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Abstract. This paper describes a reactive navigation method for autonomous
agents such as robots or actors in virtual worlds, based on novel dynamic tangent
obstacle representations, resulting in exceptionally successful, geometrically sen-
sitive navigation. The method employs three levels of abstraction, treating each
obstacle entity as an obstacle-valued function; this treatment enables extraordi-
nary flexibility without pre-computation or deliberation, applying to all obstacles
regardless of shape, including non-convex, polygonal, or arc-shaped obstacles in
dynamic environments. The unconventional levels of abstraction and the geomet-
ric details of dynamic tangent representations are the primary contributions of this
work, supporting smooth navigation even in scenarios with curved shapes, such
as circular and figure-eight shaped tracks, or in environments requiring complex,
winding paths.

1 Introduction

For autonomous agents such as robots or actors in virtual worlds, navigation based on
potential fields or other reactive methods (e.g., [3,4,6,9,10]) can be conceptually ele-
gant, robust, and adaptive in dynamic or incompletely known environments. In some
methods, however, straightforward geometric representations can result in ineffective
obstacle avoidance or other navigation difficulties. In this paper, we introduce reac-
tive navigation intelligence based on dynamic tangent obstacle representations and re-
pellers, which are locally sensitive to relevant obstacle geometry, enabling effective
navigation in a wide range of environments.

In general, reactive navigation is fast and responsive in dynamic environments, but it
can be undesirably insensitive to some geometric information in complicated navigation
spaces. In some potential-based or force-based approaches, for instance, a circular ob-
stacle would be straightforwardly treated as exerting a repulsive force on agents around
it, deterring collisions; as an example, Figure 1 illustrates an angular repeller form em-
ployed in [5,7,8], in which a circle-shaped obstacle obsi repels circle-shaped agent A by
steering A’s heading angle away from all colliding paths. (See Section 2 for additional
information on this kind of angular repeller.) Straightforwardly, the repeller representa-
tion of obstacle obsi is based on the entire shape of obsi. Such a straightforward con-
nection between the entire shape of an obstacle entity and the repeller representation
of that entity, however, is not always so successful. Some common obstacle entities,
for example, have shapes inconsistent with otherwise-effective navigation methods; for
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Fig. 1. Obstacle avoidance, with agent A, obstacle obsi, and other elements as labeled. When
heading angle φ is inside the angular range delimited by the dotted lines—i.e., when some point
ofA is not headed outside of obsi—A is steered outside of that angular range, avoiding collision.

example, navigation methods requiring circle-based obstacle representations [2,3,5,7]
can be ineffective with obstacles that have long, thin shapes, such as walls.

Indeed, our work is motivated by difficulties in applications requiring navigation near
or along walls in dynamic environments, such as boundary inspection [1] or navigation
in hallways. For this paper, we distinguish between boundary-proximate and boundary-
distant navigation: Boundary-proximate behaviors require navigation along obstacle
boundaries, whereas boundary-distant behaviors require only collision avoidance, which
tends to deter proximity to obstacle boundaries. Boundary-distant reactive behaviors
can often be straightforwardly achieved by, e.g., potential-based navigation that em-
ploys forceful repellers and ignores details such as concavities in obstacle shapes.
Boundary-proximate reactive behaviors, however, are more challenging. This paper is
thus focused on boundary-proximate behaviors (although as noted in Section 5, our
method supports both kinds of behavior), presenting efficient, geometrically sensitive,
dynamic obstacle representations that support boundary-proximate navigation.

In particular, this paper introduces dynamic tangent (DT, for short) obstacle rep-
resentations as intermediaries between obstacle entities and repeller representations.
Dynamic tangent-based DT navigation treats each obstacle entity as an obstacle-valued
function, which returns an obstacle representation: For each agent A, at each timestep
in computing navigation, each perceived obstacle entity (e.g., a wall, a polygon, another
navigating agent) is represented by a dynamic tangent obstacle representation; each ob-
stacle representation is mathematically modeled as an angular range of repulsion—or,
alternatively, as the part of the obstacle entity within that angular range from which A
is repelled. Hence, unlike other approaches in which only two levels of information are
reflected in obstacle modeling, DT navigation employs a three-tiered structure:

1. the obstacle entity—the full geometric shape of the entity in the environment;
2. the obstacle representation—the DT representation abstracted from the obstacle

entity, i.e., the locally usable geometry upon which a repeller form is based;
3. and the repeller representation—the mathematical function encoding the angular

repulsion ascribed to the obstacle entity.
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The additional level of abstraction in this three-level structure and the geometric
details of our DT representations are the primary contributions of this paper. The math-
ematical functions for the repeller representations in our DT navigation are similar to
those of a standard mathematical form described in [2,5,8], and based on only three
arguments: the minimum distance from agent A to a nearest point pm on an obstacle
entity; the difference φ−ψ between heading angle φ of A and angle ψ from A to pm; and
an angular range of repulsion Δψ, which controls the spectrum of heading angles from
which the obstacle will repel the agent. The resulting DT representations are effective
and efficient, and they satisfy desirable properties of obstacle representations—such as
proximity, symmetry, and necessary and sufficient repulsion—that underlie successful
navigation in other methods (see Section 4).

Indeed, as detailed in Section 3, DT representations enable exceptionally effective,
geometrically sensitive navigation without pre-computation or deliberation. Even in
simulations of non-holonomic agents (e.g., robots) moving at constant speed, DT repre-
sentations result in smooth, successful navigation in scenarios with complicated paths,
moving walls, or curved shapes such as circular or figure-eight shaped tracks.

2 Repellers

The repellers underlying our DT representations are based on the same mathematics as
in [5,7], although our repellers are capable of expressing a wider range of configura-
tions. In this section, we describe these repellers, summarizing previous presentations
of the underlying mathematics and emphasizing particulars of our design.

In broad terms, DT navigation is an application of dynamical systems-based behavior
modeling [8]. For this paper, and consistent with related papers [5,7], agents are circular
and agent velocity is constant throughout navigation—obstacle avoidance and target
seeking arise only from the dynamical systems governing heading angle φ. As noted in
[2] and elsewhere, velocity could be autonomously controlled, but our present method
shows the effectiveness of DT representations even without velocity control.

The repellers themselves in DT navigation are angular repeller functions, dynam-
ically associated with obstacles based on local perception, without pre-computation.
Most of the mathematical ideas underlying these functions remain unchanged from
[5], thus retaining strengths such as competitive behavioral dynamics and some resis-
tance to problems such as local minima. (See [5,7,8] for details about strengths of this
particular repeller design.) Conventionally, with these repellers, every obstacle entity is
represented using only circles, and circles’ radii determine the associated repeller repre-
sentations; in the underlying mathematics [5], however, repellers do not actually depend
on circles’ radii, but only on angular ranges of repulsion. Previous presentations do not
emphasize that these angular ranges need not be derived from radii, nor that requiring
a circle (thus a radius r ≥ 0) for the repellers can restrict the expressiveness of obsta-
cle representations: A point obstacle at the intersection of the dotted lines in Figure 1,
for instance, would have the same angular range of repulsion as obstacle obsi; because
no entity could be smaller than a point, no smaller range could occur from an obstacle
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at that location. Smaller ranges, however, could be productively employed by variants of
these previous techniques, for more flexible and sensitive navigation dynamics. In this
section, we describe our repellers, which are based on angular ranges, and in Section 3,
we describe the particular angular ranges calculated for DT navigation.

To briefly summarize work from [7] and other papers, the evolution of agent heading
angle φ during navigation is determined by angular repellers and angular attractors in a
dynamical system of the form

φ̇ = |wtar|ftar + |wobs|fobs + noise, (1)

where φ̇ is the time derivative of φ (by convention, dotted variables are time derivatives),
ftar and fobs are functions representing targets and obstacles, respectively—the con-
tributions of attractors and repellers to agent steering—and wtar and wobs are weight
functions for each term. (The noise term prevents undesired fixed points in the dynam-
ics.) Thus, at each timestep, φ̇ is calculated for steering at that moment, naturally and
reactively accommodating new percepts or changes in the environment. A target is rep-
resented by a simple sine function:

ftar = −a sin(φ− ψtar). (2)

This function induces a clockwise change in heading direction when φ is counter-
clockwise with respect to the target (and symmetrically, counter-clockwise attraction
when φ is clockwise), thus attracting an agent.

Obstacle functions are more complicated, encoding windowed repulsion scaled by
distance, so that more distant repellers have weaker effects than closer ones, and re-
pellers do not affect agents already on collision-free paths. (Full details are in [7],
which we only concisely summarize here.) For an obstacle obsi, the angular repeller
in DT navigation is the product of three functions:

Ri =
φ− ψi

Δψi
e
1−|φ−ψiΔψi

| (3)

Wi = tanh(h1(cos(φ−ψi)−cos(Δψi+σ)))+1
2

(4)

Di = e−
dm
d0 . (5)

Function Ri is an angular repeller with angular width Δψi, centered around heading-
angle value ψi (see Figure 1); windowing function Wi limits repulsion to have signifi-
cant effects only within Δψi (plus a safety margin σ) from ψi; and scaling function Di

limits the strength of the overall repulsion based on dm, the minimum distance between
the agent and the obstacle. (Designer-chosen constant d0 is a scaling parameter for Di.)
Each repeller, then, is a product fobsi = Ri ·Wi ·Di, and for navigation, contributions
of individual repellers are summed to fobs =

∑
i fobsi and then combined with ftar in

the weighted sum of Equation 1 to control steering. The weights themselves are deter-
mined by a system of competitive dynamics for reactive behavior selection; full details
are available in [5].



Dynamic Obstacle Representations for Robot and Virtual Agent Navigation 5

β1

A

r
A

cA cA Δψ
E

E
E

eA eAeA

β1
s

D

s

D

(a)

s

DΔψ
vm

φ

vm

Δψ

φ

vm

(b) (c)

β2β2β2

β1φ

pm pm pm
cA

r
A

A

r
A

A

Fig. 2. Default, non-boundary case DT representations for various obstacle entity shapes. In all
cases, 2Δψ is chosen to be the angular range subtended by a segment of length 2D constructed
around point pm, perpendicular to vector vm .

3 Dynamic Tangent Obstacle Representations

Because of the additional level of abstraction for DT representations, the dynamic
sensitivity of the repellers in Section 2 is enhanced by increased flexibility and local
sensitivity to geometry, without deliberation or pre-computation. DT representations
are constructed from locally relevant portions of obstacle entities’ shapes, which for
this paper are presumed to be always either straight lines or arcs of circles. Based on
this, we consider three possible cases for any relevant component shape of an obstacle:
straight line, convex non-line, or concave (i.e., a boundary of a linear, convex, or con-
cave portion of the obstacle). Processes for DT construction are similar in each case, so
we here present details of geometry applicable to all cases, with case-specific details in
the following subsections.

In any of the cases, given agent A and obstacle entity E, the DT representation
of E can be seen as the portion of E within a reactively calculated angular range of
repulsion for E; in Figures (e.g., Figure 2), we conventionally indicate such a portion
by thicker, lighter colored boundary lines on E. For this paper, the angular range (from
A) defining that portion of E is the subtended range of a line segment, as shown in
Figure 2; in general, as Figure 2 also suggests, this DT segment is locally tangent to
E at a projection point pm of minimal distance between A and E. More specifically,
the segment is oriented perpendicular to the vector vm that joins the center of A to
pm, and it is centered at pm, extending a distance D in each direction, where D is an
agent- or application-specific parameter. Parameter D thus determines angular range
Δψ—the DT segment represents an angular repeller of range 2Δψ, with range Δψ in
each direction around vm (see Figure 2). In examples in this paper, D is constant over
a navigation (rather than, e.g., Δψ being constant over a navigation), so Δψ relates to
|vm| in desirable ways: For example, as A gets closer to E, the subtended range widens,
resulting in greater repulsion.

In the default (i.e., non-boundary) conditions in each of the three cases, the angular
range 2Δψ subtended by the segment of length 2D around pm can be found from
elements labeled in Figure 2:

Δψ = β1 + β2 = sin−1
(rA

s

)
+ sin−1

(
D

s

)

(6)
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Fig. 3. Boundary case DT construction for a straight line obstacle entity. In the direction agent
A is heading with respect to vector vm , the entity’s subtended angular range is smaller than a
standard DT representation’s subtended angular range, so the range of the DT representation is
modified to prevent repulsion from non-colliding paths.

As non-default, boundary cases, we consider instances where the angular range of the
resulting repeller is wider than the angular range subtended by the original obstacle
entity E, as shown in Figures 3–5. In these cases, to prevent needless repulsion from
collision-free headings, DT representations have angular range exactly equal to that of
E in the direction the agent is headed with respect to vm; the computations underlying
these representations depend on the shape of E, as described below.

3.1 Straight Lines

When the obstacle entity E is a wall or some other straight line shape, finding pm for
a DT representation is straightforward: If there is a perpendicular from the center of
agent A to E, then pm is the intersection of E and the perpendicular; otherwise, pm

is the closest endpoint of E to A. In default cases, construction of the DT segment—a
portion of E—and the resulting repeller is also straightforward.

In boundary cases, it is necessary to find the subtended range of E with respect to A
in the direction that A is heading around E. For this, the process is the same whether
vm ⊥ E (Figure 3a) or not (Figure 3b). First, find endpoint eA of E in the direction
that A is headed. The appropriate angular range for repulsion is then given by:

Δψ = sin−1

(
rA

|vA|
)

+ cos−1

( |vm|2 + |vA|2 − |eA − pm|2
2|vm||vA|

)

(7)

3.2 Convex Shapes

For a convex chain of straight lines, finding pm is again straightforward for agent A,
and desired range Δψ can be computed similarly to the process in Subsection 3.1, using
vertices for boundary cases (see Figure 4a). For a convex circular arc (Figure 4b), how-
ever, the subtended angular range is not necessarily defined by its endpoints. Consider
such an arc to be defined by the radius ro and center-point co of its defining circle Co,
as perceived by A, and by the visible angular range of Co included in the arc, defined by
angles θi and θf with respect to co and the positive x axis. Then, it is again straightfor-
ward to find closest point pm to A, and in default cases, the DT segment and associated
angular range follow immediately.
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In boundary cases, it remains to find the angle subtended by the arc, to compare
to the angle subtended by the DT segment. To do this, we find endpoint eA similarly
to the straight line case, and we observe that the desired subtended angular range is
limited by either eA or by the point called ρ in Figure 4b, which defines (one side of)
the subtended angular range 2Δα between A and the entire circle Co. The remainder of
the DT construction then follows as before, with angular range of repulsion determined
by either parameter D or the appropriate boundary condition described here.

3.3 Concave Shapes

Unlike the convex case, concave shapes bring safety concerns: Given non-holonomic
agents with constant forward velocity, some environments cannot be navigated safely,
such as a corner or box requiring sharper turns than motion constraints allow agents
to make. In DT navigation, we prevent such difficulties by automatically approximat-
ing each concave corner by an arc with a radius large enough to be safely navigable:
first, using properties of agent velocity and geometry, we calculate the agent’s minimum
radius for safe turns, rmin; then, when computing navigation, an unsafe corner is effec-
tively modeled by a navigable arc, as in Figure 5a. (We also presume that all arcs in the
environment have radius at least rmin, although tighter arcs could similarly be modeled
by larger, navigable ones.) To approximate only the minimum amount necessary, DT
representations treat the corner as if an arc of radius rmin were placed tangent to the
lines forming the corner, as in Figure 5a; after finding half of the angle formed by the
corner, θc, the distance dc from the corner at which the arc should begin is dc = rmin

tan (θc)
.

It is straightforward to find point pm and manage boundary cases with endpoints of the
chain, thus completing the definition of the representation.

For concave arcs, procedures are similar but complementary to those for convex arcs.
If A is not located between co (the center of the circle from which the arc is derived)
and the arc itself, closest point pm to agent A is an endpoint of the arc; otherwise, pm

is the point on the arc in the same direction from co as cA. Endpoint eA is found by
following the arc clockwise from pm if agent heading direction is clockwise from pm,
and counter-clockwise otherwise (see Figure 5b). For boundary cases, the subtended
angular range of a concave arc is always determined by endpoint eA, and can thus be
found similarly to previous cases.
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4 Properties of Obstacle Representations

As part of designing DT representations, we identified several desirable properties that
reactive obstacle representations could possess, properties that clearly motivated previ-
ous work such as [5,7]. As part of evaluating DT representations, we present our list of
these properties and very briefly describe how DT representations satisfy them.

Proximity and Symmetry. The focal point for computing repulsion is a point pm on
obstacle entity E of minimal distance from agent A. Thus, the nearest point on E
to A—with which A might in principle collide soonest—is also the nearest point of
the obstacle representation of E to A, enabling appropriate distance-based effects
of repulsion. Furthermore, repulsion is centered around pm and associated vector
vm (see Figures 1 and 2), so the reactive, local obstacle representation aptly does
not determine in which general direction A heads around E—the representation
steers A around E in the direction A was already heading, symmetrically around
vm, regardless of the heading of A.

Necessary and sufficient repulsion. The repulsive range of the obstacle representa-
tion corresponds to exactly the heading angles along which the agent would collide
with the obstacle entity.

Reactivity. Obstacle avoidance dynamically applies to both stationary and moving ob-
stacles, without pre-computation or non-local knowledge.

Mathematical parsimony. Each obstacle entity is represented by a single repeller, nei-
ther overloading agent computations nor requiring needless mathematical machina-
tions. This enables straightforward utility in a range of scenarios.

Previous obstacle representations that satisfy these properties were effective only
in substantially restricted environments, i.e., consisting of only circular obstacles (see,
e.g., Figure 1). Our DT representations are far more flexible, also applying to non-
circular obstacles, and they directly satisfy properties of reactivity, mathematical parsi-
mony, proximity, and symmetry, as well as a relaxed sense of necessary and sufficient
repulsion: Because DT-based repellers are bounded by the maximum angular range of
the obstacle entity remaining in the direction A is heading (toward endpoint eA), no
collision-free paths in that direction are repelled. Furthermore, due to proximity and
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symmetry properties, each time repulsion is calculated, any possible collision point
would be at or very near pm. Thus, for large enough D with respect to agent size and
navigation calculations, any colliding path would be within the range of repulsion of a
DT-based repeller, and no collision-free path would ever be in that range.

5 Demonstrations

To test DT navigation, we created a simple, OpenGL-based simulator and simulated
navigation in several scenarios. For each agent A, obstacle boundaries were locally per-
ceived, and perception was straightforwardly implemented so that portions of obstacles
occluded by other obstacles were not perceived, but other entities were perceived with
unlimited range in all directions. Default parameter values for the repellers of Section 2
and [5,7] were d0 = 2.0, σ = 0.4, and D = 4rA unless otherwise noted, and naviga-
tion was in a 12 by 12 unit world, with velocity held constant at 0.3, isolating heading
angle φ as the only behavioral variable governing navigation, as in [5,7]. Tests were of
two general kinds: basic testing to calibrate the value of D and establish general DT
effectiveness in common scenarios; and testing in complex environments.

5.1 Basic Testing and Calibration

The default value D = 4rA in our demonstrations was chosen after experimentally
determining the effect of D on navigation. In general, greater values of D lead to re-
pellers with greater angular ranges of repulsion, but for an obstacle entity that subtends
a large angular range, it is not always desirable for a repeller to subtend that entire range.
For example, such large repellers can preclude the boundary-proximate navigation
(Figure 6) on which this paper is focused, as discussed in Section 1. Boundary-distant
navigation, in contrast, can be supported by such large repellers, but boundary-distant
navigation can also be readily supported by appropriate DT representations (Figure 7).
The local sensitivity enabled by DT representations, however, is not fully exploited in
boundary-distant applications.

For finer-tuned, boundary-proximatenavigation, we first calibrated D for appropriate
sensitivity in DT representations. To do this, we ran experiments with a single agent A
navigating along a wall, which indicated that distance dm of agent A from the wall
systematically varied with the value of D. We also considered a thought experiment—
i.e., among many differences between an elephant and an ant, they maintain different
safety margins when walking along a wall—and thus selected an agent size-dependent
value of D = 4rA, where rA is the radius of agent A; this results in a dm of between
one and two radii for agents, which seems safe but not excessive. We then tested DT
navigation in the basic scenarios shown in Figure 6, each with a convex or concave
obstacle. In each scenario, agents started at 100 randomly selected positions spanning
the left sides of their worlds, and DT navigation achieved perfect performance: Every
agent reached its target without collision.

5.2 Complicated Environments

We also tested agents in more complicated environments, as shown in Figure 9. In the
Hallways scenario, approximating an indoor layout with 3 × 2-sized office-obstacles
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(c) Concave Corner (d) Concave Arc

(a) Octagon (b) Convex Arc

Fig. 6. Basic scenarios for demonstrations of
purely reactive boundary-proximate naviga-
tion. Each image contains an obstacle entity,
a target (green circle), and a sample trajectory.

(a) Convex Arc (b) Concave Corner

Fig. 7. Demonstrations of DT-based boundary-
distant navigation. Agents started out facing
the target but turned quickly, taking a smooth,
efficient path to the target.

(a) (b)

Fig. 8. Two different-sized agents, sizes rA = 0.1 and 0.3, reaching parallel paths along a wall,
each from a setting of D = 4rA. Figures show the target locations (green circles), trajectories,
and DT representations of the wall for each.

(the inner rectangles) and hallway width roughly 10-to-20 times rA, agents navigated
from 100 starting positions in the left of their world to a sequence of five target locations
(Figure 9a), requiring extensive navigation and turning. Purely reactive DT navigation
performance was perfect in all tested variants of this hallway scenario, including ver-
sions with additional circular obstacles, stationary or moving, in hallways.

The Polygons scenario (Figure 9b) incorporates navigation around a moving wall,
which rotates in the center of the space, and a variety of convex polygons. In these
experiments, agents navigated to five target locations (similar to those in the Hallways
scenario), requiring a full traversal of the horizontal space; because of the additional
difficulty posed by this scenario, the values of d0 and σ were raised to 2.25 and 0.6, for
repulsion at greater distances. Tests of DT navigation showed very good performance:
Of 100 agents tested, starting from positions spanning the left side and top of this en-
vironment, 99 reached all targets without colliding. (Avoiding the moving wall proved
difficult, perhaps due to the restriction to constant velocity.)
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(e) Winding Path(a) Hallways (b) Polygons (c) Circle Track (d) Figure−Eight

Fig. 9. Different scenarios in which DT navigation was tested, showing target locations and an
example agent trajectory in each: (a) Hallways; (b) Polygons; (c) Circle Track; (d) Figure-Eight;
(e) Winding Path

Fig. 10. A race-like run in the Circle Track scenario, including target locations and a trajectory of
a fast agent that steered around slower agents

The remaining tests in complex environments were performed in scenarios with
curved shapes (Figure 9c–e): a Circle Track; a Figure-Eight; and a Winding Path. The
Winding Path scenario illustrates how even purely reactive DT navigation can succeed
along a very complicated path, and the Figure-Eight scenario shows successful navi-
gation in a closely bounded, curved environment. In the Figure-Eight and Circle Track
scenarios, targets were alternatingly placed on the top and bottom of the tracks (indi-
cated in Figure 9), to keep agents looping around the tracks. Race-like demonstrations
were also run on the Circle Track (Figure 10), with up to four agents at different speeds,
all successfully avoiding each other and the boundaries of the track while running.

6 Conclusion

This paper presents a new, dynamic tangent-based navigation method, which treats ob-
stacle entities as obstacle-valued functions: Each agent represents each obstacle as an
angular repeller, dynamically adjusted during navigation to support successful perfor-
mance. The obstacle representation level of abstraction enables enhanced geometric
sensitivity while retaining desired properties of obstacle representations. Simulations
demonstrate that DT navigation is successful even in applications where agents must
navigate closely around obstacle shapes and scenarios with a moving wall or compli-
cated environments requiring circular or winding paths. DT representations might also
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be effective in a wider range of environments if based on context-dependent variations
in the value of D or with learning-based adaptations; the fact that DT representations
require so few parameters may facilitate developmental or learning-based approaches.

Acknowledgments. The authors thank Clare Bates Congdon and anonymous referees
for comments on previous versions of this paper.
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