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The Search Problem

Membership-testing, dictionary, successor/predecessor, etc.

Sequence of queries σ1 · · ·σm

Assume each σj ∈ {1, . . . , n}
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Which Computational Model?

Hashing (RAM): O(1)

(but no successor)

vEB/Fusion Trees (RAM): O(
√

lg n)

(requires integers, no augmenting)

Comparison model: O(lg n)

(no augmenting)

BST model: O(lg n)

(supports augmenting)
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BST Model [Wil89]
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Binary tree in symmetric order

Modifiable with BST rotations

Must rotate queried node to root
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Flexibility of the BST Model

Can easily do O(lg n) worst-case

Can adapt to sequences with patterns

To adapt, rotate nodes likely to be accessed to near the root
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Why Prove a Lower Bound?

Help prove optimality

Invalidate the computational model

Understand the model/problem
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Lower Bound Basics

Online BST costs Ω(lg n)?

Offline BST costs Ω(lg n)?

Instance-specific bounds?
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Wilber’s First Bound [Wil89]
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Interleave Bound [DHIP04]

13

1410

11

12

151

2

3

4

5 7

6

8

9

J. Derryberry Adaptive Binary Search Trees 12 / 45



Interleave Bound [DHIP04]

13

1410

11

12

151

2

3

4

5 7

6

8

9

J. Derryberry Adaptive Binary Search Trees 12 / 45



Interleave Bound [DHIP04]

13

1410

11

12

151

2

3

4

5 7

6

8

9

J. Derryberry Adaptive Binary Search Trees 12 / 45



Interleave Bound [DHIP04]

13

1410

11

12

151

2

3

4

5 7

6

8

9

J. Derryberry Adaptive Binary Search Trees 12 / 45



Interleave Bound [DHIP04]

13

1410

11

12

151

2

3

4

5 7

6

8

9

J. Derryberry Adaptive Binary Search Trees 12 / 45



Uses of the Interleave Bound
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Implications

Balanced BSTs dynamically optimal for random sequences

Rotate paths (only in BST) into a red-black tree [DHIP04]

Swap red-black trees for splay trees and gain [WDS06]

Can also rotate lower bound tree to allow updates [WDS06]
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How good is Wilber-1/Interleave?

Lets us compete (O(lg lg n)-competitiveness)

Every static lower bound tree is loose by Ω(lg lg n)

Can the dynamic interleave bound help?

Can Wilber’s second bound help?
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MIBS: Generalizing Wilber-1 and Wilber-2 [DSW05]
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The MIBS Bound

Theorem

The number of boxes is a lower bound on OPT(σ).
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Proof of MIBS Bound
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MIBS ≥ Wilber’s First Bound
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Musing on MIBS

Generalizes previous bounds

Does not help improve competitiveness so far

Strengthens connection between partial-sums problem and
BST model
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Partial-Sums Problem

Maintain an array under update operations

Return sum(1, . . . , i) when requested for current array values

Input: sequence of update and sum operations

Output: sequence of sums

Lower bound: Ω(lg n) in cell-probe model [PD04]

Lower bound: MIBS, if we require explicitly computed sums
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History of BST Lower Bounds

[Wil89]: first offline, instance-specific bounds

[BCK02]: offline information-theoretic bound

[DHIP04]: BST-like bound

[WDS06]: rotatable BST-like bound

[DSW05],[DHI+09]: generalization of Wilber-1 and Wilber-2
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History of BST Competitiveness

[BCK02]: dynamic search optimality

[DHIP04]: O(lg lg n)-competitive

[WDS06, DSW09]: support insert/delete, deque, working set

[Geo08]: like multi-splay, only O(lg lg n)-competitive

[BDDF09]: support worst-case O(lg n) running time
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Outline
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Formulaic Adaptivity

Strength of competitiveness depends on the model

Alternative: input-sensitive bounds with intuitive meaning
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Bounds with Intuitive Meaning

Working Set Bound (exploiting temporal locality)

Access x , then t distinct keys. Pay O(lg t) to access x again.

Dynamic Finger Bound (exploiting spatial locality)

Access x . Then, access y at cost O(lg |x − y |).
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What If There Is a Mix of Spatial and Temporal Locality?

Need two fingers

1, n
2 + 1, 2, n

2 + 2, 3, n
2 + 3, . . .

Need three fingers

1, n
3 + 1, 2n

3 + 1, 2, n
3 + 2, . . .

Support many fingers: Unified Bound [Iac01]

Cost of a query to y :

min
x

(lg tx + lg |x − y |)
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Relationship of Unified Bound to Dynamic Optimality

Generalizes working set and dynamic finger bounds

Iacono achived the bound in the pointer model

Not sufficient for optimality:

1, n1/2 + 1, 2n1/2 + 1, 3n1/2 + 1, . . . , (n1/2 − 1)n1/2 + 1,

2, n1/2 + 2, 2n1/2 + 2, 3n1/2 + 2, . . . , (n1/2 − 1)n1/2 + 2,

3, n1/2 + 3, 2n1/2 + 3, 3n1/2 + 3, . . . , (n1/2 − 1)n1/2 + 3,

...

n1/2, n1/2 + n1/2, 2n1/2 + n1/2, 3n1/2 + n1/2, . . . , n.

Necessary for optimality? Open until this work.
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Why Should Splay Trees Satisfy the Unified Bound?
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Why Is This Hard to Prove?

Unified Bound subsumes dynamic finger bound

Proof of dynamic finger bound is 80 pages! [CMSS00, Col00]

Also, Unified Bound subsumes the deque bound

Not proven for splay trees (best is α∗(n) [Pet08])
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Skip-Splay: Adding a Small Amount of Structure

T1 T2 T√n

√
n elements

T ′
1 T ′

2 T ′
n

1
4

n1/4 elements
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Simple BSTs Versus Simple Proofs

P
ro

of
le

n
gt

h

Splay

Splay requires 80-page proof for dynamic finger

Skip-splay requires 8-page proof for Unified Bound plus lg lg n

Cache-splay requires 4-page proof for Unified Bound
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Outline

1 Introduction

2 Lower Bounds and Competitiveness

3 The Unified Bound and Splay Trees

4 Cache-Splay Trees

5 Conclusion
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The Cache-Splay Hierarchy of Keys

Level-1 block contains b1 = 4 keys

Level-2 block contains b1 level-1 blocks (16 keys)

Level-i block contains bi−1 level-(i − 1) blocks (b2
i−1 keys)

Level-lg lg n block contains all keys
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The Cache View and the Tree View

level 1 blocks

level 2 blocks

level 3 blocks

level 4 blocks

level 1 of T

level 2 of T

level 3 of T

level 4 of T
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The Cache View of a Query

x

Cache view of a query to x

Cache loop, iteration 1

Cache loop, iteration 2

Eject loop, iteration 1

Eject loop, iteration 2

Important Fact

If t keys have been queried
since x , then the size of x ’s
current block size is tO(1).
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BST Implementation of the Cache Loop

v z

w x y

One cache loop iteration

splay(w)

splay(y)

splay(v)

splay(z)

incRoot(leftChild(w))

incRoot(rightChild(y))

decRoot(w)

Each operation costs O(lg(block size for lower level))
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The Cost of a Query

size of this block is B

x

lg B + 1
2 lg B + 1

4 lg B + 1
4 lg B + 1

2 lg B + lg B = O(lg B)

Lemma (Query Cost)

A query to level i costs O(lg bi ) = O(lg(time since queried)).
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Adding an Offset to the Blocks of the Cache

Lemma (Offset Query Cost)

A query to level i of the “virtual cache” costs amortized O(lg bi ),
which is O(lg(time since virtual block queried)).

Proof.

Potential of lg bj for each level-j block that is overlapped by a
level-j virtual block that is at a higher level in the virtual cache.
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Randomizing the Offset

x y

Lemma (Random Offset)

For random offset, are x and y in different level-i virtual blocks?

If |x − y | ≥ bi ,

then probability = 1.

If |x − y | < bi ,

then probability = |x−y |
bi

.
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Cache-Splay Satisfies the Unified Bound

x

y

Proof.

Suppose we query x , then tx other keys, then y .

Then x ’s level in virtual cache has block size bi = t
O(1)
x .

If |x − y | < bi , then cost is expected O(lg tx).

If |x − y | ≥ bi , then cost is expected O(lg |x − y |).
Cost is expected O(

minx(

lg tx + lg |x − y |

)

).
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Implications

Splay trees must satisfy the Unified Bound to be
O(1)-competitive

Search for even more general formulaic bounds?
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Contributions

Lower bounds
Dynamic interleave bound [WDS06]
MIBS bound [DSW05]: generalization of Wilber’s bounds that
is computable in polynomial time
...also shows the strength of the BST model because it is a
lower bound for partial-sums (in thesis)

BST upper bounds
Multi-splay [WDS06, DSW09]: first O(lg lg n)-competitive
BST to achieve other properties of an optimal BST
Skip-splay [DS09]: simple BST similar to splaying within
additive O(lg lg n) of the Unified Bound
Cache-splay (in thesis): more complicated splay-based
algorithm that achieves the Unified Bound (open since [Iac01])

Other results
High-dimensional finger search [DSSW08]: first finger search
data structure for k-d approximate nearest-neighbor
Experiments with bipartite parametric max-flow [BDG+07]
Easy instances of combinatorial auctions [CDS04]
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Skip-splay [DS09]: simple BST similar to splaying within
additive O(lg lg n) of the Unified Bound
Cache-splay (in thesis): more complicated splay-based
algorithm that achieves the Unified Bound (open since [Iac01])

Other results
High-dimensional finger search [DSSW08]: first finger search
data structure for k-d approximate nearest-neighbor
Experiments with bipartite parametric max-flow [BDG+07]
Easy instances of combinatorial auctions [CDS04]
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Future Work

Better bounds for splaying: Unified Bound,
o(lg n)-competitiveness, digit-reversal permutation,
generalization of the Unified Bound, working set for splaying
without rotate-to-root, new toolbox for analyzing splay trees
with splaying over induced subtrees.

Better bounds for any BST: use better lower bounds to show
o(lg lg n)-competitiveness for some BST, show that some
formulaic bound that implies BST competitiveness to within a
o(lg n) factor

Further justification for the BST model itself: show MIBS is a
lower bound for partial-sums in a more general model, reduce
BST model to partial-sums problem.

Thanks!
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