

Integrating Tools for the

Creation of Speech-Enabled Tutors

Jonathan C. Brown

jonbrown@cs.cmu.edu

CMU-LTI-04-186

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

5000 Forbes Ave., Pittsburgh, PA 15213
www.lti.cs.cmu.edu

This report describes work done in enabling language-learning exercise
creators to create speech-enabled intelligent tutor exercises. The utilities
created make use of two existing sets of tools, the Cognitive Tutor
Authoring Tools and the Sphinx-2 speech recognition system. The report
describes how these tools are integrated, and how the resulting utilities
can be used to create exercises that incorporate student speech. The
reader is walked-though the creation of a simple speech-enabled exercise
and introduced to more complicated exercises.

 1

1 Introduction

 Creating intelligent tutors, or even just tutor exercises, can be a time consuming and
difficult process. However, much work is being done in making this quicker and easier. The
goal of this project was to take advantage of this work and extend it to the field of language-
learning. Specifically, this project was undertaken to extend the Cognitive Tutor Authoring
Tools to be more useful for creating language-learning tutors in an LTI graduate course,
“Language Technologies in Computer Assisted Language Learning” (11-717). This course was
already using these authoring tools, but because speaking is a very important part of learning a
new language, it was necessary to extend the tools to make it simple to use speech recognition
functionality to build speech-enabled tutor exercises. In the next section, the existing tools used
in this process are described. In the following sections, the desired abilities of a speech-enabled
tutor, the utilities created to satisfy these desires, and the process of building a simple exercise
are detailed. Finally, this report introduces some of the more complicated exercises that have
been built with these utilities.

2 Existing Tools

 There are two main toolsets that are used to aid in the development of these language-
learning exercises. The first is the Cognitive Tutor Authoring Tools. The second is the open-
source Sphinx-2 speech recognition system.

2.1 Cognitive Tutor Authoring Tools

The Cognitive Tutor Authoring Tools (CTAT) are a set of tools built by researchers at
Carnegie Mellon University and Worcester Polytechnic Institute. They are designed to ease the
development of intelligent tutors[1]. A subset of these tools allow for the creation of “Pseudo
Tutors”, which exhibit the normal behavior of intelligent tutors but do not require the creator to
perform any AI programming[2]. In fact, authors build these tutors by simply creating the
exercise interface and then demonstrating student behavior within that interface. The resulting
tutor exercises simulate intelligent tutor behavior, such as the behaviors resulting from model
tracing and knowledge tracing. Model tracing provides individualized assistance during problem
solving through feedback and help messages, whereas knowledge tracing is used to estimate
knowledge growth across problems[3, 4]. The pseudo tutor authoring process is designed to
capture the visible effects of these processes as they occur in normal intelligent tutors[2].

The exact process of creating a pseudo tutor will be described later, when building the

simple speech-enabled exercise. However, it is useful to take a look at the steps involved
without the additional requirements for speech. The first step is to design the interface, using the
tutor GUI builder provided in the CTAT[2]. This interface is made by dragging and dropping
provided interface widgets onto the exercise window to create a Java interface. These widgets
allow for a variety of different activity types. If desired, the user can also program this interface
in code, because the user is really just creating a Java interface using special widgets. The
second step is to demonstrate the correct and incorrect steps students may take when completing
the exercise. This is done using the Behavior Recorder, also provided in the authoring tools[2].

 2

The Behavior Recorder tool automatically creates behavior graphs, while the author
demonstrates students’ actions in the interface itself. These actions include both correct and
incorrect actions. The author can also directly modify the behavior graph to mark certain paths
as incorrect. In the third step, the author annotates the behavior graph further, adding help
messages, error messages, and other feedback messages on different paths of the graph. This
allows the author to specify the feedback the student receives when working on the problem.
Finally, the author can annotate paths of the behavior graph with knowledge labels, which
indicate specific skills used within the exercise.

Once these pseudo tutor exercises have been built, students can use them, and will

receive intelligent feedback, based on their actions, as defined by the behavior graph. When
students complete multiple exercises, the tools allow the author to view the performance of each
student on each of the skills (denoted by knowledge labels), both within a single problem and
across multiple problems that require some or all of the same skills.

The Cognitive Tutor Authoring Tools provide many resources for building full and

pseudo intelligent tutors[1, 2]. Although the focus is on the tools used for pseudo tutors in this
report, it should be mentioned that the utilities described later will also work with full tutors
designed using the CTAT.

2.2 Sphinx-2 Speech Recognition System

Sphinx-2 is a real-time, large vocabulary, speaker-independent speech recognition
system[5]. It is written in C, runs on UNIX and Windows, and is available under a free and
open source license[6]. To recognize speech, Sphinx-2 must be provided with the following: an
acoustic model, a language model, and a pronunciation lexicon.

Sphinx-2 comes with a fully trained acoustic model that can be used without modification

if desired. The language model and pronunciation lexicon must be built and supplied to the
system. One can easily create these using the online Sphinx Knowledge Base Tools[7]. This
tool must be provided with a list of possible student utterances for this exercise. An utterance is
a phrase or sentence that the student may be expected to speak. The online tool will use this
sentence corpus file to build the necessary language model files and pronunciation lexicon. One
can also add special words to the models if necessary; the CMU Pronouncing Dictionary may be
useful for this[8]. See the walk-though example for more details.

3 How a Speech-Enabled Tutor Works

 This section describes exactly how one would like a speech-enabled tutor to work. That
is, this section will describe the desired functionality of a completed tutor from the designer’s
perspective.

 First, the student will be presented with a problem. This problem will require the user to
speak, in order to give either an answer to a question, the next line of a dialog, or whatever else
he or she is prompted for. To do this, the user will press a record button, speak their response,

 3

and click the stop button. A recording of the user’s utterance will then be passed off to the
recognizer, which will already be set up to deal with this problem. The recognizer will then
return one or more candidate utterances, which will be compared to the expected responses to
determine the response the system believes the student gave. The learner will then receive
feedback based on this determined response. Diagram 1 shows a completed tutor exercise with
an interface designed to allow this functionality.

Diagram 1

4 Description of Tools Created

 Given the existing tools, it was found that there were 2 main components necessary to
provide the desired functionality of a speech-enabled tutor: an audio recording and recognition
component and a tutor integration component. In this section, both of these components will be
described. This set of tools, the main product of this project, is freely available online at [9].

4.1 Audio Recording and Recognition Component

The first component necessary is a component to handle the recording and recognition of
the user’s speech. This is implemented using two Java classes. The primary class is Recognizer.

 4

This class provides methods for beginning recording, stopping recording, performing
recognition, getting back results from the recognizer, and comparing these results to the expected
user utterances. The recording is performed using a helper class, Recorder.

When the startRecording() method is called, the Recognizer launches a new thread using

the Recorder class, which finds the audio input device (the microphone) and begins to record.
This thread continues to record until the stopRecording() method is called. The recording is
done as a 16 kHz WAV file, and is saved to the file location given when the Recognizer is
instantiated. The standard Java audio recording API is used for this process.

When the doRecognize() method is called, this audio file is processed by the speech

recognition system. The speech recognition system is called as an external process. Therefore,
Sphinx-2 must already be installed on the client machine. Sphinx-2 can be installed directly on
UNIX-based machines, as well as under Cygwin on Windows machines. Full installation
directions are available online at [9]. The installation involves the standard installation of
Sphinx-2, plus the addition of certain shell scripts written to ease communication between these
components and Sphinx-2. Thus, when the doRecognize() method is called, Sphinx-2 is started
as a separate process and given arguments as to the location of the audio file and its language
model files. The next sections describe where these language model files come from.

 After the utterance has been recognized, either the getBest() or getNBest() methods are
available to be called. These methods return the most likely utterance and the list of the N most
likely utterances, respectively. These methods access the output of the last run of the recognizer
to gather these utterances. The output returned by the getBest() method is similar to what one
would get if using a dictation system. That is, Sphinx-2 returns a single utterance of what it
believes is the most likely sentence spoken by the user, given the audio file and its language
modeling files. The getNBest() method, on the other hand, can return a number of possible
utterances. These utterances are ranked in terms of the recognizer’s confidence in the fact that
the student spoke the given utterance. An example of this will be shown at the end of this
section on page 5.

 The last method of Recognizer is the getBestMatch() method. This method takes as
arguments a list of possible spoken utterances and a list of expected user responses. The list of
possible spoken utterances is normally retrieved via the getNBest() method described above. The
list of expected responses is defined by the exercise creator, as will be seen in the walk-through.
This method compares these lists to come to a conclusion about what utterance, if any, the
student has spoken. This method may need to be modified for different types of exercises, but in
these utilities it works in the following way. For each of the possible spoken utterances received
from the recognizer, the tool checks if it matches any of the expected responses. The first
possible spoken utterance that matches an expected response is chosen. Note that this
comparison is done by ignoring capitalization and punctuation, since Sphinx-2 does not include
this information in its output. If none of the possible spoken utterances match any of the
expected responses, the utterance “NotUnderstood” is returned. This indicates that it appears the
user either said something different than the expected responses or the recognizer did not
understand the utterance to be one of those expected responses. If the recognizer did not return
any possible utterances, “NotHeard” is returned, which indicates that the recognizer was unable

 5

to discern any words in the audio file. This usually indicates a problem with the audio hardware,
such as the microphone or microphone settings. Thus, this method can return either
“NotUnderstood”, “NotHeard”, or one of the utterances in the list of expected responses.

As an example, assume that the expected responses were the following:

• The girl ate the apple.
• The boy ate the pear.
• The bear ate the toy.

Also assume the list of N-best utterances from the recognizer was the following:

• the toy ate the pear
• the toy ate the bear
• the boy ate the pear

In this case, the getBestMatch() method would conclude that what the user said was “The

boy ate the pear.” This is because this utterance is the first utterance from the recognizer’s
results that matches one of the expected responses.

4.2 Tutor Integration Component

In addition to the recording and recognition component, something else is needed to
integrate with the authoring tools. This integration can be done manually by the exercise
designer, or it can be inherited by starting with an exercise template included in the tools. This
template provides the following functionality: it implements event handlers for the start and stop
recording buttons which handle all of the interactions with the recording and recognition
component and the authoring tools.

The event handler for the start recording button initializes the Recognizer object with the

location to save the audio file and calls the startRecording() method. The event handler for the
stop button is somewhat more complicated. First, is calls the stopRecording() method of the
Recognizer. Then, it calls the doRecognize() method. Next, it retrieves the list of the n best
utterances from the recognizer with the getNBest() method. After that, it calls the
getBestMatch() method with the list of N-best utterances and the designer-supplied list of the
expected responses for this specific exercise (or portion of exercise). The utterance returned
from this method call is either the utterance the student is believed to have spoken, or one of the
error messages “NotUnderstood” or “NotHeard”. Finally, the event handler sets the text of a
textbox widget with this utterance and signals a widget update event. This update event causes
the Cognitive Tutor Authoring Tools to notice that the text has been inserted into the textbox.
Therefore, the authoring tools will react according to the user response, just as if the user had
directly typed their response.

Additional example applications available online also show how to use interface widgets

other than textboxes and how to handle multiple problems or parts of problems within one CTAT
exercise[9].

 6

5 Walk-Through of a Simple Example Exercise

 In this section of the report, the process of building a simple speech-enabled tutor
exercise will be explained. The exercise will be the first step of a dialog focused on politeness.
The user will be presented with three sentences. One of these sentences will be incorrect
because it is impolite. The other two will be correct, and would take the user down different
paths of the dialog if the exercise continued beyond the first step. The user will be asked to
choose one of the sentences, click record, speak the sentence, and click stop. The text of the
user’s choice will then appear in the textbox below. The user will receive feedback based upon
the correctness of his or her choice.

 The first step is creating the interface. Normally, an exercise designer can either start
from scratch or from a template. A starting template for this problem is available online at [9],
but this description will also include the elements already completed in the template. The first
step is to create or open an existing Java GUI program in the GUI designer. Next, one must
place the needed interface widgets on the window. If the template does not have a “Universal
Tool Proxy” (UTP) widget on the interface, one can be dragged onto the form from the widget
panel that came with the Cognitive Tutor Authoring Tools. All pseudo tutors need this widget.
For this particular exercise, also needed are one JLabel for the directions and one JLabel for each
of the options. These labels can be placed anywhere on the form and modified to hold the text of
the three options. The three options used in the example exercise are the following: “I would
like a table, please”, “I would like a seat by the window”, and “Give me a table.” The first two
will be designated as the correct responses, whereas the third will be considered incorrect.

For this exercise, buttons for starting and stopping recording are also needed. These are
present in the template, but could also be manually added simply by dragging two JButton
widgets onto the window. Note here that JButton widgets and not DorminButton widgets are
being used. The former are normal buttons built into Java. The latter are special buttons that
come from the Cognitive Tutor Authoring Tools. It is not necessary to use the authoring tools
buttons here because one does not want the tutor to take any action when the user presses these
buttons. These buttons are only used for one’s own purpose. Finally, a textbox is needed for the
user’s response to be entered into automatically. For this, a DorminTextField is necessary,
instead of a normal JTextField, because the tutor is expected to respond to changes in this
widget.

 If not using the template for this exercise, one must implement the event handlers for the
buttons described in the section on the tutor integration component. The event handler code for
the start button is shown below.

private void startButtonActionPerformed(java.awt.event.ActionEvent evt) {
 File audioFile = new File (audioFileLocation);
 File hypFile = new File (hypothesisFileLocation);
 recognizer = new Recognizer(audioFile, hypFile);
 recognizer.startRecording();
 }

 7

 The audioFileLocation and hypothesisFileLocation are Java Strings whose values depend
on where the Sphinx-2 speech recognition system was installed. Notice that the code creates an
instance of the Recognizer class and then calls the startRecording() method. The event handler
code for the stop button is shown below.

private void stopButtonActionPerformed(java.awt.event.ActionEvent evt) {
 recognizer.stopRecording();
 recognizer.doRecognize();
 String s[] = recognizer.getNBest();

 String spoken = recognizer.getBestMatch(s, currentAnswerChoices);
 dorminTextField1.setText(spoken);

 FocusEvent fe = new FocusEvent(dorminTextField1, FocusEvent.FOCUS_LOST);
 dorminTextField1.focusLost(fe);
}

 In this method, the stopRecording() and doRecognize() methods are called, followed by
the call to the getNBest() method. Then, the call to getBestMatch() returns the utterance the
system had determined the student to have spoken, which is stored in the String spoken. Finally,
the text of the DorminTextField is set to this value, and a FOCUS_LOST event is passed to the
text field. This triggers the authoring tools to handle the student input.

 The last step of the interface creation process is to define the variable
currentAnswerChoices used in the above call to the getBestMatch() method. This corresponds to
the possible answer choices that the student is expected to speak. This can be defined in the
TutorInterface constructor by the code below:

currentAnswerChoices = new Vector();
currentAnswerChoices.add(“I would like a table, please.”);
currentAnswerChoices.add(“I would like a seat by the window.”);

 currentAnswerChoices.add(“Give me a table.”);

 Although the interface is now complete, there is one more step that must be done before
one can demonstrate student behavior and let students use the exercise. The speech recognition
system must be provided with a language model and a pronunciation lexicon. These files can be
automatically created using the online knowledge base tool available at [7]. The input to this
tool is a sentence corpus file. To create a sentence corpus file, a text file must be created with
one possible student utterance per line. In this exercise, the file would then consist of three lines:

 I would like a table please
 I would like a seat by the window
 Give me a table

 Note that these utterances are stripped of punctuation. Once this file has been uploaded
to the online tool, the tool will provide the language model files and pronunciation lexicon
needed. These files must be downloaded and placed in the Sphinx-2 current model directory.

 8

 Now that the interface has been completed and the speech recognition system has been
provided the necessary configuration files, one can run the exercise and create the behavior
recorder graph. The behavior recorder graph is begun by clicking on the “Author” menu at the
top of the exercise window and then clicking “Create Start State”. This creates the root of the
behavior graph. Next, one creates a state for each of the possible values that can be inserted into
the textbox. There is one state for each of the three answer choices, and one state each for
“NotUnderstood” and “NotHeard”. Recall that the message “NotUnderstood” indicates that the
list of utterances returned from the recognizer could not be matched with any of the possible
student utterances, and thus the student’s response could not be understood. Recall also that the
message “NotHeard” indicates that the recognizer could not detect any speech in the audio
signal, which usually means there is a problem with the student’s microphone. A state is created
by inputting the answer choice or error message into the textbox. Note that although the student
will complete this exercise by speaking, it is not necessary to speak to demonstrate student
actions. One can simply type what the student is expected to speak. The new state will then
appear in the behavior recorder diagram and become selected. To add another state for one of
the other answer values, one must reselect the root of the behavior graph and then type another
value into the textbox, which became blank again when the root was reselected. After states
have been added for each of the options, the behavior graph can be annotated as described
previously to mark certain paths, such as the one for “Give me a table”, as incorrect, and to add
feedback and hints along other paths. The resulting behavior recorder graph is shown in
Diagram 2. The exercise is now ready to be used by students. Diagram 3 shows a student’s
correct response, and Diagram 4 shows an incorrect response.

Diagram 2

 9

Diagram 3

Diagram 4

 10

6 Other Example Exercises

 In addition to the simple example exercise given above, there are also two additional
example exercises available online[9]. The first is named “Second Sight” and the second is
named “You Are Here”. The first exercise requires the learner to speak sentences that are in the
passive voice. This exercise uses a textbox for the user response, and automatically loads new
problems when the user completes one. Diagram 5 shows a correct response, Diagram 6 shows
feedback given for an incorrect response, and Diagram 7 shows feedback for the “NotHeard”
message.

Diagram 5

 11

Diagram 6

Diagram 7

 12

The second exercise requires the user to navigate a hiker through a map, focusing on
prepositions. It uses a new type of widget for user input, and also automatically progresses
through subparts of the problem. Diagram 8 shows the interface after a series of correct
responses, and Diagram 9 shows feedback for a hint request.

Diagram 8

Diagram 9

 13

All four diagrams also show examples of more complicated behavior recorder graphs

than that of the simple example described.

7 Conclusion

 The utilities described in this report were designed to make it simpler and easier to create
speech-enabled tutors in the context of the Cognitive Tutor Authoring Tools. The reader has
been walked through the creation of a simple speech-enabled tutor exercise and has been
introduced to more complicated examples. The utilities described here are freely available
online at [9].

8 References

[1] Koedinger, K. R., Aleven, V., & Heffernan, N. (2003). Toward a rapid development

environment for Cognitive Tutors. In U. Hoppe, F. Verdejo, & J. Kay (Eds.), Artificial
Intelligence in Education, Proc. of AI-ED 2003, 455-457.

[2] Koedinger, K., Aleven, V., Heffernan, N., McLaren, B. M., and Hockenberry, M. (2004).

Opening the Door to Non-Programmers: Authoring Intelligent Tutor Behavior by
Demonstration. In the Proceedings of the Seventh International Conference on Intelligent
Tutoring Systems (ITS-2004).

[3] Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive

tutors: Lessons learned. The Journal of the Learning Sciences, 4 (2), 167-207.

[4] Corbett, A.T. & Anderson, J.R. (1995). Knowledge tracing: Modeling the acquisition of

procedural knowledge. User modeling and user-adapted interaction, 4, 253-278.

[5] Huang, X., Alleva, F., Hon, H.-W., Hwang, M.-Y., Lee, K.-F. & Rosenfeld, R. (1992).

The SPHINX-II speech recognition system: an overview, Computer Speech and
Language, 7(2), 137-148.

[6] Sphinx Project Page: http://www.speech.cs.cmu.edu/sphinx/

[7] Sphinx Knowledge Base Tools: http://www.speech.cs.cmu.edu/tools/

[8] CMU Pronouncing Dictionary: http://www.speech.cs.cmu.edu/cgi-bin/cmudict/

[9] Sphinx2-CTAT Connection Utilities: http://www.cs.cmu.edu/~jonbrown/Sphinx2-CTAT/

