberry Adaptive Binary Search Trees 7 / 45

Flexibility of the BST Model

Can easily do O(lg n) worst-case

Can adapt to sequences with patterns

To adapt, rotate nodes likely to be accessed to near the root

J. Derryberry Adaptive Binary Search Trees 7 / 45

Outline

1 Introduction

2 Lower Bounds and Competitiveness

3 The Unified Bound and Splay Trees

4 Cache-Splay Trees

5 Conclusion

J. Derryberry Adaptive Binary Search Trees 8 / 45

Why Prove a Lower Bound?

Help prove optimality

Invalidate the computational model

Understand the model/problem

J. Derryberry Adaptive Binary Search Trees 9 / 45

Why Prove a Lower Bound?

Help prove optimality

Invalidate the computational model

Understand the model/problem

J. Derryberry Adaptive Binary Search Trees 9 / 45

Why Prove a Lower Bound?

Help prove optimality

Invalidate the computational model

Understand the model/problem

J. Derryberry Adaptive Binary Search Trees 9 / 45

Lower Bound Basics

Online BST costs Ω(lg n)?

Offline BST costs Ω(lg n)?

Instance-specific bounds?

J. Derryberry Adaptive Binary Search Trees 10 / 45

Lower Bound Basics

Online BST costs Ω(lg n)?

Offline BST costs Ω(lg n)?

Instance-specific bounds?

J. Derryberry Adaptive Binary Search Trees 10 / 45

Lower Bound Basics

Online BST costs Ω(lg n)?

Offline BST costs Ω(lg n)?

Instance-specific bounds?

J. Derryberry Adaptive Binary Search Trees 10 / 45

Wilber’s First Bound [Wil89]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

J. Derryberry Adaptive Binary Search Trees 11 / 45

Wilber’s First Bound [Wil89]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

J. Derryberry Adaptive Binary Search Trees 11 / 45

Wilber’s First Bound [Wil89]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

J. Derryberry Adaptive Binary Search Trees 11 / 45

Wilber’s First Bound [Wil89]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

J. Derryberry Adaptive Binary Search Trees 11 / 45

Wilber’s First Bound [Wil89]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

J. Derryberry Adaptive Binary Search Trees 11 / 45

Interleave Bound [DHIP04]

13

1410

11

12

151

2

3

4

5 7

6

8

9

J. Derryberry Adaptive Binary Search Trees 12 / 45

Interleave Bound [DHIP04]

13

1410

11

12

151

2

3

4

5 7

6

8

9

J. Derryberry Adaptive Binary Search Trees 12 / 45

Interleave Bound [DHIP04]

13

1410

11

12

151

2

3

4

5 7

6

8

9

J. Derryberry Adaptive Binary Search Trees 12 / 45

Interleave Bound [DHIP04]

13

1410

11

12

151

2

3

4

5 7

6

8

9

J. Derryberry Adaptive Binary Search Trees 12 / 45

Interleave Bound [DHIP04]

13

1410

11

12

151

2

3

4

5 7

6

8

9

J. Derryberry Adaptive Binary Search Trees 12 / 45

Uses of the Interleave Bound

13

1410

11

12

151

2

3

4

5 7

6

8

9

Implications

Balanced BSTs dynamically optimal for random sequences

Rotate paths (only in BST) into a red-black tree [DHIP04]

Swap red-black trees for splay trees and gain [WDS06]

Can also rotate lower bound tree to allow updates [WDS06]

J. Derryberry Adaptive Binary Search Trees 13 / 45

Uses of the Interleave Bound

13

1410

11

12

151

2

3

4

5 7

6

8

9

Implications

Balanced BSTs dynamically optimal for random sequences

Rotate paths (only in BST) into a red-black tree [DHIP04]

Swap red-black trees for splay trees and gain [WDS06]

Can also rotate lower bound tree to allow updates [WDS06]

J. Derryberry Adaptive Binary Search Trees 13 / 45

Uses of the Interleave Bound

13

1410

11

12

151

2

3

4

5 7

6

8

9

Implications

Balanced BSTs dynamically optimal for random sequences

Rotate paths (only in BST) into a red-black tree [DHIP04]

Swap red-black trees for splay trees and gain [WDS06]

Can also rotate lower bound tree to allow updates [WDS06]

J. Derryberry Adaptive Binary Search Trees 13 / 45

Uses of the Interleave Bound

13

14

10

11

12

151

2

3

4

5 7

6

8

9

Implications

Balanced BSTs dynamically optimal for random sequences

Rotate paths (only in BST) into a red-black tree [DHIP04]

Swap red-black trees for splay trees and gain [WDS06]

Can also rotate lower bound tree to allow updates [WDS06]

J. Derryberry Adaptive Binary Search Trees 13 / 45

Uses of the Interleave Bound

13

14

10

11

12

151

2

3

4

5 7

6

8

9

Implications

Balanced BSTs dynamically optimal for random sequences

Rotate paths (only in BST) into a red-black tree [DHIP04]

Swap red-black trees for splay trees and gain [WDS06]

Can also rotate lower bound tree to allow updates [WDS06]

J. Derryberry Adaptive Binary Search Trees 13 / 45

Uses of the Interleave Bound

13

14

10

11

12

151

2

3

4

5 7

6

8

9

Implications

Balanced BSTs dynamically optimal for random sequences

Rotate paths (only in BST) into a red-black tree [DHIP04]

Swap red-black trees for splay trees and gain [WDS06]

Can also rotate lower bound tree to allow updates [WDS06]

J. Derryberry Adaptive Binary Search Trees 13 / 45

Uses of the Interleave Bound

13

14

10

11

12

15

1

2

3

4

5 7

6

8

9

Implications

Balanced BSTs dynamically optimal for random sequences

Rotate paths (only in BST) into a red-black tree [DHIP04]

Swap red-black trees for splay trees and gain [WDS06]

Can also rotate lower bound tree to allow updates [WDS06]

J. Derryberry Adaptive Binary Search Trees 13 / 45

Uses of the Interleave Bound

13

14

10

11

12

15

1

2

3

4

5 7

6

8

9

Implications

Balanced BSTs dynamically optimal for random sequences

Rotate paths (only in BST) into a red-black tree [DHIP04]

Swap red-black trees for splay trees and gain [WDS06]

Can also rotate lower bound tree to allow updates [WDS06]

J. Derryberry Adaptive Binary Search Trees 13 / 45

Uses of the Interleave Bound

13

14

10

11

12

15

1

2

3

4

5 7

6

8

9

Implications

Balanced BSTs dynamically optimal for random sequences

Rotate paths (only in BST) into a red-black tree [DHIP04]

Swap red-black trees for splay trees and gain [WDS06]

Can also rotate lower bound tree to allow updates [WDS06]

J. Derryberry Adaptive Binary Search Trees 13 / 45

Uses of the Interleave Bound

13

14

10

11

12

15

1

2

3

4

5 7

6

8

9

Implications

Balanced BSTs dynamically optimal for random sequences

Rotate paths (only in BST) into a red-black tree [DHIP04]

Swap red-black trees for splay trees and gain [WDS06]

Can also rotate lower bound tree to allow updates [WDS06]

J. Derryberry Adaptive Binary Search Trees 13 / 45

Uses of the Interleave Bound

13

14

10

11

12

15

1

2

3

4

5 7

6

8

9

Implications

Balanced BSTs dynamically optimal for random sequences

Rotate paths (only in BST) into a red-black tree [DHIP04]

Swap red-black trees for splay trees and gain [WDS06]

Can also rotate lower bound tree to allow updates [WDS06]

J. Derryberry Adaptive Binary Search Trees 13 / 45

Uses of the Interleave Bound

13

14

10

11

12

15

1

2

3

4

5 7

6

8

9

Implications

Balanced BSTs dynamically optimal for random sequences

Rotate paths (only in BST) into a red-black tree [DHIP04]

Swap red-black trees for splay trees and gain [WDS06]

Can also rotate lower bound tree to allow updates [WDS06]

J. Derryberry Adaptive Binary Search Trees 13 / 45

Uses of the Interleave Bound

13

14

10

11

12

15

1

2

3

4

5 7

6

8

9

Implications

Balanced BSTs dynamically optimal for random sequences

Rotate paths (only in BST) into a red-black tree [DHIP04]

Swap red-black trees for splay trees and gain [WDS06]

Can also rotate lower bound tree to allow updates [WDS06]

J. Derryberry Adaptive Binary Search Trees 13 / 45

Uses of the Interleave Bound

13

1410

11

12

151

2

3

4

5 7

6

8

9

Implications

Balanced BSTs dynamically optimal for random sequences

Rotate paths (only in BST) into a red-black tree [DHIP04]

Swap red-black trees for splay trees and gain [WDS06]

Can also rotate lower bound tree to allow updates [WDS06]

J. Derryberry Adaptive Binary Search Trees 13 / 45

How good is Wilber-1/Interleave?

Lets us compete (O(lg lg n)-competitiveness)

Every static lower bound tree is loose by Ω(lg lg n)

Can the dynamic interleave bound help?

Can Wilber’s second bound help?

J. Derryberry Adaptive Binary Search Trees 14 / 45

How good is Wilber-1/Interleave?

Lets us compete (O(lg lg n)-competitiveness)

Every static lower bound tree is loose by Ω(lg lg n)

Can the dynamic interleave bound help?

Can Wilber’s second bound help?

J. Derryberry Adaptive Binary Search Trees 14 / 45

How good is Wilber-1/Interleave?

Lets us compete (O(lg lg n)-competitiveness)

Every static lower bound tree is loose by Ω(lg lg n)

Can the dynamic interleave bound help?

Can Wilber’s second bound help?

J. Derryberry Adaptive Binary Search Trees 14 / 45

How good is Wilber-1/Interleave?

Lets us compete (O(lg lg n)-competitiveness)

Every static lower bound tree is loose by Ω(lg lg n)

Can the dynamic interleave bound help?

Can Wilber’s second bound help?

J. Derryberry Adaptive Binary Search Trees 14 / 45

MIBS: Generalizing Wilber-1 and Wilber-2 [DSW05]

keyspace

ti
m

e
1

2
3

4
5

6
7

8
9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

12
13

14
15

11

J. Derryberry Adaptive Binary Search Trees 15 / 45

MIBS: Generalizing Wilber-1 and Wilber-2 [DSW05]

keyspace

ti
m

e
1

2
3

4
5

6
7

8
9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

12
13

14
15

11

J. Derryberry Adaptive Binary Search Trees 15 / 45

MIBS: Generalizing Wilber-1 and Wilber-2 [DSW05]

keyspace

ti
m

e
1

2
3

4
5

6
7

8
9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

12
13

14
15

11

J. Derryberry Adaptive Binary Search Trees 15 / 45

MIBS: Generalizing Wilber-1 and Wilber-2 [DSW05]

keyspace

ti
m

e
1

2
3

4
5

6
7

8
9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

12
13

14
15

11

J. Derryberry Adaptive Binary Search Trees 15 / 45

MIBS: Generalizing Wilber-1 and Wilber-2 [DSW05]

keyspace

ti
m

e
1

2
3

4
5

6
7

8
9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

12
13

14
15

11

J. Derryberry Adaptive Binary Search Trees 15 / 45

MIBS: Generalizing Wilber-1 and Wilber-2 [DSW05]

keyspace

ti
m

e
1

2
3

4
5

6
7

8
9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

12
13

14
15

11

J. Derryberry Adaptive Binary Search Trees 15 / 45

MIBS: Generalizing Wilber-1 and Wilber-2 [DSW05]

keyspace

ti
m

e
1

2
3

4
5

6
7

8
9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

12
13

14
15

11

J. Derryberry Adaptive Binary Search Trees 15 / 45

MIBS: Generalizing Wilber-1 and Wilber-2 [DSW05]

keyspace

ti
m

e
1

2
3

4
5

6
7

8
9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

12
13

14
15

11

J. Derryberry Adaptive Binary Search Trees 15 / 45

MIBS: Generalizing Wilber-1 and Wilber-2 [DSW05]

keyspace

ti
m

e
1

2
3

4
5

6
7

8
9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

12
13

14
15

11

J. Derryberry Adaptive Binary Search Trees 15 / 45

MIBS: Generalizing Wilber-1 and Wilber-2 [DSW05]

keyspace

ti
m

e
1

2
3

4
5

6
7

8
9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

12
13

14
15

11

J. Derryberry Adaptive Binary Search Trees 15 / 45

The MIBS Bound

Theorem

The number of boxes is a lower bound on OPT(σ).

J. Derryberry Adaptive Binary Search Trees 16 / 45

Proof of MIBS Bound

keyspace

ti
m

e
1

2
3

4
5

6
7

8
9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

12
13

14
15

11

J. Derryberry Adaptive Binary Search Trees 17 / 45

Proof of MIBS Bound

keyspace

ti
m

e
1

2
3

4
5

6
7

8
9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

12
13

14
15

11

J. Derryberry Adaptive Binary Search Trees 17 / 45

Proof of MIBS Bound

keyspace

ti
m

e
1

2
3

4
5

6
7

8
9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

12
13

14
15

11

J. Derryberry Adaptive Binary Search Trees 17 / 45

Proof of MIBS Bound

keyspace

ti
m

e
1

2
3

4
5

6
7

8
9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

12
13

14
15

11

J. Derryberry Adaptive Binary Search Trees 17 / 45

Proof of MIBS Bound

keyspace

ti
m

e
1

2
3

4
5

6
7

8
9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

12
13

14
15

11

J. Derryberry Adaptive Binary Search Trees 17 / 45

Proof of MIBS Bound

keyspace

ti
m

e
1

2
3

4
5

6
7

8
9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

12
13

14
15

11

J. Derryberry Adaptive Binary Search Trees 17 / 45

Proof of MIBS Bound

keyspace

ti
m

e
1

2
3

4
5

6
7

8
9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

12
13

14
15

11

J. Derryberry Adaptive Binary Search Trees 17 / 45

Proof of MIBS Bound

keyspace

ti
m

e
1

2
3

4
5

6
7

8
9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

12
13

14
15

11

J. Derryberry Adaptive Binary Search Trees 17 / 45

Proof of MIBS Bound

keyspace

ti
m

e
1

2
3

4
5

6
7

8
9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

12
13

14
15

11

J. Derryberry Adaptive Binary Search Trees 17 / 45

Proof of MIBS Bound

keyspace

ti
m

e
1

2
3

4
5

6
7

8
9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

12
13

14
15

11

J. Derryberry Adaptive Binary Search Trees 17 / 45

Proof of MIBS Bound

keyspace

ti
m

e
1

2
3

4
5

6
7

8
9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

12
13

14
15

11

J. Derryberry Adaptive Binary Search Trees 17 / 45

Proof of MIBS Bound

keyspace

ti
m

e
1

2
3

4
5

6
7

8
9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

12
13

14
15

11

J. Derryberry Adaptive Binary Search Trees 17 / 45

Proof of MIBS Bound

keyspace

ti
m

e
1

2
3

4
5

6
7

8
9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

12
13

14
15

11

J. Derryberry Adaptive Binary Search Trees 17 / 45

Proof of MIBS Bound

keyspace

ti
m

e
1

2
3

4
5

6
7

8
9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

12
13

14
15

11

associated rotation

J. Derryberry Adaptive Binary Search Trees 17 / 45

Proof of MIBS Bound

keyspace

ti
m

e
1

2
3

4
5

6
7

8
9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

12
13

14
15

11

associated rotation

J. Derryberry Adaptive Binary Search Trees 17 / 45

MIBS ≥ Wilber’s First Bound

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

keyspace
ti

m
e

1
2

3
4

5
6

7
8

9
10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
12

13
14

15
11

J. Derryberry Adaptive Binary Search Trees 18 / 45

MIBS ≥ Wilber’s First Bound

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

keyspace
ti

m
e

1
2

3
4

5
6

7
8

9
10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
12

13
14

15
11

J. Derryberry Adaptive Binary Search Trees 18 / 45

MIBS ≥ Wilber’s First Bound

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

keyspace
ti

m
e

1
2

3
4

5
6

7
8

9
10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
12

13
14

15
11

J. Derryberry Adaptive Binary Search Trees 18 / 45

MIBS ≥ Wilber’s First Bound

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

keyspace
ti

m
e

1
2

3
4

5
6

7
8

9
10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
12

13
14

15
11

J. Derryberry Adaptive Binary Search Trees 18 / 45

MIBS ≥ Wilber’s First Bound

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

keyspace
ti

m
e

1
2

3
4

5
6

7
8

9
10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
12

13
14

15
11

J. Derryberry Adaptive Binary Search Trees 18 / 45

Musing on MIBS

Generalizes previous bounds

Does not help improve competitiveness so far

Strengthens connection between partial-sums problem and
BST model

J. Derryberry Adaptive Binary Search Trees 19 / 45

Musing on MIBS

Generalizes previous bounds

Does not help improve competitiveness so far

Strengthens connection between partial-sums problem and
BST model

J. Derryberry Adaptive Binary Search Trees 19 / 45

Musing on MIBS

Generalizes previous bounds

Does not help improve competitiveness so far

Strengthens connection between partial-sums problem and
BST model

J. Derryberry Adaptive Binary Search Trees 19 / 45

Partial-Sums Problem

Maintain an array under update operations

Return sum(1, . . . , i) when requested for current array values

Input: sequence of update and sum operations

Output: sequence of sums

Lower bound: Ω(lg n) in cell-probe model [PD04]

Lower bound: MIBS, if we require explicitly computed sums

J. Derryberry Adaptive Binary Search Trees 20 / 45

Partial-Sums Problem

Maintain an array under update operations

Return sum(1, . . . , i) when requested for current array values

Input: sequence of update and sum operations

Output: sequence of sums

Lower bound: Ω(lg n) in cell-probe model [PD04]

Lower bound: MIBS, if we require explicitly computed sums

J. Derryberry Adaptive Binary Search Trees 20 / 45

Partial-Sums Problem

Maintain an array under update operations

Return sum(1, . . . , i) when requested for current array values

Input: sequence of update and sum operations

Output: sequence of sums

Lower bound: Ω(lg n) in cell-probe model [PD04]

Lower bound: MIBS, if we require explicitly computed sums

J. Derryberry Adaptive Binary Search Trees 20 / 45

Partial-Sums Problem

Maintain an array under update operations

Return sum(1, . . . , i) when requested for current array values

Input: sequence of update and sum operations

Output: sequence of sums

Lower bound: Ω(lg n) in cell-probe model [PD04]

Lower bound: MIBS, if we require explicitly computed sums

J. Derryberry Adaptive Binary Search Trees 20 / 45

Partial-Sums Problem

Maintain an array under update operations

Return sum(1, . . . , i) when requested for current array values

Input: sequence of update and sum operations

Output: sequence of sums

Lower bound: Ω(lg n) in cell-probe model [PD04]

Lower bound: MIBS, if we require explicitly computed sums

J. Derryberry Adaptive Binary Search Trees 20 / 45

Partial-Sums Problem

Maintain an array under update operations

Return sum(1, . . . , i) when requested for current array values

Input: sequence of update and sum operations

Output: sequence of sums

Lower bound: Ω(lg n) in cell-probe model [PD04]

Lower bound: MIBS, if we require explicitly computed sums

J. Derryberry Adaptive Binary Search Trees 20 / 45

History of BST Lower Bounds

[Wil89]: first offline, instance-specific bounds

[BCK02]: offline information-theoretic bound

[DHIP04]: BST-like bound

[WDS06]: rotatable BST-like bound

[DSW05],[DHI+09]: generalization of Wilber-1 and Wilber-2

J. Derryberry Adaptive Binary Search Trees 21 / 45

History of BST Lower Bounds

[Wil89]: first offline, instance-specific bounds

[BCK02]: offline information-theoretic bound

[DHIP04]: BST-like bound

[WDS06]: rotatable BST-like bound

[DSW05],[DHI+09]: generalization of Wilber-1 and Wilber-2

J. Derryberry Adaptive Binary Search Trees 21 / 45

History of BST Lower Bounds

[Wil89]: first offline, instance-specific bounds

[BCK02]: offline information-theoretic bound

[DHIP04]: BST-like bound

[WDS06]: rotatable BST-like bound

[DSW05],[DHI+09]: generalization of Wilber-1 and Wilber-2

J. Derryberry Adaptive Binary Search Trees 21 / 45

History of BST Lower Bounds

[Wil89]: first offline, instance-specific bounds

[BCK02]: offline information-theoretic bound

[DHIP04]: BST-like bound

[WDS06]: rotatable BST-like bound

[DSW05],[DHI+09]: generalization of Wilber-1 and Wilber-2

J. Derryberry Adaptive Binary Search Trees 21 / 45

History of BST Lower Bounds

[Wil89]: first offline, instance-specific bounds

[BCK02]: offline information-theoretic bound

[DHIP04]: BST-like bound

[WDS06]: rotatable BST-like bound

[DSW05],[DHI+09]: generalization of Wilber-1 and Wilber-2

J. Derryberry Adaptive Binary Search Trees 21 / 45

History of BST Competitiveness

[BCK02]: dynamic search optimality

[DHIP04]: O(lg lg n)-competitive

[WDS06, DSW09]: support insert/delete, deque, working set

[Geo08]: like multi-splay, only O(lg lg n)-competitive

[BDDF09]: support worst-case O(lg n) running time

J. Derryberry Adaptive Binary Search Trees 22 / 45

History of BST Competitiveness

[BCK02]: dynamic search optimality

[DHIP04]: O(lg lg n)-competitive

[WDS06, DSW09]: support insert/delete, deque, working set

[Geo08]: like multi-splay, only O(lg lg n)-competitive

[BDDF09]: support worst-case O(lg n) running time

J. Derryberry Adaptive Binary Search Trees 22 / 45

History of BST Competitiveness

[BCK02]: dynamic search optimality

[DHIP04]: O(lg lg n)-competitive

[WDS06, DSW09]: support insert/delete, deque, working set

[Geo08]: like multi-splay, only O(lg lg n)-competitive

[BDDF09]: support worst-case O(lg n) running time

J. Derryberry Adaptive Binary Search Trees 22 / 45

History of BST Competitiveness

[BCK02]: dynamic search optimality

[DHIP04]: O(lg lg n)-competitive

[WDS06, DSW09]: support insert/delete, deque, working set

[Geo08]: like multi-splay, only O(lg lg n)-competitive

[BDDF09]: support worst-case O(lg n) running time

J. Derryberry Adaptive Binary Search Trees 22 / 45

History of BST Competitiveness

[BCK02]: dynamic search optimality

[DHIP04]: O(lg lg n)-competitive

[WDS06, DSW09]: support insert/delete, deque, working set

[Geo08]: like multi-splay, only O(lg lg n)-competitive

[BDDF09]: support worst-case O(lg n) running time

J. Derryberry Adaptive Binary Search Trees 22 / 45

Outline

1 Introduction

2 Lower Bounds and Competitiveness

3 The Unified Bound and Splay Trees

4 Cache-Splay Trees

5 Conclusion

J. Derryberry Adaptive Binary Search Trees 23 / 45

Formulaic Adaptivity

Strength of competitiveness depends on the model

Alternative: input-sensitive bounds with intuitive meaning

J. Derryberry Adaptive Binary Search Trees 24 / 45

Formulaic Adaptivity

Strength of competitiveness depends on the model

Alternative: input-sensitive bounds with intuitive meaning

J. Derryberry Adaptive Binary Search Trees 24 / 45

Bounds with Intuitive Meaning

Working Set Bound (exploiting temporal locality)

Access x , then t distinct keys. Pay O(lg t) to access x again.

Dynamic Finger Bound (exploiting spatial locality)

Access x . Then, access y at cost O(lg |x − y |).

J. Derryberry Adaptive Binary Search Trees 25 / 45

Bounds with Intuitive Meaning

Working Set Bound (exploiting temporal locality)

Access x , then t distinct keys. Pay O(lg t) to access x again.

Dynamic Finger Bound (exploiting spatial locality)

Access x . Then, access y at cost O(lg |x − y |).

J. Derryberry Adaptive Binary Search Trees 25 / 45

What If There Is a Mix of Spatial and Temporal Locality?

Need two fingers

1, n
2 + 1, 2, n

2 + 2, 3, n
2 + 3, . . .

Need three fingers

1, n
3 + 1, 2n

3 + 1, 2, n
3 + 2, . . .

Support many fingers: Unified Bound [Iac01]

Cost of a query to y :

min
x

(lg tx + lg |x − y |)

J. Derryberry Adaptive Binary Search Trees 26 / 45

What If There Is a Mix of Spatial and Temporal Locality?

Need two fingers

1, n
2 + 1, 2, n

2 + 2, 3, n
2 + 3, . . .

Need three fingers

1, n
3 + 1, 2n

3 + 1, 2, n
3 + 2, . . .

Support many fingers: Unified Bound [Iac01]

Cost of a query to y :

min
x

(lg tx + lg |x − y |)

J. Derryberry Adaptive Binary Search Trees 26 / 45

What If There Is a Mix of Spatial and Temporal Locality?

Need two fingers

1, n
2 + 1, 2, n

2 + 2, 3, n
2 + 3, . . .

Need three fingers

1, n
3 + 1, 2n

3 + 1, 2, n
3 + 2, . . .

Support many fingers: Unified Bound [Iac01]

Cost of a query to y :

min
x

(lg tx + lg |x − y |)

J. Derryberry Adaptive Binary Search Trees 26 / 45

What If There Is a Mix of Spatial and Temporal Locality?

Need two fingers

1, n
2 + 1, 2, n

2 + 2, 3, n
2 + 3, . . .

Need three fingers

1, n
3 + 1, 2n

3 + 1, 2, n
3 + 2, . . .

Support many fingers: Unified Bound [Iac01]

Cost of a query to y :

min
x

(lg tx + lg |x − y |)

J. Derryberry Adaptive Binary Search Trees 26 / 45

What If There Is a Mix of Spatial and Temporal Locality?

Need two fingers

1, n
2 + 1, 2, n

2 + 2, 3, n
2 + 3, . . .

Need three fingers

1, n
3 + 1, 2n

3 + 1, 2, n
3 + 2, . . .

Support many fingers: Unified Bound [Iac01]

Cost of a query to y :

min
x

(lg tx + lg |x − y |)

J. Derryberry Adaptive Binary Search Trees 26 / 45

What If There Is a Mix of Spatial and Temporal Locality?

Need two fingers

1, n
2 + 1, 2, n

2 + 2, 3, n
2 + 3, . . .

Need three fingers

1, n
3 + 1, 2n

3 + 1, 2, n
3 + 2, . . .

Support many fingers: Unified Bound [Iac01]

Cost of a query to y :

min
x

(lg tx + lg |x − y |)

J. Derryberry Adaptive Binary Search Trees 26 / 45

What If There Is a Mix of Spatial and Temporal Locality?

Need two fingers

1, n
2 + 1, 2, n

2 + 2, 3, n
2 + 3, . . .

Need three fingers

1, n
3 + 1, 2n

3 + 1, 2, n
3 + 2, . . .

Support many fingers: Unified Bound [Iac01]

Cost of a query to y :

min
x

(lg tx + lg |x − y |)

J. Derryberry Adaptive Binary Search Trees 26 / 45

What If There Is a Mix of Spatial and Temporal Locality?

Need two fingers

1, n
2 + 1, 2, n

2 + 2, 3, n
2 + 3, . . .

Need three fingers

1, n
3 + 1, 2n

3 + 1, 2, n
3 + 2, . . .

Support many fingers: Unified Bound [Iac01]

Cost of a query to y :

min
x

(lg tx + lg |x − y |)

J. Derryberry Adaptive Binary Search Trees 26 / 45

What If There Is a Mix of Spatial and Temporal Locality?

Need two fingers

1, n
2 + 1, 2, n

2 + 2, 3, n
2 + 3, . . .

Need three fingers

1, n
3 + 1, 2n

3 + 1, 2, n
3 + 2, . . .

Support many fingers: Unified Bound [Iac01]

Cost of a query to y :

min
x

(lg tx + lg |x − y |)

J. Derryberry Adaptive Binary Search Trees 26 / 45

What If There Is a Mix of Spatial and Temporal Locality?

Need two fingers

1, n
2 + 1, 2, n

2 + 2, 3, n
2 + 3, . . .

Need three fingers

1, n
3 + 1, 2n

3 + 1, 2, n
3 + 2, . . .

Support many fingers: Unified Bound [Iac01]

Cost of a query to y :

min
x

(lg tx + lg |x − y |)

J. Derryberry Adaptive Binary Search Trees 26 / 45

What If There Is a Mix of Spatial and Temporal Locality?

Need two fingers

1, n
2 + 1, 2, n

2 + 2, 3, n
2 + 3, . . .

Need three fingers

1, n
3 + 1, 2n

3 + 1, 2, n
3 + 2, . . .

Support many fingers: Unified Bound [Iac01]

Cost of a query to y :

min
x

(lg tx + lg |x − y |)

J. Derryberry Adaptive Binary Search Trees 26 / 45

What If There Is a Mix of Spatial and Temporal Locality?

Need two fingers

1, n
2 + 1, 2, n

2 + 2, 3, n
2 + 3, . . .

Need three fingers

1, n
3 + 1, 2n

3 + 1, 2, n
3 + 2, . . .

Support many fingers: Unified Bound [Iac01]

Cost of a query to y :

min
x

(lg tx + lg |x − y |)

J. Derryberry Adaptive Binary Search Trees 26 / 45

What If There Is a Mix of Spatial and Temporal Locality?

Need two fingers

1, n
2 + 1, 2, n

2 + 2, 3, n
2 + 3, . . .

Need three fingers

1, n
3 + 1, 2n

3 + 1, 2, n
3 + 2, . . .

Support many fingers: Unified Bound [Iac01]

Cost of a query to y :

min
x

(lg tx + lg |x − y |)

J. Derryberry Adaptive Binary Search Trees 26 / 45

What If There Is a Mix of Spatial and Temporal Locality?

Need two fingers

1, n
2 + 1, 2, n

2 + 2, 3, n
2 + 3, . . .

Need three fingers

1, n
3 + 1, 2n

3 + 1, 2, n
3 + 2, . . .

Support many fingers: Unified Bound [Iac01]

Cost of a query to y :

min
x

(lg tx + lg |x − y |)

J. Derryberry Adaptive Binary Search Trees 26 / 45

What If There Is a Mix of Spatial and Temporal Locality?

Need two fingers

1, n
2 + 1, 2, n

2 + 2, 3, n
2 + 3, . . .

Need three fingers

1, n
3 + 1, 2n

3 + 1, 2, n
3 + 2, . . .

Support many fingers: Unified Bound [Iac01]

Cost of a query to y :

min
x

(lg tx + lg |x − y |)

J. Derryberry Adaptive Binary Search Trees 26 / 45

Relationship of Unified Bound to Dynamic Optimality

Generalizes working set and dynamic finger bounds

Iacono achived the bound in the pointer model

Not sufficient for optimality:

1, n1/2 + 1, 2n1/2 + 1, 3n1/2 + 1, . . . , (n1/2 − 1)n1/2 + 1,

2, n1/2 + 2, 2n1/2 + 2, 3n1/2 + 2, . . . , (n1/2 − 1)n1/2 + 2,

3, n1/2 + 3, 2n1/2 + 3, 3n1/2 + 3, . . . , (n1/2 − 1)n1/2 + 3,

...

n1/2, n1/2 + n1/2, 2n1/2 + n1/2, 3n1/2 + n1/2, . . . , n.

Necessary for optimality? Open until this work.

J. Derryberry Adaptive Binary Search Trees 27 / 45

Relationship of Unified Bound to Dynamic Optimality

Generalizes working set and dynamic finger bounds

Iacono achived the bound in the pointer model

Not sufficient for optimality:

1, n1/2 + 1, 2n1/2 + 1, 3n1/2 + 1, . . . , (n1/2 − 1)n1/2 + 1,

2, n1/2 + 2, 2n1/2 + 2, 3n1/2 + 2, . . . , (n1/2 − 1)n1/2 + 2,

3, n1/2 + 3, 2n1/2 + 3, 3n1/2 + 3, . . . , (n1/2 − 1)n1/2 + 3,

...

n1/2, n1/2 + n1/2, 2n1/2 + n1/2, 3n1/2 + n1/2, . . . , n.

Necessary for optimality? Open until this work.

J. Derryberry Adaptive Binary Search Trees 27 / 45

Relationship of Unified Bound to Dynamic Optimality

Generalizes working set and dynamic finger bounds

Iacono achived the bound in the pointer model

Not sufficient for optimality:

1, n1/2 + 1, 2n1/2 + 1, 3n1/2 + 1, . . . , (n1/2 − 1)n1/2 + 1,

2, n1/2 + 2, 2n1/2 + 2, 3n1/2 + 2, . . . , (n1/2 − 1)n1/2 + 2,

3, n1/2 + 3, 2n1/2 + 3, 3n1/2 + 3, . . . , (n1/2 − 1)n1/2 + 3,

...

n1/2, n1/2 + n1/2, 2n1/2 + n1/2, 3n1/2 + n1/2, . . . , n.

Necessary for optimality? Open until this work.

J. Derryberry Adaptive Binary Search Trees 27 / 45

Relationship of Unified Bound to Dynamic Optimality

Generalizes working set and dynamic finger bounds

Iacono achived the bound in the pointer model

Not sufficient for optimality:

1, n1/2 + 1, 2n1/2 + 1, 3n1/2 + 1, . . . , (n1/2 − 1)n1/2 + 1,

2, n1/2 + 2, 2n1/2 + 2, 3n1/2 + 2, . . . , (n1/2 − 1)n1/2 + 2,

3, n1/2 + 3, 2n1/2 + 3, 3n1/2 + 3, . . . , (n1/2 − 1)n1/2 + 3,

...

n1/2, n1/2 + n1/2, 2n1/2 + n1/2, 3n1/2 + n1/2, . . . , n.

Necessary for optimality? Open until this work.

J. Derryberry Adaptive Binary Search Trees 27 / 45

Why Should Splay Trees Satisfy the Unified Bound?

J. Derryberry Adaptive Binary Search Trees 28 / 45

Why Should Splay Trees Satisfy the Unified Bound?

J. Derryberry Adaptive Binary Search Trees 28 / 45

Why Is This Hard to Prove?

Unified Bound subsumes dynamic finger bound

Proof of dynamic finger bound is 80 pages! [CMSS00, Col00]

Also, Unified Bound subsumes the deque bound

Not proven for splay trees (best is α∗(n) [Pet08])

J. Derryberry Adaptive Binary Search Trees 29 / 45

Why Is This Hard to Prove?

Unified Bound subsumes dynamic finger bound

Proof of dynamic finger bound is 80 pages! [CMSS00, Col00]

Also, Unified Bound subsumes the deque bound

Not proven for splay trees (best is α∗(n) [Pet08])

J. Derryberry Adaptive Binary Search Trees 29 / 45

Why Is This Hard to Prove?

Unified Bound subsumes dynamic finger bound

Proof of dynamic finger bound is 80 pages! [CMSS00, Col00]

Also, Unified Bound subsumes the deque bound

Not proven for splay trees (best is α∗(n) [Pet08])

J. Derryberry Adaptive Binary Search Trees 29 / 45

Why Is This Hard to Prove?

Unified Bound subsumes dynamic finger bound

Proof of dynamic finger bound is 80 pages! [CMSS00, Col00]

Also, Unified Bound subsumes the deque bound

Not proven for splay trees (best is α∗(n) [Pet08])

J. Derryberry Adaptive Binary Search Trees 29 / 45

Skip-Splay: Adding a Small Amount of Structure

T1 T2 T√n

√
n elements

T ′
1 T ′

2 T ′
n

1
4

n1/4 elements

J. Derryberry Adaptive Binary Search Trees 30 / 45

Skip-Splay: Adding a Small Amount of Structure

J. Derryberry Adaptive Binary Search Trees 30 / 45

Skip-Splay: Adding a Small Amount of Structure

J. Derryberry Adaptive Binary Search Trees 30 / 45

Simple BSTs Versus Simple Proofs

P
ro

of
le

n
gt

h

Splay

Splay requires 80-page proof for dynamic finger

Skip-splay requires 8-page proof for Unified Bound plus lg lg n

Cache-splay requires 4-page proof for Unified Bound

J. Derryberry Adaptive Binary Search Trees 31 / 45

Simple BSTs Versus Simple Proofs

P
ro

of
le

n
gt

h

Splay Skip-splay

Splay requires 80-page proof for dynamic finger

Skip-splay requires 8-page proof for Unified Bound plus lg lg n

Cache-splay requires 4-page proof for Unified Bound

J. Derryberry Adaptive Binary Search Trees 31 / 45

Simple BSTs Versus Simple Proofs

P
ro

of
le

n
gt

h

Splay Skip-splay Cache-splay

Splay requires 80-page proof for dynamic finger

Skip-splay requires 8-page proof for Unified Bound plus lg lg n

Cache-splay requires 4-page proof for Unified Bound

J. Derryberry Adaptive Binary Search Trees 31 / 45

Outline

1 Introduction

2 Lower Bounds and Competitiveness

3 The Unified Bound and Splay Trees

4 Cache-Splay Trees

5 Conclusion

J. Derryberry Adaptive Binary Search Trees 32 / 45

The Cache-Splay Hierarchy of Keys

Level-1 block contains b1 = 4 keys

Level-2 block contains b1 level-1 blocks (16 keys)

Level-i block contains bi−1 level-(i − 1) blocks (b2
i−1 keys)

Level-lg lg n block contains all keys

J. Derryberry Adaptive Binary Search Trees 33 / 45

The Cache-Splay Hierarchy of Keys

Level-1 block contains b1 = 4 keys

Level-2 block contains b1 level-1 blocks (16 keys)

Level-i block contains bi−1 level-(i − 1) blocks (b2
i−1 keys)

Level-lg lg n block contains all keys

J. Derryberry Adaptive Binary Search Trees 33 / 45

The Cache-Splay Hierarchy of Keys

Level-1 block contains b1 = 4 keys

Level-2 block contains b1 level-1 blocks (16 keys)

Level-i block contains bi−1 level-(i − 1) blocks (b2
i−1 keys)

Level-lg lg n block contains all keys

J. Derryberry Adaptive Binary Search Trees 33 / 45

The Cache-Splay Hierarchy of Keys

Level-1 block contains b1 = 4 keys

Level-2 block contains b1 level-1 blocks (16 keys)

Level-i block contains bi−1 level-(i − 1) blocks (b2
i−1 keys)

Level-lg lg n block contains all keys

J. Derryberry Adaptive Binary Search Trees 33 / 45

The Cache View and the Tree View

level 1 blocks

level 2 blocks

level 3 blocks

level 4 blocks

level 1 of T

level 2 of T

level 3 of T

level 4 of T

J. Derryberry Adaptive Binary Search Trees 34 / 45

The Cache View of a Query

x

Cache view of a query to x

Cache loop, iteration 1

Cache loop, iteration 2

Eject loop, iteration 1

Eject loop, iteration 2

Important Fact

If t keys have been queried
since x , then the size of x ’s
current block size is tO(1).

J. Derryberry Adaptive Binary Search Trees 35 / 45

The Cache View of a Query

x

Cache view of a query to x

Cache loop, iteration 1

Cache loop, iteration 2

Eject loop, iteration 1

Eject loop, iteration 2

Important Fact

If t keys have been queried
since x , then the size of x ’s
current block size is tO(1).

J. Derryberry Adaptive Binary Search Trees 35 / 45

The Cache View of a Query

x

Cache view of a query to x

Cache loop, iteration 1

Cache loop, iteration 2

Eject loop, iteration 1

Eject loop, iteration 2

Important Fact

If t keys have been queried
since x , then the size of x ’s
current block size is tO(1).

J. Derryberry Adaptive Binary Search Trees 35 / 45

The Cache View of a Query

x

Cache view of a query to x

Cache loop, iteration 1

Cache loop, iteration 2

Eject loop, iteration 1

Eject loop, iteration 2

Important Fact

If t keys have been queried
since x , then the size of x ’s
current block size is tO(1).

J. Derryberry Adaptive Binary Search Trees 35 / 45

The Cache View of a Query

x

Cache view of a query to x

Cache loop, iteration 1

Cache loop, iteration 2

Eject loop, iteration 1

Eject loop, iteration 2

Important Fact

If t keys have been queried
since x , then the size of x ’s
current block size is tO(1).

J. Derryberry Adaptive Binary Search Trees 35 / 45

The Cache View of a Query

x

Cache view of a query to x

Cache loop, iteration 1

Cache loop, iteration 2

Eject loop, iteration 1

Eject loop, iteration 2

Important Fact

If t keys have been queried
since x , then the size of x ’s
current block size is tO(1).

J. Derryberry Adaptive Binary Search Trees 35 / 45

The Cache View of a Query

x

Cache view of a query to x

Cache loop, iteration 1

Cache loop, iteration 2

Eject loop, iteration 1

Eject loop, iteration 2

Important Fact

If t keys have been queried
since x , then the size of x ’s
current block size is tO(1).

J. Derryberry Adaptive Binary Search Trees 35 / 45

BST Implementation of the Cache Loop

v z

w x y

One cache loop iteration

splay(w)

splay(y)

splay(v)

splay(z)

incRoot(leftChild(w))

incRoot(rightChild(y))

decRoot(w)

Each operation costs O(lg(block size for lower level))

J. Derryberry Adaptive Binary Search Trees 36 / 45

BST Implementation of the Cache Loop

w x y

v z

One cache loop iteration

splay(w)

splay(y)

splay(v)

splay(z)

incRoot(leftChild(w))

incRoot(rightChild(y))

decRoot(w)

Each operation costs O(lg(block size for lower level))

J. Derryberry Adaptive Binary Search Trees 36 / 45

BST Implementation of the Cache Loop

x y

v z
w

One cache loop iteration

splay(w)

splay(y)

splay(v)

splay(z)

incRoot(leftChild(w))

incRoot(rightChild(y))

decRoot(w)

Each operation costs O(lg(block size for lower level))

J. Derryberry Adaptive Binary Search Trees 36 / 45

BST Implementation of the Cache Loop

x y

v z
w

One cache loop iteration

splay(w)

splay(y)

splay(v)

splay(z)

incRoot(leftChild(w))

incRoot(rightChild(y))

decRoot(w)

Each operation costs O(lg(block size for lower level))

J. Derryberry Adaptive Binary Search Trees 36 / 45

BST Implementation of the Cache Loop

x

v z
w

y

One cache loop iteration

splay(w)

splay(y)

splay(v)

splay(z)

incRoot(leftChild(w))

incRoot(rightChild(y))

decRoot(w)

Each operation costs O(lg(block size for lower level))

J. Derryberry Adaptive Binary Search Trees 36 / 45

BST Implementation of the Cache Loop

x

v z
w

y

One cache loop iteration

splay(w)

splay(y)

splay(v)

splay(z)

incRoot(leftChild(w))

incRoot(rightChild(y))

decRoot(w)

Each operation costs O(lg(block size for lower level))

J. Derryberry Adaptive Binary Search Trees 36 / 45

BST Implementation of the Cache Loop

x

w
y

v

z

One cache loop iteration

splay(w)

splay(y)

splay(v)

splay(z)

incRoot(leftChild(w))

incRoot(rightChild(y))

decRoot(w)

Each operation costs O(lg(block size for lower level))

J. Derryberry Adaptive Binary Search Trees 36 / 45

BST Implementation of the Cache Loop

x

w
y

v

z

One cache loop iteration

splay(w)

splay(y)

splay(v)

splay(z)

incRoot(leftChild(w))

incRoot(rightChild(y))

decRoot(w)

Each operation costs O(lg(block size for lower level))

J. Derryberry Adaptive Binary Search Trees 36 / 45

BST Implementation of the Cache Loop

x

w
y

v
z

One cache loop iteration

splay(w)

splay(y)

splay(v)

splay(z)

incRoot(leftChild(w))

incRoot(rightChild(y))

decRoot(w)

Each operation costs O(lg(block size for lower level))

J. Derryberry Adaptive Binary Search Trees 36 / 45

BST Implementation of the Cache Loop

x

w
y

v
z

One cache loop iteration

splay(w)

splay(y)

splay(v)

splay(z)

incRoot(leftChild(w))

incRoot(rightChild(y))

decRoot(w)

Each operation costs O(lg(block size for lower level))

J. Derryberry Adaptive Binary Search Trees 36 / 45

BST Implementation of the Cache Loop

x

w
y

v
z

One cache loop iteration

splay(w)

splay(y)

splay(v)

splay(z)

incRoot(leftChild(w))

incRoot(rightChild(y))

decRoot(w)

Each operation costs O(lg(block size for lower level))

J. Derryberry Adaptive Binary Search Trees 36 / 45

BST Implementation of the Cache Loop

x

w
y

v
z

One cache loop iteration

splay(w)

splay(y)

splay(v)

splay(z)

incRoot(leftChild(w))

incRoot(rightChild(y))

decRoot(w)

Each operation costs O(lg(block size for lower level))

J. Derryberry Adaptive Binary Search Trees 36 / 45

BST Implementation of the Cache Loop

w

x

y

v
z

One cache loop iteration

splay(w)

splay(y)

splay(v)

splay(z)

incRoot(leftChild(w))

incRoot(rightChild(y))

decRoot(w)

Each operation costs O(lg(block size for lower level))

J. Derryberry Adaptive Binary Search Trees 36 / 45

BST Implementation of the Cache Loop

v
w y

z
x

One cache loop iteration

splay(w)

splay(y)

splay(v)

splay(z)

incRoot(leftChild(w))

incRoot(rightChild(y))

decRoot(w)

Each operation costs O(lg(block size for lower level))

J. Derryberry Adaptive Binary Search Trees 36 / 45

BST Implementation of the Eject Loop

v
w y

z

One eject loop iteration

splay(v)

splay(z)

splay(w)

splay(y)

incRoot(w)

decRoot(leftChild(w))

decRoot(rightChild(y))

Each operation costs O(lg(block size for lower level))

J. Derryberry Adaptive Binary Search Trees 37 / 45

BST Implementation of the Eject Loop

v
w y

z

One eject loop iteration

splay(v)

splay(z)

splay(w)

splay(y)

incRoot(w)

decRoot(leftChild(w))

decRoot(rightChild(y))

Each operation costs O(lg(block size for lower level))

J. Derryberry Adaptive Binary Search Trees 37 / 45

BST Implementation of the Eject Loop

v

y
z

w

One eject loop iteration

splay(v)

splay(z)

splay(w)

splay(y)

incRoot(w)

decRoot(leftChild(w))

decRoot(rightChild(y))

Each operation costs O(lg(block size for lower level))

J. Derryberry Adaptive Binary Search Trees 37 / 45

BST Implementation of the Eject Loop

v

y
z

w

One eject loop iteration

splay(v)

splay(z)

splay(w)

splay(y)

incRoot(w)

decRoot(leftChild(w))

decRoot(rightChild(y))

Each operation costs O(lg(block size for lower level))

J. Derryberry Adaptive Binary Search Trees 37 / 45

BST Implementation of the Eject Loop

v

y

z

w

One eject loop iteration

splay(v)

splay(z)

splay(w)

splay(y)

incRoot(w)

decRoot(leftChild(w))

decRoot(rightChild(y))

Each operation costs O(lg(block size for lower level))

J. Derryberry Adaptive Binary Search Trees 37 / 45

BST Implementation of the Eject Loop

v

y

z

w

One eject loop iteration

splay(v)

splay(z)

splay(w)

splay(y)

incRoot(w)

decRoot(leftChild(w))

decRoot(rightChild(y))

Each operation costs O(lg(block size for lower level))

J. Derryberry Adaptive Binary Search Trees 37 / 45

BST Implementation of the Eject Loop

v

y

z

w

One eject loop iteration

splay(v)

splay(z)

splay(w)

splay(y)

incRoot(w)

decRoot(leftChild(w))

decRoot(rightChild(y))

Each operation costs O(lg(block size for lower level))

J. Derryberry Adaptive Binary Search Trees 37 / 45

BST Implementation of the Eject Loop

v

y

z

w

One eject loop iteration

splay(v)

splay(z)

splay(w)

splay(y)

incRoot(w)

decRoot(leftChild(w))

decRoot(rightChild(y))

Each operation costs O(lg(block size for lower level))

J. Derryberry Adaptive Binary Search Trees 37 / 45

BST Implementation of the Eject Loop

v

y

z

w

One eject loop iteration

splay(v)

splay(z)

splay(w)

splay(y)

incRoot(w)

decRoot(leftChild(w))

decRoot(rightChild(y))

Each operation costs O(lg(block size for lower level))

J. Derryberry Adaptive Binary Search Trees 37 / 45

BST Implementation of the Eject Loop

v

y

z

w

One eject loop iteration

splay(v)

splay(z)

splay(w)

splay(y)

incRoot(w)

decRoot(leftChild(w))

decRoot(rightChild(y))

Each operation costs O(lg(block size for lower level))

J. Derryberry Adaptive Binary Search Trees 37 / 45

BST Implementation of the Eject Loop

v

y

z

w

One eject loop iteration

splay(v)

splay(z)

splay(w)

splay(y)

incRoot(w)

decRoot(leftChild(w))

decRoot(rightChild(y))

Each operation costs O(lg(block size for lower level))

J. Derryberry Adaptive Binary Search Trees 37 / 45

BST Implementation of the Eject Loop

v

y

z

w

One eject loop iteration

splay(v)

splay(z)

splay(w)

splay(y)

incRoot(w)

decRoot(leftChild(w))

decRoot(rightChild(y))

Each operation costs O(lg(block size for lower level))

J. Derryberry Adaptive Binary Search Trees 37 / 45

BST Implementation of the Eject Loop

v

y

z

w

One eject loop iteration

splay(v)

splay(z)

splay(w)

splay(y)

incRoot(w)

decRoot(leftChild(w))

decRoot(rightChild(y))

Each operation costs O(lg(block size for lower level))

J. Derryberry Adaptive Binary Search Trees 37 / 45

BST Implementation of the Eject Loop

v z

w y

One eject loop iteration

splay(v)

splay(z)

splay(w)

splay(y)

incRoot(w)

decRoot(leftChild(w))

decRoot(rightChild(y))

Each operation costs O(lg(block size for lower level))

J. Derryberry Adaptive Binary Search Trees 37 / 45

The Cost of a Query

size of this block is B

x

lg B + 1
2 lg B + 1

4 lg B + 1
4 lg B + 1

2 lg B + lg B = O(lg B)

Lemma (Query Cost)

A query to level i costs O(lg bi) = O(lg(time since queried)).

J. Derryberry Adaptive Binary Search Trees 38 / 45

The Cost of a Query

size of this block is B

lg B

lg B + 1
2 lg B + 1

4 lg B + 1
4 lg B + 1

2 lg B + lg B = O(lg B)

Lemma (Query Cost)

A query to level i costs O(lg bi) = O(lg(time since queried)).

J. Derryberry Adaptive Binary Search Trees 38 / 45

The Cost of a Query

size of this block is B

lg B

1
2 lg B

lg B + 1
2 lg B + 1

4 lg B + 1
4 lg B + 1

2 lg B + lg B = O(lg B)

Lemma (Query Cost)

A query to level i costs O(lg bi) = O(lg(time since queried)).

J. Derryberry Adaptive Binary Search Trees 38 / 45

The Cost of a Query

size of this block is B

lg B

1
2 lg B

lg B
4

lg B + 1
2 lg B + 1

4 lg B + 1
4 lg B + 1

2 lg B + lg B = O(lg B)

Lemma (Query Cost)

A query to level i costs O(lg bi) = O(lg(time since queried)).

J. Derryberry Adaptive Binary Search Trees 38 / 45

The Cost of a Query

size of this block is B

lg B

1
2 lg B

lg B
4

lg B
4

lg B + 1
2 lg B + 1

4 lg B + 1
4 lg B + 1

2 lg B + lg B = O(lg B)

Lemma (Query Cost)

A query to level i costs O(lg bi) = O(lg(time since queried)).

J. Derryberry Adaptive Binary Search Trees 38 / 45

The Cost of a Query

size of this block is B

lg B

1
2 lg B

lg B
4

lg B
4

1
2 lg B

lg B + 1
2 lg B + 1

4 lg B + 1
4 lg B + 1

2 lg B + lg B = O(lg B)

Lemma (Query Cost)

A query to level i costs O(lg bi) = O(lg(time since queried)).

J. Derryberry Adaptive Binary Search Trees 38 / 45

The Cost of a Query

size of this block is B

lg B

1
2 lg B

lg B
4

lg B
4

1
2 lg B

lg B

lg B + 1
2 lg B + 1

4 lg B + 1
4 lg B + 1

2 lg B + lg B = O(lg B)

Lemma (Query Cost)

A query to level i costs O(lg bi) = O(lg(time since queried)).

J. Derryberry Adaptive Binary Search Trees 38 / 45

The Cost of a Query

size of this block is B

lg B

1
2 lg B

lg B
4

lg B
4

1
2 lg B

lg B

lg B + 1
2 lg B + 1

4 lg B + 1
4 lg B + 1

2 lg B + lg B = O(lg B)

Lemma (Query Cost)

A query to level i costs O(lg bi) = O(lg(time since queried)).

J. Derryberry Adaptive Binary Search Trees 38 / 45

The Cost of a Query

size of this block is B

lg B

1
2 lg B

lg B
4

lg B
4

1
2 lg B

lg B

lg B + 1
2 lg B + 1

4 lg B + 1
4 lg B + 1

2 lg B + lg B = O(lg B)

Lemma (Query Cost)

A query to level i costs O(lg bi) = O(lg(time since queried)).

J. Derryberry Adaptive Binary Search Trees 38 / 45

Adding an Offset to the Blocks of the Cache

Lemma (Offset Query Cost)

A query to level i of the “virtual cache” costs amortized O(lg bi),
which is O(lg(time since virtual block queried)).

Proof.

Potential of lg bj for each level-j block that is overlapped by a
level-j virtual block that is at a higher level in the virtual cache.

J. Derryberry Adaptive Binary Search Trees 39 / 45

Adding an Offset to the Blocks of the Cache

Lemma (Offset Query Cost)

A query to level i of the “virtual cache” costs amortized O(lg bi),
which is O(lg(time since virtual block queried)).

Proof.

Potential of lg bj for each level-j block that is overlapped by a
level-j virtual block that is at a higher level in the virtual cache.

J. Derryberry Adaptive Binary Search Trees 39 / 45

Adding an Offset to the Blocks of the Cache

Lemma (Offset Query Cost)

A query to level i of the “virtual cache” costs amortized O(lg bi),
which is O(lg(time since virtual block queried)).

Proof.

Potential of lg bj for each level-j block that is overlapped by a
level-j virtual block that is at a higher level in the virtual cache.

J. Derryberry Adaptive Binary Search Trees 39 / 45

Adding an Offset to the Blocks of the Cache

Lemma (Offset Query Cost)

A query to level i of the “virtual cache” costs amortized O(lg bi),
which is O(lg(time since virtual block queried)).

Proof.

Potential of lg bj for each level-j block that is overlapped by a
level-j virtual block that is at a higher level in the virtual cache.

J. Derryberry Adaptive Binary Search Trees 39 / 45

Adding an Offset to the Blocks of the Cache

Lemma (Offset Query Cost)

A query to level i of the “virtual cache” costs amortized O(lg bi),
which is O(lg(time since virtual block queried)).

Proof.

Potential of lg bj for each level-j block that is overlapped by a
level-j virtual block that is at a higher level in the virtual cache.

J. Derryberry Adaptive Binary Search Trees 39 / 45

Adding an Offset to the Blocks of the Cache

Lemma (Offset Query Cost)

A query to level i of the “virtual cache” costs amortized O(lg bi),
which is O(lg(time since virtual block queried)).

Proof.

Potential of lg bj for each level-j block that is overlapped by a
level-j virtual block that is at a higher level in the virtual cache.

J. Derryberry Adaptive Binary Search Trees 39 / 45

Adding an Offset to the Blocks of the Cache

Lemma (Offset Query Cost)

A query to level i of the “virtual cache” costs amortized O(lg bi),
which is O(lg(time since virtual block queried)).

Proof.

Potential of lg bj for each level-j block that is overlapped by a
level-j virtual block that is at a higher level in the virtual cache.

J. Derryberry Adaptive Binary Search Trees 39 / 45

Adding an Offset to the Blocks of the Cache

x y

Lemma (Offset Query Cost)

A query to level i of the “virtual cache” costs amortized O(lg bi),
which is O(lg(time since virtual block queried)).

Proof.

Potential of lg bj for each level-j block that is overlapped by a
level-j virtual block that is at a higher level in the virtual cache.

J. Derryberry Adaptive Binary Search Trees 39 / 45

Adding an Offset to the Blocks of the Cache

x y

Lemma (Offset Query Cost)

A query to level i of the “virtual cache” costs amortized O(lg bi),
which is O(lg(time since virtual block queried)).

Proof.

Potential of lg bj for each level-j block that is overlapped by a
level-j virtual block that is at a higher level in the virtual cache.

J. Derryberry Adaptive Binary Search Trees 39 / 45

Adding an Offset to the Blocks of the Cache

x y

Lemma (Offset Query Cost)

A query to level i of the “virtual cache” costs amortized O(lg bi),
which is O(lg(time since virtual block queried)).

Proof.

Potential of lg bj for each level-j block that is overlapped by a
level-j virtual block that is at a higher level in the virtual cache.

J. Derryberry Adaptive Binary Search Trees 39 / 45

Randomizing the Offset

x y

Lemma (Random Offset)

For random offset, are x and y in different level-i virtual blocks?

If |x − y | ≥ bi ,

then probability = 1.

If |x − y | < bi ,

then probability = |x−y |
bi

.

J. Derryberry Adaptive Binary Search Trees 40 / 45

Randomizing the Offset

x y

Lemma (Random Offset)

For random offset, are x and y in different level-i virtual blocks?

If |x − y | ≥ bi ,

then probability = 1.

If |x − y | < bi ,

then probability = |x−y |
bi

.

J. Derryberry Adaptive Binary Search Trees 40 / 45

Randomizing the Offset

x y

Lemma (Random Offset)

For random offset, are x and y in different level-i virtual blocks?

If |x − y | ≥ bi ,

then probability = 1.

If |x − y | < bi ,

then probability = |x−y |
bi

.

J. Derryberry Adaptive Binary Search Trees 40 / 45

Randomizing the Offset

x y

Lemma (Random Offset)

For random offset, are x and y in different level-i virtual blocks?

If |x − y | ≥ bi ,

then probability = 1.

If |x − y | < bi ,

then probability = |x−y |
bi

.

J. Derryberry Adaptive Binary Search Trees 40 / 45

Randomizing the Offset

x y

Lemma (Random Offset)

For random offset, are x and y in different level-i virtual blocks?

If |x − y | ≥ bi ,

then probability = 1.

If |x − y | < bi ,

then probability = |x−y |
bi

.

J. Derryberry Adaptive Binary Search Trees 40 / 45

Randomizing the Offset

x y

Lemma (Random Offset)

For random offset, are x and y in different level-i virtual blocks?

If |x − y | ≥ bi ,

then probability = 1.

If |x − y | < bi ,

then probability = |x−y |
bi

.

J. Derryberry Adaptive Binary Search Trees 40 / 45

Randomizing the Offset

x y

Lemma (Random Offset)

For random offset, are x and y in different level-i virtual blocks?

If |x − y | ≥ bi ,

then probability = 1.

If |x − y | < bi ,

then probability = |x−y |
bi

.

J. Derryberry Adaptive Binary Search Trees 40 / 45

Randomizing the Offset

x y

Lemma (Random Offset)

For random offset, are x and y in different level-i virtual blocks?

If |x − y | ≥ bi , then probability = 1.

If |x − y | < bi ,

then probability = |x−y |
bi

.

J. Derryberry Adaptive Binary Search Trees 40 / 45

Randomizing the Offset

x y

Lemma (Random Offset)

For random offset, are x and y in different level-i virtual blocks?

If |x − y | ≥ bi , then probability = 1.

If |x − y | < bi ,

then probability = |x−y |
bi

.

J. Derryberry Adaptive Binary Search Trees 40 / 45

Randomizing the Offset

x y

Lemma (Random Offset)

For random offset, are x and y in different level-i virtual blocks?

If |x − y | ≥ bi , then probability = 1.

If |x − y | < bi ,

then probability = |x−y |
bi

.

J. Derryberry Adaptive Binary Search Trees 40 / 45

Randomizing the Offset

x y

Lemma (Random Offset)

For random offset, are x and y in different level-i virtual blocks?

If |x − y | ≥ bi , then probability = 1.

If |x − y | < bi ,

then probability = |x−y |
bi

.

J. Derryberry Adaptive Binary Search Trees 40 / 45

Randomizing the Offset

x y

Lemma (Random Offset)

For random offset, are x and y in different level-i virtual blocks?

If |x − y | ≥ bi , then probability = 1.

If |x − y | < bi ,

then probability = |x−y |
bi

.

J. Derryberry Adaptive Binary Search Trees 40 / 45

Randomizing the Offset

x y

Lemma (Random Offset)

For random offset, are x and y in different level-i virtual blocks?

If |x − y | ≥ bi , then probability = 1.

If |x − y | < bi ,

then probability = |x−y |
bi

.

J. Derryberry Adaptive Binary Search Trees 40 / 45

Randomizing the Offset

x y

Lemma (Random Offset)

For random offset, are x and y in different level-i virtual blocks?

If |x − y | ≥ bi , then probability = 1.

If |x − y | < bi ,

then probability = |x−y |
bi

.

J. Derryberry Adaptive Binary Search Trees 40 / 45

Randomizing the Offset

x y

Lemma (Random Offset)

For random offset, are x and y in different level-i virtual blocks?

If |x − y | ≥ bi , then probability = 1.

If |x − y | < bi ,

then probability = |x−y |
bi

.

J. Derryberry Adaptive Binary Search Trees 40 / 45

Randomizing the Offset

x y

Lemma (Random Offset)

For random offset, are x and y in different level-i virtual blocks?

If |x − y | ≥ bi , then probability = 1.

If |x − y | < bi , then probability = |x−y |
bi

.

J. Derryberry Adaptive Binary Search Trees 40 / 45

Cache-Splay Satisfies the Unified Bound

x

y

Proof.

Suppose we query x , then tx other keys, then y .

Then x ’s level in virtual cache has block size bi = t
O(1)
x .

If |x − y | < bi , then cost is expected O(lg tx).

If |x − y | ≥ bi , then cost is expected O(lg |x − y |).
Cost is expected O(

minx(

lg tx + lg |x − y |

)

).

J. Derryberry Adaptive Binary Search Trees 41 / 45

Cache-Splay Satisfies the Unified Bound

x

y

Proof.

Suppose we query x , then tx other keys, then y .

Then x ’s level in virtual cache has block size bi = t
O(1)
x .

If |x − y | < bi , then cost is expected O(lg tx).

If |x − y | ≥ bi , then cost is expected O(lg |x − y |).
Cost is expected O(

minx(

lg tx + lg |x − y |

)

).

J. Derryberry Adaptive Binary Search Trees 41 / 45

Cache-Splay Satisfies the Unified Bound

x

y

O(lg t)

Proof.

Suppose we query x , then tx other keys, then y .

Then x ’s level in virtual cache has block size bi = t
O(1)
x .

If |x − y | < bi , then cost is expected O(lg tx).

If |x − y | ≥ bi , then cost is expected O(lg |x − y |).
Cost is expected O(

minx(

lg tx + lg |x − y |

)

).

J. Derryberry Adaptive Binary Search Trees 41 / 45

Cache-Splay Satisfies the Unified Bound

x

y

O(lg |x− y|)

Proof.

Suppose we query x , then tx other keys, then y .

Then x ’s level in virtual cache has block size bi = t
O(1)
x .

If |x − y | < bi , then cost is expected O(lg tx).

If |x − y | ≥ bi , then cost is expected O(lg |x − y |).
Cost is expected O(

minx(

lg tx + lg |x − y |

)

).

J. Derryberry Adaptive Binary Search Trees 41 / 45

Cache-Splay Satisfies the Unified Bound

x

y

O(lg |x− y|)

Proof.

Suppose we query x , then tx other keys, then y .

Then x ’s level in virtual cache has block size bi = t
O(1)
x .

If |x − y | < bi , then cost is expected O(lg tx).

If |x − y | ≥ bi , then cost is expected O(lg |x − y |).
Cost is expected O(

minx(

lg tx + lg |x − y |

)

).

J. Derryberry Adaptive Binary Search Trees 41 / 45

Cache-Splay Satisfies the Unified Bound

x

y

O(lg |x− y|)

Proof.

Suppose we query x , then tx other keys, then y .

Then x ’s level in virtual cache has block size bi = t
O(1)
x .

If |x − y | < bi , then cost is expected O(lg tx).

If |x − y | ≥ bi , then cost is expected O(lg |x − y |).
Cost is expected O(minx(lg tx + lg |x − y |)).

J. Derryberry Adaptive Binary Search Trees 41 / 45

Cache-Splay Satisfies the Unified Bound

x

y

O(lg |x− y|)

Proof.

Suppose we query x , then tx other keys, then y .

Then x ’s level in virtual cache has block size bi = t
O(1)
x .

If |x − y | < bi , then cost is expected O(lg tx).

If |x − y | ≥ bi , then cost is expected O(lg |x − y |).
Cost is ////////////expected O(minx(lg tx + lg |x − y |)).

J. Derryberry Adaptive Binary Search Trees 41 / 45

Implications

Splay trees must satisfy the Unified Bound to be
O(1)-competitive

Search for even more general formulaic bounds?

J. Derryberry Adaptive Binary Search Trees 42 / 45

Implications

Splay trees must satisfy the Unified Bound to be
O(1)-competitive

Search for even more general formulaic bounds?

J. Derryberry Adaptive Binary Search Trees 42 / 45

Outline

1 Introduction

2 Lower Bounds and Competitiveness

3 The Unified Bound and Splay Trees

4 Cache-Splay Trees

5 Conclusion

J. Derryberry Adaptive Binary Search Trees 43 / 45

Contributions

Lower bounds
Dynamic interleave bound [WDS06]
MIBS bound [DSW05]: generalization of Wilber’s bounds that
is computable in polynomial time
...also shows the strength of the BST model because it is a
lower bound for partial-sums (in thesis)

BST upper bounds
Multi-splay [WDS06, DSW09]: first O(lg lg n)-competitive
BST to achieve other properties of an optimal BST
Skip-splay [DS09]: simple BST similar to splaying within
additive O(lg lg n) of the Unified Bound
Cache-splay (in thesis): more complicated splay-based
algorithm that achieves the Unified Bound (open since [Iac01])

Other results
High-dimensional finger search [DSSW08]: first finger search
data structure for k-d approximate nearest-neighbor
Experiments with bipartite parametric max-flow [BDG+07]
Easy instances of combinatorial auctions [CDS04]

J. Derryberry Adaptive Binary Search Trees 44 / 45

Contributions

Lower bounds
Dynamic interleave bound [WDS06]
MIBS bound [DSW05]: generalization of Wilber’s bounds that
is computable in polynomial time
...also shows the strength of the BST model because it is a
lower bound for partial-sums (in thesis)

BST upper bounds
Multi-splay [WDS06, DSW09]: first O(lg lg n)-competitive
BST to achieve other properties of an optimal BST
Skip-splay [DS09]: simple BST similar to splaying within
additive O(lg lg n) of the Unified Bound
Cache-splay (in thesis): more complicated splay-based
algorithm that achieves the Unified Bound (open since [Iac01])

Other results
High-dimensional finger search [DSSW08]: first finger search
data structure for k-d approximate nearest-neighbor
Experiments with bipartite parametric max-flow [BDG+07]
Easy instances of combinatorial auctions [CDS04]

J. Derryberry Adaptive Binary Search Trees 44 / 45

Contributions

Lower bounds
Dynamic interleave bound [WDS06]
MIBS bound [DSW05]: generalization of Wilber’s bounds that
is computable in polynomial time
...also shows the strength of the BST model because it is a
lower bound for partial-sums (in thesis)

BST upper bounds
Multi-splay [WDS06, DSW09]: first O(lg lg n)-competitive
BST to achieve other properties of an optimal BST
Skip-splay [DS09]: simple BST similar to splaying within
additive O(lg lg n) of the Unified Bound
Cache-splay (in thesis): more complicated splay-based
algorithm that achieves the Unified Bound (open since [Iac01])

Other results
High-dimensional finger search [DSSW08]: first finger search
data structure for k-d approximate nearest-neighbor
Experiments with bipartite parametric max-flow [BDG+07]
Easy instances of combinatorial auctions [CDS04]

J. Derryberry Adaptive Binary Search Trees 44 / 45

Contributions

Lower bounds
Dynamic interleave bound [WDS06]
MIBS bound [DSW05]: generalization of Wilber’s bounds that
is computable in polynomial time
...also shows the strength of the BST model because it is a
lower bound for partial-sums (in thesis)

BST upper bounds
Multi-splay [WDS06, DSW09]: first O(lg lg n)-competitive
BST to achieve other properties of an optimal BST
Skip-splay [DS09]: simple BST similar to splaying within
additive O(lg lg n) of the Unified Bound
Cache-splay (in thesis): more complicated splay-based
algorithm that achieves the Unified Bound (open since [Iac01])

Other results
High-dimensional finger search [DSSW08]: first finger search
data structure for k-d approximate nearest-neighbor
Experiments with bipartite parametric max-flow [BDG+07]
Easy instances of combinatorial auctions [CDS04]

J. Derryberry Adaptive Binary Search Trees 44 / 45

Contributions

Lower bounds
Dynamic interleave bound [WDS06]
MIBS bound [DSW05]: generalization of Wilber’s bounds that
is computable in polynomial time
...also shows the strength of the BST model because it is a
lower bound for partial-sums (in thesis)

BST upper bounds
Multi-splay [WDS06, DSW09]: first O(lg lg n)-competitive
BST to achieve other properties of an optimal BST
Skip-splay [DS09]: simple BST similar to splaying within
additive O(lg lg n) of the Unified Bound
Cache-splay (in thesis): more complicated splay-based
algorithm that achieves the Unified Bound (open since [Iac01])

Other results
High-dimensional finger search [DSSW08]: first finger search
data structure for k-d approximate nearest-neighbor
Experiments with bipartite parametric max-flow [BDG+07]
Easy instances of combinatorial auctions [CDS04]

J. Derryberry Adaptive Binary Search Trees 44 / 45

Contributions

Lower bounds
Dynamic interleave bound [WDS06]
MIBS bound [DSW05]: generalization of Wilber’s bounds that
is computable in polynomial time
...also shows the strength of the BST model because it is a
lower bound for partial-sums (in thesis)

BST upper bounds
Multi-splay [WDS06, DSW09]: first O(lg lg n)-competitive
BST to achieve other properties of an optimal BST
Skip-splay [DS09]: simple BST similar to splaying within
additive O(lg lg n) of the Unified Bound
Cache-splay (in thesis): more complicated splay-based
algorithm that achieves the Unified Bound (open since [Iac01])

Other results
High-dimensional finger search [DSSW08]: first finger search
data structure for k-d approximate nearest-neighbor
Experiments with bipartite parametric max-flow [BDG+07]
Easy instances of combinatorial auctions [CDS04]

J. Derryberry Adaptive Binary Search Trees 44 / 45

Contributions

Lower bounds
Dynamic interleave bound [WDS06]
MIBS bound [DSW05]: generalization of Wilber’s bounds that
is computable in polynomial time
...also shows the strength of the BST model because it is a
lower bound for partial-sums (in thesis)

BST upper bounds
Multi-splay [WDS06, DSW09]: first O(lg lg n)-competitive
BST to achieve other properties of an optimal BST
Skip-splay [DS09]: simple BST similar to splaying within
additive O(lg lg n) of the Unified Bound
Cache-splay (in thesis): more complicated splay-based
algorithm that achieves the Unified Bound (open since [Iac01])

Other results
High-dimensional finger search [DSSW08]: first finger search
data structure for k-d approximate nearest-neighbor
Experiments with bipartite parametric max-flow [BDG+07]
Easy instances of combinatorial auctions [CDS04]

J. Derryberry Adaptive Binary Search Trees 44 / 45

Contributions

Lower bounds
Dynamic interleave bound [WDS06]
MIBS bound [DSW05]: generalization of Wilber’s bounds that
is computable in polynomial time
...also shows the strength of the BST model because it is a
lower bound for partial-sums (in thesis)

BST upper bounds
Multi-splay [WDS06, DSW09]: first O(lg lg n)-competitive
BST to achieve other properties of an optimal BST
Skip-splay [DS09]: simple BST similar to splaying within
additive O(lg lg n) of the Unified Bound
Cache-splay (in thesis): more complicated splay-based
algorithm that achieves the Unified Bound (open since [Iac01])

Other results
High-dimensional finger search [DSSW08]: first finger search
data structure for k-d approximate nearest-neighbor
Experiments with bipartite parametric max-flow [BDG+07]
Easy instances of combinatorial auctions [CDS04]

J. Derryberry Adaptive Binary Search Trees 44 / 45

Contributions

Lower bounds
Dynamic interleave bound [WDS06]
MIBS bound [DSW05]: generalization of Wilber’s bounds that
is computable in polynomial time
...also shows the strength of the BST model because it is a
lower bound for partial-sums (in thesis)

BST upper bounds
Multi-splay [WDS06, DSW09]: first O(lg lg n)-competitive
BST to achieve other properties of an optimal BST
Skip-splay [DS09]: simple BST similar to splaying within
additive O(lg lg n) of the Unified Bound
Cache-splay (in thesis): more complicated splay-based
algorithm that achieves the Unified Bound (open since [Iac01])

Other results
High-dimensional finger search [DSSW08]: first finger search
data structure for k-d approximate nearest-neighbor
Experiments with bipartite parametric max-flow [BDG+07]
Easy instances of combinatorial auctions [CDS04]

J. Derryberry Adaptive Binary Search Trees 44 / 45

Contributions

Lower bounds
Dynamic interleave bound [WDS06]
MIBS bound [DSW05]: generalization of Wilber’s bounds that
is computable in polynomial time
...also shows the strength of the BST model because it is a
lower bound for partial-sums (in thesis)

BST upper bounds
Multi-splay [WDS06, DSW09]: first O(lg lg n)-competitive
BST to achieve other properties of an optimal BST
Skip-splay [DS09]: simple BST similar to splaying within
additive O(lg lg n) of the Unified Bound
Cache-splay (in thesis): more complicated splay-based
algorithm that achieves the Unified Bound (open since [Iac01])

Other results
High-dimensional finger search [DSSW08]: first finger search
data structure for k-d approximate nearest-neighbor
Experiments with bipartite parametric max-flow [BDG+07]
Easy instances of combinatorial auctions [CDS04]

J. Derryberry Adaptive Binary Search Trees 44 / 45

Contributions

Lower bounds
Dynamic interleave bound [WDS06]
MIBS bound [DSW05]: generalization of Wilber’s bounds that
is computable in polynomial time
...also shows the strength of the BST model because it is a
lower bound for partial-sums (in thesis)

BST upper bounds
Multi-splay [WDS06, DSW09]: first O(lg lg n)-competitive
BST to achieve other properties of an optimal BST
Skip-splay [DS09]: simple BST similar to splaying within
additive O(lg lg n) of the Unified Bound
Cache-splay (in thesis): more complicated splay-based
algorithm that achieves the Unified Bound (open since [Iac01])

Other results
High-dimensional finger search [DSSW08]: first finger search
data structure for k-d approximate nearest-neighbor
Experiments with bipartite parametric max-flow [BDG+07]
Easy instances of combinatorial auctions [CDS04]

J. Derryberry Adaptive Binary Search Trees 44 / 45

Contributions

Lower bounds
Dynamic interleave bound [WDS06]
MIBS bound [DSW05]: generalization of Wilber’s bounds that
is computable in polynomial time
...also shows the strength of the BST model because it is a
lower bound for partial-sums (in thesis)

BST upper bounds
Multi-splay [WDS06, DSW09]: first O(lg lg n)-competitive
BST to achieve other properties of an optimal BST
Skip-splay [DS09]: simple BST similar to splaying within
additive O(lg lg n) of the Unified Bound
Cache-splay (in thesis): more complicated splay-based
algorithm that achieves the Unified Bound (open since [Iac01])

Other results
High-dimensional finger search [DSSW08]: first finger search
data structure for k-d approximate nearest-neighbor
Experiments with bipartite parametric max-flow [BDG+07]
Easy instances of combinatorial auctions [CDS04]

J. Derryberry Adaptive Binary Search Trees 44 / 45

Future Work

Better bounds for splaying: Unified Bound,
o(lg n)-competitiveness, digit-reversal permutation,
generalization of the Unified Bound, working set for splaying
without rotate-to-root, new toolbox for analyzing splay trees
with splaying over induced subtrees.

Better bounds for any BST: use better lower bounds to show
o(lg lg n)-competitiveness for some BST, show that some
formulaic bound that implies BST competitiveness to within a
o(lg n) factor

Further justification for the BST model itself: show MIBS is a
lower bound for partial-sums in a more general model, reduce
BST model to partial-sums problem.

Thanks!

J. Derryberry Adaptive Binary Search Trees 45 / 45

Future Work

Better bounds for splaying: Unified Bound,
o(lg n)-competitiveness, digit-reversal permutation,
generalization of the Unified Bound, working set for splaying
without rotate-to-root, new toolbox for analyzing splay trees
with splaying over induced subtrees.

Better bounds for any BST: use better lower bounds to show
o(lg lg n)-competitiveness for some BST, show that some
formulaic bound that implies BST competitiveness to within a
o(lg n) factor

Further justification for the BST model itself: show MIBS is a
lower bound for partial-sums in a more general model, reduce
BST model to partial-sums problem.

Thanks!

J. Derryberry Adaptive Binary Search Trees 45 / 45

Future Work

Better bounds for splaying: Unified Bound,
o(lg n)-competitiveness, digit-reversal permutation,
generalization of the Unified Bound, working set for splaying
without rotate-to-root, new toolbox for analyzing splay trees
with splaying over induced subtrees.

Better bounds for any BST: use better lower bounds to show
o(lg lg n)-competitiveness for some BST, show that some
formulaic bound that implies BST competitiveness to within a
o(lg n) factor

Further justification for the BST model itself: show MIBS is a
lower bound for partial-sums in a more general model, reduce
BST model to partial-sums problem.

Thanks!

J. Derryberry Adaptive Binary Search Trees 45 / 45

Future Work

Better bounds for splaying: Unified Bound,
o(lg n)-competitiveness, digit-reversal permutation,
generalization of the Unified Bound, working set for splaying
without rotate-to-root, new toolbox for analyzing splay trees
with splaying over induced subtrees.

Better bounds for any BST: use better lower bounds to show
o(lg lg n)-competitiveness for some BST, show that some
formulaic bound that implies BST competitiveness to within a
o(lg n) factor

Further justification for the BST model itself: show MIBS is a
lower bound for partial-sums in a more general model, reduce
BST model to partial-sums problem.

Thanks!

J. Derryberry Adaptive Binary Search Trees 45 / 45

Future Work

Better bounds for splaying: Unified Bound,
o(lg n)-competitiveness, digit-reversal permutation,
generalization of the Unified Bound, working set for splaying
without rotate-to-root, new toolbox for analyzing splay trees
with splaying over induced subtrees.

Better bounds for any BST: use better lower bounds to show
o(lg lg n)-competitiveness for some BST, show that some
formulaic bound that implies BST competitiveness to within a
o(lg n) factor

Further justification for the BST model itself: show MIBS is a
lower bound for partial-sums in a more general model, reduce
BST model to partial-sums problem.

Thanks!

J. Derryberry Adaptive Binary Search Trees 45 / 45

Future Work

Better bounds for splaying: Unified Bound,
o(lg n)-competitiveness, digit-reversal permutation,
generalization of the Unified Bound, working set for splaying
without rotate-to-root, new toolbox for analyzing splay trees
with splaying over induced subtrees.

Better bounds for any BST: use better lower bounds to show
o(lg lg n)-competitiveness for some BST, show that some
formulaic bound that implies BST competitiveness to within a
o(lg n) factor

Further justification for the BST model itself: show MIBS is a
lower bound for partial-sums in a more general model, reduce
BST model to partial-sums problem.

Thanks!

J. Derryberry Adaptive Binary Search Trees 45 / 45

Future Work

Better bounds for splaying: Unified Bound,
o(lg n)-competitiveness, digit-reversal permutation,
generalization of the Unified Bound, working set for splaying
without rotate-to-root, new toolbox for analyzing splay trees
with splaying over induced subtrees.

Better bounds for any BST: use better lower bounds to show
o(lg lg n)-competitiveness for some BST, show that some
formulaic bound that implies BST competitiveness to within a
o(lg n) factor

Further justification for the BST model itself: show MIBS is a
lower bound for partial-sums in a more general model, reduce
BST model to partial-sums problem.

Thanks!

J. Derryberry Adaptive Binary Search Trees 45 / 45

Future Work

Better bounds for splaying: Unified Bound,
o(lg n)-competitiveness, digit-reversal permutation,
generalization of the Unified Bound, working set for splaying
without rotate-to-root, new toolbox for analyzing splay trees
with splaying over induced subtrees.

Better bounds for any BST: use better lower bounds to show
o(lg lg n)-competitiveness for some BST, show that some
formulaic bound that implies BST competitiveness to within a
o(lg n) factor

Further justification for the BST model itself: show MIBS is a
lower bound for partial-sums in a more general model, reduce
BST model to partial-sums problem.

Thanks!

J. Derryberry Adaptive Binary Search Trees 45 / 45

Future Work

Better bounds for splaying: Unified Bound,
o(lg n)-competitiveness, digit-reversal permutation,
generalization of the Unified Bound, working set for splaying
without rotate-to-root, new toolbox for analyzing splay trees
with splaying over induced subtrees.

Better bounds for any BST: use better lower bounds to show
o(lg lg n)-competitiveness for some BST, show that some
formulaic bound that implies BST competitiveness to within a
o(lg n) factor

Further justification for the BST model itself: show MIBS is a
lower bound for partial-sums in a more general model, reduce
BST model to partial-sums problem.

Thanks!

J. Derryberry Adaptive Binary Search Trees 45 / 45

Future Work

Better bounds for splaying: Unified Bound,
o(lg n)-competitiveness, digit-reversal permutation,
generalization of the Unified Bound, working set for splaying
without rotate-to-root, new toolbox for analyzing splay trees
with splaying over induced subtrees.

Better bounds for any BST: use better lower bounds to show
o(lg lg n)-competitiveness for some BST, show that some
formulaic bound that implies BST competitiveness to within a
o(lg n) factor

Further justification for the BST model itself: show MIBS is a
lower bound for partial-sums in a more general model, reduce
BST model to partial-sums problem.

Thanks!

J. Derryberry Adaptive Binary Search Trees 45 / 45

Future Work

Better bounds for splaying: Unified Bound,
o(lg n)-competitiveness, digit-reversal permutation,
generalization of the Unified Bound, working set for splaying
without rotate-to-root, new toolbox for analyzing splay trees
with splaying over induced subtrees.

Better bounds for any BST: use better lower bounds to show
o(lg lg n)-competitiveness for some BST, show that some
formulaic bound that implies BST competitiveness to within a
o(lg n) factor

Further justification for the BST model itself: show MIBS is a
lower bound for partial-sums in a more general model, reduce
BST model to partial-sums problem.

Thanks!

J. Derryberry Adaptive Binary Search Trees 45 / 45

Future Work

Better bounds for splaying: Unified Bound,
o(lg n)-competitiveness, digit-reversal permutation,
generalization of the Unified Bound, working set for splaying
without rotate-to-root, new toolbox for analyzing splay trees
with splaying over induced subtrees.

Better bounds for any BST: use better lower bounds to show
o(lg lg n)-competitiveness for some BST, show that some
formulaic bound that implies BST competitiveness to within a
o(lg n) factor

Further justification for the BST model itself: show MIBS is a
lower bound for partial-sums in a more general model, reduce
BST model to partial-sums problem.

Thanks!

J. Derryberry Adaptive Binary Search Trees 45 / 45

Future Work

Better bounds for splaying: Unified Bound,
o(lg n)-competitiveness, digit-reversal permutation,
generalization of the Unified Bound, working set for splaying
without rotate-to-root, new toolbox for analyzing splay trees
with splaying over induced subtrees.

Better bounds for any BST: use better lower bounds to show
o(lg lg n)-competitiveness for some BST, show that some
formulaic bound that implies BST competitiveness to within a
o(lg n) factor

Further justification for the BST model itself: show MIBS is a
lower bound for partial-sums in a more general model, reduce
BST model to partial-sums problem.

Thanks!

J. Derryberry Adaptive Binary Search Trees 45 / 45

Future Work

Better bounds for splaying: Unified Bound,
o(lg n)-competitiveness, digit-reversal permutation,
generalization of the Unified Bound, working set for splaying
without rotate-to-root, new toolbox for analyzing splay trees
with splaying over induced subtrees.

Better bounds for any BST: use better lower bounds to show
o(lg lg n)-competitiveness for some BST, show that some
formulaic bound that implies BST competitiveness to within a
o(lg n) factor

Further justification for the BST model itself: show MIBS is a
lower bound for partial-sums in a more general model, reduce
BST model to partial-sums problem.

Thanks!

J. Derryberry Adaptive Binary Search Trees 45 / 45

[BCK02] Avrim Blum, Shuchi Chawla, and Adam Kalai. Static optimality
and dynamic search-optimality in lists and trees. In Proceedings of
the 13th ACM-SIAM Symposium on Discrete Algorithms (SODA
2002), pages 1–8, Philadelphia, PA, USA, 2002. Society for
Industrial and Applied Mathematics.

[BDDF09] Prosenjit Bose, Karim Doüıeb, Vida Dujmović, and Rolf Fagerberg.
An o(log log n)-competitive binary search tree with optimal
worst-case access times. Obtained on December 7, 2009 from:
http://cgm.cs.mcgill.ca/ vida/pubs/papers/ZipperTrees.pdf, 2009.

[BDG+07] Maxim Babenko, Jonathan Derryberry, Andrew Goldberg, Robert
Tarjan, and Yunhong Zhou. Experimental evaluation of parametric
max-flow algorithms. In Proceedings of the 6th Workshop on
Experimental Algorithms (WEA 2007), pages 256–269, 2007.

[CDS04] Vincent Conitzer, Jonathan Derryberry, and Tuomas Sandholm.
Combinatorial auctions with structured item graphs. In Proceedings
of the 19th National Conference on Artificial Intelligence (AAAI
2004), pages 212–218. AAAI Press / The MIT Press, 2004.

[CMSS00] Richard Cole, Bud Mishra, Jeanette Schmidt, and Alan Siegel. On
the dynamic finger conjecture for splay trees. part I: Splay sorting
log n-block sequences. SIAM Journal on Computing, 30(1):1–43,
2000.

[Col00] Richard Cole. On the dynamic finger conjecture for splay trees. part
II: The proof. SIAM Journal on Computing, 30(1):44–85, 2000.

J. Derryberry Adaptive Binary Search Trees 45 / 45

[DHI+09] Erik D. Demaine, Dion Harmon, John Iacono, Daniel Kane, and
Mihai Pǎtraşcu. The geometry of binary search trees. In
Proceedings of the 20th ACM-SIAM Symposium on Discrete
Algorithms (SODA 2009), pages 496–505, 2009.

[DHIP04] Erik D. Demaine, Dion Harmon, John Iacono, and Mihai Pǎtraşcu.
Dynamic optimality – almost. In Proceedings of the 45th IEEE
Symposium on Foundations of Computer Science (FOCS 2004),
pages 484–490, 2004.

[DS09] Jonathan C. Derryberry and Daniel D. Sleator. Skip-splay: Toward
achieving the unified bound in the bst model. In Proceedings of the
11th International Symposium on Algorithms and Data Structures
(WADS 2009), pages 194–205, Berlin, Heidelberg, 2009.
Springer-Verlag.

[DSSW08] Jonathan Derryberry, Don Sheehy, Daniel D. Sleator, and Maverick
Woo. Achieving spatial adaptivity while finding approximate nearest
neighbors. In Proceedings of the 20th Canadian Conference on
Computational Geometry (CCCG 2008), pages 163–166, 2008.

[DSW05] Jonathan Derryberry, Daniel Dominic Sleator, and Chengwen Chris
Wang. A lower bound framework for binary search trees with
rotations. Technical Report CMU-CS-05-187, Carnegie Mellon
University, 2005.

J. Derryberry Adaptive Binary Search Trees 45 / 45

[DSW09] Jonathan Derryberry, Daniel Sleator, and Chengwen Chris Wang.
Properties of multi-splay trees. Technical Report CMU-CS-09-171,
Carnegie Mellon University, 2009.

[Geo08] George F. Georgakopoulos. Chain-splay trees, or, how to achieve
and prove log log n-competitiveness by splaying. Information
Processing Letters, 106(1):37–43, 2008.

[Iac01] John Iacono. Alternatives to splay trees with o(log n) worst-case
access times. In Proceedings of the 12th ACM-SIAM Symposium
on Discrete Algorithms (SODA 2001), pages 516–522, Philadelphia,
PA, USA, 2001. Society for Industrial and Applied Mathematics.

[PD04] Mihai Pǎtraşcu and Erik D. Demaine. Tight bounds for the
partial-sums problem. In In Proceedings of the 15th ACM-SIAM
Symposium on Discrete Algorithms (SODA 2004), pages 20–29,
Philadelphia, PA, USA, 2004. Society for Industrial and Applied
Mathematics.

[Pet08] Seth Pettie. Splay trees, davenport-schinzel sequences, and the
deque conjecture. In Proceedings of the 19th ACM-SIAM
Symposium on Discrete Algorithms (SODA 2008), pages
1115–1124, 2008.

[WDS06] Chengwen Chris Wang, Jonathan Derryberry, and Daniel Dominic
Sleator. O(log log n)-competitive dynamic binary search trees. In
Proceedings of the 17th ACM-SIAM Symposium on Discrete

J. Derryberry Adaptive Binary Search Trees 45 / 45

Algorithms (SODA 2006), pages 374–383, New York, NY, USA,
2006. ACM.

[Wil89] Robert Wilber. Lower bounds for accessing binary search trees with
rotations. SIAM Journal on Computing, 18(1):56–67, 1989.

J. Derryberry Adaptive Binary Search Trees 45 / 45

	Outline
	Introduction
	Lower Bounds and Competitiveness
	The Unified Bound and Splay Trees
	Cache-Splay Trees
	Conclusion
	References

