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Abstract. We present skip-splay, the first binary search tree algorithm
known to have a running time that nearly achieves the unified bound.
Skip-splay trees require only O(m lg lg n + UB(σ)) time to execute a
query sequence σ = σ1 . . . σm. The skip-splay algorithm is simple and
similar to the splay algorithm.

1 Introduction and Related Work

Although the worst-case access cost for comparison-based dictionaries is Ω(lg n),
many sequences of operations are highly nonrandom, allowing tighter, instance-
specific running time bounds to be achieved by algorithms that adapt to the
input sequence. Splay trees [1] are an example of such an adaptive algorithm
that operates within the framework of the binary search tree (BST) model [2],
which essentially requires that all elements be stored in symmetric order in a
rooted binary tree that can only be updated via rotations, and requires queried
nodes to be rotated to the root. (BST algorithms that do not rotate to the root
can usually be coerced into this model with just a constant factor of overhead.)

The two most general bounds proven for splay trees are the working set
bound [1] and the dynamic finger bound [3], [4]. The working set bound shows
that splay trees can have better than O(lg n) cost per operation when recently
accessed elements are much more likely to be accessed than random elements,
while the dynamic finger bound shows that splay trees have better than O(lg n)
performance when each access is likely to be near the previous access.

Iacono later introduced the unified bound, which generalized both of these two
bounds [5]. Roughly, a data structure that satisfies the unified bound has good
performance for sequences of operations in which most accesses are likely to be
near a recently accessed element. More formally, suppose the access sequence is
σ = σ1 . . . σm and each access σj is a query to the set {1, . . . , n} (we also use σj

to refer to the actual element that is queried, as context suggests). The unified
bound can be defined as follows:

UB(σ) =
m∑

j=1

min
j′<j

lg(w(σj′ , j
′) + |σj′ − σj |), (1)

where w(x, j) is, at time j, the number of distinct elements including x that
have been queried since the previous query to x, or n if no such previous query
exists. For a more formal definition, see the definitions that precede Lemma 1.
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To achieve a running time of O(m +UB(σ)), Iacono introduced a data struc-
ture called the unified structure. The unified structure did not require amorti-
zation to achieve this bound, and was later improved by Bădoiu et al. to allow
insertion and deletion [6]. The unified structure was comparison-based but did
not adhere to the BST model. Thus, in addition to leaving open questions re-
garding how powerful the BST model was, it was not clear, for example, how
to achieve the unified bound while keeping track of aggregate information on
subsets of elements as can be done with augmented BSTs.

These unresolved issues motivate the question of whether a BST algorithm
exists that achieves the unified bound. Achieving this goal contrasts with the
separate pursuit of a provably dynamically optimal BST algorithm in that it is
possible for a data structure that achieves the unified bound to have the trivial
competitive ratio of Θ(lg n) to an optimal BST algorithm. Conversely, prior
to this work, even if a dynamically optimal BST algorithm had been found, it
would not have been clear whether it satisfied the unified bound to within any
factor that was o(lg n) since dynamic optimality by itself says nothing about
actual formulaic bounds, and prior to this work no competitive factor better
than O(lg n) was known for the cost of the optimal BST algorithm in comparison
to the unified bound. See [7], [8], and [9] for progress on dynamic optimality in
the BST model.

The skip-splay algorithm presented in this paper has three important qualities.
First, it conforms to the BST model and has a running time of O(m lg lg n +
UB(σ)), just an additive term of O(lg lg n) per query away from the unified
bound. Thus, skip-splay trees nearly close the gap between what is known to
be achievable in the BST model and what is achieved by the unified structure.
Second, the skip-splay algorithm is very simple. The majority of the complexity
of our result resides in the analysis of skip-splaying, not in the design of the
algorithm itself. The unified structure, though it avoids the additional O(lg lg n)
cost per query, is significantly more complicated than skip-splay trees. Finally,
skip-splaying is almost identical to splaying, which suggests that a similar anal-
ysis, in combination with new insight, might be used to prove that splay trees
satisfy the unified bound, at least to within some nontrivial multiplicative factor
or additive term.

2 The Skip-Splay Algorithm

We assume for simplicity that a skip-splay tree T stores all elements of {1, . . . , n}
where n = 22k−1 − 1 for some positive integer k, and that T is initially perfectly
balanced. We mark as a splay tree root every node whose height (starting at a
height of 1 for the leaves) is 2i for i ∈ {0, . . . , k − 1}.1 Note that the set of all of
these splay trees partitions the elements of T .

1 If we allow the ratio between the initial heights of successive roots to vary, we can
achieve a parameterized running time bound, but in this version of the paper we use
a ratio of 2 for simplicity.
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Fig. 1. An example of a four-level skip-splay tree T at the beginning of a query se-
quence. The white nodes are the roots of the splay trees that make up T , and the gray
edges are never rotated. If the bottom element of the bold path is queried, then each
of the boxed nodes is splayed to the root of its splay tree.

The following definitions will help us describe the algorithm more clearly:

1. Let Ti be the set of all keys x whose path to the root of T contains at most
i root nodes, including x itself if x is marked as a root.

2. Define level i of T to be the set of keys x whose path to the root contains
exactly i nodes. We will sometimes use the adjective “level-i” to refer to
objects associated with level i in some way.

3. Let tree(x) be the splay tree that contains x. Also, tree(x) can represent the
set of elements in tree(x).

We assume that all operations are queries, and we use σ = σ1 . . . σm to denote
the sequence of queries. To query an element σj , we first perform binary search
through T to locate σj . Then, we splay σj to the root of tree(σj) and transfer
the relevant root marker to σj . If we are at the root of T , we terminate, else we
“skip” to σj ’s new parent x and repeat this process by splaying x to the root of
tree(x). The cost of a query is defined to be the number of nodes on the access
path to σj .2 Figure 1 shows an example of what a skip splay tree looks like at
the beginning of an access sequence and depicts how a query is performed.

Intuitively, skip-splaying is nearly competitive to the unified bound because if
the currently queried element σj is near to a recently queried element σf , then
many of the elements that are splayed while querying σj are likely to be the same
as the ones that were splayed when σf was queried. Therefore, by the working
set bound for splay trees, these splays should be fairly cheap. The analysis in
Section 3 formalizes this intuition.

3 Proving Skip-Splay Runs in Time O(m lg lg n +UB(σ))

Our analysis in this section consists of three lemmas that together prove that
skip-splay trees run in time O(m lg lg n+UB(σ)). The purpose of the first lemma
2 Note that this algorithm can be coerced into the BST Model defined in [2] by rotating

σj to the root and back down, incurring only a constant factor of additional cost.
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is to decompose the cost of skip-splay trees into a series of “local working set
costs” with one cost term for each level in T . The second lemma is the main step
of the analysis and it uses the first lemma to prove that skip-splay trees satisfy
a bound that is very similar to the unified bound, plus an additive O(lg lg n)
term. The third lemma shows that this similar bound is within a constant factor
of the unified bound, so our main analytical result, that skip-splay trees run in
O(m lg lg n + UB(σ)) time, follows immediately from these three lemmas.

In the first lemma and in the rest of this paper, we will use the following
custom notation for describing various parts of T :

1. Let ρk = 1 and for i < k let ρi = 22k−i−1
so that ρi = ρ2

i+1 for i < k − 1.
Note that if element x ∈ T is in level i for i < k, then |tree(x)| = ρi − 1.

2. Let Ri(x), the level-i region of x ∈ T be defined as follows. First, define the
offset δi = δ mod ρi, where δ is an integer that is arbitrary but fixed for all
levels of T . (Our analysis will later make use of the fact that we can choose
δ to be whatever we want.) Then, let Ri(x) = R∗

i (x) ∩ T where

R∗
i (x) =

{⌊
x+δi

ρi

⌋
ρi − δi, . . . ,

⌊
x+δi

ρi

⌋
ρi − δi + ρi − 1

}
.

Note that the level-i regions partition the elements of T and the level-i + 1
regions are a refinement of the level-i regions. Two regions R and R′ are said
to be adjacent if they are distinct, occupy the same level, and their union
covers a contiguous region of keyspace. Note that |Ri(x)| = ρi if R∗

i (x) ⊆ T .
3. Let Ri(x), the level-i region set of x, be the set of level-i regions that are

subsets of Ri−1(x) with R1(x) defined to be the set of all level-1 regions.
Note that |Ri(x)| = ρi if 1 < i < k and R∗

i−1(x) ⊆ T .

Additionally, we give the following definitions of working set numbers and
some auxiliary definitions that will also be helpful (these definitions assume we
are working with a fixed query sequence σ):

1. Let splays(j) be the set of elements that are splayed during query σj .
2. Let p(x, j) represent the index of the previous access to x before time j.

More formally, assuming such an access exists, let

p(x, j) = max({1, . . . , j − 1} ∩ {j′ | σj′ = x}).
We define p(x, j) = −n if the argument to max is the empty set.

3. Let p′(x, j) represent the index of the previous access that resulted in a splay
to x before time j. More formally, assuming such an access exists, let

p′(x, j) = max({1, . . . , j − 1} ∩ {j′ | x ∈ splays(j′)}).
We define p′(x, j) = −ρi if the argument to max is the empty set.

4. Let pi(x, j) represent the index of the previous access to region Ri(x). More
formally, assuming such an access exists, let

pi(x, j) = max({1, . . . , j − 1} ∩ {j′ | Ri(σj′ ) = Ri(x)}).
We define pi(x, j) = −ρi if the argument to max is the empty set. Also, let
pi(R, j) be equivalent to pi(x, j) if R = Ri(x).
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5. For x ∈ T , let w(x, j) represent the number of elements queried since the
previous access to x. More formally, if p(x, j) > 0 let

w(x, j) =
∣∣∣
{
σj′ | j′ ∈ {p(x, j), . . . , j − 1}

}∣∣∣.

Else, if p(x, j) ≤ 0 then let w(x, j) = −p(x, j).
6. For x ∈ T , let w′(x, j) represent the working set number of x within tree(x)

(i.e., the number of elements splayed in tree(x) since the previous query
resulting in a splay to x). More formally, if p′(x, j) > 0 let

w′(x, j) =
∣∣∣tree(x) ∩

⋃

j′∈{p′(x,j),...,j−1}
splays(j′)

∣∣∣.

Else, if p′(x, j) ≤ 0 then let w′(x, j) = −p′(x, j).
7. For x ∈ T , let wi(x, j) represent the number of regions in Ri(x) that contain

a query since the previous access to a member of Ri(x). More formally, if
pi(x, j) > 0 let

wi(x, j) =
∣∣∣
{
Ri(σj′ ) | j′ ∈ {pi(x, j), . . . , j − 1}

}
∩Ri(x)

∣∣∣.

Else, if pi(x, j) ≤ 0 then let wi(x, j) = −pi(x, j). Also, let wi(R, j) be equiv-
alent to wi(x, j) if R = Ri(x).

8. For x ∈ T , let w′
i(x, j) be the working set number of x within tree(x) that

is reset whenever a query is executed to a region that could cause a splay of
x. More formally, let R(x) be the set of up to three regions R such that a
query to R can cause a splay of x. If pi(R, j) > 0 for some R ∈ R(x) let

w′
i(x, j) =

∣∣∣tree(x) ∩
⋃

j′∈{maxR∈R(x) pi(R,j),...,j−1}
splays(j′)

∣∣∣.

Else, if pi(R, j) ≤ 0 for all R ∈ R(x) then let w′
i(x, j) = ρi. Note that

w′
i(x, j) ≤ 3wi(R, j) +1 for R ∈ (R(x)∩Ri(x)) because accesses to a region

in Ri(x) can result in splays of at most three different elements of tree(x),
and at most one, the minimum element of tree(x), can be splayed as the result
of a query to another level-i region set. Also, note that w′

i(x, j) ≤ w′(x, j).

In the proof of the first lemma, we will be making use of the working set
theorem in Sleator and Tarjan’s original splay tree paper [1], which shows that
the cost of a query sequence σ on an individual splay tree, for sufficiently large
n, is bounded by cs(n lg n +

∑m
j=1 lg(w(σj , j) + 1)), for some constant cs. For

simplicity, we assume we are starting with a minimum potential arrangement of
each splay tree, so this simplifies to

∑m
j=1 cs lg(w(σj , j)+1). In order to make the

analysis in Lemma 2 simpler, we move beyond simply associating this working
set cost with each splay that is executed in T by proving the following lemma.



Skip-Splay: Toward Achieving the Unified Bound in the BST Model 199

Lemma 1. For query sequence σ in a skip-splay tree T with k levels, the amor-
tized cost of query σj is

O

(
k +

k∑

i=1

lg wi(σj , j)

)
. (2)

Proof. By the definition of the skip-splay algorithm and the working set theorem
for splay trees, the amortized cost of query σj is

∑
x∈splays(j) w′(x, j), suppressing

multiplicative and additive constants. To prove Lemma 1, we will do further
accounting for the cost of a query σj and focus on the cost associated with an
arbitrary level i of T .

Note that at level i during query σj , one of three cases occurs with regard to
which level-i node, if any, is splayed. First, if σj resides in a strictly shallower
level than i, then no splay is performed in level i. Second, if σj resides within
level i, then σj is splayed in level i. Third, if σj resides in a deeper level than
i, then either the predecessor or the successor of σj in level i is splayed. (We
know that at least one of these two nodes exists and is on the access path in this
case.) We will use the following potential function on T to prove that the bound
in Equation 2 holds regardless of which of these three cases occurs:

Φ(T, j) = φ1(T, j) + φ2(T, j), (3)

where
φ1(T, j) =

∑

x∈T

(lg w′(x, j + 1) − lg w′
i(x, j + 1)) (4)

and
φ2(T, j) =

∑

(x,y)∈A

| lg w′
i(x, j + 1) − lg w′

i(y, j + 1)|, (5)

where A is the set of pairs of level-i nodes (x, y) such that x is the maximum
element in tree(x), y is the minimum element in tree(y), and there are no other
level-i elements between x and y. For succinctness below, define ΔΦ(T, j) to be
Φ(T, j) − Φ(T, j − 1) and define Δφ1(T, j) and Δφ2(T, j) analogously.

First, notice that the cost of the splay, if any, that is performed on node x
at level i is offset by the change in potential of lg w′(x, j + 1) − lg w′(x, j) =
− lg w′(x, j). Note that this ignores the difference lg w′

i(x, j) − lg w′
i(x, j + 1) =

lg w′
i(x, j), which will be accounted for below.

Second, define Δ+Φ(T, j) to be the sum of the positive terms of ΔΦ(T, j) plus
lg w′

i(x, j) in the case in which some node x is splayed during query σj . We will
show that regardless of whether a splay is performed in level i during query σj ,
it is true that Δ+Φ(T, j) is at most 4 lg(3wi(σj , j) + 1) + 2.

To see this, let Y be the set of up to three level-i nodes that can be splayed
while accessing members of the region Ri(σj), and notice that if a node x is
splayed at level i during query σj then x ∈ Y . Note that the only positive terms
of Δ+Φ(T, j) from Δφ1(T, j) are the ones that use some member of Y as an argu-
ment. This is true because lg w′(z, j+1)− lgw′(z, j) ≤ lg w′

i(z, j+1)− lgw′
i(z, j)
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for z ∈ T \Y since w′(z, j) ≥ w′
i(z, j) and w′(z, j + 1) − w′(z, j) ≤ w′

i(z, j + 1)
− w′

i(z, j). Further, note that Δ+Φ(T, j) contains at most two terms from
Δφ2(T, j) that do not use some member of Y as an argument, and these two
terms are at most 1 each.

Now, we consider the following two cases. All additional cases are either similar
to or simpler than these two cases. First, suppose that Y contains two elements
y1 < y2 and tree(y1) �= tree(y2). Note that in this case we know that Ri(σj) =
Ri(y1). Then,

Δ+Φ(T, j) ≤ lg w′
i(y1, j) + lg w′

i(y2, j) − | lg w′
i(y1, j) − lg w′

i(y2, j)| + 2
≤ 2 lg w′

i(y1, j) + 2
≤ 2 lg(3wi(σj , j) + 1) + 2.

Second, suppose that Y contains three elements y1 < y2 < y3 that all reside in
the same splay tree T ′, suppose y3 is the maximum element of T ′, and let z be
the successor of y3 among the level-i elements (assuming z exists in this case).
Using the fact that | lg w′

i(y3, j +1)− lg w′
i(z, j +1)| = lg w′

i(z, j+1) = lg w′
i(z, j)

and the fact that Ri(y1) = Ri(y2) = Ri(y3) = Ri(σj), we have

Δ+Φ(T, j) ≤
3∑

q=1

lg w′
i(yq, j) + lg w′

i(z, j) − | lg w′
i(y3, j) − lg w′

i(z, j)| + 2

≤ lg w′
i(y1, j) + lg w′

i(y2, j) + 2 lg w′
i(y3, j) + 2

≤ 4 lg(3wi(σj , j) + 1) + 2. �	

We note that the potential function used in Lemma 1 starts at its minimum
value and the splay trees also start at their minimum potential configuration.
Therefore, the sum of the amortized costs of each query, according to Lemma 1,
is an upper bound on the cost of the sequence. Using Lemma 1, we can prove a
bound that is similar to the unified bound, plus an additive O(lg lg n) term per
query. This bound differs from the unified bound in that the working set portion
of the cost consists not of the number of elements accessed since the previous
query to the relevant element, but of the number of queries since the previous
query to the relevant element. Before we prove this bound, we give the following
definitions, which will be useful in formally describing the bound and proving it:

1. Let fj represent the element σj′ such that

j′ = argmin
j′′<j

lg(w(σj′′ , j) + |σj − σj′′ |).

Intuitively, fj represents the “finger” for query σj because it represents the
previously-queried element that yields the smallest unified bound value for
query σj .

2. For x ∈ T , let t(x, j) represent the number of queries (rather than distinct
elements accessed) since the previous access to x. More formally, let

t(x, j) = |{p(x, j), . . . , j − 1}| = j − p(x, j).

Note that the above definition handles the case in which p(x, j) ≤ 0.
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3. For x ∈ T , let ti(x, j) represent the number of queries to all members of
Ri(x) since the previous access to a member of Ri(x). More formally, let

ti(x, j) =
∣∣∣
{
j′ ∈ {max(1, pi(x, j)), . . . , j − 1} | Ri(σj′ ) ∈ Ri(x)

}∣∣∣,

with an additional −pi(x, j) added if pi(x, j) ≤ 0.
4. For x ∈ T , let t̂i(x, j) represent the number of queries to all members of

Ri(x) since the previous access to x. More formally, let

t̂i(x, j) =
∣∣∣
{

j′ ∈ {max(1, p(x, j)), . . . , j − 1} | Ri(σj′ ) ∈ Ri(x)
}∣∣∣,

with an additional ρ2
i added if p(x, j) ≤ 0. Note that t̂1(x, j) ≤ t(x, j)+1 by

definition.

Next, we define UB ′(σ), a variant of the unified bound, as

UB ′(σ) =
m∑

j=1

lg(t(fj , j) + |σj − fj|), (6)

and we are ready to proceed with our second lemma.

Lemma 2. Executing the skip-splay algorithm on query sequence σ = σ1 . . . σm

costs time O(m lg lg n + UB ′(σ)).

Proof. In this proof, we will be making use of the bound in Lemma 1 with a
randomly chosen offset δ that is selected uniformly at random from {0, . . . , ρ1 −
1}. We will use induction on the number of levels i from the top of the tree
while analyzing the expected amortized cost of an arbitrary query σj . In the
inductive step, we will prove a bound that is similar to the one in Lemma 2, and
this similar bound will cover the cost associated with levels i and deeper. Even
though we are directly proving the inductive step in expectation only, because
the bound in Lemma 1 is proven for all values of δ, we know that there exists
at least one value of δ such that the bound holds without using randomization
if we amortize over the entire query sequence. Therefore, the worst-case bound
on the total cost of the access sequence in Lemma 2 will follow.

Our inductive hypothesis is that the cost of skip-splaying σj that is associated
with levels i + 1 and deeper according to Lemma 1 is at most

α lg t̂i+1(fj , j) + β lg min(1 + |σj − fj |2, ρi+1) + γ(k − i), (7)

where k, as before, represents the number of levels of splay trees in T .
We choose levels k and k − 1 to be our base cases. The inductive hypothesis

is trivially true for these base cases as long as we choose the constants appropri-
ately. Also, the bound for the inductive hypothesis at level 1, summed over all
queries, is O(m lg lg n + UB ′(σ)), so proving the inductive step suffices to prove
the lemma.
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To prove the inductive step, we assume Equation 7 holds for level i + 1 and
use this assumption to prove the bound for level i. Thus, our goal is to prove the
following bound on the cost that Lemma 1 associates with query σj for levels i
and deeper:

α lg t̂i(fj , j) + β lg min(1 + |σj − fj|2, ρi) + γ(k − i + 1). (8)

As a starting point for the proof of the inductive step, Lemma 1 in addition to
the inductive hypothesis allows us to prove an upper bound of

lg wi(σj , j) + α lg t̂i+1(fj , j) + β lg min(1 + |σj − fj|2, ρi+1) + γ(k − i), (9)

where we have suppressed the constant from Lemma 1 multiplying lg wi(σj , j).
Our proof of the inductive step consists of three cases. First, if |σj −fj|2 ≥ ρi,

then substituting ρi for ρi+1 increases the bound in Equation 9 by

lg ρi − lg ρi+1 = lg
(

ρi

ρi+1

)
= lg (ρi+1) = lg

(
ρ
1/2
i

)
≥ lg

(
wi(σj , j)1/2

)
, (10)

which offsets the elimination of the cost lg wi(σj , j) as long as β ≥ 2. The
other substitutions only increase the bound, so for this case we have proved the
inductive step.

Second, if |σj − fj |2 < ρi and Ri(σj) �= Ri(fj), then we simply pay lg wi(σ, j)
which is at most lg ρi. However, we note that the probability of this occurring for
a random choice of δ is at most ρ

1/2
i /ρi = ρ

−1/2
i , so the expected cost resulting

from this case is at most ρ
−1/2
i lg ρi, which is at most a constant, so it can be

covered by γ.
The third and most difficult case occurs when |σj − fj |2 < ρi and Ri(σj) =

Ri(fj), and we will spend the rest of the proof demonstrating how to prove
the inductive step for this case. First, we note that lg ti(fj , j) ≥ lg wi(fj , j) =
lg wi(σj , j), so we can replace lg wi(σj , j) with lg ti(fj , j) and ρi+1 with ρi in
Equation 9 without decreasing the bound and prove a bound of

lg ti(fj , j) + α lg t̂i+1(fj , j) + β lg min(1 + |σj − fj |2, ρi) + γ(k − i). (11)

It remains only to eliminate the term lg ti(fj , j) by substituting t̂i(fj , j) for
t̂i+1(fj, j) while incurring an additional amortized cost of at most a constant so
that it can be covered by γ.

Observe that if σj satisfies

t̂i+1(fj , j) ≤ t̂i(fj ,j)

ti(fj ,j)
1
2
, (12)

then we have an upper bound of

lg ti(fj, j)+α(lg t̂i(fj , j)− lg ti(fj ,j)
2 )+β lg min(1+ |σj −fj|2, ρi)+γ(k− i), (13)

which would prove the inductive step if α ≥ 2. However, it is possible that
t̂i+1(fj, j) does not satisfy the bound in Equation 12. In this latter case, we
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pessimistically assume that we must simply pay the additional lg ti(fj , j). In the
rest of the proof, we show that the amortized cost of such cases is at most a
constant per query in this level of the induction, so that it can be covered by
the constant γ.

We first give a few definitions that will make our argument easier. A query
σb is R-local if Ri(σb) = R. Further, if σb is R-local and satisfies Ri(fb) = R as
well as the bound t̂i+1(fb, b) > t̂i(fb, b)/ti(fb, b)

1
2 , then we define σb also to be

R-dense. Note that if σb is R-dense then p(fb, b) > 0. Finally, if σb additionally
satisfies the inequality τ < ti(fb, b) ≤ 2τ , then we define σb also to be R-τ-bad.
Notice that all queries that have an excess cost at level i due to being in this
third case and not meeting the bound in Equation 12 are R-τ -bad for some
level-i region R and some value of τ (actually a range of values τ).

Our plan is to show that the ratio of R-τ -bad queries to R-local queries
is low enough that the sum of the excess costs associated with the R-τ -bad
queries can be spread over the R-local queries so that each R-local query is
only responsible for a constant amount of these excess costs. Further, we show
that if we partition the R-dense queries by successively doubling values of τ ,
with some constant lower cutoff, then each R-local query’s share of the cost is
exponentially decreasing in lg τ , so each R-local query bears only a constant
amortized cost for the excess costs of all of the R-dense queries. Lastly, note
that in our analysis below we are only amortizing over R-local queries for some
specific but arbitrary level-i region R, so we can apply the amortization to each
level-i region separately without interference.

To begin, we bound the cost associated with the R-τ -bad queries for arbitrary
level-i region R and constant τ as follows. Let σb be the latest R-τ -bad query.
First, note that the number of R-τ -bad queries σa where a ∈ {p(fb, b)+1, . . . , b}
is at most t̂i(fb, b)/τ because there are t̂i(fb, b) queries to Ri(fb) in that time
period, and immediately prior to each such σa, the previous τ − 1 queries to
Ri(fb) are all outside of R so that ti(fa, a) ≥ τ . Second, note that because σb

was chosen to be R-τ -bad we have

t̂i+1(fb, b) > t̂i(fb,b)
ti(fb,b)1/2 ≥ t̂i(fb,b)

(2τ)1/2 . (14)

Thus, the ratio of the number of R-local queries in this time period, t̂i+1(fb, b),
to the number of R-τ -bad queries in this time period is strictly greater than

t̂i(fb,b)
(2τ)1/2 · τ

t̂i(fb,b)
= ( τ

2 )1/2. (15)

The constraint that ti(fa, a) ≤ 2τ for each of the aforementioned R-τ -bad queries
σa implies that the excess level-i cost of each is at most lg(2τ), so we charge each
R-local query with a time index in {p(fb, b)+1, . . . , b} a cost of lg(2τ)/( τ

2 )1/2 to
account for the R-τ -bad queries that occur during this time interval. Notice that
we can iteratively apply this reasoning to cover the R-τ -bad queries with time
indices that are at most p(fb, b) without double-charging any R-local query.

To complete the argument, we must account for all R-dense queries, not just
the R-τ -bad ones for some particular value of τ . To do this, for all R-dense queries
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σj such that ti(fj , j) ≤ τ0, for some constant τ0, we simply charge a cost of lg τ0

to γ. Next, let τq = 2qτ0 for integer values q ≥ 0. From above, we have an upper
bound on the amortized cost of the R-τq-bad queries of lg(2q+1τ0)/(2q−1τ0)1/2,
so the sum over all values of q is at most a constant and can be covered by γ. �	
To complete the argument that skip-splay trees run in O(m lg lg n + UB(σ))
time, it suffices to show that UB ′(σ) is at most a constant factor plus a linear
term in m greater than UB(σ). Thus, the following lemma completes the proof
that skip-splay trees run in time O(m lg lg n + UB(σ)).

Lemma 3. For query sequence σ = σ1 . . . σm, the following inequality is true:

m∑

j=1

lg(t(fj , j) + |σj − fj|) ≤ mπ2 lg e
6 + lg e +

m∑

j=1

2 lg(w(fj , j) + |σj − fj|). (16)

Proof. To begin, we give a new definition of a working set number that is a hy-
brid between w(fj , j) and t(fj , j) for arbitrary time index j. Let hi(fj , j) =
max(w(fj , j)2, min(t(fj , j), j − i)). Note that lg hm(fj , j) = 2 lg w(fj , j) and
h−n(fj , j) ≥ t(fj , j) for all j. Also, note that if p(fj , j) > 0 then lg h−n(fj, j) −
lg h0(fj, j) = 0, else if p(fj , j) ≤ 0, which is true for at most n queries, then
lg h−n(fj , j) − lg h0(fj , j) ≤ lg(n2 + n) − lg(n2) ≤ lg e

n .
Next, note that lg hi(fj , j) − lg hi+1(fj , j) = 0 if i ≥ j or t(fj , j) ≤ j − i − 1

and for all j we have lg hi(fj , j) − lg hi+1(fj , j) ≤ lg e
w(fj ,j)2 . Also, we know that

the number of queries for which i < j, t(fj , j) ≥ j − i, and w(fj , j) ≤ w0 is at
most w0 for w0 ∈ {1, . . . , n}. This is true because each such query is to a distinct
element since they all use a finger that was last queried at a time index of at
most i (if two of these queries were to the same element, then the second query
could use the first as a finger). If there were w0 + 1 such queries, the latest such
query σ� would have w(f�, j) ≥ w0 + 1 because of the previous w0 queries after
time i to distinct elements, a contradiction. Therefore,

m∑

j=1

(lg hi(fj, j) − lg hi+1(fj , j)) ≤
n∑

k=1

lg e
k2 ≤ π2 lg e

6 ,

so that
m∑

j=1

(lg t(fj , j) − 2 lg w(fj , j)) ≤
m∑

j=1

(lg h−n(fj , j) − lg hm(fj , j)) ≤ mπ2 lg e
6 + lg e.

The fact that lg(t(fj , j)+ d)− 2 lg(w(fj , j)+ d) ≤ lg t(fj , j)− 2 lg w(fj , j) for all
j and non-negative d completes the proof. �	

4 Conclusions and Future Work

The ideal improvement to this result is to show that splay trees satisfy the unified
bound with a running time of O(m+UB(σ)). However, achieving this ideal result
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could be extremely difficult since the only known proof of the dynamic finger
theorem is very complicated, and the unified bound is stronger than the dynamic
finger bound.

In light of this potential difficulty, one natural path for improving this result is
to apply this analysis to splay trees, perhaps achieving the same competitiveness
to the unified bound as skip-splay trees. Intuitively, this may work because the
skip-splay algorithm is essentially identical to splaying except a few rotations are
skipped to keep the elements of the tree partitioned into blocks with a particular
structure that facilitates our analysis.

Additionally, it may be possible to design a different BST algorithm and show
that it meets the unified bound, which would prove that we do not need to leave
the BST model, and the perks such as augmentation that it provides, to achieve
the unified bound. If such an algorithm is to be similar to skip-splaying, it must
mix the splay trees together so that all nodes can reach constant depth.

To summarize the clearest paths for related future work, it would be significant
progress to show that splay trees meet the unified bound to within any factor
that is o(lg n), or to show that some BST algorithm achieves the unified bound
to within better than an additive O(lg lg n) term.
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