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For embodied agents that interact with people in time-sensitive applications, such as robot assistants or au-
tonomous characters in video games, effectiveness can depend on responsive and adaptive behavior in dynamic
environments. To support such behavior, agents’ cognitive and physical systems can be modeled in a single,
shared language of dynamical systems, an integrated design that supports performance with mechanisms not
readily available in other modeling approaches. In this paper, we discuss these general ideas and describe
how hybrid dynamical cognitive agents (HDCAs) employ such integrated modeling, resulting in dynamically
sensitive user interaction, task sequencing, and adaptive behavior. We also present results of the first user-
interactive applications of HDCAs: As demonstrations of this integrated cognitive-physical intelligence, we
implemented our HDCAs as autonomous players in an interactive animated Tag game; resulting HDCA be-
havior included dynamic task re-sequencing, interesting and sensible unscripted behavior, and learning of a

multi-faceted user-specified strategy for improving game play.

1 INTRODUCTION

In interactive applications such as video games or
personal robotics, embodied agents should be adap-
tive and responsive to users. In this paper, we present
an intelligence modeling framework that supports
these qualities: Influenced by dynamicist cognitive
science —the study of mind as a dynamical system
rather than a discrete, computational one (Port and
van Gelder, 1995; Spivey, 2007)— our dynamical in-
telligence model integrates the physical and cognitive
sub-systems of an agent in a shared language of dif-
ferential equations, providing a unified, dynamically
sensitive substrate for behavior. In particular, we de-
scribe how hybrid dynamical cognitive agents (HD-
CAs) (Aaron and Admoni, 2009; Aaron and Admoni,
2010) can reflect these ideas of integrated dynamical
intelligence, and to illustrate these ideas, we present
the first user-interactive applications of HDCAs.

The design of HDCASs’ cognitive systems is influ-
enced unconventionally by the belief-desire-intention
(BDI) theory of intention (Bratman, 1987) and its im-

plementations (e.g., (Georgeff and Lansky, 1987) and
successors), which established that BDI elements (be-
liefs, desires, intentions) are an effective foundation
for goal-directed intelligence. Unlike typical BDI
agents, HDCAs’ cognitive models interconnect BDI
elements in a continuously evolving system inspired
by spreading activation frameworks (Maes, 1989).
Each BDI element in an HDCA is represented by an
activation value, indicating its salience and intensity
“in mind” (e.g., intensity of commitment to an inten-
tion), and cognitive evolution is governed by differ-
ential equations, with activation values affecting rates
of change of other activations. HDCAs employ these
dynamical cognitive representations on both reactive
and deliberative levels, distributing goal-directed in-
telligence over both levels. For example, HDCASs can
re-order task sequences simply by evolution of dy-
namical intentions, without propositional deliberation
(Aaron and Admoni, 2009).

The physical systems of HDCAs —comprising
the elements pertinent for navigation, i.e., Xy-location,
velocity, and heading angle— are also modeled by



differential equations; for this paper, HDCAS’ nav-
igation intelligence is based on (Goldenstein et al.,
2001). Thus, physical and cognitive systems in HD-
CA:s are unified in the common language of differen-
tial equations, which is critical to the HDCA learning
demonstrations in section 3.3.

Along with the continuous evolutions of cog-
nitive activations and physical variables, discrete
changes —e.g., transitions from one task or behavior
to another— can occur when activations reach pre-
specified thresholds. Thus, we formally model an
HDCA as a hybrid dynamical system (hybrid system,
for short) (Alur et al., 2000). Discrete task transitions
also illuminate the roles of intentions and sequencing
intentions (see section 2.1) in our HDCAs: Conceptu-
ally, sequencing intentions have activations that rep-
resent intentions to perform tasks in a temporal rela-
tionship (e.g., to perform X before Y), as distinct from
standard intentions associated with individual tasks.
(In this paper, we consider only HDCAs with one
intention for each task.) Sequencing intentions are
critical elements of guards—threshold conditions for
when discrete transitions occur— in agents’ hybrid
systems, so dynamical task re-sequencing emerges or-
ganically from continuous cognition.

As a motivating example for the ideas in this pa-
per, consider a child playing Tag, avoiding a player
designated as It as well as other obstacles. She wants
to accomplish many things before the game ends: ac-
tively protect a friend in the game for a while; ac-
tively try to become It and tag an adversary; and
reach several bases, locations where she cannot be
tagged by It. She can only do one of these tasks at
a time, so she begins with an intended task sequence
that achieves her goals, but as the game proceeds, she
re-sequences tasks in response to her environment.
Moreover, while playing, her behavior shows sensi-
ble subtleties, such as making decisions a bit more
quickly when she’s comfortably near her goal.

In demonstrations for this paper, such a player is
implemented as an HDCA in an interactive, animated
Tag game, illuminating the capabilities of integrated
dynamical intelligence. In conventional agents, for
example, task re-sequencing such as the child per-
forms is deliberative, but in HDCAs, it arises from
sub-deliberative cognitive evolution. Moreover, our
integrated modeling enables moment-by-moment in-
teractions among elements considered cognitive and
those considered physical, which evoke micro-scale
effects that can cascade into observable effects (see
section 3.2). We also demonstrate how an HDCA can
learn a multi-faceted Tag strategy, perhaps based on
user input during a game, extending previous HDCA
learning methods to this application domain.

2 HYBRID DYNAMICAL
COGNITIVE AGENTS

HDCAs can be viewed as having physical and
cognitive sub-systems, composed of the differential
equations and variables describing the behavior con-
ventionally considered physical or cognitive, respec-
tively; BDI elements are thus considered cognitive,
while xy-location and heading angle ¢ are physi-
cal. HDCAs are implemented by augmenting phys-
ical systems with cognitive BDI elements and their
activation values. For this paper, cognitive activa-
tions are within [—10, 10], where near-zero values in-
dicate low salience and greater magnitudes indicate
greater intensity of associated concepts—e.g., more
active intentions represent more commitment to the
related tasks. Negative values indicate salience of the
opposing concept, so, e.g., a moderate desire to not
cycle the bases and strong commitment to protect a
friend could be encoded by value —3 on a desire for
runBases and value 9 on an intention for protect.

Our HDCAS’ cognitive activations are intercon-
nected in differential equations. A partial cognitive
system —with many equations omitted and terms
elided in equations shown— is in equation 1, in which
beliefs, desires, and intentions are represented by
variables beginning with b, d, and i, and time deriva-
tive variables are on the left in each equation:

dRun = —c;-bAmit+cs-iRun+... (1)
iTag = d;-bAmit—ds;-dRun+d,-iTag+...
iRun = —e;-bAmMIt—ey-dTag+es-iRun+...

This illustrates interconnectedness: Elements have
excitatory or inhibitory influence on activations by in-
creasing or decreasing derivatives. In equation 1, vari-
ables stand for activations of cognitive elements such
as the desire to run around the bases (dRun) and the
belief that the agent is It (bAmit); coefficients repre-
sent the impacts of the connections between elements.

2.1 Our HDCA Implementation

Because HDCA behavior consists of switching
among multiple, continuous behaviors, our HDCA
implementation is based on a hybrid automaton (Alur
et al., 2000), a state-transition model of hybrid sys-
tems. Each hybrid automaton has discrete modes rep-
resenting individual behaviors or tasks, each having
differential equations that govern variables’ evolution
in that mode, and guard constraints describing when
mode transitions occur (see Figure 2). We straight-
forwardly implemented and simulated our HDCAs as
hybrid systems in MATLAB, with modes as functions
containing guards for mode transitions and dynamical



systems for agent evolution. Within the hybrid au-
tomaton structure, our HDCAs also include the struc-
tures described below for dynamical intelligence.

211 Task Sequencing

In addition to standard intentions, our HDCAs have
sequencing intentions for dynamic task sequencing.
In this paper, we implement sequencing intentions as
pairs; the activation of sequencing intention (A, B) is
the difference in activations of corresponding inten-
tions, iA—iB, representing the commitment to per-
forming action A before action B. To determine task
sequence in an HDCA with actions a1 .. . o, for each
action o, we sum activations on the k sequencing in-
tentions with o in the first position; the descending
order of these associated sums induces a sequence on
the actions. Sequencing intentions could in principle
encode other concepts, but this suffices to illustrate
integrated intelligence in HDCAs.

Activations on intentions and sequencing inten-
tions evolve over time, so at any time, a new action o
might attain maximum priority and re-sequence tasks.
When a task is finished, intentions and sequencing in-
tentions are altered to reflect that, and the agent con-
tinues in the new maximal-priority action.

2.1.2 Cognitive-Physical I ntegration

Because of integrated intelligence in HDCAs, any
variable, cognitive or physical, could affect any other
variable. To illustrate how any physical element in
HDCAs could subtly affect any aspect of cognitive
state, we demonstrate an extreme case: physical el-
ements considered “involuntary” affecting cognitive
elements considered “subconscious.” In particular,
we encode that cognitive dynamics, as specified by
differential equations governing activation evolutions,
should accelerate slightly when the agent is more “re-
laxed,” i.e., near a target location and not turning
rapidly. To do this, we construct a physical-cognitive
multiplier pcm so that physical values can affect ac-
tivations of BDI elements: values of pcm range from
1to 1+ p, where p is a designer-specified parame-
ter, and intensify cognitive evolution by multiplica-
tion with time derivatives, e.g., iTag = pcm- iTag -
timeStep+.. ., instead of iTag = iTag- timeStep+ ... ..

The pcm function in our demonstrations begins
with function e*1(191+4) of angular velocity ¢ and cur-
rent distance d from the target, so that when (|¢| +d)
is close to 0, the function value is close to 1, and as
(6| +d) gets larger, the function value gets closer to
0. Designer-chosen constant k; > 0 controls the rate
at which values approach 0 as (|¢|+d) grows. Build-

ing upon this, to get our desired effect, we chose:

. ko
pcm=1+p <% sin‘l(e‘k1<¢+d))) )

This enables a boost as agents near targets and stop
turning, with much less effect outside of the desired
range for (o] +d); it could be changed for different
effects. (Parameter values for our demonstrations are
available at (Aaron et al., 2011).)

3 EXPERIMENTS

As a demonstration domain for our HDCAs, we
implemented animated interactive Tag games contain-
ing a user player and two kinds of autonomous play-
ers: simple Tag agents, HDCAs with limited intel-
ligence; and cognitive Tag agents, with more exten-
sive dynamical intelligence. Agents intuitively inter-
act with other agents and the user: Each It agent pur-
sues some non-It player; each non-It agent avoids It
players and views non-It players as safe. To make the
game more adversarial, agents also have slight anti-
user biases, and two players at a time are It. The
field of play (Figure 1) is a square with bases near the
corners, obstacles between bases, and other players.
Players touching base cannot become It, but they can-
not stay on base too long before moving away. Players
are penalized for touching an obstacle.

3.1 Autonomous Tag Players

A risk-averse non-It player could simply run clock-
wise from base to base, hoping not to be forced into
a position to get tagged. A simple Tag agent (STA)
executes that strategy. When an STA S becomes |It,
it chooses from two possible It-actions: chasing the
user; or chasing an agent. If another It player is chas-
ing the user, Sjoins the chase; if not, Stries to tag
the closest non-1t agent. In addition, if S engages
in one of these It-actions for a long time, “boredom”
sets in, represented by attenuation on the correspond-
ing intention activation, so S will eventually switch
to the other It-action. Unlike a cognitive Tag agent
(CTA), an STA’s cognitive structure is a very simple
dynamical intention-based system, straightforwardly
supporting only the design and behavior noted above.

A cognitive Tag agent more fully demonstrates
dynamical intelligence and cognitive-physical inte-
gration; see Figure 2 for its mode-level architecture
and BDI elements. When a CTA C is not It, it will
try to accomplish all of the following actions be-
fore the game ends: runBases, cycling the bases (as
STAs do); getMitten, retrieving its mitten (which
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Figure 1: An annotated screen shot of our Tag game, illustrating field layout and players on the field, including simple Tag
agents (STAs) and cognitive Tag agents (CTAs). Color variations distinguish entities, as does the convention that players,
human-controlled or automated, are numbered, while bases and obstacles are not. The program indicates the base to which
the cognitive Tag agent is heading by drawing a light circle around that base. See supplementary website (Aaron et al., 2011)
for further details of color, notation, and function of elements in our animated Tag games.

the poor agent drops in every game); protect, spend-
ing time protecting a friend from being tagged; and
readyToTag, trying to become It and tag an adver-
sary. The getMitten action is implemented by se-
lecting a time when, wherever C is, its mitten drops;
soon after, C finds the mitten’s location, and activa-
tions on BDI elements evolve until, in general, mitten-
retrieval becomes C’s highest priority. To enable
protect and readyToTag, C has beliefs of affinities
for each player in the game, and C will protect a non-
It player with maximal affinity during protect, and
pursue a non-It player with minimal affinity during
readyToTag. These non-It actions are dynamically
re-sequenced, based on time pressure, affinities, and
proximity to locations (e.g., a base, an adversary).
When a CTA is I, it either follows through on a
readyToTag action or selects between pursuing the
user or an automated player, exactly as an STA would.

3.2 Experiments

We performed various demonstrations of HDCA in-
telligence. Some were proofs that our ideas work
as expected in sensible environments. One showed
that CTAs can follow instructions, e.g., that cogni-
tive evolution need not prevent them from completing
tasks in accord with initial intention activations. An-
other illustrated physical-cognitive multiplier pcm: In
a contrived situation, two cognitively identical CTAs
were equally near a target, one facing the target, the
other facing away; the CTAs then changed heading
angle as usual, but not position. As a result, the CTA
facing the target had higher pcm values and changed

task-modes faster than the other CTA. These are all
expected demonstrations of proper performance; for
more details, see (Aaron et al., 2011).

In other experiments, specific values were var-
ied in controlled environments, to investigate partic-
ular effects. As examples, we simulated many game
segments with identical CTA C; initially, C’s inten-
tions implied task order [readyToTag, runBases,
protect, getMitten]. Across simulations, two fac-
tors varied —when C dropped its mitten; and when
C was tagged by the user (which was automated,
for replicability)— to illuminate dynamicist effects in
game play. As mitten-drop grew later with get-tagged
held constant, for example, the time at which C moved
from readyToTag into runBases was not affected,
but the time at which C then entered protect tended
to get earlier. In addition, for particular values of
mitten-drop and get-tagged, C entered protect mode
—in which movement is not obstacle-avoidant— at
an inopportune moment and ran straight into an It
player. This sequence of events and ensuing cascade
of effects illustrates how engaging, unscripted behav-
ior can emerge from the continuous-level variations
supported by our HDCA framework.

For additional details and other results, including
natural game play, see (Aaron et al., 2011).

3.3 Learning

To support learning from unpredictable users,
cognitive-physical integration is maximally flexible:
All physical and cognitive variables can be intercon-
nected, and any connection can be modified by learn-
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Figure 2: The mode-level architecture and BDI elements of a cognitive Tag agent. Each mode also has self-transitions, omitted

by convention to avoid visual clutter.

ing. For our demonstrations, HDCAs are trained by
reinforcement learning similar to that in (Aaron and
Admoni, 2010), which requires heuristics selecting
which connections to modify during learning and cri-
teria for when learning is complete. Learning occurs
without interrupting interactive applications.

As preparation, we first determined control condi-
tion behavior by letting a game play extensively (for
more than 8000 simulated seconds), with an auto-
mated user for replicability. In this game setup, when
a cognitive Tag agent Cgy became It, Cgr would al-
most always tag some other player in less than 25 sim-
ulated seconds (average: 12.85 seconds). In addition,
the value agy of the average number of bases reached
per execution of the runBases behavior, over the full
game, was agy = 4.01 (see Figure 3).

Based on this, we demonstrated a CTA C learning
from a simulated user request to change one aspect
of game play without affecting another; it exempli-
fies an arbitrary user choice, unrelated to agent de-
sign and substantively changing control behavior. The
goal had two components: speed change, requiring
speed-only learning; and base-running maintenance,
requiring speed-and-bases (SB) learning.

e peed change: After becoming It, C should opti-
mally tag some other player between 25 and 45
seconds later. Speed-only training (and thus par-
tial SB training, see below) occurs when C tran-
sitions out of chase mode. If the time C was It
is outside of the desired range (25-45 seconds), C
is trained to become slower or faster, as appropri-
ate, by a factor that depends on exactly how far
outside of the desired range C was It.

e Base-running maintenance: Despite the effects
of speed-only learning, C should only minimally

change the value ac of the average number of
bases reached during each runBases behavior.
SB training occurs when C transitions out of
runBases mode: ac is updated, and coefficients
in cognitive differential equations are altered to
train C to approach the desired, control value
of 4.01 in the future. As a partial example, if
ac < 4.01, coefficients in the differential equation
governing iRun are altered so that C tends to re-
main longer in runBases, encouraging greater ac
in the future. The amounts altered depend on val-
ues such as the velocity of C when training occurs,
exemplifying cognitive-physical integration: Val-
ues of physical variables affect cognitive adjust-
ments.

To focus our demonstrations, the connections mod-
ified during training were pre-selected, though the
adjustments were autonomous. More details on the
learning process are available at supplementary web-
site (Aaron et al., 2011).

Our tests demonstrate C successfully learning
integrated cognitive-physical behavior during game
play: C slowed to spend more time as It before tag-
ging another player (average time: 32.62) while also
maintaining a bases average of ac = 4.21, very close
to 4.01. Figure 3 illustrates the effects of SB learning
on ac and base-running performance. Additionally,
Figure 3 shows that speed-only learning without full
SB learning resulted in a value of ac = 2.19 in other-
wise identical game play, suggesting the importance
of integrated learning for the desired goal.
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Figure 3: Results of learning. Lines correspond to the control condition agent (in dark blue, dotted line; circle data points), a
speed-only agent trained only to change its speed to meet criteria for time spent as It (mid-dark orange; diamond points), and
a speed-and-bases agent trained to both change its speed and change its cognitive system, to have a desired amount of time
spent as It and a runBases bases-average close to that in the control condition (light green line; triangle points).

4 CONCLUSION

This paper describes the integrated cognitive-
physical intelligence underlying our HDCAs, and
it presents the first applications of HDCAs in in-
teractive scenarios. Agent cognition in our HD-
CAs is based on continuously evolving activations of
BDI-based cognitive elements, enabling a model that
unites cognitive and physical intelligences in a single
system; as a result, HDCAs extend conventional re-
activity without sacrificing real-time responsiveness.
Demonstrations in an animated Tag game suggest
that integrated dynamical intelligence supports reac-
tive task sequencing and sensible unscripted behavior
that could improve game play, and that HDCAs can
exploit cognitive-physical integration to learn multi-
faceted strategies during play. These examples il-
lustrate general principles that could apply to unpre-
dictable learning requirements during games or other
interactive applications, for virtual or physical agents.

Acknowledgments

The authors thank Jim Marshall, Tom Ellman,
and Michael Littman for their comments on previous
versions of this paper, and the Wesleyan University
Hughes Program for funding support. The third au-
thor is supported by a National Science Foundation
Graduate Research Fellowship.

REFERENCES

Aaron, E. and Admoni, H. (2009). A framework for dynam-
ical intention in hybrid navigating agents. In Inter-
national Conference on Hybrid Artificial Intelligence
Systems, pages 18-25.

Aaron, E. and Admoni, H. (2010). Action selection and
task sequence learning for hybrid dynamical cog-
nitive agents. Robotics and Autonomous Systems,
58(9):1049-1056.

Aaron, E., Admoni, H., and Mendoza, J. (2011). Sup-
plementary website for this paper.  Awvailable at
http://eaaron.web.wesleyan.edu/icaart11supp.html.

Alur, R., Henzinger, T., Lafferriere, G., and Pappas, G.
(2000). Discrete abstractions of hybrid systems. Pro-
ceedings of the IEEE, 88(7):971-984.

Bratman, M. (1987). Intentions, Plans, and Practical Rea-
son. Harvard University Press, Cambridge, MA.

Georgeff, M. and Lansky, A. (1987). Reactive reasoning
and planning. In AAAI-87, pages 677-682.

Goldenstein, S., Karavelas, M., Metaxas, D., Guibas, L.,
Aaron, E., and Goswami, A. (2001). Scalable nonlin-
ear dynamical systems for agent steering and crowd
simulation. Computers And Graphics, 25(6):983-998.

Maes, P. (1989). The dynamics of action selection. In
IJCAI-89, pages 991-997.

Port, R. and van Gelder, T. (1995). Mind as Motion: Ex-
plorations in the Dynamics of Cognition. MIT Press,
Cambridge, MA.

Spivey, M. (2007). The Continuity of Mind. Oxford Univer-
sity Press, New York.



