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1. Introduction

While there has been abundant research on statistical machine translation (SMT) to
and from “morphologically complex™ languages such as Arabic, Czech, or Turkish
(Lee 2004; Neilen amd Ney 2004; De Gispert et al. 2005; Goldwater and
McClosky 2005; Yang and Kirchhoff 2006; Dyer 2007; Avramidis and Koehn
2008; Bojar and Haji¢ 2008; Toutanova et al. 2008; Fraser 2009; Ramanathan et al.
2009; Virpioja et al. 2010; Yeniterzi and Oflazer 2010; Clifton and Sarkar 2011;
Nakov and Ng 2011; Bahdanau et al. 2013; Chahuneau et al. 2013; among others),
and more recently, neural machine translation (NMT) (Kalchbrenner and Blunsom
2013; Botha and Blunsom 2014; Sutskever et al. 2014; Ling et al. 2015; Chung et
al. 2016; Costa-Jussa and Fonollosa 2016; Lee et al. 2016; Luong and Manning
2016; Vylomova et al. 2016; Nguyen and Chiang 2017), polysynthetic languages,
such as those in the Inuit language family, have been overlooked. The complex
morphology of such languages has been a barrier to research in computational
methodologies for these types of languages.

The term “polysynthesis” comes from Peter Stephen DuPonceau, who coined the
term in 1819 to describe the structural characteristics of languages in the Americas,
and it further became part of Edward Sapir’s classic linguistic typology distinctions
(Mithun 2009). Polysynthetic languages show a high degree of synthesis, more so
than other synthetic languages, in that single words in a polysynthetic language can
express what is usually expressed in full clauses in other languages. Not only are
these languages highly inflected, but they show a high degree of incorporation as
well (Mithun 2009). The nature of polysynthetic languages to pack abundant
semantic and grammatical information into single words means that data sets for
these languages are inherently extremely sparse. In addition, while many processes
of word formation seen in polysynthetic languages are also seen in other languages,
such as agglutination as in Bantu languages, compounding as in German, or
derivation as in English, polysynthetic languages, such as the Inuit languages, often
show all of these processes, in addition to fusion and incorporation, acting at the
same time and to a greater extent. It is for these reasons that polysynthetic languages
are a challenging type of language to work with computationally using typical
word-based analysis methods.

Here, we focus on Inuktitut, a polysynthetic language spoken in Canada and one of
the official languages of the territory of Nunavut, used in all its governmental and
educational documentation. While not largely commercially interesting, its use in
official documentation gives rise to adequate data for experimentation, and this,
along with the current electronic needs of speakers of this language, makes it a
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worthwhile candidate for natural language processing (NLP) research. An ample
data set has been prepared from parallel English—Inuktitut legislative proceedings,
the Nunavut Hansard (NH) (Martin et al. 2003), comprising approximately 340K
parallel sentences. Additionally, the National Research Council (NRC) of Canada
has developed a morphological analyzer for Inuktitut, the Uqailaut analyzer (Farley
2009), which should prove valuable in this line of research, even if the analyzer
does not analyze all the word types from the experimental corpus (Nicholson et al.
2012; Micher 2018Db).

The research questions we address in this proposal are the following:

1) Can we improve the performance of the “Uqailaut” morphological analyzer
(Farley 2009), building on the previous research work (Micher 2017),
making use of a variety of neural network approaches?

2) Can we improve over a baseline SMT English—Inuktitut system by using
alternate subword units with a neural network architecture, and can we
determine what subword unit yields the most improvement?

3) Can apipelined English—Inuktitut translation system, using deep morpheme
translation and a deep-to-surface, sequence-to-sequence model outperform
the best subword system determined while researching Question no. 2?

4) Can we make use of hierarchical structures over morphemes in a novel
approach to improve over the best subword system determined while
researching Question no. 2?

The organization of this proposal is the following: first, we discuss the Inuktitut
language, highlighting its polysynthetic typology, word formation, grammatical
complexity, morphophonemics, spelling and dialect variation; second, we take a
look at how this complexity presents challenges for machine translation; third, we
overview the literature to date, including other researchers’ previous works on
Inuktitut language processing and related languages, and my specific work; fourth,
we formulate research questions and propose experiments to examine those
questions, including discussion of relevant background research for these ideas; and
finally, we propose a timeline for completing the work.

Approved for public release; distribution is unlimited.
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2. Inuktitut and NLP

2.1 A Sampling of Inuktitut Structure, Revealing the Complexity
of Words

In this section, we look in detail at the structure of Inuktitut words, the abundance
of grammatical variation, and the challenges that a less-than-fully standardized
language presents with respect to dialect and spelling variation in order to
understand the extent of the difficulty in NLP for this language.

2.1.1 Polysynthesis

As described in the introduction, polysynthetic languages have long words that can
contain what typically make up a full clause in other, analytic languages. Inuit
languages, specifically, have been used to demonstrate this aspect of polysynthetic
word formation. The following is an example of a sentence in Inuktitut,
Qanniqlaunngikkalaugtuglu aninngittunga, consisting of two words, and we break
those words down into their component morphemes, providing an English gloss for
the words:

Qanniqlaunngikkalauqtuqlu
qanniqg-lak-ug-nngit-galauq-tug-lu
snow-a_little-frequently-NOT-although-3.IND.S-and
“And even though it’s not snowing a great deal”

aninngittunga
ani-nngit-junga

go out-NOT-1.IND.S
“I’'m not going out”

In this example, two Inuktitut words express what is expressed by two complete
clauses in English. The first Inuktitut word shows the way in which many
morphemes representing a variety of grammatical and semantic notions (quantity
“a_little”, frequency “frequently”, negation, and concession) as well as
grammatical inflection (third-person indicative singular) can be added onto a root
(ganiq, “snow”) in addition to a clitic (lu, ““and”). The second word shows the same,
but to a lesser degree. From this example, we can glean the basic structure of
Inuktitut words, which is shown in the following: a word consists of a root,
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followed by zero or more “lexical postbases””, followed by a inflexional suffix,
followed by an optional clitic (Dorais 1990, pp. 223, 231):

Root + Lexical Postbase* + Inflectional Suffix + (Clitic).
Four types of roots are attested in Inuktitut: object bases (nouns), event bases

(verbs), localizer bases (demonstratives), and subsidiary bases (uninflected, largely
interjections) (Dorais 1990, pp. 227-229). Here we present an example of each:

illu- “house” object base
taku- “see” event base

av- “direction away”  localizer base
aiguuq “eh there!” subsidiary base

Lexical postbases come in a variety of flavors: those that are derivational, which
may change the basic part of speech of what they are attached to (root or stem);
those that are semantic or grammatical, adding adverbial, negation, tense, and other
modifying qualities to the root or stem they attach to; those that are considered
“light verbs”, which allow noun incorporation; and those that are adjectival, being
incorporated into nouns they are attached to. Next, we see two examples that show
each of these lexical postbase types (Mallon 2000):

umiarjualiurvingmi ilinniarviksiuqtunga

umiag-juaqg-liuq -vik -mi ilinniag-vik -siuq  -junga
boat -big -make-place where-LOC.sg learn -place where-look.for-IND.1.sg
“in the shipyard” “I'm looking for a school”

In the first example, “umiaq”, boat, a nominal root morpheme, is followed by the
adjectival postbase “juaq”, big, creating the noun complex a big boat. This, in turn,
is turned into a verb, using the light verb postbase “liuq”, make, creating the verbal
complex make a big boat. To this is added the derivational postbase “vik”,
place-where, creating a nominal complex place where a big boat is made (i.e.,
shipyard). Finally, the “mi” locative grammatical ending is added to indicate the
location, in the place where a big boat is made (i.e., in the shipyard). In the second
example, the verbal root “ilinniaq”, learn, is modified by the lexical postbase “vik”,
place-where, yielding place where learning happens (i.e., school). Then, the light
verb derivational postbase “siuq”, look for, is added, creating the verbal complex
look for a school. To this is added the grammatical ending “junga”, first-person
singular, yielding /'m looking for a school.

"Dorais (1990) refers to these morphemes as lexical postbases. In essence, they are largely derivational
morphemes; however, a significant number of them express grammatical functions and their usage is quite
productive.
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Localizer bases are used to form demonstratives, of which there is a small,
closed-class set. Demonstratives in Inuktitut have greater semantic granularity than
they do in English. While English has a two-way distinction, “this” versus “that”,
“here” versus “there”, Inuktitut distinguishes the following (Pirurvik Center 2017):

29 ¢ 29 ¢

1) four locations with respect to the speaker: “here”, “over there”, “up there”,

and “down there”
2) specificity: either a specific location or a general location
3) directionality: no direction (neutral), “to”, “from”, and “through”
4) whether the location has been mentioned already

Demonstratives are built from bases and suffixes, with an optional prefix.
Demonstrative bases express #1 and #2 together, demonstrative suffixes express
#3, and the optional prefix expresses #4." The following is the summary pattern for
demonstratives, followed by Table 1, which lists the possible morphemes for each
slot, followed by examples:

(TA) + Localizer base + Suffix.

Table 1 Demonstrative morphemes in Inuktitut

TITA Localizer_base Suffix
location/specificity directionality
uv- “right here” specific -ani neutral

ma- “around here” general

- ik- “over there” specific -unga “toward”
general av- “over there” general
ta- pik- “up there” specific -anngat “from”
previously mentioned pa- “up there” general

kan- “down there” specific -unna “through”

un- “down there” general

The following are examples:

uvani “right here”
maunga “toward around here”

"Dorais (2010) specifies that this prefix for the Nunavik dialect denotes difficulty of perception or relation with
someone or something other than the speaker.
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ikanngat “from over there (specific)”
pikunna “through up there (specific)”
tapaunga “toward up there (general, already mentioned)”

Additionally, a further complication arises, which departs from the basic word
formation pattern of root + lexical postbase + suffix: words marked with certain
inflectional suffixes can, in turn, take additional lexical postbases, which denote
location or movement in space (Dorais 1990, p. 230). Two examples here show this
phenomenon. In the first, the noun “illu” marked with the locative suffix “mi” takes
the lexical postbase “it”, which turns it into a verbal stem to receive the verbal
inflectional suffix “junga”. In the second, the noun “illu” marked with the vialis
suffix “kkut” takes the lexical postbase “uq”, which turns it into a verbal stem to
receive the verbal inflectional suffix “junga”:

illumiitunga illukuugtunga

illu -mi -it -junga illu -kkut -uq -junga
house-LOC.sg-location_in-IND.1.sg house-VIA.sg-movement through-IND.1.sg
“I am (located) in the house” “I am going through the house”

In sum, Inuktitut words are composed of strings of many morphemes,
demonstrating holophrasis (i.e., the ability of an entire clause to be expressed as a
single word). Lexical postbases can be added recursively, creating longer and
longer words. Some lexical postbases can also be added to grammatically inflected
words, and there is a small set of optional clitics.

In the next section, we look at some of the variety of grammatical inflection in
Inuktitut as we continue to examine the complexities of this language.

2.1.2 Abundance of Grammatical Suffixes

Inflectional morphology in Inuktitut is used to express a variety of abundant
grammatical features (Dorais 1990, pp. 224-227). Among those features are 1) nine
verbal moods (declarative, indicative, interrogative, imperative, perfective,
imperfective, dubitative, perfective appositional, and imperfective appositional);
2) two distinct sets of subject and subject-object markers, per mood; 3) four persons
(the fourth person serving to distinguish between third-person self and third-person
other); 4) three numbers (singular, dual, and plural); 5) eight cases on nouns (basic,
relative, modalis, allative, ablative, locative, simulative, and translative®); and 5)
noun possessors (with number and person variations). In addition, demonstratives
show a greater variety of dimensions than most languages, including location,

"Verbal mood and noun case names are taken from Dorais (2010). For usage explanation, which is beyond the
scope of this work, see Dorais (2010).
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directionality, specificity, and previous mention. Next, we highlight a selection of
these grammatical features and show how they are expressed via grammatical
inflection in the language.

2.1.2.1 Noun Inflection

Grammatical suffixes for nouns mark person and number of possessor and number
and case of the thing possessed. A zero-marked grammatical suffix on nouns
conveys a basic case singular noun, with no possessor. What follows is a part of
the noun paradigm, with a singular noun, “illu”, house, possessed by three persons
in the singular and inflected in all cases (Dorais 1988), where dashes indicate
morpheme boundaries:

illu: house

sg. sg.1sg sg.2sg sg.3sg

bas: & illu illu-ga illu-it illu-nga
rel: -up illu-up illu-ma illu-vit illu-ngata
mod: -mik illu-mik illu-nnik  illu-ngnik  illu-nganik
all: -mut illu-mut illu-nnut illu-ngnut  illu-nganut
abl: -mit illu-mit illu-nnit illu-ngnit  illu-nganit
loc: -mi illu-mi illu-nni illu-ngni illu-ngani
tra: -kkut illu-kkut illu-kkut illu-kkut illu-ngagut
sim: -tut illu-tut illu-ttut illu-ktut illu-ngatut

Note that in many suffixes, the individual meanings expressed (case, number, and
possessor) cannot be segmented further. These suffixes demonstrate morphological
fusion, which is not uncommon in morphologically complex languages. Fusion of
grammatical elements inside of suffixes leads to greater data sparsity in surface
forms.

2.1.2.2 Verb Inflection

Verbs inflect for subject agreement on intransitive verbs, and subject and object
agreement on transitive verbs (Dorais 1990, pp. 224-225). There are separate sets
of markers for each of the nine moods. In Tables 2 and 3, we see one paradigm,
demonstrating the indicative mood person-number markers. As in the previous
example, dashes denote morpheme boundaries.
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Table 2 Subject markers with verb “taku”, 7o see (intransitive, indicative)

Singular Dual Plural
Ist subject taku-junga taku-juguk taku-jugut
2nd subject taku-jutit taku-jusik taku-jusi
3rd subject taku-juq taku-juuk taku-jut

Note that “takujunga” is I see; “takujusik™ is you (two) see; and “takujut” is they
(3+) see.

Table 3 Subject and object markers with verb “taku”, o see (transitive, indicative)

1st singular object 2nd singular object 3rd singular object

Ist singular subject -2 taku-jagit taku-jara
2nd singular subject taku-jarma -- taku-jait
3rd subject taku-jaanga taku-jaatit taku-janga

2The double dash here indicates that there is no marker that conveys a reflexive meaning, / see myself, you
see yourself. However, for the third person, a separate morpheme exists for reflexives (called the “fourth”
person).

Note that “takujagit” is I see you singular; “takujarma” is you singular, see me; and
“takujait” is you singular, see him/her/it.

As can be seen, verb inflection also demonstrates fusional characteristics, which
further adds to the data sparsity problem.

These examples show only part of the full paradigm for nouns and verbs in
Inuktitut. Counting all the grammatical endings for nouns and verbs appearing in
the NH corpus, as analyzed by the Uqailaut analyzer, we get an idea of the true
scope of the problem: there are 302 noun endings and 922 verb endings (see
Appendices A and B for a full listing). The overall effect of such abundant
grammatical inflection on the challenge of NLP for this language is evident.
However, the problem is even greater when we consider morphophonemics, which
we review in the next section.

2.1.3 Morphophonemics

In addition to the abundance of morphological suffixes that Inuktitut roots can take
on, the morphophonemics of Inuktitut are quite complex. Each morpheme in
Inuktitut dictates the possible sound changes that can occur to its left and/or to itself.
These changes are not phonologically conditioned on their environments, but rather
conditioned on the individual morphemes themselves. Not only does this add to the
data sparsity problem, but it creates challenges for morphological analysis, which
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we examine in the research questions of this proposal. In this work, we refer to
these the underlying morpheme representations as “deep” morphemes, as opposed
to the “surface” morphemes, which are the realizations of these deep morphemes.
The example that follows demonstrates some of the typical morphophonemic
alternations that can occur in an Inuktitut word, using the word
“mivviliarumalauqturuuq”, he said he wanted to go to the landing strip:

Romanized Inuktitut word  mivviliarumalauqturuuq

Surface segmentation miv -vi -lia -ruma -lauq -tu -ruuq
Deep forms mik vik liagq juma lauq juq guuq
Gloss land place go to want PAST IND3.s he says

We proceed from the end to the beginning to explain the morphophonemic rules,
since these rules generally affect the current and previous morphemes. For a list of
phonemes in Inuktitut, see Appendix D. The morpheme “guuq” is an uvular
alternator”, which means the “g” can be realized as different uvular consonants
depending on what precedes it. So “guuq” changes to “ruuq” and it also deletes the
preceding consonant “q” of “juq”. The morpheme “juq” is a consonant alternator,
which means it shows an alternation in its first consonant, which appears as “t”
after a consonant, and “j” otherwise. The morpheme “lauq” is neutral after a vowel,
so there is no change. The morpheme “juma” is like “guuq”, a uvular alternator,
and it deletes. So “juma” becomes “ruma,” and the “q” of the preceding morpheme
is deleted. Note, however, how this alternation differs from that found with “guuq”,
because the underlying initial phoneme is different. The morpheme “liaq” is a
deleter, so the preceding “vik” becomes “vi”. Finally, “vik” is a voicer, which
causes the preceding “k” to assimilate completely, so “mik” becomes “miv”

(Mallon 2000).7

Of the words that were analyzed in the NH corpus by the Uqailaut analyzer, using
the first analysis of each, 7,722 surface morphemes are attested, for 2,888 deep
morphemes, with the average number of surface realizations per deep morpheme at
3.39, with a maximum of 77 surface forms for one deep form. See Appendix C for
more details. Morphophonemics in Inuktitut is a major point of language structure
that any NLP application must address, and in this proposal, we suggest ways of
doing just that.

"The names of the various morphophonological processes are those used in Mallon (2000) and are not meant
to be general terms.

fMallon (2000) lists this morpheme as “mit”; however, the Uqailaut dictionary has “mik/1”, to land or alight
after flight, so it appears the Mallon (2000) example contains an error.
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2.1.4 Dialect Differences/Spelling Variation

The fourth aspect of Inuktitut that contributes to the challenge of processing it with
a computer is the abundance of spelling variation seen in the electronically
available texts. Three aspects of spelling variation must be taken into account. First,
Inuktitut, like all languages, can be divided into a number of different dialects.
Dorais (1990, p. 189) lists 10: Uummarmiutun, Siglitun, Inuinnaqtun, Natsilik,
Kivallirmiutun, Aivilik, North Baffin, South Baffin, Arctic Quebec, and Laborador.
The primary distinction between these dialects is phonological, which is reflected
in spelling. See Dorais (1990) for a discussion of dialect variation.

Second, a notable error on the part of the designers of the Romanized transcription
system has produced a confusion between r’s and q’s. It is best summarized in a
quote by Mallon (2000):
It's a long story, but I'll shorten it. Back in 1976, at the ICI standardization
conference, because of my belief that it was a good idea to mirror the Assimilation

of Manner in the orthography, it was decided to use q for the first consonant in
voiceless clusters, and r for the first consonant in voiced and nasal clusters.

That was a mistake. That particular distinction does not come natural to Inuit
writers, (possibly because of the non-phonemic status of [N].) Public signs,
newspaper articles, government publications, children's literature produced by
the Department of Education, all are littered with qs where there should be rs,
and rs where there should be gs.

Kativik did the right thing in switching to the use of rs medially, with qs left for
word initial and word final. When things settle down, maybe Nunavut will make
that change. It won't affect the keyboard or the fonts, but it will reduce spelling
errors among the otherwise literate by about 30%.

Finally, an inspection of the word types that cannot be analyzed by the Uqailaut
analyzer reveals that transcribers and translators do not adhere to a single standard
of spelling. As an example, the root for “hamlet”, borrowed from English, appears
in a variety of spelling variations in the NH data set. The unique ID from the
Uqailaut root dictionary is “Haammalat/In”, mapped to the surface form
“Haammalat”. However, in the data set, surface forms abound:

Haamalaujunut “mm” has lost its gemination

Haamlaujunut “mm’” has lost its gemination, “a” deleted
Hamalakkunnit “aa” and “mm” have lost their gemination
Hammakkut “aa” has lost gemination, “lat” deleted
Hammalakkunnut “aa” has lost gemination

Hammalat “aa” has lost gemination

Hmlatni “aa” deleted, “a” deleted, “mm” lost gemination

In another example, in the following sentence, taken from the NH corpus, the root
corresponding to inmates appears with three different spellings, ‘“anullak-”,
“annullak-", and “annulak-":
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Marruartir&unga taikunngalaursimajunga takujartur&unga
anullaksiangujunik kinguningagullu qaujilaqijjutiqalaursimajunga
annullaksiangujunik uvvalu takujaqtursimajalimaattiakka
annulaksiangujut
pulaariartaulaursimanninngittuviniuqattalaursimangmata.

“I went there twice to see the inmates and afterwards I realized
some of the inmates or all of the inmates that [ went to see never got
visitors”

Thus, in the corpora available for experimentation, spelling variation, either from
lack of standardization or various dialect differences, contributes significantly to
the overall sparsity of the data.

In sum, the combination of polysynthesis, morphophonemics, and spelling
variation makes Inuktitut a particularly challenging language for NLP. We hope to
develop methods to overcome these challenges and present an approach to
improving morphological analysis. In the next section, we examine data sparsity
and present one way to overcome it.

2.2 Data Sparsity of Polysynthetic Languages and the Challenge
It Presents for Statistical Machine Translation

2.2.1 Sparsity and Morphological Complexity

The polysynthetic nature of Inuktitut to string many morphemes together into single
words, on top of unpredictable morphophonological processes between
morphemes, the abundance of morphological grammatical expression, and spelling
variation make Inuktitut data very sparse: sparser than other “morphologically
complex” languages typically looked at in NLP research. To demonstrate this
phenomenon, in Fig. 1, we see type-token curves plotted for a multiparallel corpus
consisting of six languages with varying degrees of morphological complexity:
English, Chinese, German, Arabic, Turkish, and Korean (Cettolo et al. 2012). As
the morphological complexity of the language increases, the number of types in the
corpus increases, resulting in a steeper curve. Against these plots, we show a curve
for Inuktitut, taken from the NH corpus. While the data points between Inuktitut
and the other languages are not parallel, it is still possible to see how much sparser
the Inuktitut data are with respect to the other languages. At one million tokens,
Inuktitut has approximately 225K types, compared to English, with around 30K
types. Note the Chinese type-token curve is calculated over segmented text'.

"The “&” is used to represent a lateral fricative.
fIndeed, many languages are written as strings of characters without spaces, such as Chinese, Japanese, and
Thai. There is much research on segmentation these languages for NLP purposes. (See Yang et al. [2017] for
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Fig.1  Type-token curves for a variety of languages with differing morphological
complexity

2.2.2 Overcoming Sparsity Due to Morphological Complexity

We hypothesized that Inuktitut treated as strings of morphemes would be easier to
translate than full words, because it would make for a less sparse corpus. Supporting
this hypothesis, Koehn (2005) shows that languages with more complex
morphology are harder to translate into than those with less complex morphology.
Other researchers have had positive results when transforming morphologically
complex words into simpler forms, such as lemmas or morphemes (Lee 2004;
Popovi¢ and Ney 2004; Goldwater and McClosky 2005; Clifton and Sarkar 2011).

For comparison’s sake to the type-token curves presented earlier, we show, in
Fig. 2, the type-token curve for the NH corpus, morphologically analyzed to deep
morphemes when possible” (the “Morphed” line in the graph), compared to the
original Inuktitut words and English words. As expected, the curves for the
Morphed corpus and English are much closer together. Not all word types in the
corpus were analyzable, so the curve for Inuktitut is still steeper than the one for
English; however, we’ve made a huge leap toward having similar corpus sparsity
between the two languages. In Section 3, we present results from experiments

a discussion of the current neural work on Chinese segmentation.) Inuktitut and other polysynthetic languages
maintain word boundaries as spaces, but the author hypothesized that SMT would improve if the Inuktitut
words were broken into smaller units.

*The Uqailaut morphological analyzer was able to process 70% of the types from the NH corpus and 30% of
the types remained unprocessed due to various problems.
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treating Inuktitut as strings of morphemes (Micher 2018a) to test the hypothesis
that Inuktitut words broken into morphemes would be easier to translate to and from
English.

Type-Token Curves
250,000
Inuktitut
200,000
(%)
$ 150,000
o
= 100,000
50,000
0 Morphed
FI:OOOOOOOOOOOOOO
NS 40N N O O MO <
AN AN <IN ONDNOOO O
English
Tokens (K)

Fig.2  Type-token curves for Inuktitut full words, morphed words, and English

2.3 Related Work on NLP of Inuktitut and Other Inuit Languages

We now turn to looking at related work in NLP for Inuktitut and other Inuit
languages in order to position the proposed work within this wider research area.

2.3.1 Inuktitut Natural Language Processing

To date, a small set of literature has been identified that addresses Inuktitut
processing or English—Inuktitut machine translation. For the task of alignment of
Inuktitut and English parallel text, Martin et al. (2003) describe the creation of the
NH data set, detailing the procedures followed to align it at the sentence level. In
the context of the Association for Computational Linguistics shared task on
alignment, Schafer and Drabek (2005) describe their techniques for bi-text word
alignment, making use of subword units and transliteration. Langlais et al. (2005)
also report on the alignment task from the same workshop. They present two
approaches. The first treats English and Inuktitut as tokens and uses a sentence
aligner to align the words. The second makes use of associations between English
words and Inuktitut subword units. For the area of Inuktitut morphological analysis,
Johnson and Martin (2003) describe an unsupervised technique for splitting
Inuktitut words into morphemes by identifying merged hubs in a finite-state
automaton that represents the entire vocabulary under question. However, they
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report poor performance due to the difficulty of identifying word-internal hubs.
Farley (2009) developed a morphological analyzer for Inuktitut, which makes use
of a finite-state transducer and hand-crafted rules. Nicholson et al. (2012) present
an evaluation of the Farley’s analyzer and report coverage of the NH corpus similar
to what I have found.

For machine translation between English and Inuktitut (either direction), other than
the work from Micher (2018a) discussed later, one paper was found: Mengistu et
al. (2012)" proposed a concept-based, hidden Markov model machine translation
methodology to translate health-care domain English to Inuktitut and reported an
average of 93.26% meaning accuracy on back-translated text. However, at the time
of this writing and to the best of our knowledge, there have been no published works
specifically looking at SMT or NMT to and from Inuktitut, with the exception of
the work detailed in the next section.

2.3.2 Inuit and Yupik Natural Language Processing

Even for related languages, there is not much published work. We mention what
we have found to position the current proposed work against the wider background
of work on Inuit and Yupik. Related languages are part of the Inuit language dialect
continuum and include Kalaallisut, spoken in Greenland, and Ifiupiaq, spoken in
Alaska. Yupik, spoken in Alaska and Russia, is part of the greater Eskimo-Aleut
language family and is closely related to Inuit languages. Oqaasileriffik, the
national language secretariat of Greenland, has developed a spell checker and word
lookup tools (Oqaaserpassualeriffik 2018a, 2018b) for Kalaallisut. Plans are
underway to develop NMT technology for the Kalaallisut—-Danish language pair
(McGwin 2017). For Iiupiaq, Bills et at. (2010) have developed a finite-state
morphological analyzer. For Yupik, Schwarz and Chen (2017) are developing a
web-based tool for St. Lawrence Island/Central Siberian Yupik, which includes
tools for converting from Latin spellings to a fully transparent representation, a
spell checker, and transliteration tools to convert from Latin to Cyrillic, and vice
versa.

While these languages show a variety of interest for NLP applications, none have
any published research on machine translation, although Kalaallisut is expected to
have machine translation technology in the near future. As best as can be
determined at this point, the work here, along with that in Micher (2017, 2018a),

"The paper was awarded “best paper” according to http://utlinguistics.blogspot.com/ 2012/05/english-inuktitut-
automatic-speech-to.html, but the link to the GRAND 2012 conference has been disabled, so the paper is
currently not accessible on the web.
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constitutes a unique line of research in this area that is sorely lacking in the NLP
research community.

3. Previous Work on Inuktitut Processing

Two preliminary sets of experiments leading to the development of research
questions in this proposal have been performed (Micher 2018a). Both sets of
experiments were ultimately concerned with whether Inuktitut could be treated as
sequences of morphemes for SMT purposes. The results of the first set of
experiments were used in the preparation of the data for the second set of
experiments.

The first set of experiments attempted to improve an incomplete morphological
analyzer for Inuktitut by using output from the analyzer. The resulting output was
then incorporated into an analyzed corpus and SMT was tested using this corpus.
Next, we highlight the findings from these sets of experiments.

3.1 Segmental Recurrent Neural Network Applied to
Morphological Segmentation

Micher (2017) discusses the development and effectiveness of a segmental
recurrent neural network (SRNN) morphological analyzer for Inuktitut. To test the
effectiveness of SMT while treating Inuktitut as strings of morphemes, a method
was developed to increase the coverage of the Ugailaut morphological analyzer
(Farley 2009). Out of the box, this analyzer was able to analyze approximately 70%
of the Inuktitut types from the NH corpus. A method was developed to investigate
whether the output of this analyzer could be used to learn a model to process the
remaining 30% of types. An SRNN (Kong et al. 2015) was trained with 25K word
types having a single analysis from the analyzer. Two experimental conditions were
tested: the first treated the morphological analysis as sequences of coarse-grained
labels (16 total), reflecting basic morpheme types; the second treated the analysis
as sequences of fine-grained labels (1,691 total), reflecting the full analysis of each
morpheme as returned by the analyzer. The following is an example demonstrating
the two levels of granularity:

Word: gJauqujaujunu
Coarse-grained analysis: ROOT:3 LEX:2 LEX:2 LEX:1 LEX:2 GRAM:2
Fine-grained analysis: qau 1v:3 qu 2vv:2jaq lvn:2u Inv:1 juq lvn:2

nut_tn-dat-p:2
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The output should be interpreted as a series of labels and the number of characters
that those labels cover. So, for example, the first output can be combined with the
input to produce a series of segments plus tags as in the following:

qaw/ROOT qu/LEX ja/LEX w/LEX ju/LEX nu/GRAM

One thousand items each were held out from the training data for the dev and test
sets for the coarse-grained label experiment. However, because the SRNN program
did not allow for unseen labels when running in test mode, selection of the dev and
test sets for the fine-grained label experiment was not random and proceeded as
follows. First, under the assumption that the greatest variation of labels would occur
in the roots of the word types (the “open-class” morphemes vs. the “closed-class”
lexical post-base, grammatical endings, and clitics), the selection proceeded based
on root labels. Of the 1,198 unique root labels, 898 occurred in 2 or more word
types. For example, the root label “qauq 1v” occurs in six types: “qaurniq”,
“gqaunimautilik”, “qauqujaujut”, “qauqujaulluni”, “qauqujaujunu”, and “qauvitaq”.
At least one of each of these types per root label was placed in the dev/test pool,
with the remaining types containing that root label being assigned to the train set.
To select which of the two or more types to put into each set, the longest (in terms
of number of morphemes in the type) was selected for the dev/test pool, with the
remaining going into the train set. Then, the dev/test pool was split into two sets of

449 items each.

Initial results of the experiments are presented in Table 4. Precision, recall, and
f-measure were computed over exact matches between gold standard sets and
predicted sets. Scores for both segmentation and tagging were computed. The
segmentation score is straightforward (i.e., are the right pieces, the segment at the
right locations in the word, created?). Tagging includes segmentation (i.e., is the
tag as well as the segmentation correct?). For the sake of conciseness, the average
of the dev and test set scores are displayed.”

Table 4 SRNN morpheme sequence segmentation and labeling results

Model seg/tag Precision Recall f-measure
Coarse-grained seg 0.9545 0.9492 0.9526
tag 0.9533 0.9477 0.9496
Fine-grained seg 0.8466 0.8549 0.8507
tag 0.7225 0.7296 0.7260

"Whereas, these scores are reported separately in Micher (2017).
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As would be expected, the model producing a coarse-grained output performs better
than the model producing a fine-grained output. The model only has to decide
between 16 labels in the former versus 1,691 labels in the latter. Ideally, we would
like a greater accuracy on simple segmentation when we are trying to identify not
only where morpheme breaks are, but what information those morpheme pieces
should convey.

A quick error analysis revealed that most of the mislabeling errors occurred in the
root morphemes of words, which makes sense, because the set of root morphemes
can be likened to a set of “open-class” vocabulary, which has more variation,
whereas the remaining morphemes (suffixes) of words are ‘“closed-class”. To
attempt to filter out the randomness effect of trying to identify open-class root
morphemes, scores were calculated over the output of the fine-grained model
leaving out the roots. We refer to this as the “tails only” set. Table 5 displays these
results.

Table 5 Fine-grained roots absent in scoring (tails only)

Model seg/tag Precision Recall f-measure
Tails only seg 0.8699 0.8834 0.8519
tag 0.8050 0.8175 0.8112

As expected, these scores (suffixes only) are higher than those measured on the full
words (root + suffixes).

In a follow-on study, not yet published, in order to “even the playing field” between
the coarse-grained model and the fine-grained model, an UNK label was added to
the training data to allow the fine-grained model this choice and allow for random
selection of 1,000 dev and test items. Results are presented in Table 6, along with
the results from the previous experiments for comparison’s sake.

Table 6 SRNN morpheme sequence segmentation and labeling results with UNK scores for
comparison

Model No. of seg/tag Precision Recall f-measure
items

Coarse-grained 1,000 seg 0.9545 0.9492 0.9526
tag 0.9533 0.9477 0.9496

Fine-grained 449 seg 0.8466 0.8549 0.8507
tag 0.7225 0.7296 0.7260

Fine-grained 1,000 seg 0.9199 0.9187 0.9193
with UNK tag 0.8616 0.8604 0.8610
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As can be seen, when measuring accuracy on a comparable dev and test set (same
size across experiments) and allowing the model to identity unknown morphemes,
both the segmentation and tagging accuracy increase to where the segmentation
scores are above 90%. These scores are higher than the “tails only” scores as well.

While the task of “segmentation as morphological analysis” is not new, and results
on a variety of languages and methods are higher than those reported here, the task
of recovering morphological detail on top of segmentation remains a challenge,
especially for a language like Inuktitut, where the surface form segmentation can
differ greatly from the underlying representation that is being sought. Ultimately,
we want to be able to use labeled data and have the model output a list of possible
segmentations with morphological detail, and in the case of unknown morphemes,
be able to say, at a minimum, whether the morpheme is likely to be a noun or a verb
root. We treat this problem as a sequence learning problem similar to machine
translation, in which the “source language” is the surface form of the words and the
“target language” is a sequence of labels containing morphological information
(morpheme type, surface characters, grammatical information, etc.) and we discuss
possible experiments in Section 4.1.3 of this proposal.

3.2 Incorporating Morphological Analysis from SRNN to
Improve Machine Translation of Inuktitut

The second set of experiments (Micher 2018a) makes use of the output of the
SRNN model discussed previously. We experimented with SMT from Inuktitut to
English and English to Inuktitut, incorporating the results of the previously
discussed neural morphological analyzer, into the NH corpus for words that do not
have an analysis from the Uqailaut analyzer. We used the segmentations obtained
from the coarse-grained analyzer previously discussed, as these have the best scores
out of all of the conditions examined. We compared three conditions: 1) full
Inuktitut words; 2) segmented Inuktitut words for those words that the Uqailaut
analyzer provided an analysis for, choosing the first analysis provided when
multiple analyses are available; and 3) full segmentation, incorporating the
segmentation from the SRNN described previously for those words not having an
analysis. We ran the experiments over two separate divisions of the data into
training, dev, and test sets, insuring no overlap between train/test or train/dev sets,
and we computed statistical significance in each set according to the bootstrap
resampling method presented in Koehn (2004). We used the Moses toolkit (Koehn
et al. 2007) to create the models. We report Bilingual Evaluation Understudy Score
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(BLEU) scores (Papineni et al. 2002) for the full-word systems and m-BLEU"
scores (Luong et al. 2010) for the morpheme-based systems. Table 7 displays the
results.

Table 7 SMT of Inuktitut to and from English

Set direction

Model 1a 1b 2a 2b
ITU—-EN EN—IUIU—-ENEN—-IU
Full Inuktitut words 25.6 1418 22.74 12.54
Morphed Ugqailaut (70%) 29.43 20.09 28.34 18.39
+ nothing
Morphed Ugqailaut (70%) 30.35 19.61 29.85*% 18.56
+neural morph (30%)

Note: The asterisk denotes statistical significance at p <0.05.

Admittedly, the results presented in Table 7 are problematic. Upon first glance, it
appears that the morphologically analyzed (morphed) Inuktitut systems are all
better than the systems that translate full words. However, it should be noted that
the morphed scores are m-BLEU scores, whereas those over the full-word systems
are normal BLEU scores. To make up for this mismatch, we recalculated the m-
BLEU scores to yield BLEU scores by rejoining, wherever possible, strings of
morphemes back into full words. While these scores do indeed come out higher,
they are not shown to be significant, at either the p < 0.05 or p <0.1 levels. For set
1b, we get a BLEU score of 14.89 with a range of [13.46, 16.33] at 95% confidence
and [13.76, 16.11] at 90% confidence, and for set 2b, we get a BLEU score of 13.39,
with a range of [12.20, 14.59] at 95% and [12.34, 14.38] at 90%.

We do, however, get at least one significant result (at p < 0.05) when comparing
the gains from having more words morphologically analyzed. For set 2a, the 100%
morphed 29.85 (95% confidence interval of [28.63, 31.22]) is indeed significant
over the 28.34 score from the 70% morphed corpus. However we do not get the
same significance for set 1. Both sets 1 and 2 were randomly chosen from the full
corpus, avoiding any duplicates between train and test set, and tune and test sets.
This situation points to significant differences in the two sets of data. Indeed, we
built the second set precisely because we did not measure significance on the first
set and these results warrant further testing, by building additional sample sets, at a
minimum.

"Morpheme-BLEU scores, that is, BLEU scores measured over sequences of ordered morphemes, rather than
over full words.
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The results presented here point us in a few directions for additional work. First, to
note, the morphologically analyzed systems and scores reported here use surface
form morphemes, not deep morphemes. Recall each deep morpheme can map to
multiple surface morphemes (see Appendix C for details). We hypothesize that a
system translating deep morphemes will do better than a system translating surface
morphemes and we take up the question of whether Inuktitut can be translated as
deep morphemes and then converted to surface forms in Section 4.3 of this
proposal. Second, the subword units chosen for these experiments were morphemes
as determined by the Ugailaut morphological analyzer. In Section 4.2 of this
proposal, we look at improving these reported results by examining whether
alternate subword units can be used for translating to and from Inuktitut. Finally,
we propose a novel approach to working with Inuktitut subword units, which we
hypothesize will show additional improvements over these current reported results.
We take up this question in Section 4.4.

4. Research Questions and Proposed Experiments

In this section, we outline the various thesis questions and proposed experiments to
test them. The individual research areas are divided into four sections. The first
looks at improving the results of the morphological analysis presented earlier. The
second looks at improving machine translation into Inuktitut by using alternative
subword units. The third looks at whether a deep morpheme translation with
postprocessing to produce surface forms can outperform any of the previous
baselines. The fourth looks at whether there are any advantages for machine
translation purposes to considering strings of morphemes as having a hierarchical
structure, similar to the way individual words are governed by syntactic rules.

4.1 Improving Morphological Analysis

4.1.1 Research Question

Can we improve on the seg/tag task of morphological analysis previously
investigated in Micher (2017)?

4.1.2 Background

Morphological segmentation has dominated the research in the field of processing
of morphology. This area concerns itself with the task of breaking words into
smaller, morpheme-motivated units, without identification of any definitions for
those units, which we refer to in this report as segmentation. Many researchers have
examined this task with a variety of supervised, semi-supervised, and unsupervised
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approaches (Harris 1955; Harris 1970; Yarowsky and Wicentowski 2000;
Goldsmith 2001; Creutz and Lagus 2002, 2006; Kohonen et al. 2010; Narasimhan
et al. 2015; Wang et al. 2016; among others).

However, the research in Micher (2017) aimed to address the task of segmentation
plus analysis, improve on the coverage of an existing analyzer, and determine
which segments provide the desired analysis. We refer to this task as morphological
analysis since it reflects what is truly intended by the term analysis (i.e., a “detailed
examination of the elements or structure of something”).” We wish to know not
only where the breaks occur, but what grammatical information each piece
provides.

Some researchers have gone the route of trying to discover underlying morphemes,
but do not assign grammatical information labels to them. Kohonen et al. (2006)
mapped surface segments (allomorphs) to common morphemes (deep morphemes)
using character rewrite rules learned automatically for Finnish. They only deal with
roots, though, and no suffixes.

Bernhard (2007) examined whether surface forms can be labeled with simple
labels, stem/base, prefix, suffix, or linking element, to resolve cases of homography
rather than collapse allomorphs to common morphemes. Morphological inflexion
generation was examined by Faruqui et al. (2015), which models a mapping from
a base or underlying form plus additional parameters to a surface form. This,
however, is the opposite of what we are intending in this section, namely, mapping
a surface form to a deep representation.

In this section, we continue the investigation of the work in Micher (2017), detailing
several approaches.

4.1.3 Experiments

Experiments will take the following strategies and compare to the baseline model
from Micher (2017).

1) Experiment with variations of the parameters of the model: The model
parameters were held constant and were set relatively modestly in order to
carry out the proof of concept put forth in Micher (2017). We will refine the
choices available along the lines of hidden layer number, embeddings size,
and hidden layer size, and others not yet determined to find optimal
parameter settings.

* . .
From a Google search on “analysis definition”.
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2) Choose different model types: Micher (2017) made use of the segmental
recurrent neural network put forth in Kong et al. (2015). We will choose an
alternate model (to be determined) for comparison.

3) Make use of additional training data: The experiments in Micher (2017)
used only words having a single analysis. We will experiment with different
conditions that make use of the remaining training data. For example, one
condition would be to use a certain amount of training data from words
having two analyses, choosing only the first analysis. In this set of
experiments, we will attempt to determine how much multiple analyses can
help or hinder the baseline model.

4.2 Machine Translation by Subword Units

4.2.1 Research Question

Can we improve upon the machine translation research results by breaking Inuktitut
into subword units other than morphemes?

4.2.2 Background

Within SMT approaches, for translating to and from morphologically complex
languages, researchers have proposed treating words as subword units. Approaches
are numerous. Here, we highlight a few to show the variety of this research and its
foundation in the SMT line of research. Koehn and Knight (2003) split German
compounds and showed an improvement on German noun translation. Popovi¢ and
Ney (2004) preprocessed the source language into word stems and suffixes for
translation into English from Spanish, Catalan, and Serbian. Goldwater and
McClosky (2005) incorporated morphological analysis into machine translation for
Czech to English. Luong et al. (2010) took a hybrid morpheme-word representation
approach for English to Finnish. Clifton and Sarkar (2011) proposed a morpheme-
based translation combined with a postprocessing module for English to Finnish
translation. Vilar et al. (2007) made use of character translation for related
languages. Neubig et al. (2013) used many-to-many character alignments to capture
correspondences between substrings and report comparable results to word-based
translation for Finnish and Japanese to and from English. Tran et al. (2014) used
bilingual neural nets to predict word translations for morphologically rich target
languages, within an SMT system. As this body of research shows, judicious
splitting of full words into smaller units, in general, yields improvements in
statistical approaches to machine translation.
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Moving into the NMT research direction, we see significant gains for treatments of
words as subword units. Ling et al. (2015) used character long-short term memory
networks (LSTMs) (Hochreiter and Schmidhuber 1997) to compose character
embeddings into word embeddings and decode using additional LSTMs to generate
target words, character by character. They report improvements in English to
Portuguese and English to French language pairs. Sennrich et al. (2015) proposed
using byte pair encoding (BPE) to segment words into subword units and showed
improvement in machine translation on an English to German and English to
Russian task of up to 1.1 and 1.3 BLEU, respectively. Chung et al. (2016) showed
that, with the encoder working at the subword level, with subwords defined by the
BPE algorithm, character-level decoding performs better than subword-level
decoding. Lee et al. (2016) used character-level NMT in both encoding and
decoding and showed improvements on German to English and Czech to English,
and comparable performance on Finnish to English and Russian to English
language pairs.

By far, the approach with the most impact on the field has been the one using BPE
(Sennrich et al. 2015). BPE has been shown to be a representation of segmentation
that mitigates between words and characters, without recourse to linguistic
knowledge. We will follow this line of research, and investigate its application to
translating to and from Inuktitut. However, Lee et al. (2016) contrasted full
character translation using a convolutional neural network (CNN) with max pooling
and highway layers to the BPE approach. They reported improved scores over the
BPE baseline. As such, questions remain about the best architecture for each type
of approach.

From personal communication with researchers at the NRC of Canada, initial
experimentation with the NH corpus, and specifically, the train/test/dev splits used
in Micher (2018a) with the BPE algorithm preprocessing both the English and
Inuktitut sides of the corpus, in the English to Inuktitut direction, resulted in a
BLEU score of 30.04 + 1.77. This confirms the proposed approach of using BPE to
process Inuktitut. In this proposed research, we will flesh out these numbers
robustly and report significance over baselines.

Additionally, we hope to experiment with alternate subword units. Could a
modification to the BPE algorithm, allowing merges to be driven by some
linguistically significant factor rather than pure symbol frequency, outperform a
system using only the fundamental BPE splitting? The first step in trying to answer
this question will be to compare the morphed corpus to the BPE corpus in terms of
vocabulary and frequency to determine how they differ and to develop ideas about
how to alter the basic BPE algorithm in a more linguistic direction.
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4.2.3 Experiments

In this section, we propose several experimental conditions. For each condition, we
will choose an appropriate neural network architecture based on what other
researchers have proposed and experimented with for the subunit in question. We
will examine four subunit granularities:

1) Characters only: We will translate from English words to Inuktitut
characters, and English characters to Inuktitut characters to determine a
character approach baseline.

2) BPE: We will apply the BPE algorithm to Inuktitut and build English words
to Inuktitut BPE and English BPE to Inuktitut BPE systems.

3) Deep morpheme representation: We will build a system from English words
to Inuktitut deep morphemes, to compare to results reported in Micher
(2018a).

4) BPE enhanced with linguistic input. We will determine what, if any,
alterations of the BPE algorithm could lead to improvements over a BPE
baseline.

4.3 Deep Form Morpheme Translation with Conversion to
Surface Forms

4.3.1 Research Question

Can we outperform systems in Section 4.2 by using a deep form morpheme
translation with postprocessing to produce surface form words?

4.3.2 Background

As mentioned in Section 2.2, the type-token curve for Inuktitut as deep form
morphemes is shallower than one with Inuktitut as surface form morphemes, due
to the morphophonological variations of surface forms for each deep morpheme.
Furthermore, the experiments presented in Micher (2018a) made use of morphemes
as surface segmentations, rather than underlying, deep representations. So the
question arises: Can a deep form morpheme machine translation system outperform
a surface form morpheme machine translation system? The intuition here is if
words are represented by their underlying morpheme forms, the system has a
smaller vocabulary to choose from. However, the problem remains of how to
convert the deep form morphemes into surface form morphemes to glue back
together into full words, in the absence of an algorithm to do so. The question arises
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whether a postprocessor can be modeled that minimizes the errors that it would
create and result in a system that outperforms a pure surface form system.

In essence, we are producing a “surface form generation” system that aims to map
deep forms to surface forms. The important thing about surface form morphemes
in Inuktitut is that they are dependent on their context, due to Inuktitut’s
morphophonemic rules. Without a specific rule-based morphophonemic rule
application, can we learn a model from training examples? We believe this to be
true, and we are investigating ways to do this. Also, we are determining if the
existing Uqailaut morphological analyzer can perform a backwards analysis. If this
capability exists, we will use it in this section and compare the results to the
alternative method presented here.

Faruqui et al. (2015) showed that a character-level neural model can predict surface
forms from base forms + morphological inflection information. Here we investigate
how well such a technique works when no explicit morphological inflection
information is given, but rather, context is used. Context is expressed via hidden
states in a neural network architecture that takes context into consideration, for
example, a recurrent neural network, LSTM, bidirectional LSTM (BiLSTM), or
CNN.

4.3.3 Experiments

We propose to make use of various encoder-decoder architectures, which have
shown to be beneficial for machine translation in other languages, and we will
“translate” deep forms to surface forms. We will experiment with different
granularities of deep form and surface form representation to determine the best
approach. Furthermore, we will compare these results with those in Section 4.2.

The experimental conditions will be the following:
« Deep morphemes to surface morphemes
« Deep morphemes to surface characters
« Deep characters to surface morphemes
« Deep characters to surface characters
« Reverse analysis through existing analyzer (if capability exists)
« Deep morphemes to encoding surface morphophonemic rules

The morpheme to morpheme system can be treated as sequence prediction and we
will experiment with both appropriate sequence to sequence models (where the
number of input symbols is the same as the number of output symbols, such as a

Approved for public release; distribution is unlimited.

25



BiLSTM) and an encoder-decoder with attention model. For the remaining
experimental conditions, we will make use of the encoded-decoder with attention
architecture. We will vary the parameters of all models to determine their optimal
settings.

4.4 Translation Using Hierarchical Structure over Morphemes

4.4.1 Research Question

Can we make use of hierarchical grammatical information in the form of hierarchies
over morphemes, with implicit or explicit labels?

4.4.2 Background

In this section, we present the motivation for treating Inuktitut morphemes as if
they were words with syntactic constraints. Dorais (1990, pp. 229-231) describes
the lexical postbases of Inuktitut as being of two types: those that can extend an
“event” and those that can extend an “object”. He further uses the term “internal
syntax” to describe the rules that are applied when joining lexical postbases. From
this description one can argue that, at a minimum, there are constraints which limit
which types of lexical postbases can extend a root or stem. We can formulate these
constraints in the form of a Backus—Naur form (BNF) grammar to begin looking at
hierarchical structure over morphemes. Additionally, Compton and Pittman (2010)
argued that word formation in Inuit follows syntactic constraints, whereby DP and
CP phases” determine which morphemes can be combined to form words, implying
that there is an underlying syntactic structure which determines how morphemes
are put together. Furthermore, Compton (2013) presented compelling arguments
for word-internal XPs in Inuit.

Syntactic and hierarchical structure has been shown to improve phrase-based SMT
for some language pairs. Many approaches have been researched, from chart
parsing (Zollmann and Venugopal 2006), tree-to-string grammars (Yamada and
Knight 2001), synchronous grammars (Galley et al. 2004), tree-transducers (Graehl
et al. 2008), and synchronous tree adjoining grammars (DeNeefe and Knight 2009).
From a NMT perspective, adding syntactic information has also shown to be
beneficial, and this is one of the current trends in NMT research. Some of the
current, relevant work is listed here. Bastings et al. (2017) added syntax in the form
of graph convolutional networks, which incorporate dependency graph annotations
and showed an improvement over a baseline for English—-German and English—

"Phases are syntactic domains such as CP or vP (Chomsky, 2000).
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Czech language pairs. Sennrich and Haddow (2016) improve NMT for English to
German and English to Romanian language pairs by adding linguistic features to
the neural machinery. Eriguchi et al. (2016) used a tree-LSTM with head-driven
phrase structure grammar (HPSG) parsed English and showed improvements over
sequence to sequence NMT on English to Japanese translation and comparable
results compared to state-of-the-art SMT. Stahlberg et al. (2016) used trees derived
from hierarchical a phrase-based model (Chiang 2005, 2007) to improve NMT for
English to German and English to French language pairs. Aharoni and Goldberg
(2017) showed improvements in German—English NMT when translating into
linearized, lexicalized constituency trees.

The novel approach in this section is to treat morphemes as if they were words being
governed by syntactic rules, similar to Luong et al. (2013), but for the purpose of
machine translation. Our approach is largely linguistic-theory agnostic: We are not
concerned with determining the exact structures that govern word formation in
Inuit, or which linguistic theory explains the data. However, we are interested in
knowing whether any kind of hierarchical structure over morphemes can improve
machine translation. To this end, we will experiment with various tree-based NMT
systems, comparing to baseline systems established in previous sections, as well as
an SMT string-to-tree and tree-to-string system for EN—IU and IU—EN
respectively.

4.4.3 Experiments

One set of experiments will use semi-hand-crafted hierarchical structures over
morphemes, derived from the information provided by the Ugailaut and
experimental morphological analyzers. At least two levels of hierarchical structure
will be used. In the first, a simple structure, in which full words are made up of
morphemes and morpheme types are irrelevant as a baseline. The second (and any
additional treatments) will make use of morpheme types and we posit various
structures based on the Inuit word formation literature. The other set of experiments
will use hierarchical structures obtained from applying the method in Chiang
(2007), in which no explicit hierarchical structure is provided ahead of time, but the
system creates the hierarchical structure in a data-driven manner. The third
condition will make use of unsupervised induced grammars from deep morpheme
sequences along the lines of Schuler et al. (2010).
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5. Data Sets and Metrics

All experiments conducted to investigate the proposed research questions will make
use of the NH corpus described in the introduction. However, as we wish to provide
a more robust analysis of our questions, we will endeavor to obtain additional data
sets and use alternate metrics, wherever possible.

5.1 Additional Data

Additional data will be sought from two sources. The first will be additional NH
data. Many, many hundreds of lines of parallel text are available from the NH
website. When possible, data will be extracted from .pdf documents available there
and permission sought to use these data for research purposes, ideally obtaining
non-pdf electronic text versions. Collaborating researchers at the NRC have begun
the process of requesting these data and have agreed to make any of it available for
the current research work. The second source of data will be the Inuktitut Magazine,
an online multi-parallel publication, in English, French, romanized Inuktitut, and
Inuktitut written in Aboriginal syllabics. Topics in the magazine are broader than
legislative proceedings, and data from this source would provide a nice contrast to
the NH corpus data. The same NRC researchers are seeking out permission and
electronic texts of these data and have also agreed to share them for this research
work. As of this writing, contact has been made with the Nunavut Legislative
assembly and the additional NH data were delivered in January 2018 to
collaborators at the NRC.

5.2 Additional Test Set

Ideally, a test set that does not take away from training data and that has been
independently developed and vetted by native speakers makes for a stronger case
for making claims in a work of research of this type. However, this type of test set
is costly, requiring funding and many work-hours to produce. As such, we propose
a compromise. We will develop an independent test set from additional data sources
when they become available. The test set will consist of ground-truth,
morphologically analyzed Inuktitut sentences, with parallel English equivalents.
Following this, we are seeking to collaborate with the NRC researchers and the
Assistant Deputy Minister of Culture and Heritage in Igaluit, Nunavut, Mr
Stephane Cloutier, whereby we will provide machine-translation capabilities for
translation efforts in Nunavut in exchange for native-speaker judgments of both
morphological analysis and translation. If negotiations are successful, we will have
the means of vetting an independent test set.
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5.3 Alternate Metrics

We propose to use BLEU-4 scores and m-BLEU scores for all experiments. We
will use standard BLEU-4 scores when comparing full words to full words and
m-BLEU scores when comparing strings of subword units to strings of subword
units. Whenever possible, we will rejoin subword units to provide an accurate
comparison against full words. Additionally, if collaborations with Canadian
researchers provide the means to assess any of the experiments with human
judgments, we will make use of this resource and will report on those evaluations.

6. Conclusion

In conclusion, polysynthetic languages, especially Inuktitut, which is used in
official government documents in Canada’s Nunavut territory, have been
overlooked in NLP research. Because of the nature of polysynthetic languages to
pack abundant grammatical and lexical concepts into single words, data sets for
these languages are sparse and present a problem for typical current NLP
approaches. We present four areas of research leading to improved machine
translation for Inuktitut to English and English to Inuktitut: 1) we propose to
improve baseline morphological analysis of Inuktitut using current neural network
architectures and experimenting with new ones, 2) we propose to improve baseline
English to Inuktitut machine translation by using subword units, determining the
optimal units, 3) we will compare a pipelined machine-translation system using a
deep morpheme translation with conversion to surface morphemes to methods
developed in #2, and 4) we propose an approach to English to Inuktitut machine
translation that treats morphemes hierarchically and compare these results to the
other experimental conditions in the proposed research here.
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Appendix A. Noun Endings Attested in Nunavut Hansard Corpus
after Morphologically Analyzing with the Uqgailaut Analyzer
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Case Markers

Nom
Gen
Acc
Dat
Abl
Loc
Sim
Via

Sing

up
mik
mut
mit
mi
tut
kkut

Dual Plur
k it

k it
ngnik nik
ngnut nut
ngnit nit
ngni ni
ktut  titut
kkut tigut

Possessive Markers

Singular Possessed - 1st Possessor

Nom
Gen
Acc
Dat
Abl
Loc
Sim
Via

Sing
ga
ma
nnik
nnut
nnit
nni
ttut
kkut

Dual Plur
vuk  vut
nnuk tta

ttinnik ttinnik
ttinnut ttinnut
ttinnit ttinnit
ttinni  ttinni
ttitut  ttitut
ttigut ttigut

Singular Possessed - 2nd Possessor

Nom
Gen
Acc
Dat
Abl
Loc
Sim
Via

Sing
it
vit
nnik
nnut
nnit
nni
ttut
kkut

Dual Plur
tik si
ttik ssi

ttinnik ssinnik
ttinnut ssinnut
ttinnit ssinnit
ttinni  ssinni
ttiktut ssitut
ttikkut ssigut

Singular Possessed - 3rd Possessor

Nom
Gen
Acc
Dat
Abl
Loc
Sim
Via
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Sing
ni

mi
minik
minut
minit
mini
mitut
migut

Dual Plur
tik tik
mik mik
minnik minnik
minnut minnut
minnit minnit
minni minni
mittut mittut
mikkut mikkut



Singular Possessed - 4th Possessor
Sing  Dual Plur
Nom nga ngak  ngat
Gen ngata ngata ngata
Acc  nganik ngannik ngannik
Dat  nganut ngannut ngannut
Abl  nganit ngannit ngannit
Loc ngani nganni nganni
Sim  ngatut ngattut ngatitut
Via  ngagut ngatigut

Dual Possessed - 1st Possessor
Sing Dual Plur

Nom kka vut

Gen kka nnuk tta

Acc nnik ttinnik ttinnik

Dat nnut ttinnut ttinnut

Abl  nnit ttinnit ttinnit

Loc nni ttinni  ttinni

Sim  ttut ttitut  ttitut

Via  kkut ttigut ttigut

Dual Possessed - 2nd Possessor
Sing Dual Plur

Nom kkik ttik ssi

Gen kpik ttik  ssi

Acc nnik ttinnik ssinnik

Dat nnut ttinnut ssinnut

Abl nnit ttinnit ssinnit

Loc nni ttinni  ssinni

Sim ttut ttiktut ssitut

Via  kkut ttikkut ssigut

Dual Possessed - 3rd Possessor
Sing Dual Plur
Nom nni ktik ktik
Gen mmi mmik mmik
Acc  mminik mminnik mminnik
Dat mminut mminnutmminnut
Abl  mminit mminnit mminnit
Loc mmini mminni mminni
Sim mmittut mmittut
Via

Dual Possessed - 4th Possessor
Sing Dual Plur
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Nom ngik ngik ngik
Gen ngita  ngita  ngita
Acc nginnik nginnik nginnik
Dat  nginnut nginnut nginnut
Abl  nginnit nginnit nginnit
Loc nginni nginni nginni
Sim  ngittitut

Via  ngittigut ngittigut ngittigut

Plural Possessed - 1st Possessor
Sing Dual Plur

Nom kka wvuk wvut

Gen kka nnuk tta

Acc nnik ttinnik ttinnik

Dat nnut ttinnut ttinnut

Abl  nnit ttinnit ttinnit

Loc nni ttinni  ttinni

Sim ttut ttitut  ttitut

Via  kkut ttigut ttigut

Plural Possessed - 2nd Possessor
Sing Dual Plur

Nom tit tik si

Gen tit ttik Ssi

Acc nnik ttinnik ssinnik

Dat nnut ttinnut ssinnut

Abl nnit ttinnit ssinnit

Loc nni ttinni  ssinni

Sim ttut ttiktut ssitut

Via  ttigut ttikkut ssigut

Plural Possessed - 3rd Possessor
Sing Dual Plur
Nom ni tik tik
Gen mi mik mik
Acc  minik minnik minnik
Dat minut minnut minnut
Abl  minit minnit minnit
Loc mini minni minni
Sim  mititut
Via  mitigutmittigut mittigut

Plural Possessed - 4th Possessor
Sing  Dual Plur

Nom ngit ngik  ngit

Gen ngita ngita ngita
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Acc
Dat
Abl
Loc
Sim
Via

nginnik nginnik nginnik
nginnut nginnut nginnut
nginnit nginnit nginnit
nginni nginni nginni

ngititut ngititut ngititut
ngitigut ngitigut ngitigut
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Appendix B. Verb Endings Attested in Nunavut Hansard Corpus
after Morphologically Analyzing with the Uqgailaut Analyzer
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Subject Markers

Declarative Mood

Sing Dual Plur
Ist vunga vuguk vugut
2nd vutit vusik vusi
3rd vuq vuuk vut
Gerundive Mood
Sing Dual Plur
Ist junga juguk jugut
2nd jutit jusik jusi
3rd juq juuk jut
Interrogative Mood
Sing Dual Plur
Ist vungaa vinuk vitaa
2nd vit visik visii
3rd vaa vak vat
Imperative Mood
Sing Dual Plur
Ist langa luk ta
2nd git gissik gipsi
3rd li lik lit
Causative Mood
Sing Dual Plur
Ist gama gannuk gatta
2nd gavit gassik gassi
3rd gami gamik gamik
4th mat matik mata
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Conditional Mood

Sing Dual Plur
Ist guma gunnuk gutta
2nd guvit gussik gussi
3rd guni gunik gunik
4th pat patik pata
Dubitative Mood
Sing Dual Plur
Ist mangaarma  mangaannuk mangaatta
2nd mangaaqpit  mangaassik  mangaassi
3rd mangaarmi mangaarmik  mangaarmik
4th mangaat mangaatik mangaata
Frequentative Mood
Sing Dual Plur
Ist jaraangama  jaraangannuk  jaraangatta
2nd jaraangavit  jaraangassik jaraangassi
3rd jaraangami  jaraangamik jaraangamik
4th jaraangat jaraangata
Subject-Object Markers
Declarative Mood
1s 1d 1p 2s 2d 2p 3s 3d 3p
Is: vagit vassik vassi  vara vaakka  vakka
1d: vassik vassi vavuk  vaavuk  vavuk
Ip: vattigit  vassik vassi  vavut vaavut vavut
2s: varma  vattiguk  vattigut vait vaakkik  wvatit
2d: vasik vasik
2p: vattigut vasi vasi
3s:  vaanga vaatigut  vaatit vaasik vanga vangit
3d: vaanga vaatigut  vaatit vaatik vangak vangik
3p: vaanga vaatigut  vaatit vaasik vangat vangit
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Gerundive Mood

1s 1d 1p 2s 2d 2p 3s 3d 3p
Is: jagit jassik jassi  jara jaakka  jakka
1d: jassik jassi  javuk jaavuk  javuk
Ip: jattigit  jassik jassi  javut jaavut javut
2s: jarma  jattiguk  jattigut jait jaakkik  jatit
2d: jasik jasik
2p: jattiguk  jattigut jasi jasi
3s: jaanga jaatiguk  jaatigut  jaatit jaasik jaasi  janga jaangik  jangit
3d: jaanga jaatiguk  jaatigut  jaatit jaasi jangak jaangik  jangik
3p: jaanga jaatiguk  jaatigut  jaatit jaasik jaasi jangat  jaangik  jangit
Interrogative Mood
1s 1d 1p 2s 2d 2p 3s 3d 3p
Is: vagit  vassik vassi vigu vaakka vakka
1d: vassik  vassi
Ip: vitigit vassik vassi  vitigu vitigit
2s: vinga vittigut viuk  vigik vigit
2d: vittigut
2p: visinga vitigut visiuk visigit
3s:  vaanga vaatigut vaatit  vaatik vauk  vagik vagit
3d: vaanga vittigut  vaatit  vaatik vaak vittigit
3p: vaanga vaatigut  vaatit  vaatik vajjuk vagik vagit
Imperative Mood
1s 1d 1p 2s 2d 2p 3s 3d 3p
Is: lagit lassik lassi lagu  laakka lakka
1d: lassik  lassi lavuk lavuk
Ip: lassik  lassi lavut lavut
2s: nnga  tiguk tigut guk kkik kkit
2d: ttinga tiguk  tigut tikku  tikkik  tikkit
2p: singa  tiguk  tigut siuk sigit
3s:  linga litigut  litit  litik  lisi liuk  likkik  ligit
3d: linga litigut litit  litik  lisi likkik  likkit
3p: linga litigut  litit  litik  lisi likkik  ligit
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Causative Mood

1s 1d 1p 2s 2d 2p 3s 3d 3p

Is: maanga maatigut maatit gassik gassi magu magik magit

1d: gattigit gassik gassi gattigu gattigit

1p: gattigit gassik gassi  gattigu gattigit

2s: gavinga gattiguk  gattigut gaviuk gavigik  gavigit

2d: gattinga gattiguk  gattigut gattikit

2p: gattiguk  gattigut gassiuk

3s:  gaminga gamiuk  gamigik gamigit

3d: gaminga

3p: gaminga gamijjuk gamigik gamigit

Conditional Mood

1s 1d 1p 2s 2d 2p 3s 3d 3p

Is: paanga paatigut  paatit paatik gussi pagu pagik pagit

1d: gussik gussi  guttigu

Ip: gussik gussi  guttigu

2s: guvinga  guttiguk guttigut guviuk  guvigik guvigit

2d: guttiguk  guttigut

2p: guttiguk  guttigut gussiuk

3s:  guninga gunitigut guniuk gunigit

3d: guninga gunitigut

3p: guninga gunitigut gunijjuk gunigit

Dubitative Mood

1s 1d 1p 2s 2d 2p 3s 3d 3p

Is: mangaanga mangaatiguk mangaatigut mangaatit mangaatik mangaasi mangaagu mangaagik mangaagit
1d: mangaattigit mangaassik mangaassi ~ mangaattigu mangaattigik ~ mangaattigit
1p: mangaattigit mangaassik mangaassi ~ mangaattigu mangaattigik ~ mangaattigit
2s: mangaaqgpinga mangaattiguk  mangaattigut mangaagpiuk  mangaaqpigik mangaaqpigit
2d: mangaattiguk  mangaattigut
2p: mangaattiguk  mangaattigut mangaassiuk
3s:  mangaarminga mangaarmiuk mangaarmigit
3d: mangaarminga
3p: mangaarminga mangaarmigit
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Frequentative Mood

Is 1d 1p 2s 2d

3s

3d

3p

Is: jaraangakkit  jaraangassik
1d: jaraangassik
1p: jaraangassik
2s: jaraangattiguk  jaraangattigut
2d: jaraangattiguk  jaraangattigut

2p: jaraangattiguk  jaraangattigut

jaraangagu
jaraangattigu

jaraangattigu

jaraangakkit

jaraangavigit
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Appendix C. Number of Surface Morpheme Realizations per
Deep Morphemes
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Here we present the number of surface morphemes per deep morpheme attested in
the Nunavut Hansard (NH) corpus after morphological analysis with the Uqailaut
analyzer, counting only the first analysis if there are multiple analyses. The first
number is the number of realizations per deep morpheme, the second number is
frequency of those realization counts. The minimum is 1, the maximum is 77, with
the mode being 1 and the mean 3.395 and the median 4:

1: 1063 10: 39 19: 4 34: 1
2:484 11: 26 20: 4 37:1
3: 460 12: 24 21: 4 38:1
4: 283 13: 17 23: 1 43: 1
5: 144 14: 11 24:3 52:1
6: 97 15: 11 26: 1 77: 1
7:72 16: 2 27:1
8:71 17:5 28: 1
9:46 18: 7 31: 1

To give an example, we look at the deep morphemes from the word
“mivviliarumalauqturuuq” (presented earlier in this text). We see a variety of
spellings for each morpheme. Each morpheme is listed in its dictionary form,
followed by a comma-separated list of surface spellings, with the number of times
each spelling occurs:

mik/1v: mi:206, mig:2, mik:9, mil:1, min:21, ming: 1, mip:2, mit:220, miv:113

vik/3vn: pvi:i43, pvik:9, pvim:16, pvin:2, pving:1, pvit:1, vi:16083, vig:55,
vik:1388, vil:6, vim: 1482, vin:633, ving:955, vis:4, vit:120, vvi:2643, vvig:5,
vvik:297, vvil:3, vvim:228, vvin:105, vving:151, vvit:7

liag/2nv: ili:10, iliaq:1, lia:244, liaq:469, liar:312, liat:2, sia: 166, siaq:208, siar:92

juma/lvv: guma:2807, juma:9562, ruma:7511, suma:42, tuma:263

laug/1vv: lau:5350, lauq:12996, laur:6449, laut:10

jug/tv-ger-3s: juq:649, jur:6, tuq:3

guuqg/1q: guu:29, guuq:155, ruuq:10
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Appendix D. Phonemes of Inuktitut
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Here we present the phonemes of Inuktitut according to
(Table D-1).

Table D-1 Consonant phonemes of Inuktitut!

Mallon'

Place of articulation

Labial Alveolar Palatal Velar Uvular
Manner of Voiceless stops p t k q
articulation ..
fricatives s, 1
Voiced v 1 J g r
Nasal m n i) [N]

Alveolar fricative 1 is written as “&” in the Nunavut Hansard corpus.

Uvular nasal [N] is a phone, not a unique phoneme. It is an allophone of the uvular
/q/. It should be written as “r” but there is confusion among native speakers on when

€. TP
T

to write “r”” and when to write “q”.

! Mallon M. Inuktitut linguistics for technocrats. Ottawa (Canada): Inuktitut Computing; 2000

[accessed 2018]. http://www.inuktitutcomputing.ca/ Technocrats/ILFT.php.
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Appendix E. Inuktitut Syllabics
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Short Long Trans. Short Long Trans. |Short Long Trans Final Trans
A A i B B Ju 4 |4 | a " |h
A A |pi > |> |pu < < |pa < |p
n ||t D D |w c |C |ta ¢t

P 2 |k d |d |ku b b |ka [|= |k

B g J J lgu L L |ga ’ q

r F mi i ] mu L L |ma || m
a g |ni el O |nu o & |na = n

) v si A A su L L, sa 5 s
c e |l 5 S | c ¢ |la = I

S E S < & |ju > |F |ja 7]

& & | > | | € (€ |va «  y
noo A | A R 1 S |5 |ma s r
sp [P |qi ‘d |5d |qu s [sb  |ga % g
% |ngi % %l |ngu s, |*L |nga ||® ng
=M = |pngi ||™Y |*J |nngu [|[=L |=L |nnga || |nng
c c |k 2 S | C, ¢ |la = {
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List of Symbols, Abbreviations, and Acronyms

BiLSTM
BLEU
BPE
CNN
LSTM
NH
NLP
NMT
NRC
SMT
SRNN

bidirectional LSTM

Bilingual Evaluation Understudy Score
byte pair encoding

convolutional neural network
long-short term memory network
Nunavut Hansard

natural language processing

neural machine translation

National Research Council

statistical machine translation

segmental recurrent neural network
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1 DEFENSE TECHNICAL
(PDF) INFORMATION CTR
DTIC OCA

2 DIRARL
(PDF) IMAL HRA
RECORDS MGMT
RDRL DCL
TECH LIB

1 GOVT PRINTG OFC
(PDF) A MALHOTRA

9 ARL
(PDF) RDRL CII
J MICHER
S YOUNG
R HOBBS
C VOSS
S LAROCCA
C BONIAL
S TRATZ
M VANNI
RDRL CII
JKLAVANS

1 LANGUAGE TECHNOLOGIES INSTITUTE
(PDF) CARNEGIE MELLON UNIVERSITY
DR LORI LEVIN

1 DEPARTMENT OF LINGUISTICS
(PDF) UNIVERSITY OF ILLINOIS
DR LANE SCHWARTZ
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