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1. Introduction 

While there has been abundant research on statistical machine translation (SMT) to 
and from “morphologically complex” languages such as Arabic, Czech, or Turkish 
(Lee 2004; Neißen amd Ney 2004; De Gispert et al. 2005; Goldwater and 
McClosky 2005; Yang and Kirchhoff 2006; Dyer 2007; Avramidis and Koehn 
2008; Bojar and Hajič 2008; Toutanova et al. 2008; Fraser 2009; Ramanathan et al. 
2009; Virpioja et al. 2010; Yeniterzi and Oflazer 2010; Clifton and Sarkar 2011; 
Nakov and Ng 2011;  Bahdanau et al. 2013; Chahuneau et al. 2013; among others), 
and more recently, neural machine translation (NMT) (Kalchbrenner and Blunsom 
2013; Botha and Blunsom 2014; Sutskever et al. 2014; Ling et al. 2015; Chung et 
al. 2016; Costa-Jussà and Fonollosa 2016; Lee et al. 2016;  Luong and Manning 
2016; Vylomova et al. 2016; Nguyen and Chiang 2017), polysynthetic languages, 
such as those in the Inuit language family, have been overlooked. The complex 
morphology of such languages has been a barrier to research in computational 
methodologies for these types of languages.  

The term “polysynthesis” comes from Peter Stephen DuPonceau, who coined the 
term in 1819 to describe the structural characteristics of languages in the Americas, 
and it further became part of Edward Sapir’s classic linguistic typology distinctions 
(Mithun 2009). Polysynthetic languages show a high degree of synthesis, more so 
than other synthetic languages, in that single words in a polysynthetic language can 
express what is usually expressed in full clauses in other languages. Not only are 
these languages highly inflected, but they show a high degree of incorporation as 
well (Mithun 2009). The nature of polysynthetic languages to pack abundant 
semantic and grammatical information into single words means that data sets for 
these languages are inherently extremely sparse. In addition, while many processes 
of word formation seen in polysynthetic languages are also seen in other languages, 
such as agglutination as in Bantu languages, compounding as in German, or 
derivation as in English, polysynthetic languages, such as the Inuit languages, often 
show all of these processes, in addition to fusion and incorporation, acting at the 
same time and to a greater extent. It is for these reasons that polysynthetic languages 
are a challenging type of language to work with computationally using typical 
word-based analysis methods. 

Here, we focus on Inuktitut, a polysynthetic language spoken in Canada and one of 
the official languages of the territory of Nunavut, used in all its governmental and 
educational documentation. While not largely commercially interesting, its use in 
official documentation gives rise to adequate data for experimentation, and this, 
along with the current electronic needs of speakers of this language, makes it a 
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worthwhile candidate for natural language processing (NLP) research. An ample 
data set has been prepared from parallel English–Inuktitut legislative proceedings, 
the Nunavut Hansard (NH) (Martin et al. 2003), comprising approximately 340K 
parallel sentences. Additionally, the National Research Council (NRC) of Canada 
has developed a morphological analyzer for Inuktitut, the Uqailaut analyzer (Farley 
2009), which should prove valuable in this line of research, even if the analyzer 
does not analyze all the word types from the experimental corpus (Nicholson et al. 
2012; Micher 2018b). 

The research questions we address in this proposal are the following:  

1) Can we improve the performance of the “Uqailaut” morphological analyzer 
(Farley 2009), building on the previous research work (Micher 2017), 
making use of a variety of neural network approaches?  

2) Can we improve over a baseline SMT English–Inuktitut system by using 
alternate subword units with a neural network architecture, and can we 
determine what subword unit yields the most improvement?  

3) Can a pipelined English–Inuktitut translation system, using deep morpheme 
translation and a deep-to-surface, sequence-to-sequence model outperform 
the best subword system determined while researching Question no. 2?  

4) Can we make use of hierarchical structures over morphemes in a novel 
approach to improve over the best subword system determined while 
researching Question no. 2?  

The organization of this proposal is the following:  first, we discuss the Inuktitut 
language, highlighting its polysynthetic typology, word formation, grammatical 
complexity, morphophonemics, spelling and dialect variation; second, we take a 
look at how this complexity presents challenges for machine translation; third, we 
overview the literature to date, including other researchers’ previous works on 
Inuktitut language processing and related languages, and my specific work; fourth, 
we formulate research questions and propose experiments to examine those 
questions, including discussion of relevant background research for these ideas; and 
finally, we propose a timeline for completing the work. 
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2. Inuktitut and NLP 

2.1 A Sampling of Inuktitut Structure, Revealing the Complexity 
of Words 

In this section, we look in detail at the structure of Inuktitut words, the abundance 
of grammatical variation, and the challenges that a less-than-fully standardized 
language presents with respect to dialect and spelling variation in order to 
understand the extent of the difficulty in NLP for this language. 

2.1.1 Polysynthesis 

As described in the introduction, polysynthetic languages have long words that can 
contain what typically make up a full clause in other, analytic languages. Inuit 
languages, specifically, have been used to demonstrate this aspect of polysynthetic 
word formation. The following is an example of a sentence in Inuktitut, 
Qanniqlaunngikkalauqtuqlu aninngittunga, consisting of two words, and we break 
those words down into their component morphemes, providing an English gloss for 
the words: 

Qanniqlaunngikkalauqtuqlu 
qanniq-lak-uq-nngit-galauq-tuq-lu   
snow-a_little-frequently-NOT-although-3.IND.S-and 
“And even though it’s not snowing a great deal” 

aninngittunga 
ani-nngit-junga 
go_out-NOT-1.IND.S 
“I’m not going out” 

In this example, two Inuktitut words express what is expressed by two complete 
clauses in English. The first Inuktitut word shows the way in which many 
morphemes representing a variety of grammatical and semantic notions (quantity 
“a_little”, frequency “frequently”, negation, and concession) as well as 
grammatical inflection (third-person indicative singular) can be added onto a root 
(qaniq, “snow”) in addition to a clitic (lu, “and”). The second word shows the same, 
but to a lesser degree. From this example, we can glean the basic structure of 
Inuktitut words, which is shown in the following: a word consists of a root, 
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followed by zero or more “lexical postbases”*, followed by a inflexional suffix, 
followed by an optional clitic (Dorais 1990, pp. 223, 231):  

Root  +  Lexical Postbase*  + Inflectional Suffix  + (Clitic). 

Four types of roots are attested in Inuktitut: object bases (nouns), event bases 
(verbs), localizer bases (demonstratives), and subsidiary bases (uninflected, largely 
interjections) (Dorais 1990, pp. 227‒229). Here we present an example of each: 

illu- “house” object base 
taku- “see” event base 
av- “direction away” localizer base 
aiguuq “eh there!” subsidiary base 

Lexical postbases come in a variety of flavors: those that are derivational, which 
may change the basic part of speech of what they are attached to (root or stem); 
those that are semantic or grammatical, adding adverbial, negation, tense, and other 
modifying qualities to the root or stem they attach to; those that are considered 
“light verbs”, which allow noun incorporation; and those that are adjectival, being 
incorporated into nouns they are attached to. Next, we see two examples that show 
each of these lexical postbase types (Mallon 2000): 

umiarjualiurvingmi ilinniarviksiuqtunga  
umiaq-juaq-liuq  -vik               -mi  ilinniaq-vik              -siuq       -junga 
boat   -big  -make-place_where-LOC.sg learn    -place_where-look.for-IND.1.sg 
“in the shipyard” “I’m looking for a school” 

In the first example, “umiaq”, boat, a nominal root morpheme, is followed by the 
adjectival postbase “juaq”, big, creating the noun complex a big boat. This, in turn, 
is turned into a verb, using the light verb postbase “liuq”, make, creating the verbal 
complex make a big boat. To this is added the derivational postbase “vik”,  
place-where, creating a nominal complex place where a big boat is made (i.e., 
shipyard). Finally, the “mi” locative grammatical ending is added to indicate the 
location, in the place where a big boat is made (i.e., in the shipyard). In the second 
example, the verbal root “ilinniaq”, learn, is modified by the lexical postbase “vik”, 
place-where, yielding place where learning happens (i.e., school). Then, the light 
verb derivational postbase “siuq”, look for, is added, creating the verbal complex 
look for a school. To this is added the grammatical ending “junga”, first-person 
singular, yielding I’m looking for a school. 

                                                 
*Dorais (1990) refers to these morphemes as lexical postbases. In essence, they are largely derivational 
morphemes; however, a significant number of them express grammatical functions and their usage is quite 
productive. 
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Localizer bases are used to form demonstratives, of which there is a small,  
closed-class set. Demonstratives in Inuktitut have greater semantic granularity than 
they do in English. While English has a two-way distinction, “this” versus “that”, 
“here” versus “there”, Inuktitut distinguishes the following (Pirurvik Center 2017):  

1) four locations with respect to the speaker: “here”, “over there”, “up there”,  
and “down there”   

2) specificity: either a specific location or a general location  

3) directionality: no direction (neutral), “to”, “from”, and “through”  

4) whether the location has been mentioned already  

Demonstratives are built from bases and suffixes, with an optional prefix. 
Demonstrative bases express #1 and #2 together, demonstrative suffixes express 
#3, and the optional prefix expresses #4.* The following is the summary pattern for 
demonstratives, followed by Table 1, which lists the possible morphemes for each 
slot, followed by examples: 

(TA) + Localizer_base + Suffix. 

Table 1 Demonstrative morphemes in Inuktitut 

∅/TA Localizer_base 
location/specificity 

Suffix 
directionality 

 uv-   “right here” specific  

ma- “around here” general 

-ani   neutral 

 

∅-    

general 

ik-  “over there” specific 

av-  “over there” general 

-unga   “toward” 

 

ta-   

previously mentioned 

pik-  “up there” specific 

pa-  “up there” general 

-anngat   “from” 

 

 kan-  “down there” specific 

un- “down there” general 

-unna   “through” 

 

 

The following are examples: 

 uvani  “right here” 
 maunga “toward around here” 

                                                 
*Dorais (2010) specifies that this prefix for the Nunavik dialect denotes difficulty of perception or relation with 
someone or something other than the speaker. 
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 ikanngat “from over there (specific)” 
 pikunna “through up there (specific)” 
 tapaunga “toward up there (general, already mentioned)” 

Additionally, a further complication arises, which departs from the basic word 
formation pattern of root + lexical postbase + suffix: words marked with certain 
inflectional suffixes can, in turn, take additional lexical postbases, which denote 
location or movement in space (Dorais 1990, p. 230). Two examples here show this 
phenomenon. In the first, the noun “illu” marked with the locative suffix “mi” takes 
the lexical postbase “it”, which turns it into a verbal stem to receive the verbal 
inflectional suffix “junga”.  In the second, the noun “illu” marked with the vialis 
suffix “kkut” takes the lexical postbase “uq”, which turns it into a verbal stem to 
receive the verbal inflectional suffix “junga”: 

illumiitunga illukuuqtunga 
illu    -mi        -it                -junga illu    -kkut     -uq                           -junga 
house-LOC.sg-location_in-IND.1.sg house-VIA.sg-movement_through-IND.1.sg 
“I am (located) in the house” “I am going through the house” 

In sum, Inuktitut words are composed of strings of many morphemes, 
demonstrating holophrasis (i.e., the ability of an entire clause to be expressed as a 
single word). Lexical postbases can be added recursively, creating longer and 
longer words. Some lexical postbases can also be added to grammatically inflected 
words, and there is a small set of optional clitics.  

In the next section, we look at some of the variety of grammatical inflection in 
Inuktitut as we continue to examine the complexities of this language. 

2.1.2 Abundance of Grammatical Suffixes 

Inflectional morphology in Inuktitut is used to express a variety of abundant 
grammatical features (Dorais 1990, pp. 224‒227). Among those features are 1) nine 
verbal moods (declarative, indicative, interrogative, imperative, perfective, 
imperfective, dubitative, perfective appositional, and imperfective appositional);  
2) two distinct sets of subject and subject-object markers, per mood; 3) four persons 
(the fourth person serving to distinguish between third-person self and third-person 
other); 4) three numbers (singular, dual, and plural); 5) eight cases on nouns (basic, 
relative, modalis, allative, ablative, locative, simulative, and translative*); and 5) 
noun possessors (with number and person variations). In addition, demonstratives 
show a greater variety of dimensions than most languages, including location, 

                                                 
*Verbal mood and noun case names are taken from Dorais (2010). For usage explanation, which is beyond the 
scope of this work, see Dorais (2010). 
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directionality, specificity, and previous mention. Next, we highlight a selection of 
these grammatical features and show how they are expressed via grammatical 
inflection in the language. 

2.1.2.1 Noun Inflection 

Grammatical suffixes for nouns mark person and number of possessor and number 
and case of the thing possessed. A zero-marked grammatical suffix on nouns 
conveys a basic case singular noun, with no possessor. What follows is a part of 
the noun paradigm, with a singular noun, “illu”, house, possessed by three persons 
in the singular and inflected in all cases (Dorais 1988), where dashes indicate 
morpheme boundaries: 

illu: house 
sg. sg.1sg sg.2sg sg.3sg 
bas: ∅ illu illu-ga illu-it illu-nga 
rel: -up illu-up illu-ma illu-vit illu-ngata 
mod: -mik illu-mik illu-nnik illu-ngnik illu-nganik 
all: -mut illu-mut illu-nnut illu-ngnut illu-nganut 
abl: -mit illu-mit illu-nnit illu-ngnit illu-nganit 
loc: -mi illu-mi illu-nni illu-ngni illu-ngani 
tra: -kkut illu-kkut illu-kkut illu-kkut illu-ngagut 
sim: -tut illu-tut illu-ttut illu-ktut illu-ngatut 

Note that in many suffixes, the individual meanings expressed (case, number, and 
possessor) cannot be segmented further. These suffixes demonstrate morphological 
fusion, which is not uncommon in morphologically complex languages. Fusion of 
grammatical elements inside of suffixes leads to greater data sparsity in surface 
forms. 

2.1.2.2 Verb Inflection 

Verbs inflect for subject agreement on intransitive verbs, and subject and object 
agreement on transitive verbs (Dorais 1990, pp. 224‒225). There are separate sets 
of markers for each of the nine moods. In Tables 2 and 3, we see one paradigm, 
demonstrating the indicative mood person-number markers. As in the previous 
example, dashes denote morpheme boundaries. 
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Table 2 Subject markers with verb “taku”, to see (intransitive, indicative) 

 Singular Dual Plural 

1st subject taku-junga taku-juguk taku-jugut 

2nd subject taku-jutit taku-jusik taku-jusi 

3rd subject taku-juq taku-juuk taku-jut 

 

Note that “takujunga” is I see; “takujusik” is you (two) see; and “takujut” is they 
(3+) see.  

Table 3 Subject and object markers with verb “taku”, to see (transitive, indicative) 

 1st singular object 2nd singular object 3rd singular object 

1st singular subject --a taku-jagit taku-jara 

2nd singular subject taku-jarma -- taku-jait 

3rd subject taku-jaanga taku-jaatit taku-janga 
aThe double dash here indicates that there is no marker that conveys a reflexive meaning, I see myself, you 
see yourself. However, for the third person, a separate morpheme exists for reflexives (called the “fourth” 
person). 

 
Note that “takujagit” is I see you singular; “takujarma” is you singular, see me; and 
“takujait” is you singular, see him/her/it. 

As can be seen, verb inflection also demonstrates fusional characteristics, which 
further adds to the data sparsity problem. 

These examples show only part of the full paradigm for nouns and verbs in 
Inuktitut. Counting all the grammatical endings for nouns and verbs appearing in 
the NH corpus, as analyzed by the Uqailaut analyzer, we get an idea of the true 
scope of the problem: there are 302 noun endings and 922 verb endings (see 
Appendices A and B for a full listing). The overall effect of such abundant 
grammatical inflection on the challenge of NLP for this language is evident. 
However, the problem is even greater when we consider morphophonemics, which 
we review in the next section. 

2.1.3 Morphophonemics 

In addition to the abundance of morphological suffixes that Inuktitut roots can take 
on, the morphophonemics of Inuktitut are quite complex. Each morpheme in 
Inuktitut dictates the possible sound changes that can occur to its left and/or to itself. 
These changes are not phonologically conditioned on their environments, but rather 
conditioned on the individual morphemes themselves. Not only does this add to the 
data sparsity problem, but it creates challenges for morphological analysis, which 
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we examine in the research questions of this proposal. In this work, we refer to 
these the underlying morpheme representations as “deep” morphemes, as opposed 
to the “surface” morphemes, which are the realizations of these deep morphemes. 
The example that follows demonstrates some of the typical morphophonemic 
alternations that can occur in an Inuktitut word, using the word 
“mivviliarumalauqturuuq”, he said he wanted to go to the landing strip: 

Romanized Inuktitut word mivviliarumalauqturuuq 
Surface segmentation  miv   -vi     -lia      -ruma   -lauq     -tu          -ruuq 
Deep forms   mik   vik     liaq      juma    lauq      juq         guuq 
Gloss    land   place go_to   want    PAST   IND3.s   he_says 

We proceed from the end to the beginning to explain the morphophonemic rules, 
since these rules generally affect the current and previous morphemes. For a list of 
phonemes in Inuktitut, see Appendix D. The morpheme “guuq” is an uvular 
alternator*, which means the “g” can be realized as different uvular consonants 
depending on what precedes it. So “guuq” changes to “ruuq” and it also deletes the 
preceding consonant “q” of “juq”.  The morpheme “juq” is a consonant alternator, 
which means it shows an alternation in its first consonant, which appears as “t” 
after a consonant, and “j” otherwise. The morpheme “lauq” is neutral after a vowel, 
so there is no change. The morpheme “juma” is like “guuq”, a uvular alternator, 
and it deletes. So “juma” becomes “ruma,” and the “q” of the preceding morpheme 
is deleted. Note, however, how this alternation differs from that found with “guuq”, 
because the underlying initial phoneme is different. The morpheme “liaq” is a 
deleter, so the preceding “vik” becomes “vi”.  Finally, “vik” is a voicer, which 
causes the preceding “k” to assimilate completely, so “mik” becomes “miv” 
(Mallon 2000).† 

Of the words that were analyzed in the NH corpus by the Uqailaut analyzer, using 
the first analysis of each, 7,722 surface morphemes are attested, for 2,888 deep 
morphemes, with the average number of surface realizations per deep morpheme at 
3.39, with a maximum of 77 surface forms for one deep form.  See Appendix C for 
more details. Morphophonemics in Inuktitut is a major point of language structure 
that any NLP application must address, and in this proposal, we suggest ways of 
doing just that. 

 

                                                 
*The names of the various morphophonological processes are those used in Mallon (2000) and are not meant 
to be general terms.  
†Mallon (2000) lists this morpheme as “mit”; however, the Uqailaut dictionary has “mik/1”,  to land or alight 
after flight, so it appears the Mallon (2000) example contains an error. 
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2.1.4 Dialect Differences/Spelling Variation 

The fourth aspect of Inuktitut that contributes to the challenge of processing it with 
a computer is the abundance of spelling variation seen in the electronically 
available texts. Three aspects of spelling variation must be taken into account. First, 
Inuktitut, like all languages, can be divided into a number of different dialects. 
Dorais (1990, p. 189) lists 10: Uummarmiutun, Siglitun, Inuinnaqtun, Natsilik, 
Kivallirmiutun, Aivilik, North Baffin, South Baffin, Arctic Quebec, and Laborador. 
The primary distinction between these dialects is phonological, which is reflected 
in spelling. See Dorais (1990) for a discussion of dialect variation.  

Second, a notable error on the part of the designers of the Romanized transcription 
system has produced a confusion between r’s and q’s. It is best summarized in a 
quote by Mallon (2000): 

It's a long story, but I'll shorten it. Back in 1976, at the ICI standardization 
conference, because of my belief that it was a good idea to mirror the Assimilation 
of Manner in the orthography, it was decided to use q for the first consonant in 
voiceless clusters, and r for the first consonant in voiced and nasal clusters. 

That was a mistake. That particular distinction does not come natural to Inuit 
writers, (possibly because of the non-phonemic status of [ɴ].) Public signs, 
newspaper articles, government publications, children's literature produced by 
the Department of Education, all are littered with qs where there should be rs, 
and rs where there should be qs. 

Kativik did the right thing in switching to the use of rs medially, with qs left for 
word initial and word final. When things settle down, maybe Nunavut will make 
that change. It won't affect the keyboard or the fonts, but it will reduce spelling 
errors among the otherwise literate by about 30%. 

Finally, an inspection of the word types that cannot be analyzed by the Uqailaut 
analyzer reveals that transcribers and translators do not adhere to a single standard 
of spelling. As an example, the root for “hamlet”, borrowed from English, appears 
in a variety of spelling variations in the NH data set. The unique ID from the 
Uqailaut root dictionary is “Haammalat/1n”, mapped to the surface form 
“Haammalat”. However, in the data set, surface forms abound: 

Haamalaujunut “mm” has lost its gemination 
Haamlaujunut “mm” has lost its gemination, “a” deleted 
Hamalakkunnit “aa” and “mm” have lost their gemination 
Hammakkut “aa” has lost gemination, “lat” deleted 
Hammalakkunnut “aa” has lost gemination 
Hammalat “aa” has lost gemination 
Hmlatni “aa” deleted, “a” deleted, “mm” lost gemination 

In another example, in the following sentence, taken from the NH corpus, the root 
corresponding to inmates appears with three different spellings, “anullak-”, 
“annullak-”, and “annulak-”: 
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Marruartir&unga taikunngalaursimajunga takujartur&unga 
anullaksiangujunik kinguningagullu qaujilaqijjutiqalaursimajunga 
annullaksiangujunik uvvalu takujaqtursimajalimaattiakka 
annulaksiangujut 
pulaariartaulaursimanninngittuviniuqattalaursimangmata.* 
“I went there twice to see the inmates and afterwards I realized 
some of the inmates or all of the inmates that I went to see never got 
visitors” 

Thus, in the corpora available for experimentation, spelling variation, either from 
lack of standardization or various dialect differences, contributes significantly to 
the overall sparsity of the data. 

In sum, the combination of polysynthesis, morphophonemics, and spelling 
variation makes Inuktitut a particularly challenging language for NLP. We hope to 
develop methods to overcome these challenges and present an approach to 
improving morphological analysis. In the next section, we examine data sparsity 
and present one way to overcome it. 

2.2 Data Sparsity of Polysynthetic Languages and the Challenge 
It Presents for Statistical Machine Translation 

2.2.1 Sparsity and Morphological Complexity 

The polysynthetic nature of Inuktitut to string many morphemes together into single 
words, on top of unpredictable morphophonological processes between 
morphemes, the abundance of morphological grammatical expression, and spelling 
variation make Inuktitut data very sparse: sparser than other “morphologically 
complex” languages typically looked at in NLP research. To demonstrate this 
phenomenon, in Fig. 1, we see type-token curves plotted for a multiparallel corpus 
consisting of six languages with varying degrees of morphological complexity: 
English, Chinese, German, Arabic, Turkish, and Korean (Cettolo et al. 2012). As 
the morphological complexity of the language increases, the number of types in the 
corpus increases, resulting in a steeper curve. Against these plots, we show a curve 
for Inuktitut, taken from the NH corpus. While the data points between Inuktitut 
and the other languages are not parallel, it is still possible to see how much sparser 
the Inuktitut data are with respect to the other languages. At one million tokens, 
Inuktitut has approximately 225K types, compared to English, with around 30K 
types. Note the Chinese type-token curve is calculated over segmented text†.  

                                                 
*The “&” is used to represent a lateral fricative.  
†Indeed, many languages are written as strings of characters without spaces, such as Chinese, Japanese, and 
Thai. There is much research on segmentation these languages for NLP purposes. (See Yang et al. [2017] for 
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Fig. 1 Type-token curves for a variety of languages with differing morphological 
complexity 

2.2.2 Overcoming Sparsity Due to Morphological Complexity 

We hypothesized that Inuktitut treated as strings of morphemes would be easier to 
translate than full words, because it would make for a less sparse corpus. Supporting 
this hypothesis, Koehn (2005) shows that languages with more complex 
morphology are harder to translate into than those with less complex morphology. 
Other researchers have had positive results when transforming morphologically 
complex words into simpler forms, such as lemmas or morphemes (Lee 2004; 
Popović and Ney 2004; Goldwater and McClosky 2005; Clifton and Sarkar 2011).  

For comparison’s sake to the type-token curves presented earlier, we show, in  
Fig. 2, the type-token curve for the NH corpus, morphologically analyzed to deep  
morphemes when possible* (the “Morphed” line in the graph), compared to the 
original Inuktitut words and English words. As expected, the curves for the 
Morphed corpus and English are much closer together. Not all word types in the 
corpus were analyzable, so the curve for Inuktitut is still steeper than the one for 
English; however, we’ve made a huge leap toward having similar corpus sparsity 
between the two languages. In Section 3, we present results from experiments 
                                                 
a discussion of the current neural work on Chinese segmentation.)  Inuktitut and other polysynthetic languages 
maintain word boundaries as spaces, but the author hypothesized that SMT would improve if the Inuktitut 
words were broken into smaller units. 
*The Uqailaut morphological analyzer was able to process 70% of the types from the NH corpus and 30% of 
the types remained unprocessed due to various problems. 

0

50,000

100,000

150,000

200,000

250,000

1 70 14
0

21
0

28
0

35
0

42
0

49
0

56
0

63
0

70
0

77
0

84
0

91
0

98
0

Ty
pe

s

Tokens (K)

Type-Token Curves

Inuktitut

Korean

Turkish

Arabic

German

Chinese

Morphed

English

English



 

Approved for public release; distribution is unlimited. 
13 

treating Inuktitut as strings of morphemes (Micher 2018a) to test the hypothesis 
that Inuktitut words broken into morphemes would be easier to translate to and from 
English.  

 

Fig. 2 Type-token curves for Inuktitut full words, morphed words, and English 

2.3 Related Work on NLP of Inuktitut and Other Inuit Languages 

We now turn to looking at related work in NLP for Inuktitut and other Inuit 
languages in order to position the proposed work within this wider research area. 

2.3.1 Inuktitut Natural Language Processing 

To date, a small set of literature has been identified that addresses Inuktitut 
processing or English‒Inuktitut machine translation. For the task of alignment of 
Inuktitut and English parallel text, Martin et al. (2003) describe the creation of the 
NH data set, detailing the procedures followed to align it at the sentence level. In 
the context of the Association for Computational Linguistics shared task on 
alignment, Schafer and Drábek (2005) describe their techniques for bi-text word 
alignment, making use of subword units and transliteration. Langlais et al. (2005) 
also report on the alignment task from the same workshop. They present two 
approaches. The first treats English and Inuktitut as tokens and uses a sentence 
aligner to align the words. The second makes use of associations between English 
words and Inuktitut subword units. For the area of Inuktitut morphological analysis, 
Johnson and Martin (2003) describe an unsupervised technique for splitting 
Inuktitut words into morphemes by identifying merged hubs in a finite-state 
automaton that represents the entire vocabulary under question. However, they 
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report poor performance due to the difficulty of identifying word-internal hubs. 
Farley (2009) developed a morphological analyzer for Inuktitut, which makes use 
of a finite-state transducer and hand-crafted rules. Nicholson et al. (2012) present 
an evaluation of the Farley’s analyzer and report coverage of the NH corpus similar 
to what I have found.  

For machine translation between English and Inuktitut (either direction), other than 
the work from Micher (2018a) discussed later, one paper was found: Mengistu et 
al. (2012)* proposed a concept-based, hidden Markov model machine translation 
methodology to translate health-care domain English to Inuktitut and reported an 
average of 93.26% meaning accuracy on back-translated text. However, at the time 
of this writing and to the best of our knowledge, there have been no published works 
specifically looking at SMT or NMT to and from Inuktitut, with the exception of 
the work detailed in the next section. 

2.3.2 Inuit and Yupik Natural Language Processing 

Even for related languages, there is not much published work. We mention what 
we have found to position the current proposed work against the wider background 
of work on Inuit and Yupik. Related languages are part of the Inuit language dialect 
continuum and include Kalaallisut, spoken in Greenland, and Iñupiaq, spoken in 
Alaska. Yupik, spoken in Alaska and Russia, is part of the greater Eskimo-Aleut 
language family and is closely related to Inuit languages. Oqaasileriffik, the 
national language secretariat of Greenland, has developed a spell checker and word 
lookup tools (Oqaaserpassualeriffik 2018a, 2018b) for Kalaallisut. Plans are 
underway to develop NMT technology for the Kalaallisut‒Danish language pair 
(McGwin 2017). For Iñupiaq, Bills et at. (2010) have developed a finite-state 
morphological analyzer. For Yupik, Schwarz and Chen (2017) are developing a 
web-based tool for St. Lawrence Island/Central Siberian Yupik, which includes 
tools for converting from Latin spellings to a fully transparent representation, a 
spell checker, and transliteration tools to convert from Latin to Cyrillic, and vice 
versa.  

While these languages show a variety of interest for NLP applications, none have 
any published research on machine translation, although Kalaallisut is expected to 
have machine translation technology in the near future. As best as can be 
determined at this point, the work here, along with that in Micher (2017, 2018a), 

                                                 
*The paper was awarded “best paper” according to http://utlinguistics.blogspot.com/ 2012/05/english-inuktitut-
automatic-speech-to.html, but the link to the GRAND 2012 conference has been disabled, so the paper is 
currently not accessible on the web. 
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constitutes a unique line of research in this area that is sorely lacking in the NLP 
research community. 

3. Previous Work on Inuktitut Processing 

Two preliminary sets of experiments leading to the development of research 
questions in this proposal have been performed (Micher 2018a). Both sets of 
experiments were ultimately concerned with whether Inuktitut could be treated as 
sequences of morphemes for SMT purposes. The results of the first set of 
experiments were used in the preparation of the data for the second set of 
experiments.  

The first set of experiments attempted to improve an incomplete morphological 
analyzer for Inuktitut by using output from the analyzer. The resulting output was 
then incorporated into an analyzed corpus and SMT was tested using this corpus. 
Next, we highlight the findings from these sets of experiments. 

3.1 Segmental Recurrent Neural Network Applied to 
Morphological Segmentation 

Micher (2017) discusses the development and effectiveness of a segmental 
recurrent neural network (SRNN) morphological analyzer for Inuktitut. To test the 
effectiveness of SMT while treating Inuktitut as strings of morphemes, a method 
was developed to increase the coverage of the Uqailaut morphological analyzer 
(Farley 2009). Out of the box, this analyzer was able to analyze approximately 70% 
of the Inuktitut types from the NH corpus. A method was developed to investigate 
whether the output of this analyzer could be used to learn a model to process the 
remaining 30% of types. An SRNN (Kong et al. 2015) was trained with 25K word 
types having a single analysis from the analyzer. Two experimental conditions were 
tested: the first treated the morphological analysis as sequences of coarse-grained 
labels (16 total), reflecting basic morpheme types; the second treated the analysis 
as sequences of fine-grained labels (1,691 total), reflecting the full analysis of each 
morpheme as returned by the analyzer. The following is an example demonstrating 
the two levels of granularity: 

Word:  qauqujaujunu 
Coarse-grained analysis: ROOT:3 LEX:2 LEX:2 LEX:1 LEX:2 GRAM:2 
Fine-grained analysis: qau_1v:3 qu_2vv:2 jaq_1vn:2 u_1nv:1 juq_1vn:2 

nut_tn-dat-p:2 
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The output should be interpreted as a series of labels and the number of characters 
that those labels cover. So, for example, the first output can be combined with the 
input to produce a series of segments plus tags as in the following:  

qau/ROOT qu/LEX ja/LEX u/LEX ju/LEX nu/GRAM 

One thousand items each were held out from the training data for the dev and test 
sets for the coarse-grained label experiment. However, because the SRNN program 
did not allow for unseen labels when running in test mode, selection of the dev and 
test sets for the fine-grained label experiment was not random and proceeded as 
follows. First, under the assumption that the greatest variation of labels would occur 
in the roots of the word types (the “open-class” morphemes vs. the “closed-class” 
lexical post-base, grammatical endings, and clitics), the selection proceeded based 
on root labels. Of the 1,198 unique root labels, 898 occurred in 2 or more word 
types. For example, the root label “qauq_1v” occurs in six types: “qaurniq”, 
“qaunimautilik”, “qauqujaujut”, “qauqujaulluni”, “qauqujaujunu”, and “qauvitaq”.  
At least one of each of these types per root label was placed in the dev/test pool, 
with the remaining types containing that root label being assigned to the train set. 
To select which of the two or more types to put into each set, the longest (in terms 
of number of morphemes in the type) was selected for the dev/test pool, with the 
remaining going into the train set. Then, the dev/test pool was split into two sets of 
449 items each. 

Initial results of the experiments are presented in Table 4. Precision, recall, and  
f-measure were computed over exact matches between gold standard sets and 
predicted sets. Scores for both segmentation and tagging were computed. The 
segmentation score is straightforward (i.e., are the right pieces, the segment at the 
right locations in the word, created?). Tagging includes segmentation (i.e., is the 
tag as well as the segmentation correct?). For the sake of conciseness, the average 
of the dev and test set scores are displayed.* 

Table 4 SRNN morpheme sequence segmentation and labeling results 

Model seg/tag Precision Recall f-measure 

Coarse-grained seg  0.9545 0.9492 0.9526 

 tag 0.9533 0.9477 0.9496 

Fine-grained seg  0.8466 0.8549 0.8507 

 tag 0.7225 0.7296 0.7260 

 

                                                 
*Whereas, these scores are reported separately in Micher (2017). 
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As would be expected, the model producing a coarse-grained output performs better 
than the model producing a fine-grained output. The model only has to decide 
between 16 labels in the former versus 1,691 labels in the latter. Ideally, we would 
like a greater accuracy on simple segmentation when we are trying to identify not 
only where morpheme breaks are, but what information those morpheme pieces 
should convey.  

A quick error analysis revealed that most of the mislabeling errors occurred in the 
root morphemes of words, which makes sense, because the set of root morphemes 
can be likened to a  set of “open-class” vocabulary, which has more variation, 
whereas the remaining morphemes (suffixes) of words are “closed-class”. To 
attempt to filter out the randomness effect of trying to identify open-class root 
morphemes, scores were calculated over the output of the fine-grained model 
leaving out the roots. We refer to this as the “tails only” set. Table 5 displays these 
results. 

Table 5 Fine-grained roots absent in scoring (tails only) 

Model seg/tag Precision Recall f-measure 

Tails only seg  0.8699 0.8834 0.8519 

 tag 0.8050  0.8175      0.8112 

 
As expected, these scores (suffixes only) are higher than those measured on the full 
words (root + suffixes). 

In a follow-on study, not yet published, in order to “even the playing field” between 
the coarse-grained model and the fine-grained model, an UNK label was added to 
the training data to allow the fine-grained model this choice and allow for random 
selection of 1,000 dev and test items. Results are presented in Table 6, along with 
the results from the previous experiments for comparison’s sake.   

Table 6 SRNN morpheme sequence segmentation and labeling results with UNK scores for 
comparison 

Model  No. of 
items  

seg/tag  Precision  Recall  f-measure  

Coarse-grained  1,000  seg  0.9545 0.9492 0.9526 

tag  0.9533 0.9477 0.9496 

Fine-grained  449   seg  0.8466 0.8549 0.8507 

tag  0.7225 0.7296 0.7260 

Fine-grained  1,000  seg  0.9199 0.9187 0.9193  

 with UNK  tag  0.8616 0.8604 0.8610  
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As can be seen, when measuring accuracy on a comparable dev and test set (same 
size across experiments) and allowing the model to identity unknown morphemes, 
both the segmentation and tagging accuracy increase to where the segmentation 
scores are above 90%. These scores are higher than the “tails only” scores as well. 

While the task of “segmentation as morphological analysis” is not new, and results 
on a variety of languages and methods are higher than those reported here, the task 
of recovering morphological detail on top of segmentation remains a challenge, 
especially for a language like Inuktitut, where the surface form segmentation can 
differ greatly from the underlying representation that is being sought. Ultimately, 
we want to be able to use labeled data and have the model output a list of possible 
segmentations with morphological detail, and in the case of unknown morphemes, 
be able to say, at a minimum, whether the morpheme is likely to be a noun or a verb 
root. We treat this problem as a sequence learning problem similar to machine 
translation, in which the “source language” is the surface form of the words and the 
“target language” is a sequence of labels containing morphological information 
(morpheme type, surface characters, grammatical information, etc.) and we discuss 
possible experiments in Section 4.1.3 of this proposal. 

3.2 Incorporating Morphological Analysis from SRNN to 
Improve Machine Translation of Inuktitut 

The second set of experiments (Micher 2018a) makes use of the output of the 
SRNN model discussed previously. We experimented with SMT from Inuktitut to 
English and English to Inuktitut, incorporating the results of the previously 
discussed neural morphological analyzer, into the NH corpus for words that do not 
have an analysis from the Uqailaut analyzer. We used the segmentations obtained 
from the coarse-grained analyzer previously discussed, as these have the best scores 
out of all of the conditions examined. We compared three conditions: 1) full 
Inuktitut words; 2) segmented Inuktitut words for those words that the Uqailaut 
analyzer provided an analysis for, choosing the first analysis provided when 
multiple analyses are available; and 3) full segmentation, incorporating the 
segmentation from the SRNN described previously for those words not having an 
analysis. We ran the experiments over two separate divisions of the data into 
training, dev, and test sets, insuring no overlap between train/test or train/dev sets, 
and we computed statistical significance in each set according to the bootstrap 
resampling method presented in Koehn (2004). We used the Moses toolkit (Koehn 
et al. 2007) to create the models. We report Bilingual Evaluation Understudy Score 
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(BLEU) scores (Papineni et al. 2002) for the full-word systems and m-BLEU* 
scores (Luong et al. 2010) for the morpheme-based systems. Table 7 displays the 
results. 

Table 7 SMT of Inuktitut to and from English 

Model 

Set direction 
1a 1b 2a 2b 

IU→EN EN→IU IU→EN EN→IU 

Full Inuktitut words 25.6 14.18 22.74 12.54 

Morphed Uqailaut (70%) 
+ nothing 

29.43 20.09 28.34 18.39 

Morphed Uqailaut (70%) 
+neural morph (30%) 

30.35 19.61 29.85* 18.56 

Note: The asterisk denotes statistical significance at p <0.05. 

Admittedly, the results presented in Table 7 are problematic. Upon first glance, it 
appears that the morphologically analyzed (morphed) Inuktitut systems are all 
better than the systems that translate full words. However, it should be noted that 
the morphed scores are m-BLEU scores, whereas those over the full-word systems 
are normal BLEU scores. To make up for this mismatch, we recalculated the m-
BLEU scores to yield BLEU scores by rejoining, wherever possible, strings of 
morphemes back into full words. While these scores do indeed come out higher, 
they are not shown to be significant, at either the p < 0.05 or p < 0.1 levels. For set 
1b, we get a BLEU score of 14.89 with a range of [13.46, 16.33] at 95% confidence 
and [13.76, 16.11] at 90% confidence, and for set 2b, we get a BLEU score of 13.39, 
with a range of [12.20, 14.59] at 95% and [12.34, 14.38] at 90%. 

We do, however, get at least one significant result (at p < 0.05) when comparing 
the gains from having more words morphologically analyzed. For set 2a, the 100% 
morphed 29.85 (95% confidence interval of [28.63, 31.22]) is indeed significant 
over the 28.34 score from the 70% morphed corpus. However we do not get the 
same significance for set 1. Both sets 1 and 2 were randomly chosen from the full 
corpus, avoiding any duplicates between train and test set, and tune and test sets. 
This situation points to significant differences in the two sets of data. Indeed, we 
built the second set precisely because we did not measure significance on the first 
set and these results warrant further testing, by building additional sample sets, at a 
minimum. 

                                                 
*Morpheme-BLEU scores, that is, BLEU scores measured over sequences of ordered morphemes, rather than 
over full words. 
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The results presented here point us in a few directions for additional work. First, to 
note, the morphologically analyzed systems and scores reported here use surface 
form morphemes, not deep morphemes. Recall each deep morpheme can map to 
multiple surface morphemes (see Appendix C for details). We hypothesize that a 
system translating deep morphemes will do better than a system translating surface 
morphemes and we take up the question of whether Inuktitut can be translated as 
deep morphemes and then converted to surface forms in Section 4.3 of this 
proposal. Second, the subword units chosen for these experiments were morphemes 
as determined by the Uqailaut morphological analyzer. In Section 4.2 of this 
proposal, we look at improving these reported results by examining whether 
alternate subword units can be used for translating to and from Inuktitut. Finally, 
we propose a novel approach to working with Inuktitut subword units, which we 
hypothesize will show additional improvements over these current reported results. 
We take up this question in Section 4.4. 

4. Research Questions and Proposed Experiments 

In this section, we outline the various thesis questions and proposed experiments to 
test them. The individual research areas are divided into four sections. The first 
looks at improving the results of the morphological analysis presented earlier. The 
second looks at improving machine translation into Inuktitut by using alternative 
subword units. The third looks at whether a deep morpheme translation with 
postprocessing to produce surface forms can outperform any of the previous 
baselines. The fourth looks at whether there are any advantages for machine 
translation purposes to considering strings of morphemes as having a hierarchical 
structure, similar to the way individual words are governed by syntactic rules. 

4.1 Improving Morphological Analysis 

4.1.1 Research Question 

Can we improve on the seg/tag task of morphological analysis previously 
investigated in Micher (2017)? 

4.1.2 Background 

Morphological segmentation has dominated the research in the field of processing 
of morphology. This area concerns itself with the task of breaking words into 
smaller, morpheme-motivated units, without identification of any definitions for 
those units, which we refer to in this report as segmentation. Many researchers have 
examined this task with a variety of supervised, semi-supervised, and unsupervised 
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approaches (Harris 1955; Harris 1970; Yarowsky and Wicentowski 2000; 
Goldsmith 2001; Creutz and Lagus 2002, 2006; Kohonen et al. 2010; Narasimhan 
et al. 2015; Wang et al. 2016; among others). 

However, the research in Micher (2017) aimed to address the task of segmentation 
plus analysis, improve on the coverage of an existing analyzer, and determine 
which segments provide the desired analysis. We refer to this task as morphological 
analysis since it reflects what is truly intended by the term analysis (i.e., a “detailed 
examination of the elements or structure of something”).* We wish to know not 
only where the breaks occur, but what grammatical information each piece 
provides. 

Some researchers have gone the route of trying to discover underlying morphemes, 
but do not assign grammatical information labels to them. Kohonen et al. (2006) 
mapped surface segments (allomorphs) to common morphemes (deep morphemes) 
using character rewrite rules learned automatically for Finnish. They only deal with 
roots, though, and no suffixes. 

Bernhard (2007) examined whether surface forms can be labeled with simple 
labels, stem/base, prefix, suffix, or linking element, to resolve cases of homography 
rather than collapse allomorphs to common morphemes. Morphological inflexion 
generation was examined by Faruqui et al. (2015), which models a mapping from 
a base or underlying form plus additional parameters to a surface form. This, 
however, is the opposite of what we are intending in this section, namely, mapping 
a surface form to a deep representation. 

In this section, we continue the investigation of the work in Micher (2017), detailing 
several approaches.  

4.1.3 Experiments 

Experiments will take the following strategies and compare to the baseline model 
from Micher (2017). 

1) Experiment with variations of the parameters of the model: The model 
parameters were held constant and were set relatively modestly in order to 
carry out the proof of concept put forth in Micher (2017). We will refine the 
choices available along the lines of hidden layer number, embeddings size, 
and hidden layer size, and others not yet determined to find optimal 
parameter settings. 

                                                 
*From a Google search on “analysis definition”. 
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2) Choose different model types:  Micher (2017) made use of the segmental 
recurrent neural network put forth in Kong et al. (2015). We will choose an 
alternate model (to be determined) for comparison.  

3) Make use of additional training data: The experiments in Micher (2017) 
used only words having a single analysis. We will experiment with different 
conditions that make use of the remaining training data. For example, one 
condition would be to use a certain amount of training data from words 
having two analyses, choosing only the first analysis. In this set of 
experiments, we will attempt to determine how much multiple analyses can 
help or hinder the baseline model. 

4.2 Machine Translation by Subword Units 

4.2.1 Research Question 

Can we improve upon the machine translation research results by breaking Inuktitut 
into subword units other than morphemes? 

4.2.2 Background 

Within SMT approaches, for translating to and from morphologically complex 
languages, researchers have proposed treating words as subword units. Approaches 
are numerous. Here, we highlight a few to show the variety of this research and its 
foundation in the SMT line of research. Koehn and Knight (2003) split German 
compounds and showed an improvement on German noun translation. Popović and 
Ney (2004) preprocessed the source language into word stems and suffixes for 
translation into English from Spanish, Catalan, and Serbian. Goldwater and 
McClosky (2005) incorporated morphological analysis into machine translation for 
Czech to English. Luong et al. (2010) took a hybrid morpheme-word representation 
approach for English to Finnish. Clifton and Sarkar (2011) proposed a morpheme-
based translation combined with a postprocessing module for English to Finnish 
translation. Vilar et al. (2007) made use of character translation for related 
languages. Neubig et al. (2013) used many-to-many character alignments to capture 
correspondences between substrings and report comparable results to word-based 
translation for Finnish and Japanese to and from English. Tran et al. (2014) used 
bilingual neural nets to predict word translations for morphologically rich target 
languages, within an SMT system. As this body of research shows, judicious 
splitting of full words into smaller units, in general, yields improvements in 
statistical approaches to machine translation. 
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Moving into the NMT research direction, we see significant gains for treatments of 
words as subword units. Ling et al. (2015) used character long-short term memory 
networks (LSTMs) (Hochreiter and Schmidhuber 1997) to compose character 
embeddings into word embeddings and decode using additional LSTMs to generate 
target words, character by character. They report improvements in English to 
Portuguese and English to French language pairs. Sennrich et al. (2015) proposed 
using byte pair encoding (BPE) to segment words into subword units and showed 
improvement in machine translation on an English to German and English to 
Russian task of up to 1.1 and 1.3 BLEU, respectively. Chung et al. (2016) showed 
that, with the encoder working at the subword level, with subwords defined by the 
BPE algorithm, character-level decoding performs better than subword-level 
decoding. Lee et al. (2016) used character-level NMT in both encoding and 
decoding and showed improvements on German to English and Czech to English, 
and comparable performance on Finnish to English and Russian to English 
language pairs.  

By far, the approach with the most impact on the field has been the one using BPE 
(Sennrich et al. 2015). BPE has been shown to be a representation of segmentation 
that mitigates between words and characters, without recourse to linguistic 
knowledge. We will follow this line of research, and investigate its application to 
translating to and from Inuktitut. However, Lee et al. (2016) contrasted full 
character translation using a convolutional neural network (CNN) with max pooling 
and highway layers to the BPE approach. They reported improved scores over the 
BPE baseline. As such, questions remain about the best architecture for each type 
of approach. 

From personal communication with researchers at the NRC of Canada, initial 
experimentation with the NH corpus, and specifically, the train/test/dev splits used 
in Micher (2018a) with the BPE algorithm preprocessing both the English and 
Inuktitut sides of the corpus, in the English to Inuktitut direction, resulted in a 
BLEU score of 30.04 ± 1.77. This confirms the proposed approach of using BPE to 
process Inuktitut. In this proposed research, we will flesh out these numbers 
robustly and report significance over baselines.  

Additionally, we hope to experiment with alternate subword units. Could a 
modification to the BPE algorithm, allowing merges to be driven by some 
linguistically significant factor rather than pure symbol frequency, outperform a 
system using only the fundamental BPE splitting? The first step in trying to answer 
this question will be to compare the morphed corpus to the BPE corpus in terms of 
vocabulary and frequency to determine how they differ and to develop ideas about 
how to alter the basic BPE algorithm in a more linguistic direction.  
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4.2.3 Experiments 

In this section, we propose several experimental conditions. For each condition, we 
will choose an appropriate neural network architecture based on what other 
researchers have proposed and experimented with for the subunit in question. We 
will examine four subunit granularities: 

1) Characters only: We will translate from English words to Inuktitut 
characters, and English characters to Inuktitut characters to determine a 
character approach baseline. 

2) BPE: We will apply the BPE algorithm to Inuktitut and build English words 
to Inuktitut BPE and English BPE to Inuktitut BPE systems. 

3) Deep morpheme representation: We will build a system from English words 
to Inuktitut deep morphemes, to compare to results reported in Micher 
(2018a). 

4) BPE enhanced with linguistic input: We will determine what, if any, 
alterations of the BPE algorithm could lead to improvements over a BPE 
baseline.  

4.3 Deep Form Morpheme Translation with Conversion to 
Surface Forms 

4.3.1 Research Question 

Can we outperform systems in Section 4.2 by using a deep form morpheme 
translation with postprocessing to produce surface form words? 

4.3.2 Background 

As mentioned in Section 2.2, the type-token curve for Inuktitut as deep form 
morphemes is shallower than one with Inuktitut as surface form morphemes, due 
to the morphophonological variations of surface forms for each deep morpheme. 
Furthermore, the experiments presented in Micher (2018a) made use of morphemes 
as surface segmentations, rather than underlying, deep representations. So the 
question arises: Can a deep form morpheme machine translation system outperform 
a surface form morpheme machine translation system? The intuition here is if 
words are represented by their underlying morpheme forms, the system has a 
smaller vocabulary to choose from. However, the problem remains of how to 
convert the deep form morphemes into surface form morphemes to glue back 
together into full words, in the absence of an algorithm to do so. The question arises 
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whether a postprocessor can be modeled that minimizes the errors that it would 
create and result in a system that outperforms a pure surface form system.  

In essence, we are producing a “surface form generation” system that aims to map 
deep forms to surface forms. The important thing about surface form morphemes 
in Inuktitut is that they are dependent on their context, due to Inuktitut’s 
morphophonemic rules. Without a specific rule-based morphophonemic rule 
application, can we learn a model from training examples? We believe this to be 
true, and we are investigating ways to do this. Also, we are determining if the 
existing Uqailaut morphological analyzer can perform a backwards analysis. If this 
capability exists, we will use it in this section and compare the results to the 
alternative method presented here.  

Faruqui et al. (2015) showed that a character-level neural model can predict surface 
forms from base forms + morphological inflection information. Here we investigate 
how well such a technique works when no explicit morphological inflection 
information is given, but rather, context is used. Context is expressed via hidden 
states in a neural network architecture that takes context into consideration, for 
example, a recurrent neural network, LSTM, bidirectional LSTM (BiLSTM), or 
CNN.  

4.3.3 Experiments 

We propose to make use of various encoder-decoder architectures, which have 
shown to be beneficial for machine translation in other languages, and we will 
“translate” deep forms to surface forms. We will experiment with different 
granularities of deep form and surface form representation to determine the best 
approach. Furthermore, we will compare these results with those in Section 4.2. 

The experimental conditions will be the following: 

• Deep morphemes to surface morphemes 

• Deep morphemes to surface characters 

• Deep characters to surface morphemes 

• Deep characters to surface characters 

• Reverse analysis through existing analyzer (if capability exists) 

• Deep morphemes to encoding surface morphophonemic rules 

The morpheme to morpheme system can be treated as sequence prediction and we 
will experiment with both appropriate sequence to sequence models (where the 
number of input symbols is the same as the number of output symbols, such as a 
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BiLSTM) and an encoder-decoder with attention model. For the remaining 
experimental conditions, we will make use of the encoded-decoder with attention 
architecture. We will vary the parameters of all models to determine their optimal 
settings. 

4.4 Translation Using Hierarchical Structure over Morphemes 

4.4.1 Research Question 

Can we make use of hierarchical grammatical information in the form of hierarchies 
over morphemes, with implicit or explicit labels? 

4.4.2 Background 

In this section, we present the motivation for treating Inuktitut morphemes as if 
they were words with syntactic constraints. Dorais (1990, pp. 229‒231) describes 
the lexical postbases of Inuktitut as being of two types: those that can extend an 
“event” and those that can extend an “object”. He further uses the term “internal 
syntax” to describe the rules that are applied when joining lexical postbases. From 
this description one can argue that, at a minimum, there are constraints which limit 
which types of lexical postbases can extend a root or stem. We can formulate these 
constraints in the form of a Backus–Naur form (BNF) grammar to begin looking at 
hierarchical structure over morphemes. Additionally, Compton and Pittman (2010) 
argued that word formation in Inuit follows syntactic constraints, whereby DP and 
CP phases* determine which morphemes can be combined to form words, implying 
that there is an underlying syntactic structure which determines how morphemes 
are put together. Furthermore, Compton (2013) presented compelling arguments 
for word-internal XPs in Inuit. 

Syntactic and hierarchical structure has been shown to improve phrase-based SMT 
for some language pairs. Many approaches have been researched, from chart 
parsing (Zollmann and Venugopal 2006), tree-to-string grammars (Yamada and 
Knight 2001), synchronous grammars (Galley et al. 2004), tree-transducers (Graehl 
et al. 2008), and synchronous tree adjoining grammars (DeNeefe and Knight 2009). 
From a NMT perspective, adding syntactic information has also shown to be 
beneficial, and this is one of the current trends in NMT research. Some of the 
current, relevant work is listed here. Bastings et al. (2017) added syntax in the form 
of graph convolutional networks, which incorporate dependency graph annotations 
and showed an improvement over a baseline for English‒German and English‒

                                                 
*Phases are syntactic domains such as CP or vP (Chomsky, 2000). 
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Czech language pairs. Sennrich and Haddow (2016) improve NMT for English to 
German and English to Romanian language pairs by adding linguistic features to 
the neural machinery. Eriguchi et al. (2016) used a tree-LSTM with head-driven 
phrase structure grammar (HPSG) parsed English and showed improvements over 
sequence to sequence NMT on English to Japanese translation and comparable 
results compared to state-of-the-art SMT. Stahlberg et al. (2016) used trees derived 
from hierarchical a phrase-based model (Chiang 2005, 2007) to improve NMT for 
English to German and English to French language pairs. Aharoni and Goldberg 
(2017) showed improvements in German→English NMT when translating into 
linearized, lexicalized constituency trees. 

The novel approach in this section is to treat morphemes as if they were words being 
governed by syntactic rules, similar to Luong et al. (2013), but for the purpose of 
machine translation. Our approach is largely linguistic-theory agnostic: We are not 
concerned with determining the exact structures that govern word formation in 
Inuit, or which linguistic theory explains the data. However, we are interested in 
knowing whether any kind of hierarchical structure over morphemes can improve 
machine translation. To this end, we will experiment with various tree-based NMT 
systems, comparing to baseline systems established in previous sections, as well as 
an SMT string-to-tree and tree-to-string system for EN→IU and IU→EN 
respectively.  

4.4.3 Experiments 

One set of experiments will use semi-hand-crafted hierarchical structures over 
morphemes, derived from the information provided by the Uqailaut and 
experimental morphological analyzers. At least two levels of hierarchical structure 
will be used. In the first, a simple structure, in which full words are made up of 
morphemes and morpheme types are irrelevant as a baseline. The second (and any 
additional treatments) will make use of morpheme types and we posit various 
structures based on the Inuit word formation literature. The other set of experiments 
will use hierarchical structures obtained from applying the method in Chiang 
(2007), in which no explicit hierarchical structure is provided ahead of time, but the 
system creates the hierarchical structure in a data-driven manner. The third 
condition will make use of unsupervised induced grammars from deep morpheme 
sequences along the lines of Schuler et al. (2010). 
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5. Data Sets and Metrics 

All experiments conducted to investigate the proposed research questions will make 
use of the NH corpus described in the introduction. However, as we wish to provide 
a more robust analysis of our questions, we will endeavor to obtain additional data 
sets and use alternate metrics, wherever possible. 

5.1 Additional Data 

Additional data will be sought from two sources. The first will be additional NH 
data. Many, many hundreds of lines of parallel text are available from the NH 
website. When possible, data will be extracted from .pdf documents available there 
and permission sought to use these data for research purposes, ideally obtaining 
non-pdf electronic text versions. Collaborating researchers at the NRC have begun 
the process of requesting these data and have agreed to make any of it available for 
the current research work. The second source of data will be the Inuktitut Magazine, 
an online multi-parallel publication, in English, French, romanized Inuktitut, and 
Inuktitut written in Aboriginal syllabics. Topics in the magazine are broader than 
legislative proceedings, and data from this source would provide a nice contrast to 
the NH corpus data. The same NRC researchers are seeking out permission and 
electronic texts of these data and have also agreed to share them for this research 
work. As of this writing, contact has been made with the Nunavut Legislative 
assembly and the additional NH data were delivered in January 2018 to 
collaborators at the NRC. 

5.2 Additional Test Set 

Ideally, a test set that does not take away from training data and that has been 
independently developed and vetted by native speakers makes for a stronger case 
for making claims in a work of research of this type. However, this type of test set 
is costly, requiring funding and many work-hours to produce. As such, we propose 
a compromise. We will develop an independent test set from additional data sources 
when they become available. The test set will consist of ground-truth, 
morphologically analyzed Inuktitut sentences, with parallel English equivalents. 
Following this, we are seeking to collaborate with the NRC researchers and the 
Assistant Deputy Minister of Culture and Heritage in Iqaluit, Nunavut, Mr 
Stephane Cloutier, whereby we will provide machine-translation capabilities for 
translation efforts in Nunavut in exchange for native-speaker judgments of both 
morphological analysis and translation. If negotiations are successful, we will have 
the means of vetting an independent test set. 
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5.3 Alternate Metrics 

We propose to use BLEU-4 scores and m-BLEU scores for all experiments. We 
will use standard BLEU-4 scores when comparing full words to full words and  
m-BLEU scores when comparing strings of subword units to strings of subword 
units. Whenever possible, we will rejoin subword units to provide an accurate 
comparison against full words. Additionally, if collaborations with Canadian 
researchers provide the means to assess any of the experiments with human 
judgments, we will make use of this resource and will report on those evaluations. 

6. Conclusion 

In conclusion, polysynthetic languages, especially Inuktitut, which is used in 
official government documents in Canada’s Nunavut territory, have been 
overlooked in NLP research.  Because of the nature of polysynthetic languages to 
pack abundant grammatical and lexical concepts into single words, data sets for 
these languages are sparse and present a problem for typical current NLP 
approaches. We present four areas of research leading to improved machine 
translation for Inuktitut to English and English to Inuktitut: 1) we propose to 
improve baseline morphological analysis of Inuktitut using current neural network 
architectures and experimenting with new ones, 2) we propose to improve baseline 
English to Inuktitut machine translation by using subword units, determining the 
optimal units, 3) we will compare a pipelined machine-translation system using a 
deep morpheme translation with conversion to surface morphemes to methods 
developed in #2, and 4) we propose an approach to English to Inuktitut machine 
translation that treats morphemes hierarchically and compare these results to the 
other experimental conditions in the proposed research here. 
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Appendix A. Noun Endings Attested in Nunavut Hansard Corpus 
after Morphologically Analyzing with the Uqailaut Analyzer 
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Case Markers 
  Sing Dual Plur 
Nom  k it 
Gen  up k it 
Acc mik ngnik nik 
Dat mut ngnut nut 
Abl mit ngnit nit 
Loc mi ngni ni 
Sim  tut ktut titut 
Via kkut kkut tigut 
 
Possessive Markers 
 
Singular Possessed - 1st Possessor 
 Sing Dual Plur 
Nom ga vuk vut  
Gen ma nnuk tta  
Acc nnik ttinnik ttinnik  
Dat nnut ttinnut ttinnut  
Abl nnit ttinnit ttinnit  
Loc nni ttinni ttinni  
Sim ttut ttitut ttitut  
Via kkut ttigut ttigut  
 
Singular Possessed - 2nd Possessor 
 Sing Dual Plur 
Nom it tik si  
Gen vit ttik ssi  
Acc nnik ttinnik ssinnik  
Dat nnut ttinnut ssinnut  
Abl nnit ttinnit ssinnit  
Loc nni ttinni ssinni  
Sim ttut ttiktut ssitut  
Via kkut ttikkut ssigut  
 
Singular Possessed - 3rd Possessor 
 Sing Dual Plur 
Nom ni tik tik  
Gen mi mik mik  
Acc minik minnik minnik  
Dat minut minnut minnut  
Abl minit minnit minnit  
Loc mini minni minni  
Sim mitut mittut mittut  
Via migut mikkut mikkut  
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Singular Possessed - 4th Possessor 
 Sing Dual Plur 
Nom nga ngak ngat  
Gen ngata ngata ngata  
Acc nganik ngannik ngannik  
Dat nganut ngannut ngannut  
Abl nganit ngannit ngannit  
Loc ngani nganni nganni  
Sim ngatut ngattut ngatitut  
Via ngagut  ngatigut  
 
Dual Possessed - 1st Possessor 
 Sing Dual Plur 
Nom kka  vut  
Gen kka nnuk tta  
Acc nnik ttinnik ttinnik  
Dat nnut ttinnut ttinnut  
Abl nnit ttinnit ttinnit  
Loc nni ttinni ttinni  
Sim ttut ttitut ttitut  
Via kkut ttigut ttigut  
 
Dual Possessed - 2nd Possessor 
 Sing Dual Plur 
Nom kkik ttik ssi  
Gen kpik ttik ssi  
Acc nnik ttinnik ssinnik  
Dat nnut ttinnut ssinnut  
Abl nnit ttinnit ssinnit  
Loc nni ttinni ssinni  
Sim ttut ttiktut ssitut  
Via kkut ttikkut ssigut  
 
Dual Possessed - 3rd Possessor 
 Sing Dual Plur 
Nom nni ktik ktik  
Gen mmi mmik mmik  
Acc mminik mminnik mminnik  
Dat mminut mminnut mminnut  
Abl mminit mminnit mminnit  
Loc mmini mminni mminni  
Sim  mmittut mmittut  
Via     
 
Dual Possessed - 4th Possessor 
 Sing Dual Plur 
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Nom ngik ngik ngik  
Gen ngita ngita ngita  
Acc nginnik nginnik nginnik  
Dat nginnut nginnut nginnut  
Abl nginnit nginnit nginnit  
Loc nginni nginni nginni  
Sim ngittitut    
Via ngittigut ngittigut ngittigut  
 
Plural Possessed - 1st Possessor 
 Sing Dual Plur 
Nom kka vuk vut  
Gen kka nnuk tta  
Acc nnik ttinnik ttinnik  
Dat nnut ttinnut ttinnut  
Abl nnit ttinnit ttinnit  
Loc nni ttinni ttinni  
Sim ttut ttitut ttitut  
Via kkut ttigut ttigut  
 
Plural Possessed - 2nd Possessor 
 Sing Dual Plur 
Nom tit tik si  
Gen tit ttik ssi  
Acc nnik ttinnik ssinnik  
Dat nnut ttinnut ssinnut  
Abl nnit ttinnit ssinnit  
Loc nni ttinni ssinni  
Sim ttut ttiktut ssitut  
Via ttigut ttikkut ssigut  
 
Plural Possessed - 3rd Possessor 
 Sing Dual Plur 
Nom ni tik tik  
Gen mi mik mik  
Acc minik minnik minnik  
Dat minut minnut minnut  
Abl minit minnit minnit  
Loc mini minni minni  
Sim mititut    
Via mitigut mittigut mittigut  
 
Plural Possessed - 4th Possessor 
 Sing Dual Plur 
Nom ngit ngik ngit  
Gen ngita ngita ngita  
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Acc nginnik nginnik nginnik  
Dat nginnut nginnut nginnut  
Abl nginnit nginnit nginnit  
Loc nginni nginni nginni  
Sim ngititut ngititut ngititut  
Via ngitigut ngitigut ngitigut  
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Appendix B. Verb Endings Attested in Nunavut Hansard Corpus 
after Morphologically Analyzing with the Uqailaut Analyzer
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Subject Markers 
 
Declarative Mood 
 

 Sing Dual Plur 

1st vunga vuguk vugut 

2nd vutit vusik vusi 

3rd vuq vuuk vut 

 
Gerundive Mood 
 

 Sing Dual Plur 

1st junga juguk jugut 

2nd jutit jusik jusi 

3rd juq juuk jut 

 
Interrogative Mood 
 

 Sing Dual Plur 

1st vungaa vinuk vitaa 

2nd vit visik visii 

3rd vaa vak vat 

 
Imperative Mood 
 

 Sing Dual Plur 

1st langa luk ta 

2nd git gissik gipsi 

3rd li lik lit 

 
Causative Mood 
 

 Sing Dual Plur 

1st gama gannuk gatta 

2nd gavit gassik gassi 

3rd gami gamik gamik 

4th mat matik mata 
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Conditional Mood 
 

 Sing Dual Plur 

1st guma gunnuk gutta 

2nd guvit gussik gussi 

3rd guni gunik gunik 

4th pat patik pata 

 
Dubitative Mood 
 

 Sing Dual Plur 

1st mangaarma mangaannuk mangaatta 

2nd mangaaqpit mangaassik mangaassi 

3rd mangaarmi mangaarmik mangaarmik 

4th mangaat mangaatik mangaata 

 
Frequentative Mood 
 

 Sing Dual Plur 

1st jaraangama jaraangannuk jaraangatta 

2nd jaraangavit jaraangassik jaraangassi 

3rd jaraangami jaraangamik jaraangamik 

4th jaraangat  jaraangata 

 
Subject-Object Markers 
 
Declarative Mood 
 

 1s 1d 1p 2s 2d 2p 3s 3d 3p 

1s:    vagit vassik vassi vara vaakka vakka 

1d:     vassik vassi vavuk vaavuk vavuk 

1p:    vattigit vassik vassi vavut vaavut vavut 

2s: varma vattiguk vattigut    vait vaakkik vatit 

2d:       vasik  vasik 

2p:   vattigut    vasi  vasi 

3s: vaanga  vaatigut vaatit vaasik  vanga  vangit 

3d: vaanga  vaatigut vaatit vaatik  vangak  vangik 

3p: vaanga  vaatigut vaatit vaasik  vangat  vangit 
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Gerundive Mood 
 

 1s 1d 1p 2s 2d 2p 3s 3d 3p 

1s:    jagit jassik jassi jara jaakka jakka 

1d:     jassik jassi javuk jaavuk javuk 

1p:    jattigit jassik jassi javut jaavut javut 

2s: jarma jattiguk jattigut    jait jaakkik jatit 

2d:       jasik  jasik 

2p:  jattiguk jattigut    jasi  jasi 

3s: jaanga jaatiguk jaatigut jaatit jaasik jaasi janga jaangik jangit 

3d: jaanga jaatiguk jaatigut jaatit  jaasi jangak jaangik jangik 

3p: jaanga jaatiguk jaatigut jaatit jaasik jaasi jangat jaangik jangit 

 
Interrogative Mood 
 

 1s 1d 1p 2s 2d 2p 3s 3d 3p 

1s:    vagit vassik vassi vigu vaakka vakka 

1d:     vassik vassi    

1p:    vitigit vassik vassi vitigu  vitigit 

2s: vinga  vittigut    viuk vigik vigit 

2d:   vittigut       

2p: visinga  vitigut    visiuk  visigit 

3s: vaanga  vaatigut vaatit vaatik  vauk vagik vagit 

3d: vaanga  vittigut vaatit vaatik  vaak  vittigit 

3p: vaanga  vaatigut vaatit vaatik  vajjuk vagik vagit 

 
Imperative Mood 
 

 1s 1d 1p 2s 2d 2p 3s 3d 3p 

1s:    lagit lassik lassi lagu laakka lakka 

1d:     lassik lassi lavuk  lavuk 

1p:     lassik lassi lavut  lavut 

2s: nnga tiguk tigut    guk kkik kkit 

2d: ttinga tiguk tigut    tikku tikkik tikkit 

2p: singa tiguk tigut    siuk  sigit 

3s: linga  litigut litit litik lisi liuk likkik ligit 

3d: linga  litigut litit litik lisi  likkik likkit 

3p: linga  litigut litit litik lisi  likkik ligit 
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Causative Mood 
 

 1s 1d 1p 2s 2d 2p 3s 3d 3p 

1s: maanga  maatigut maatit gassik gassi magu magik magit 

1d:    gattigit gassik gassi gattigu  gattigit 

1p:    gattigit gassik gassi gattigu  gattigit 

2s: gavinga gattiguk gattigut    gaviuk gavigik gavigit 

2d: gattinga gattiguk gattigut      gattikit 

2p:  gattiguk gattigut    gassiuk   

3s: gaminga      gamiuk gamigik gamigit 

3d: gaminga         

3p: gaminga      gamijjuk gamigik gamigit 

 
Conditional Mood 
 

 1s 1d 1p 2s 2d 2p 3s 3d 3p 

1s: paanga  paatigut paatit paatik gussi pagu pagik pagit 

1d:     gussik gussi guttigu   

1p:     gussik gussi guttigu   

2s: guvinga guttiguk guttigut    guviuk guvigik guvigit 

2d:  guttiguk guttigut       

2p:  guttiguk guttigut    gussiuk   

3s: guninga  gunitigut    guniuk  gunigit 

3d: guninga  gunitigut       

3p: guninga  gunitigut    gunijjuk  gunigit 

 
Dubitative Mood 
 

 1s 1d 1p 2s 2d 2p 3s 3d 3p 

1s: mangaanga mangaatiguk mangaatigut mangaatit mangaatik mangaasi mangaagu mangaagik mangaagit 

1d:    mangaattigit mangaassik mangaassi mangaattigu mangaattigik mangaattigit 

1p:    mangaattigit mangaassik mangaassi mangaattigu mangaattigik mangaattigit 

2s: mangaaqpinga mangaattiguk mangaattigut    mangaaqpiuk mangaaqpigik mangaaqpigit 

2d:  mangaattiguk mangaattigut       

2p:  mangaattiguk mangaattigut    mangaassiuk   

3s: mangaarminga      mangaarmiuk  mangaarmigit 

3d: mangaarminga         

3p: mangaarminga        mangaarmigit 
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Frequentative Mood 
 

 1s 1d 1p 2s 2d 2p 3s 3d 3p 

1s:    jaraangakkit jaraangassik jaraangassi jaraangagu  jaraangakkit 

1d:     jaraangassik jaraangassi jaraangattigu   

1p:     jaraangassik jaraangassi jaraangattigu   

2s:  jaraangattiguk jaraangattigut      jaraangavigit 

2d:  jaraangattiguk jaraangattigut       

2p:  jaraangattiguk jaraangattigut       

3s:          

3d:          

3p:          
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Appendix C. Number of Surface Morpheme Realizations per 
Deep Morphemes
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Here we present the number of surface morphemes per deep morpheme attested in 
the Nunavut Hansard (NH) corpus after morphological analysis with the Uqailaut 
analyzer, counting only the first analysis if there are multiple analyses. The first 
number is the number of realizations per deep morpheme, the second number is 
frequency of those realization counts. The minimum is 1, the maximum is 77, with 
the mode being 1 and the mean 3.395 and the median 4: 

 

1: 1063 

2: 484 

3: 460 

4: 283 

5: 144 

6: 97 

7: 72 

8: 71 

9: 46 

10: 39 

11: 26 

12: 24 

13: 17 

14: 11 

15: 11 

16: 2 

17: 5 

18: 7 

19: 4 

20: 4 

21: 4 

23: 1 

24: 3 

26: 1 

27: 1 

28: 1 

31: 1 

34: 1 

37: 1 

38: 1 

43: 1 

52: 1 

77: 1 

 

To give an example, we look at the deep morphemes from the word 
“mivviliarumalauqturuuq” (presented earlier in this text). We see a variety of 
spellings for each morpheme. Each morpheme is listed in its dictionary form, 
followed by a comma-separated list of surface spellings, with the number of times 
each spelling occurs: 

 

mik/1v: mi:206, mig:2, mik:9, mil:1, min:21, ming:1, mip:2, mit:220, miv:113 
vik/3vn: pvi:43, pvik:9, pvim:16, pvin:2, pving:1, pvit:1, vi:16083, vig:55, 

vik:1388, vil:6, vim:1482, vin:633, ving:955, vis:4, vit:120, vvi:2643, vvig:5, 
vvik:297, vvil:3, vvim:228, vvin:105, vving:151, vvit:7 

liaq/2nv: ili:10, iliaq:1, lia:244, liaq:469, liar:312, liat:2, sia:166, siaq:208, siar:92 
juma/1vv: guma:2807, juma:9562, ruma:7511, suma:42, tuma:263 
lauq/1vv: lau:5350, lauq:12996, laur:6449, laut:10 
juq/tv-ger-3s: juq:649, jur:6, tuq:3 
guuq/1q: guu:29, guuq:155, ruuq:10 
 



 

Approved for public release; distribution is unlimited. 
52 

Appendix D. Phonemes of Inuktitut
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Here we present the phonemes of Inuktitut according to Mallon1 
(Table D-1). 

Table D-1 Consonant phonemes of Inuktitut1 

 Place of articulation 

Labial Alveolar Palatal Velar Uvular 

Manner of 
articulation 

Voiceless stops p t  k q 

fricatives  s, ɬ    

Voiced  v l j g r 

Nasal  m n  ŋ [N] 

 

Alveolar fricative ɬ is written as “&” in the Nunavut Hansard corpus. 

Uvular nasal [N] is a phone, not a unique phoneme. It is an allophone of the uvular 
/q/. It should be written as “r” but there is confusion among native speakers on when 
to write “r” and when to write “q”. 

 

                                                 
1 Mallon M. Inuktitut linguistics for technocrats. Ottawa (Canada): Inuktitut Computing; 2000 
[accessed 2018]. http://www.inuktitutcomputing.ca/ Technocrats/ILFT.php. 
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Appendix E. Inuktitut Syllabics



 

Approved for public release; distribution is unlimited. 
55 
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List of Symbols, Abbreviations, and Acronyms 

BiLSTM bidirectional LSTM 

BLEU Bilingual Evaluation Understudy Score 

BPE byte pair encoding 

CNN convolutional neural network 

LSTM long-short term memory network 

NH Nunavut Hansard 

NLP natural language processing 

NMT neural machine translation 

NRC National Research Council 

SMT statistical machine translation 

SRNN segmental recurrent neural network 
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