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Abstract

What is an ideal edge map? Can one construct a probabilistic, generative model of images
of contours that is tractable? Motivated by these questions, we define a prior model for
ideal edge maps by assuming that they are generated by Markov processes via an indicator
function. In this theoretical paper we analyze this curve indicator random field model both
in the single curve and multiple curve cases. In particular, we derive exact, usable expressions
for this generative model’s moment generating functional as well as all of its joint cumulants.
We show that this prior is non-Gaussian, and we outline how it can be combined with
an observation model. The resulting filter requires the solution of two partial differential

equations.



1 Introduction

Probabilistic models in vision fall roughly into two camps: one-dimensional and two-dimensional.
Contour models supporting curve detection fall into the first class, while texture and segmen-
tation models fall into the second. Someone seeking generative models for vision immediately
realizes that these two classes are not equivalent: images are two-dimensional, and therefore
require two-dimensional generative models. In this paper we study a generative model for
curve images that explicitly provides a link between these two dimensionalities.

Previous work with one-dimensional models in vision was applied to contour detection.
The earliest work was by Montanari[19], where the objective was to find a single contour in
noise. To exploit the sequential structure of the problem, dynamic programming was used to
solve for the optimal curve; later, Martelli studied similar problems with heuristic search [18].
Although these early models were not explicitly probabilistic, they motivated recent work
on the tracking of roads in satellite images [12] that was. The Bayesian framework provided
tools that enabled Yuille and Couglan to perform an asymptotic performance analysis [25].
Cox et al constructed a contour tracking algorithm that combined Kalman filtering with
the multiple hypothesis generation of heuristic search [7]. Unfortunately, the latter model
requires low noise, while the other models depend upon user input of a contour endpoint
and the contour length, and work only for a single contour. None of these works provides a
generative model of contour images.

The generative nature of two-dimensional probabilistic models in vision has supported a
wide variety of tasks. Gaussian random fields have been applied to image restoration [15],
to texture modeling [6], and, via principle components analysis, to face recognition [23].
Markov random fields have also been applied to texture modeling [8], segmentation [13],
image restoration [5], and even contour modeling [17]. Difficulty with parameter estimation
and phase transitions, coupled with observations of sample images of these field models
motivated a more empirical approach, such as the Minimax Entropy framework for capturing
the observed statistics of a variety of filter outputs from natural images [26]. The key
blessing of these models is also their difficulty. Being very general they offer the promise of a

comprehensive probabilistic account of images; however, computational complexity increases



dramatically when that generality is actually exploited, e.g., as neighborhood sizes increase
in Markov random fields or unless joint filter statistics are ignored in the Minimax Entropy
framework. Nonetheless, compelling images can be generated from these models, particularly
of textures.

Here we focus on contour modeling, and so we in effect study only one class of filters:
(ideal) local edge or line operators at positions (z,y) and directions #. This simplification
allows us to explicitly consider their interactions; in particular, we consider all the joint
statistics, of all orders k, of a random field of ideal edges in (z,y,6). Evolution seems
to have exploited such interactions: witness the surge of activity in studying “horizontal”
connections among simple cells in the primary visual cortex of primates and contextual effects
beyond the classical receptive field [16]. More recently, we have measured edges correlations
in natural images [2], demonstrating the importance of joint filter statistics.

Our object of study is an ideal field of local edge/line operator responses, a field generated
by a random number of independent, randomly long, smooth curves. The novelty in this
conception is that we map the set of contours (each merely a list of points) to a field, and
to do this we employ an indicator function (Def. 1). The resulting (random) field is then
directly comparable to the local edge/line operator responses. This construction is related to
the line processes often used to separate regions in Markov random fields [13], although we
do not pursue that connection here. We now consider our modeling assumptions in greater
detail.

Markov processes are ideally suited to capture the local property of smoothness: for exam-
ple, Mumford, and later Williams and co-workers, imagined a particle at R, = (X;,Y;, 0;) €
R? x S = {(z,y,0)} whose direction ©; is slightly perturbed at each time instant ¢ before
taking its next step forward. Mathematically, Mumford’s Markov process has the stochastic

differential equation:

d—X =sin O, d—Y
dt

= = 1
7 cos O, dO = adW, (1)

where o bounds the direction perturbations and W is standard Brownian motion (on the
circle S). In our framework the Markov process R; models all image contours, some observed

without corruption of any sort (e.g., no noise nor blur), some poorly observed (e.g., medical



images), and some invisible (e.g., occluded contours, Mumford’s original application). In-
deed, the particular (stationary) Markov process contour model is unspecified in our model;
more exotic processes, which include scale [22] or curvature k [4], can be used as well. At
this level of generality, the Markov process R; takes on values (“states”) i in state space Z,
e.g. i = (r,y,0) ori = (x,y,0, k).

Several independence assumptions play a role in our model. First, as an approximation
we assert a memoryless property: whether the contour continues beyond a certain point does
not depend on how long it is already. This implies an exponential distribution over contour
length T'. Second, we observe that independence of contours is a reasonable approximation
for modeling elongated curves. Tree branch contours, for example, statistically interact
primarily where they meet; due to the local process of growth, the individual branches
wander largely independently. Finally, the random number of contours is assumed to be
Poisson-distributed: in the related context of random point fields, this distribution is natural
where disjoint regions contain independent numbers of points. That such assumptions are
reasonable can be seen in Fig. 1.

A real benefit of creating generative models of image abstractions is that the simplifica-
tions hold the promise of yielding to analysis. By focusing our attention on contour images,
we obtain results much stronger than are possible for more general probabilistic frameworks.

Therefore, this is a theoretical paper, where we:

1. Define an exact model for random contour images—the “curve indicator random field” —
that is general enough to capture many notions of contour smoothness including ori-

entation and curvature good continuation;

2. Analytically compute its joint cumulants of all orders, and derive its moment generating

functional;
3. Provide a checkable convergence condition on the moment generating functional,

4. Show that the curve indicator random field is non-Gaussian and yet has a tractable

form; and



Figure 1: Observe the similarity of contours in natural images (top: “Lenna,” angiogram,
possible ice cracks on Jupiter moon Europa) to samples generated from the curve indicator
random field (CIRF) for Mumford’s Markov process [20] in (z,y,6) (bottom: various pa-
rameter settings of CIRF). Although these images (top) arise from distinct physical sources,
they all have contours, differing primarily in number, smoothness, and extent. The CIRF

acts as a prior for contour enhancement in our framework.

5. Show how to combine this curve indicator random field prior with a noise model to

define a nonlinear filter for contour enhancement.

The third result above is special in that it not only characterizes the domain of definition
of the model, but provides a signal processing-like “stability” condition that we can readily

verify. Accessible proofs are provided for all propositions.



2 The Curve Indicator Random Field

Given a Markov process for modeling individual contours as described in §1, we now define
a curve indicator random field (CIRF), which naturally captures the notion of an ideal
edge/line map. Roughly, this random field is non-zero-valued along the true contours, and
zero-valued elsewhere. The actually measured edge/line map is then viewed as an imperfect
CIRF, corrupted by noise, blur, etc. Because the CIRF is not standard, our presentation

will be self-contained.

2.1 Definitions

For generality, we shall define the curve indicator random field for any stationary continuous-
time Markov process R;,0 < ¢t < T taking values in a finite (or at most countable) set Z
of cardinality |Z|. As in §1, the random variable T is exponentially-distributed with mean
value A, and represents the length of the contour. To ensure finiteness of the expressions that
follow, we further assume A\ < co. Sites or states within Z will be denoted i and j. (Think
of 7 as a discrete approximation to the state space R = R? x S where a random process
modeling each contour (in position and direction) takes values.) Let 1{condition} denote
the (indicator) function that takes on value 1 if condition is true, and the value 0 otherwise.

With these notations we can define the curve indicator random field V' for a single curve as:
T
V— / 1R, =i}dt, VieT.
0

Observe that V; is the (random) amount of time that the Markov process spent in state i.
In particular, V; is zero unless the Markov process passed through site 7. In the context
of Brownian motion or other symmetric processes, V is variously known as the occupation
measure or the local time of R; [9, 10].

Generalizing to multiple curves, we pick a random number A and then choose N indepen-
dent copies RS), ceey Rg\//) of the Markov process R;, with independent lengths 77, ..., T,
each distributed as T". To define the multiple curve CIRF, we take the superposition of the
single-curve CIRFs V), ... V) for the N curves.



Definition 1. The curve indicator random field U is defined as:

N N Tn
U= Vi = Z/O 1{R"™ =i}dt,, Viel.
n=1 n=1

Thus U; is the total amount of time that all of the Markov processes spent in site i.
Again, observe that this definition satisfies our desiderata for an ideal edge/line map: (1)
non-zero value where the contours are, and (2) zero-value elsewhere. Observe that the curve
indicator random field really is a different object than the curves used to produce it. First,
the CIRF describes a random set of curves, each one of which is a Markov process. Second,
and more importantly, the CIRF is a stochastic function of space, a random field, whereas
each curve is a random function of time. This transformation from a set of random curves
to a random field makes the CIRF an idealization of local edge/line responses, and sets the
stage for contour enhancement where the probability distribution of U will become our prior

for inference. See Fig. 1 for some samples generated by the CIRF.

2.2 Statistics of the Curve Indicator Random Field

Probabilistic models in vision and pattern recognition have been specified in a number of
ways. For example, Markov random field models [13] are specified via clique potentials
and Gaussian models are specified via means and covariances. Here, instead of providing
the distribution of the curve indicator random field itself, we report its moment generating
functional, from which all moments are then computed.

Before doing so, we need to develop more Markov process theory. We first define the
inner product (a,b) := >, 7 a;b;. The generator of the Markov process R; is the |Z| x |Z|
matrix L = (l;;), and is the instantaneous rate of change of the probability transition matrix
P(t) = (pi;)(t) for R;. We assume that the Markov process is stationary, and so L does
not vary with time ¢. Following Mumford [20], Williams and co-workers [24, 22], we use a
discretization of the Markov process in position (z,y) and direction  described in §1, having

generator L:



To include the exponential distribution over lifetime (length) 7" of each particle, we construct
a killed Markov process with generator Q@ = L — A™'I. (Formally, we do this by adding a
single “death” state m to the discrete state space Z. When ¢ > T, the process enters M and
it cannot leave.) Slightly changing our notation, we shall now use R; to mean the killed
Markov process with generator (). The Green’s function matrix G = (g;;) of the Markov
process is the matrix [;°e%'dt = [° P(t)e~"/*dt, where P(t) = e*' (e* denotes the matrix
exponential of matrix A). The (7, j)-entry g;; in the Green’s function matrix represents the
expected amount of time that the Markov process R; spent in j (before death) given that
the process started in ¢. The following is a well-known connection between the generator ()

(a differential operator) and the Green’s operator G' (an integral operator):
Lemma 1. G = —Q'.

PROOF. We integrate from ¢ = 0 to ¢ = co the standard result that 4 e®" = Qe?": on the

left side, we get e?* |22 = —I; on the right, we get Q [~ €9 dt = QG. O

Although we are interested in the statistics of the general curve indicator random field U,
we first consider the simpler, single-curve case, which we studied earlier in discrete-time [3].
The first step (Prop. 1) is to derive all the moments of the single-curve CIRF V. Then we
shall summarize this result as a moment generating functional (Prop. 2). We use a creation
vector ¢ € RZl to act as a “probe” or “test function” function on V by taking an inner

product:

(c,V) = Zc / 1{R, = i}dt = / (Zc Jl{Rt:i}> dt = / c(Ry)dt, (2)

where c(i) = ¢;. In the following, we let o« := A™! to simplify expressions. We also introduce
a final weighting v(Rp_) on the state of the curve just before death; v can be used to
encourage the curve to end in certain states over others.! Let ;7 denote the expected value
of the random variable Z given that Ry = 7, and let E,Z denote the same expectation except
given that P{Ry = i} = ;- To reduce the clutter of many brackets we adopt the convention

that the expectation operator applies to all multiplied (functions of) random variables to its

!Following [11], we use the notation T— to represent the left limit approaching 7' from below, i.e.,

v(Rr_) = limy »r v(Ry).



right: e.g., Ef(X)g(Y) := E[f(X)g(Y)]. We now prove a formula for the moments of (¢, V),
a “probed” single-curve CIRF V.

Proposition 1. The k-th moment of (¢, V) with initial distribution p and final weighting
v=uv(i)=uv,i €L is:

E.(c, V)*v(Rr_) = ak!(u, (GC)EGr). (3)
PROOF. We first consider the case where p; = 9; ;, and then generalize. Recall the formula
for exponentially-distributed length T: P{T = ¢} = ae . Substituting this and (2) into

the left side of (3), we get:

Eie,VYu(Rr) = E ( /O : c(Rt)dt>k v(Ry_)

k

= o /0 T ( /0 tc(lﬁ:)dt') V(R))dt, (1)

where we have used the fact that:
[ eyt [ s

for piecewise continuous functions f. We further note that:

(/Otc(Rtf)dt’>k — /Ot"'/otc(Rtl)"'C(Rtk)dtl"'dtk

— kl// C(Rtl)"'C(Rtk)dtl"'dtk; (5)
0<ty <<ty <t

where the second line follows because there are k! orthants in the k-dimensional cube [0, ¢]*,
each having the same integral by relabeling the ¢;’s appropriately. Taking integrals iteratively
starting with respect to t1, the right side of (5) becomes by induction in k:

t pte ta
k'// / ¢(Ry,) - -~ c(Ry, )dty - - - diy.
0 0 0

The right side of (4) then becomes:

o0 t tr to
ak! e_at/ / / Z I]Di{Rtl:ila"':Rtk:ikaRt:j}



= ak! Z c(iy) - - - c(ip)v(j) [/OOO et

TLyeney tk,J
t tr t2
{/ / / Piiy (t1)Piy iy (t2 — 1)
0 0 0

: 'pik_l,ik (t tk l)plk _7( )dtldtQ dtk—l}dtk} 7 (6)

using the Markovianity and stationarity of R;. Recalling that the formula for the convolution

(f * o)t /f g(t - 7)d

we see that the expression in braces in (6) can be written as:

/ / D; i1 tl pzl,zz )dtl pzk ]( )dtk 1
t3
= / / pz iy pn,m t2)p12,13 (t3 )dtQ * D, ]( )dtk 1

= (Pijy * Diryio * * Pig_y ik *pzw)(t)

of two functions f and g is:

which is a k-fold convolution by induction in k. Now observe that the expression in brackets
n (6) is the Laplace transform £{h(t)}(«) with respect to ¢, evaluated at «a, of the expression
in braces, say h(t). Therefore by using the convolution rule of the Laplace transform & times,

the expression in brackets in (6) becomes:
LApii }(@) - Lepirin }(@) - -+ - L{piy_y i He) - LLpi, 5} ().
But as shown earlier we know that g;; = [~ e™ p; ;(¢)dt = L{p; ;}(ct), and so we can write:
Ei(c, V) v(Rro)

= ak! Z c(ir) = c(ix)V(J)Giir Girsin " * Ginris Jierj (7)
il:""ikzj

= ak'zgml (i1 {Zgn,w c(iz) [Zgzk LinC(k) (Zglkd )]}
= ak!Z(GC)m{Z(Go)m... }

Since for any random variable Z we have E,Z =), P{Ry = i}E[Z|Ry = i| = >, il Z, the

Y (GO, (Gr)s,

ik

= ak!((GC)FGY);.

result follows. O



We now compute the moment generating functional for the single-curve case using Prop. 1.
This is known as the Feynman-Kac formula [9]. First we define the Green’s function
matrix G(c) with spatially-varying “creation” c¢ as the Green’s function matrix for the
killed Markov process with extra killing —c, i.e., having generator Q(c) := @ + C, where
C = diag(ci,...,cz)). We use the term creation for ¢ because it behaves exactly opposite
to the decay or death term A~ in Q = L — A\~!'I. Using an argument similar to the proof
of Lemma 1, G(c) := —Q(c)™" = —(Q + C)~'. We provide an explicit condition for the
invertibility of () + C' later, in Prop. 3.

Proposition 2. For all ¢ € RZ! such that |c| is sufficiently small,
E, exp(e, V) (Rr_) = a(u, Gle)v).

PROOF. Using the power series representation of the exponential, we write:

E,exp(c, V)v [Euz_: k’ T )
= > Eu(e,V)'u(Rr ) /K = Za(u, (GC)Gw), (8)

using Prop. 1. Recalling the fact that > .-, A* = (I — A)~!, as long as [|A|| < 1, the right

hand side of (8) becomes:

ol [fj(GC)'“] Gv) = a(y (I - GC) '),
k=0

as long as (for some operator norm) ||GC|| < 1. Since C' = diag(cy, ..., cq) is diagonal,
the matrix GC is simply G with the i-th column weighted by ¢;. Therefore ||GC|| < 1
for |c| sufficiently small. The result follows because (I — GC)™ = (Q7'Q + Q'C)! =

-(Q+0) G O

Observe that to evaluate the Feynman-Kac formula, one must solve the linear system
(Q+ C)h+v =0 for h. This equation will become a key component in the filter of §4. The
proof of Prop. 2 suggests with the following condition for the convergence of the Feynman-

Kac formula first studied by Khas’'minskii [14].

10



Proposition 3. The moment generating functional of the (single-curve) curve indicator

random field V' converges if ||G|c| || < 1.

PROOF. Using the co-norm, we consider the convergence condition in the proof of Prop. 2:

1> ||GCllo = sup ) _ |(GC)s ;5| = sup(G|C|1); = sup(Glc|)s,

J

where 1 = (1,...,1) and using the facts that G has positive entries and C is diagonal. [

The Khas’'minskii condition is easy to check: one just takes the componentwise absolute
value of ¢ (which later will be an input), and then “blur” it with the Green’s operator G. If
any component of the result is greater than 1, the moment generating functional may not
converge. As we shall see in §4, this can be interpreted as a kind of stability condition as
well as constraining our generative model.

As the interpretation of the “final weighting” v above may seem mysterious, we now
restrict 4 and v to be finite measures satisfying the normalization constraint 1 = (u, Gv).

(If this equality is not satisfied, one need only divide by a suitable normalizing constant.)

Corollary 1. Suppose that the joint distribution over initial and final positions is P{Ry =
i, Rr_ = j} = pigi;vj. Then the moment generating functional of V, with this distribution

over nitial and final states, 1s:
Eexp(c,V) = (1, G(c)v). (9)

Although not studied here, it is interesting to consider the problem of finding those
measures p,v that induce a P{Ry, Rr_} with prescribed marginals over initial and final
states. Before we begin the proof of this corollary, we state a basic result that will also be

used later.

Lemma 2. If X and Z are random variables, and X is discrete (i.e., X can only take on

one of an at most countable number of values x ), then:

mezﬂ:%%gggl
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PROOF. We compute:
F[Z|X = 4] = /er{z € dz|X = 2} = /zIP{Z € dz, X = 2}/P{X = 2}
= /Zzﬂ{x' =2 P{Z €dz, X =2'}/JP{X = 2} = EZ1{X = 2} /P{X = z}.
w ]

PROOF OF COROLLARY 1. Observe that p;g; ;v; is indeed a distribution. We now compute

the result:

Eexp(c,V) = Y P{Ro=1i,Ryr_ = j}E[exp(c,V)|Ry =i, Ry_ = j]
(¥

= Z/Ligi,jylei[eXp(ca V)|Rr- = j]

i!j

= Z,u’igi,jl/jﬂ':i[exl)(ca V)1{Rr_ = j}|/P{Rr— = j},

6,

using Lemma 2. But using Prop. 2 we see that:
Pi{Rr- =j} = Eexp(0,V)1{Rr_ = j} = agi;,
and therefore:

Eexp(c,V) = a! Z piviEilexp(c, V) I{ Ry = j}]

1,J

= o 'E, [exp(c, V) (Z v I{Rr_ = J]’)]

= o 'E, [exp(e, V)V (Rr)].
The result follows after another application of Prop. 2 to the above expectation. O

The next corollary shows all of the (joint) moments of V. In our earlier work in discrete
time [3], instead of computing an expectation over (c, V))*, we in effect computed an expecta-
tion over (c), V) ---(c®), V), for arbitrary vectors ¢V, ..., c¢(*). In observing the connection
to the Feynman-Kac formula, the proofs were simplified and summarized succinctly in the
moment generating functional. In addition, the weighting over final states (the other end of

the contour) was included. Let perm, denote the set of permutations of the integers 1,..., k.

12



Corollary 2. If k > 1, the k-th (joint) moment of V at sites i1, ..., i is:

EVi ---Vi, = Zuiyj Z Giiay Biayiay * " Yiay,_yiay Jiayi- (10)

2,] aEpermy,
PROOF. Take partial derivatives of (9) with respect to ¢;,, ..., c;,. The only nonzero terms
come from differentiating an expression proportional to (7). O

3 Multiple curve moment generating functional

In order to model more than one curve in an image, we need a joint distribution over both the
number of curves and the curves (and the corresponding CIRFs) themselves. To make our
computations concrete, we adopt a Poisson distribution over the number N of curves, and
assume conditional independence of the curves given . To compute the moment generating
functional of this (multiple-curve) CIRF as a Poisson distribution over (single-curve) CIRFs,
we first consider the general case of Poisson “point” process given a distribution over each

point, where point will be interpreted as an entire single-curve CIRF.

3.1 The Poisson measure construction

We begin with a finite measure? P : F — R, over the measure space (2, F), where F is a
o-algebra. Intuitively, the finite measure P is the (unnormalized) distribution over “points”
w € €0, where in this paper w is a single-curve CIRF realization (i.e., a curve image) and €2 is
the set of single-curve CIRF realizations (i.e., all possible curve images). We shall now define
a probability distribution over random configurations w = (wi, ...,wy) € Con(Q2) := {Q° =
g, =0,0%2=0xQ,0%, ...}, where each w, is a curve in 2 and N is the random number
of curves. In our context, €2° is the 0-curve configuration, Q' is the one-curve configuration,
and so on. We now compute the Poisson point measure via its expectation EF on any
(measurable) function F' : Con(2) — R (clearly this defines a probability distribution for we

could take F' as an indicator over any (measurable) subset of Con(£2) to get its probability).

2 A finite measure can always be normalized to a probability distribution because P(f2) < co. In particular,

P(w) := P(w)/P(Q) is a (normalized) probability distribution over w.

13



Proposition 4. Suppose N is a Poisson deviate with mean P(Y). Further suppose that the
points wy, . ..,wy are (conditionally) independent and identically distributed with P(-)/P(2),
given N'=n. Then:

° eiP(Q)
EFi=> o [ Pl )Pl - Pldy). (11)
n=0

PROOF. We need only take a conditional expectation and recall the formula for the Poisson

distribution, as follows:

EF = E(E[F|N])
= [E(lEF(wl; ce 7(“)/\/))
- E (/QN F(wi,...,wx) (P(dw)/P(Q)) - - (P(dwy)/P (Q)))

= PO () [ b, )Pl - Plto)).

n!
n=0

The result follows. U

The above presentation of the Poisson point measure is based on Dynkin [9].

3.2 Application to the Curve Indicator Random Field

We now consider the joint distribution over many curves that we sought. Suppose there are A/
contours on average, and that x and v are finite measures on Z (vectors in RZ'), characterizing
the initial and final positions, respectively, of the Markov processes {Rg") :n=1,...,N}
As before, these measures satisfy the normalization constraint (4, Gv) = 1. For general-
purpose contour enhancement, we typically have no a-priori preference for the start and
end locations of each contour, and so we set these measures proportional to the constant
vector 1 = (1,...,1). One can show that by letting p; = |Z|7', v, = A™1,Vi € Z, the above
constraint is satisfied. We now state and prove the following key theoretical result of this

paper, which is most closely related to the work by Dynkin [9].

Proposition 5. The moment generating functional of the curve indicator random field U
18:

Eexp(c,U) = exp(p, N(G(c) — G)v).

14



PROOF. To take advantage of the Poisson point measure construction, we let w be a single-
curve CIRF for the killed Markov process R;,t € [0,7—), such that the finite measure
P = P(w) is the probability distribution for w but multiplied by the constant A/, i.e.,
P(Q) = N. Let F := exp(c,U) = exp Zﬁfzo(c, V) = Hﬁ’:o exp(c, V™), where V™ is a
function of w,. Applying (11) we obtain:

Eexp(c,U) = Z

() n'

_ Z _ ' ( /ﬂ exp(c,v<n>)P(dwn))
_ Pm)Z ,!H</expcv )P (dw1)>,

since V), ..., V(™) are identically distributed. But then the latter integral is N'E exp(c, V),

and so the above sum becomes:

o0

Z (NE exp(c, V))n’ /n'! = exp(NEexp(c, V)).

n'=0

So using P(§2) = N (1, G(0)v) and Prop. 1, we conclude:
Eexp(c, U) = exp(N (i, G(c)v) — N (1, Gv)).
U

While this result may seem abstract, it is actually very useful. First observe that how
similar in form it is to the single-curve case. More importantly, with Prop. 5 we can compute
the higher-order cumulants [21] of U (recall that the moments define the cumulants and vice

versa):

Corollary 3. If k > 1, the k-th (joint) cumulant of the curve indicator random field U at
Sttes i1, ..., 0 18:
cum{Us,, ..., U} = N Z BiVj D Giiay Giaying " Ging_yiar Jiay i (12)
a€permy,
PROOF. Since the cumulant generating functional of U, which is the natural logarithm of
the moment generating functional of U, differs from the moment generating functional of V'

by an additive constant, we use (10) with no further work. O

15



The cumulant formula has a simple interpretation. First recall that the Green’s function
gi; is the expected amount of time spent by R, in state j given that it started in <. For any
ordering of the k£ points we take the product of the g;;’s for the successive points in order
(the first and last factors deal with the initial and final points). Since the contour could have
passed through the points in any order, all must be considered.

We can rephrase Cor. 3 to show the mean and covariance of the CIRF [2]. Let G* denote
the transpose of G.

Corollary 4. Suppose that u; = |Z|7',v; = X1, Vi € Z. The mean of the curve indica-
tor random field U is EU; = NMZI| Vi € Z. The covariance matriz of U is covU =
NAZI7H(G + G¥).

Several “columns” of the covariance matrix for the curvature process are illustrated in
Fig. 2, by taking its impulse response for several positions, directions and curvatures.

Note that by the cumulants of U of order greater than two are generally not zero, which
shows that the curve indicator random field is non-Gaussian. Despite that, its moment

generating functional has a tractable form that we shall directly exploit next.

4 Minimum Mean Square Error Filtering

Instead of the unknown random field U, what we actually observe is a random field M of
(edge or line) measurements. Given a realization m of M, we seek to find that approximation

@ of U that minimizes the mean square error (MMSE):
@ := argmin E,,|ju — U||?,

where [, the denotes taking an expectation conditioned on the measurement realization m.

It is well-known that the posterior mean is the MMSE estimate:
u=LE,U,

but in many interesting, non-Gaussian, cases this is extremely difficult to compute. In
our context, however, we are fortunate to be able to make use of the moment generating

functional to simplify computations.
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0 : 0° 45° 90° 135°

Figure 2: Impulse response of the covariance matrix (Cor. 4) for the curve indicator random
field for Mumford’s Markov process in (z,y,6). Impulse is located at image center, with
direction 0°, then Gaussian blurred with radius 1.0. Parameters are o = 1/8, A = 200, N =
10. (Top) Stack of images, arranged left to right, each for a different direction. (Bottom)
Sum over 6 of stack above, producing single image in (z,y). Observe the elongation of the

response along the horizontal direction, capturing the smoothness and length of the contours.

Before developing our MMSE estimator, we must define our likelihood function p(M|U).
First let H; be the binary random variable taking the value 1 if one of the contours passed
through (or “hit”) site i, and 0 otherwise, and so H is a binary random field on Z. In this pa-
per we consider conditionally independent, local likelihoods: p(M|H) = p(M|H;) - - - p(Mz)|H 7).
Following [12, 25], we consider two distributions over measurements at site i: po, (M;) :=
p(Mi|H; = 1) and po(M;) := p(M;| H; = 0). It follows [25] that Inp(M|H) = 3=, H; In 2=
Now let 7 be the average amount of time that the Markov process spends in a site, given that

the process hit the site, and observe that U;/7 and H; are equal on average. This suggests

that we replace H with U/ above to generate a likelihood in U:

pon(Mi)
poff(Mi) )

Inp(M|U) ~ ZciUi = (c,U), where ¢; = ¢;(M;) = 77" In
As shown in [1], for uniform initial and final weightings p and v the posterior mean in this
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case becomes:

(2

B~ - (Eexp(e, U)(e) = b (13)

where f = (fi,..., fiz]) is the solution to the forward equation:

@Q+C)f+y=0

and b = (b, ..., by) is the solution to the backward equation:
(@ +C)+v=0,

where 7 is a constant. Note that these equation can be viewed as partial differential equa-
tions, if we return from the discrete state space Z to a continuum, such as R? x S.

Observe that two nonlinearities arise in this posterior mean. First, we are taking the
product of the forward and backward solutions.® Second, although both the forward and
backward equations are linear, notice that the input ¢ does not enter via the usual forcing
term on the right hand side. Rather, the input arises as a modification along the diagonal
of the linear operator; for example, f = (I — GC)™'Gy = > ,(GC)*¥GY, since the Green’s
operator G = —@Q~!. Because this sum has terms polynomial in C for all orders k, we have
a (nonlinear) Volterra filter.

To illustrate how this filter works, we again return to the (x,y, #)-space of positions and
directions where Mumford’s Markov process (1) takes values. An ideal contour might be the
vertical line (with local direction 90°) shown at the top Fig. 3, depicted as a stack of images
with increasing direction, from left to right. Gaussian noise was added added (SNR=7.96)
and, for numerical reasons outside the scope of this paper, the result was Gaussian blurred
with a radius of 1., producing the image stack (the measurement field M) in the middle.
The goal was to restore the noisy stack to the original using (13), setting ¢ proportional to
M. The constant of proportionality was the largest satisfying the convergence constraint of
Prop. 3; larger constants can give erratic results and so Prop. 3 provides a very practical
guideline. Parameters were ¢ = .1, A = 100, ' = 1. The result (bottom) shows the that
the noise has mostly been removed and the contour was enhanced. Also observe the faint

streakiness having the same orientation of each f-slice in the stack: filtering is mostly in

3This is analogous to the source/sink product in the stochastic completion field [24].
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Figure 3: Contour filtering via the CIRF via (13).

straight lines, as suggested by the covariance impulse response in Fig. 2. More elaborate

computations on medical images will be presented in [1].

5 Conclusion

The purpose of this paper was to present an exact, generative model for image contours,
called the curve indicator random field, and to derive its joint statistics. The analysis was
successful in providing an explicit formula for all cumulants and a simple expression for the
moment generating functional, even though the model is non-Gaussian. We also presented
a filter that exploits the model for enhancing oriented edge maps. Curiously, the moment
generating functional result requires that a convergence condition be satisfied, a condition

which can be explicitly checked to ensure the “stability” of our filter.

19



Acknowledgements

We would like to thank Patrick Huggins for carefully reading the initial manuscript and he
and Athinodoros Georghiades for the proof of Lemma 1. We also thank Steven Haker for

stimulating discussions. Financial support was provided by AFOSR.

References

[1] J. August. The Curve Indicator Random Field. PhD thesis, Yale University, 2001.

[2] J. August and S. W. Zucker. The curve indicator random field: curve organization
via edge correlation. In K. Boyer and S. Sarkar, editors, Perceptual Organization for

Artificial Vision Systems, pages 265-288. Kluwer Academic, Boston, 2000.

[3] J. August and S. W. Zucker. The moments of the curve indicator random field. In
Proceedings of the 2000 Conference on Information Sciences and Systems, volume 1,

pages WP5-19-WP5-24,, Princeton, NJ, March 2000.

[4] J. August and S. W. Zucker. A markov process using curvature for filtering curve images.

In Energy Minimization Methods for Computer Vision and Pattern Recognition, 2001.

[5] J. Besag. On the statistical analysis of dirty pictures. J. R. Statist. Soc. B, 48(3):259-
302, 1986.

[6] R. Chellapa. Two-dimensional discrete gaussian markov random field models for image

processing. In Progress in Pattern Recognition, pages 79-112.

[7] I. J. Cox, J. M. Rehg, and S. Hingorani. A Bayesian Multiple-Hypothesis Approach to
Edge Grouping and Contour Segmentation. International Journal of Computer Vision,

11:5-24, 1993.

[8] G. C. Cross and A. K. Jain. Markov random field texture models. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 5(1):25-39, 1983.

[9] E. B. Dynkin. Markov processes as a tool in field theory. Journal of Functional Analysis,
50:167-187, 1983.

20



[10] E. B. Dynkin. Gaussian and non-gaussian fields associated with markov processes.

Journal of Functional Analysis, 55:344-376, 1984.

[11] P. J. Fitzsimmons and J. Pitman. Kac’s moment formula and the feynman-kac formula
for additive functionals of a markov process. Stochastic Processes and their Applications,

79:117-134, 1999.

[12] D. Geman and B. Jedynak. An active testing model for tracking roads in satellite
images. IEEFE Transactions on Pattern Analysis and Machine Intelligence, 18(1):1-14,
1996.

[13] S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the bayesian
restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence,

6(6):721-741, 1984.

[14] R. Z. Khas'minskii. On positive solutions of the equation uu+vu. Theory of Probability
and Its Applications, 4(3):309-318, 1959.

[15] R. L. Lagendijk and J. Biemond. [Iterative Identification and Restoration of Images.
Kluwer, Boston, 1991.

[16] V. A. F. Lamme. The neurophysiology of figure-ground segregation in primary visual

cortex. Journal of Neuroscience, 15(2):1605-1615, 1995.

[17] J. L. Marroquin. A markovian random field of piecewise straight lines. Biological

Cybernetics, 61:457-465, 1989.

[18] A. Martelli. An application of heuristic search methods to edge and contour detection.

Comm. of the ACM, 19(2):73-83, 1976.

[19] U. Montanari. On the optimum dection of curves in noisy pictures. Comm. ACM,

14:335-345, 1971.

[20] D. Mumford. Algebraic Geometry and Its Applications, chapter Elastica and Computer
Vision, pages 491-506. Springer-Verlag, 1994.

21



[21] C. L. Nikias and A. P. Petropulu. Higher-Order Spectra Analysis: A Nonlinear Signal
Processing Framework. Prentice Hall, Englewood Cliffs, NJ, 1993.

[22] K. Thornber and L. Williams. Analytic solution of stochastic completion fields. Biolog-
ical Cybernetics, 75:141-151, 1996.

[23] M. Turk and A. Pentland. Eigenfaces for recognition. J. Cognitive Neuroscience,

3(1):71-96, 1991.

[24] L. Williams and D. Jacobs. Stochastic completion fields: A neural model of illusory
contour shape and salience. Neural Computation, 9(4):837-858, 1997.

[25] A. L. Yuille and J. M. Coughlan. Fundamental bounds of bayesian inference: Order
parameters and phase transitions for road tracking. IEEFE Transactions on Pattern

Analysis and Machine Intelligence, 22(2):160-173, 2000.

[26] S. C. Zhu and D. Mumford. Prior learning and gibbs reaction-diffusion. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 19(11), Nov. 1997.

22



