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Abstract
To make intelligent decisions, robots often use models of the stochastic effects of

their actions on the world. Unfortunately, in complex environments, it is often infea-
sible to create models that are accurate in every plausible situation, which can lead to
suboptimal performance. This thesis enables robots to reason about model inaccura-
cies to improve their performance. The thesis focuses on model inaccuracies that are
subtle –i.e., they cannot be detected from a single observation– and context-dependent
–i.e., they affect particular regions of the robot’s state-action space. Furthermore, this
work enables robots to react to model inaccuracies from sparse execution data.

Our approach consists of enabling robots to explicitly reason about parametric
Regions of Inaccurate Modeling (RIMs) in their state-action space. We enable robots
to detect these RIMs from sparse execution data, to correct their models given these
detections, and to plan accounting for uncertainty with respect to these RIMs.

To detect and correct RIMs, we first develop algorithms that work effectively on-
line in low-dimensional domains. An execution monitor compares outcome predic-
tions made by a stochastic nominal model, to outcome observations gathered during
execution. The results of these comparisons are then used to detect RIMs of state-
action space in which outcome observations deviate statistically-significantly from
the nominal model. Our detection algorithm is based on an explicit search for the
parametric region of state-action space that maximizes an anomaly measure; once the
maximum anomaly region is found, a statistical test determines whether the outcomes
deviate significantly from the model. To correct detected RIMs, our algorithms apply
corrections on top of the nominal model, only in the detected RIMs, treating them as
newly-discovered behavioral modes of the domain.

To extend this approach to high-dimensional domains, we develop a search-based
Feature Selection algorithm. Based on the assumption that RIMs are intrinsically
low-dimensional, but embedded in a high-dimensional space, this best-first search
starts from the zero-dimensional projection of all the execution data, and searches by
adding the single most promising feature to the boundary of the search tree. Our low-
dimensional algorithms can then be applied to the resulting low-dimensional space to
find RIMs in the robot’s planning model.

We also enable robots to make plans that account for their uncertainty about the
accuracy of their models. To do this, we first enable robots to represent distributions
over possible RIMs in their planning models. With this representation, robots can plan
accounting for the probability that their models are inaccurate in particular points in
state-action state. Using this approach, we enable robots to effectively trade off ac-
tions that are known to produce reward with those that refine their models, potentially
leading to higher future reward.

We evaluate our approach on various complex robot domains. Our approach en-
ables the CoBot mobile service robots to autonomously detect inaccuracies in their
motion models, despite their high-dimensional state-action space: the CoBots detect
that they are not moving correctly in particular areas of the building, and that their



wheels are starting to fail when making turns. Our approach enables the CMDragons
soccer robots to improve their passing and shooting models online in the presence of
opponents with unknown weaknesses and strengths. Finally, our approach enables a
NASA spacecraft landing simulator to detect subtle anomalies, unknown to us before-
hand, in their streams of high-dimensional sensor-output and actuator-input data.
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Chapter 1

Introduction

Robots often use models of the effect of their actions on the world to make intelligent decisions
throughout execution. Having accurate models enables robots to choose the right actions to per-
form their tasks effectively. Unfortunately, in many realistic environments, it is infeasible to have
the perfect knowledge and computational resources required to create globally accurate models
–i.e., models that accurately predict the effect of each action in every situation. Instead, these
models may predict the true dynamics of the world relatively accurately in most circumstances,
but fail to capture the dynamics of the world in some specific sets of similar situations.

This thesis addresses the problem of enabling robots to autonomously detect and react to such
model inaccuracies, leading to significant improvement in execution performance. In essence,
our approach consists of detecting these model inaccuracies, improving the models by applying
corrections over the detected inaccuracies, and enabling the robots to make plans that take into
account their knowledge and their uncertainty about possible inaccuracies in their models.

Section 1.1 introduces the specific problem on which this thesis focuses: enabling robots to act
robustly in the presence of subtle and context-dependent model inaccuracies. Section 1.2 motivates
the need to address this problem with three specific real robot examples, which we use throughout
the thesis for evaluation of our approach. Section 1.3 describes this thesis’ approach to solve
the thesis problem: explicit reasoning about parametric Regions of Inaccurate Modeling (RIMs).
Section 1.4 lists the specific technical contributions of this thesis. Finally, Section 1.5 gives an
outline for the remainder of the thesis document.

1.1 Thesis problem statement

This section describes the problem that this thesis addresses:
Problem statement: To enable robots to act robustly, given sparse execution data, in the presence

of subtle and context-dependent inaccuracies in their stochastic models.
We proceed to describe the components of this problem statement using the illustrative example

of Figure 1.1. In this illustrative domain, a robot is tasked with repeatedly putting a golf ball into
the hole on the right edge of the field, with randomized starting locations for each shot. The robot
has a single “shoot” action, so the state-action space of the robot is two-dimensional, and thus
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easily visualizable. Throughout this thesis, we refer to the robot’s state-action space, or a feature
space derived from it, as the context space of the robot. Immediately after each shot, the robot
observes precisely whether it succeeded or failed at scoring; throughout this thesis, we refer to the
set of possible outcomes as the robot’s outcome space. Thus, at each time step of execution, the
robot receives a contextual outcome point consisting of a pair of a context –e.g., where the golfing
robot shot from– and an outcome –e.g., whether the golfing robot succeeded.

(a) Successful shot, nominal execution (b) Nominal succes distribution

(c) Failed shot, nominal execution (d) Nominal samples

Figure 1.1: Simple golf-putting task. Shots stochastically (a) succeed or (c) fail. (b) The robot
builds or receives a nominal model of success probability over the field (lighter shows higher
probability). (d) Simulated samples of success (white circles) and failure (black circles).

1.1.1 Stochastic models
This thesis focuses on domains in which the robots have a model of the expected behavior of the
world, built from some combination of human design and training data. These models predict
the distribution over outcomes, given a context point. For the example of Figure 1.1, the robot
builds a model of its probability of scoring as a function of the location on the field from which
it needs to shoot (Figure 1.1b). Depending on the domain, this model could be one of various
predictive models: the transition function in a Markov Decision Process (MDP) [4], in which case
the outcome space is the state space; a factor of the transition function in a factored MDP [23], in
which case the outcome space is a subset of the state space; the reward function in a Contextual
Multi-Armed Bandit (C-MAB) problem [52], in which case the outcome space is the reward space.
Importantly, in real robot domains, these models are stochastic –i.e., they model a distribution over
outcomes given a robot state and action.
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1.1.2 Subtle and context-dependent model inaccuracies
In complex robot domains, it is often infeasible to build globally accurate models at training time:
the state-action space of the robot may be too large to explore completely at training time, or
the deployment environment of the robot may need to be different from the environment used for
training, or limited computational capabilities may require simple models. Due to this infeasibil-
ity, the robot’s models may be partially inaccurate. We focus on domains in which these model
inaccuracies are subtle and context-dependent, as described below.

Context-dependent model inaccuracies. At deployment time, an unexpected and imperceptible
bump on the field (Figures 1.2a and 1.2c) significantly reduces the robot’s chances of successfully
putting the ball whenever it shoots from behind the unseen bump (Figure 1.2b), creating a signifi-
cant difference between its model’s predictions and the observed execution from behind the bump
(Figure 1.2d). Throughout this thesis, we use the term context-dependent model inaccuracy to
refer to this type of inaccuracy, which affects the robot’s performance in a particular region of its
context space.

(a) Successful shot, anomalous execution (b) Anomalous distribution

(c) Failed shot, anomalous execution (d) Anomalous samples

Figure 1.2: (a,c) An imperceptible bump on the field causes a significant inaccuracy in the model
of Figure 1.1b with respect to the true distribution of (b). (d) Synthetic samples behind the imper-
ceptible obstacle show a significant deviation from the model of Figure 1.1b.

Subtle model inaccuracies. Even though the bump of Figure 1.2 affects the robot’s performance
significantly in a particular set of contexts, its effect is not large enough to be detected with cer-
tainty from any single outcome observation. Thus, the robot needs to analyze statistics of sets of
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correlated contexts to determine that its execution does not match its nominal model. Throughout
this thesis, we use the term subtle model inaccuracies to refer to this type of inaccuracy, whose
effects are small enough that they need multiple execution data to be detected.

1.1.3 Sparse execution data

In many real robot domains, it is necessary for robots to react to model inaccuracies given only
sparse data of their execution. There are several reasons for this need, which we explore in our
different domains of interest:
High dimensionality. Robots usually have several components to their system, from high-level

task planning to low-level motion and state estimation. Furthermore, they interact with the
real world, which is highly complex. Thus, the full description of their state is usually high-
dimensional, as exemplified in Section 1.2.1. This high-dimensionality implicitly makes it
significantly harder to collect dense data, as the number of possible states scales exponen-
tially with the dimension of the state space.

Fast adaptation requirements. In some robotics domains, fast adaptation in the presence of model
inaccuracies is crucial. One such example is robot soccer, described in Section 1.2.2, in
which only one match is played against a particular opponent. In robot soccer, adapting to
different opponents’ weaknesses and strengths over a single game, with sparse execution
data, may mean the difference between a loss and a victory.

Early detection requirements. Early detection of anomalies is often critical for robust execution,
as these anomalies may result in catastrophic robot failure if left unaddressed for longer
periods of time, as exemplified in Section 1.2.3. Detecting these anomalies –in our case,
model inaccuracies– early means detecting them from few, sparse data points.

1.1.4 Acting robustly in the presence of model inaccuracies

Depending on the target domain, there are several ways in which robots might act robustly in the
presence of model inaccuracies. This thesis addresses the following approaches:
Model inaccuracy detection. In some domains, it suffices for the robot to detect that its execution

is significantly different from nominal execution to increase its robustness. With detection,
for example, the robot may stop execution and alert a human supervisor, who might then
investigate the cause of the anomaly.

Model inaccuracy characterization. Aside from detecting a context-dependent model inaccu-
racy, the robot can provide a characterization of the inaccuracy by approximately determin-
ing the set of contexts it affects. This information may also help humans understand the root
cause of the execution anomaly. For example, handing a human an approximation to the re-
gion shown in Figure 1.2d can help the human understand that there might be an unperceived
obstacle in a particular location of the field.

Model inaccuracy correction. In some domains, such as those in which no human intervention
is possible, detecting and characterizing a model inaccuracy does not suffice to increase
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execution robustness. In such domains in which the robot needs to continue execution despite
having detected an anomaly, the robot can apply a correction to its nominal model to account
for the detected inaccuracy. Applying such corrections can lead the robot to choose different
actions, thus improving its overall task performance.

Planning accounting for model inaccuracy uncertainty. Given the sparsity of execution data in
our domains of interest, the robot may be unsure about whether a model inaccuracy ex-
ists, what its exact effect is on execution, and what is the exact set of contexts affected by
it. The robot can create plans that take into account this uncertainty to effectively balance
information-gathering actions to reduce that uncertainty with reward-seeking actions, with
the goal of maximizing overall performance.

Throughout this thesis, we explore domains with different robustness requirements, and tackle the
corresponding subproblems above accordingly.

1.2 Motivating domains

While the golf-putting robot example will provide an easily visualizable and controllable environ-
ment throughout the thesis, here we present the complex real robot domains that motivate our work.
We describe the CoBot mobile service robot domain in Section 1.2.1, the CMDragons autonomous
robot soccer domain in Section 1.2.2, and the NASA spacecraft landing simulator in Section 1.2.3.
All these domains share the three criteria: stochastic nominal models, context-dependent model
inaccuracies, and sparse execution data. However, they each present distinct challenges which we
address.

1.2.1 CoBot: Motion anomalies

Autonomous navigation is a key component of all mobile autonomous robots, and thus having
an accurate motion model is essential for task performance. We explore the problem of context-
dependent model inaccuracies in the motion of the CoBot autonomous service robots [95] of Fig-
ure 1.3a.

Stochastic nominal model. The CoBots autonomously perform tasks for the inhabitants of mul-
tiple buildings at Carnegie Mellon University (CMU). To accomplish high-level tasks, the CoBots
navigate autonomously around the building, which entails moving and localizing properly [8]. For
both of these tasks, the CoBots use a stochastic model that predicts the distribution over robot ve-
locities at the next time step, given its velocity at the current time step and the motion commands
given to its wheels.

Subtle and context-dependent model inaccuracies. While the CoBot’s motion model is rea-
sonably accurate in almost all circumstances, there are some situations in which it is not; due to
the complexity of the real world, these situations are difficult to enumerate before deployment.
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(a) CoBot service robots (b) NASA Spacecraft

(c) CMDragons soccer robots

Figure 1.3: Robots that serve as motivation and application domains for our research. In different
ways, these robots each need to react to subtle context-dependent model inaccuracies from sparse
execution data.
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Figure 1.4 shows two examples of such inaccuracies. Figure 1.4a shows an infrequent, but failure-
inducing event in CoBot execution: there are certain obstacles in the CoBot’s domain that are not
perceptible to the robot’s sensors. In the absence of sensors that can detect every obstacle per-
fectly, collisions are infrequent but eventually inevitable. Figure 1.4b shows a more subtle context-
dependent model inaccuracy that happens when the CoBot drives over rough tile floor. Driving on
this floor at normal speeds can lead the CoBot’s hardware to get damaged. While the CoBots are
not equipped to directly perceive the obstacles of Figure 1.4a or the rough floor of Figure 1.4b, we
enable the CoBot to detect the inaccuracies they cause on the robot’s motion model.

(a) Collision against an imperceptible table (b) Rough tile floor that can cause hardware damage

Figure 1.4: Two examples of motion model inaccuracies in the CoBot’s domain. This thesis en-
ables the CoBot to detect these and other anomalies in its motion.

Sparse execution data. Even though the CoBots have gathered vast data from autonomously
navigating around the building for more than 1000 km [5], their data remain sparse in their overall
state-action space due to the high dimensionality of the domain: In addition to the robot’s position
and velocity, there are many other dimensions that are irrelevant to these particular model inaccu-
racies, such as the robot’s orientation, its current task and schedule, the time of the day, and many
others. However, the robot does not know in advance which of these dimensions are relevant.

Acting robustly. Once these situations are detected and their contexts characterized, the robot
can (a) stop execution immediately and notify human deployers, and (b) learn to avoid entering
these unsafe contexts –e.g., locations in the building where collisions happen more frequently, or
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the location and speeds at which the rough floor causes model inaccuracies 1.

1.2.2 CMDragons: Planning for unknown opponents

Figure 1.3c shows the CMDragons team of autonomous soccer robots [62]. These robots partic-
ipate in the RoboCup Small Size League (SSL), against other teams of soccer robots, and have
won the SSL more than any other team, most recently in 2015. Each game of robot soccer lasts
20 minutes, and the later stages of the tournament are single elimination. Therefore, an extremely
challenging problem in this domain is to enable robots to adapt to previously unknown opponents,
with unknown weaknesses and strengths, over the course of a single game.

Stochastic nominal models. To adapt successfully, our team starts each game with several layers
of stochastic models of themselves and of the opponents. These models range from high-level
marking capabilities of the opponents, to low-level robot and ball motion models. These models
are stochastic as there are many hidden variables in the opponent’s internal state for which our
models cannot accurately account, as well as usual sensor and actuator noise. These layers of
initial models are crucial for our team to be able to play competitively, as even state-of-the-art
techniques for learning to play soccer from scratch need much more data than is feasible within
the span of a single game (e.g., reinforcement learning for keepaway [88]).

Subtle and context-dependent model inaccuracies. The single-elimination nature of RoboCup
prevents our team from forming perfect models about our opponents ahead of time. Instead, our
robots begin execution with our best estimate of their behavior – e.g., they intercept a moving ball
the same way our team intercepts a moving ball. However, these models are inevitably inaccurate
in some situations: different teams have different weaknesses and strengths, unknown to our robots
ahead of the game. For example, some teams are significantly better at intercepting moving balls
in some situations than other teams. Given the high stochasticity of the robot soccer domain, it
is often infeasible to detect from a single outcome observation whether our models are inaccu-
rate. For example, an opponent failing to intercept a ball which our model predicted would be
intercepted may reflect a one-time glitch in that robot’s execution, or it may reflect a deficiency in
their interception algorithms. Our robots thus need multiple outcome observations to detect these
inaccuracies.

Sparse execution data. The sparsity of data in this domain stems from its fast adaptation re-
quirements, which makes it a particularly challenging domain for online adaptation. Within the
span of a game, our robots have very few outcome observations for most of their actions: in a
single game, there are usually fewer than a hundred shots, free kicks, and passes. Furthermore, the
state of the game is very high dimensional, with over 80 physical dimensions alone, not counting
the internal state of the robots or the game.

1This potential extension to our work is further discussed in Chapter 7.
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Acting robustly. In the robot soccer domain, simply detecting an inaccuracy does not increase
the team’s robustness. Thus, we enable the team to apply corrections to their models online, and
continue execution. For example, being able to detect and correct inaccuracies during the game
may significantly affect our team’s passing policy: passes that are very likely to succeed against
one team may be very unlikely to succeed against another. Furthermore, we enable the soccer
robots to explore actions that may initially appear sub-optimal with the intent of finding opponent
weaknesses.

1.2.3 Spacecraft landing: Early detection of sensor anomalies

Figure 1.3b shows the spacecraft that the NASA simulator emulates. The spacecraft has various
sensors and actuators that enable it to autonomously land on other planets. Failure in these sensors
and actuators can result in catastrophic mission failure, but detecting component degradation or
failure early can prevent it. Thus, we seek to enable the spacecraft to detect anomalies in its data
stream as early as possible during execution.

Stochastic nominal models. The robot does not have an analytical model to predict future out-
come observations given previous sensor data and chosen actions. However, it does have access
to a large database of sensor and actuator streams from past successful nominal landings. Based
on these data, we enable the robot to build a data-driven stochastic model to predict future sensor
readings given its history of observations and input to its actuators.

Subtle and context-dependent model inaccuracies. Perhaps the largest challenge of this do-
main is that the context-dependent inaccuracies in it are unknown to us, the algorithms developers
and evaluators. Work on this project was performed in conjunction with researchers at the NASA
Jet Propulsion Laboratories (JPL); the researchers at JPL injected various context-dependent model
inaccuracies into the sensor streams of the spacecraft, which the algorithms then had to find au-
tonomously.

Sparse execution data. The sparsity of data in this domain comes from two sources: the re-
quirement for early detection, and the high dimensionality of the domain. Early detection of sensor
anomalies is crucial in this domain, since it can make the difference between a recoverable failure
and a catastrophic failure; thus it is important to develop a method that can detect anomalies from
as few data points as possible. Furthermore, the spacecraft has a 25-dimensional array of sensors
providing data at each timestep, along with a 4-dimensional actuator input; a significant challenge
is to find the low-dimensional context in which the anomaly manifests itself.

Acting robustly. The primary goal of our work on the spacecraft domain is to detect anomalies
in sensor streams early during execution. Thus, acting robustly in this domain entails detecting and
characterizing model inaccuracies, and reporting them to a human supervisor.
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1.3 Approach: Regions of Inaccurate Modeling (RIMs)
We address the problem of robust execution in the presence of subtle and context-dependent model
inaccuracies, described in Section 1.1, with the following approach, described in detail below:
Thesis statement: Enabling robots to reason about parametric Regions of Inaccurate Modeling

(RIMs) in their state-action space can improve execution robustness from sparse execution
data in domains with subtle and context-dependent model inaccuracies.

Regions of Inaccurate Modeling (RIMs). We focus on domains in which robots have stochastic
models of nominal behavior, and which may have context-dependent model inaccuracies. Further-
more, we assume that these model inaccuracies affect particular connected regions of the robot’s
state-action space. Thus, we define Regions of Inaccurate Modeling (RIMs) as regions in this
context space in which execution outcomes collectively significantly deviate from the distributions
specified by the robot’s models. For example, the golf-putting robot’s outcome observations are
each individually not highly unlikely given its nominal model. However, when aggregating the
data received from the region behind the imperceptible bump (red dashed line in Figure 1.2d), the
collection of outcomes is highly unlikely given the nominal distribution: their collective observed
probability of success is significantly lower than predicted by the nominal model. Throughout
this thesis, we focus on model inaccuracies in which execution data has a shift in the mean with
respect to the expected distribution –e.g., the golfing robot’s probability of success is lower than
expected. However, extending our approach to account for other types of inaccuracies –e.g., those
that affect the distribution’s variance– is straightforward.

Parametric RIMs In particular, this thesis focuses on parametric RIMs–i.e., those that can be
described by a finite vector of parameters. Focusing on parametric regions offers several advan-
tages, given our domains of interest: parametric approaches tend to converge to an approximate
solution from fewer observations than non-parametric approaches, which is necessary to meet
our sparse data requirements; parametric regions have a concise vector representation, which the
robots can use to conduct optimization-based searches over regions, and which humans can use to
obtain a rough understanding of the spatial extent of RIMs. On the other hand, parametric RIMs
are unable to express many regions that non-parametric approaches could. These advantages and
disadvantages are further discussed throughout this thesis.

Improving robustness using RIMs. We explore three ways in which explicit reasoning about
RIMs can lead to robust execution. First, we enable robots to autonomously detect the presence
of RIMs in their state-action space from sparse execution data; for detection, the robot conducts
a search in the parameter space of possible regions to find the region that maximizes an anomaly
value, given the data contained in that region, and the robot’s nominal model. At the moment of
detection, the robot could stop execution and alert a human supervisor. Alternatively, we enable
robots to correct their models based on detected RIMs, so they can continue execution with
a more accurate model of the world. Finally, we enable robots to make plans that account for
uncertainty about RIMs in their context space. That is, before the robot is sure about the existence
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of RIMs, or about their precise shape, we enable the robot to make decisions that effectively trade
off choosing actions that it knows lead to high reward and those that refine its knowledge about
potential RIMs in its domain.

1.4 Thesis contributions

We seek to enable robots to improve their performance through reasoning about RIMs at execution
time. This thesis presents the following contributions: (1) passive detection and correction of RIMs
in the robot’s models, (2) autonomous extraction of domain dimensions that are relevant to RIM-
detection in high-dimensional domains, and (3) exploration of the domain online to refine models
with the goal of improving overall performance.

1.4.1 Detection and correction of RIMs in low-dimensional domains
This contribution consists of theory and algorithms for online detection and correction of RIMs
in low-dimensional domains. This problem is challenging due to stochasticity in robot domains,
potential subtlety of the model inaccuracies, and sparsity of data.

To address this problem, we borrow ideas from research on disease outbreak detection [53]:
our algorithms search for parametric regions of state-action space which are most likely to have
come from a different distribution than the one specified by the model. This approach is anal-
ogous to finding regions of a map in which disease cases are significantly higher than expected.
These approaches can deal with data sparsity because such regions may extend over potentially
large regions of the domain with only few observations, as long as these few observations provide
statistical support for the hypothesis of a model inaccuracy.

Originally, these regions of inaccuracy were found through exhaustive search of a discrete set
of options [53]. On the other hand, we present optimization-based algorithms that scale more
efficiently to higher dimensions than does exhaustive search; furthermore, the online and incre-
mental nature of our optimization approach makes it appropriate for domains in which data arrive
sequentially, such as robot domains.

This contribution is presented in detail in Chapter 3.

1.4.2 Feature selection for RIM detection
This contribution consists of an approach for reliable detection and correction of RIMs in high-
dimensional domains. While the approach described in Chapter 3 has shown to significantly im-
prove performance of robots in domains with up to 8 dimensions [65], its performance degrades
with dimensionality too quickly to directly apply to high-dimensional domains. We address this
problem because many complex robot domains have significantly higher dimensionality. For ex-
ample, in robot soccer, the physical dimensionality of the world, not accounting for game state or
internal robot state, is higher than 80 dimensions. Similarly, the CoBot robots have sensors that
produce data streams with hundreds of dimensions, and they interact with the complexity of the
real world.
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To address this high-dimensionality problem, we start with the assumption that RIMs in the
robot’s model are intrinsically low-dimensional, but embedded in a high-dimensional space. This
assumption holds in the vast majority of real-world RIMs our robots have encountered; for exam-
ple, the robot’s motion may be inaccurate when going through a certain region of the building at a
particular set of speeds (3D RIM); on the other hand, it is highly unlikely that the CoBot’s motion
is inaccurate in a way that depends on its position, orientation, linear and angular velocities, time
of the day, day of the week, and distance to the closest human (9D RIM).

Based on this low-dimensional RIM assumption, Chapter 4 presents a search-based method for
finding the best low-dimensional subspace of the robot’s space in which to look for these RIMs.
Experimental results show that this approach vastly outperforms the direct application of RIM-
detection algorithms of Chapter 3 in high-dimensional domains.

This contribution is presented in detail in Chapter 4.

1.4.3 Online learning under RIM-uncertainty
This contribution is to enable robots to effectively reason about their uncertainty about potential
RIMs in their models. Reasoning about this uncertainty enables robots to effectively trade-off
exploration and exploitation, with respect to RIMs, when choosing an action. As a concrete ex-
ample, the CMDragons may have observed that the opponent goalie is much worse than expected
at blocking shots towards the left side of the goal, but all of the shots so far have been taken from
points close to the opponent’s goal, since that is when the CMDragons choose to shoot instead of
passing. Given this opponent weakness, the CMDragons may choose to attempt to shoot at the left
side from far away, instead of passing, to maximize their scoring. More generally, because of data
sparsity, even after model inaccuracies are detected, several RIM-hypotheses might be consistent
with the robot’s data. Reasoning about the distribution of such hypotheses enables the robot to
improve performance through exploration.

This thesis develops the necessary theory and algorithms for the robots to autonomously make
these decisions in the presence of RIMs. First, we introduce an approach for representing uncer-
tainty about the spatial extent of potential RIMs in state-action space, using a set of parametric
regions to represent a distribution over the true spatial extent of the RIM in question. Given this
approximation to the distribution of possible spatial extents, we develop the theory needed to esti-
mate the expected value of the robot’s outcome observations given its state and chosen action, as
well as the robot’s uncertainty about this expected value. Using these expectation and uncertainty
estimates, the robot applies the Upper Confidence Bound (UCB) algorithm [52] to effectively trade
off exploration and exploitation.

Experimental data shows that this active exploration in the presence of uncertainty significantly
outperforms passive detection and correction of RIMs in terms of performance improvement.

This contribution is presented in detail in Chapter 5.

1.5 Thesis outline

The rest of this document is organized as follows:
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Chapter 2: This chapter provides a precise mathematical formulation of the scope of domains
on which our approach is applicable. Furthermore, it provides a mathematical formulation for the
problems of RIM-detection, model correction, and planning in the presence of RIMs. Finally, the
chapter presents a short summary of the approach this thesis takes to solve each of these problems.

Chapter 3: This chapter presents the technical details of our solution to the problem of RIM-
detection and correction in low-dimensional robot domains. The chapter begins with an overview
of the general monitoring procedure that enables the robots to detect and correct RIMs in their
models. Then, the chapter provides the necessary background required for understanding of the
approach. The chapter proceeds with a technical description of an algorithm for detecting a single
RIM, followed by an extension to detect multiple RIMs in the same robot domain. We then present
an approach to improve robot models online by applying simple corrections to detected RIMs.
Finally, the chapter presents empirical validation of the effectiveness of the presented approach
on the golf-putting simulation, on the CoBots’ motion models, and on the passing models of the
CMDragons.

Chapter 4: This chapter presents the technical details of our solution to the problem of RIM-
detection and correction in high-dimensional robot domains. The chapter begins with an overview
of the approach, followed by the background required to understand the approach. Then, the
chapter presents the technical description of our search-based feature selection method for finding
the correct subspace of the high-dimensional domain to detect RIMs. Finally, we present empirical
validation on the golf-putting scenario, on the CoBot robots’ motion models, and on the NASA
spacecraft simulation, showing that this approach vastly improves the detection power of RIM-
detection.

Chapter 5: This chapter presents the technical details of our solution to the problem of enabling
robots to plan in domains in which there is uncertainty about RIMs in their planning models. The
chapter begins with an overview of the problem to solve and our approach. Then, the chapter
presents the necessary background to understand our approach. Then, the chapter presents the
technical description of our approach: first, we enable robots to represent their uncertainty about
possible RIMs in their planning models; once robots can represent this uncertainty, they can obtain
an estimate of the expected reward to be obtained by taking each action, as well as their uncertainty
about that expectation; given these estimates, the robots use the well-established Upper Confidence
Bound algorithm to trade off exploration and exploitation effectively.

Chapter 6: This chapter situates our work within the related research community. In particular,
we compare our approach to existing approaches in the Execution Monitoring, Anomaly Detection,
and Reinforcement Learning literature. The key distinguishing feature of our work is enabling
robots to explicitly reason about parametric RIMs at execution time.

Chapter 7: This chapter concludes the thesis by providing a summary of the work presented
here, a discussion of the implication of this work and possible directions for future related work.
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Chapter 2

Problem Formulation and Approach

We seek to enable robots to act intelligently in the presence of Regions of Inaccurate Modeling
(RIMs) in their models. This chapter formulates precisely the scope of domains on which our
approach can operate, it formulates the problems that this thesis addresses, and it presents a high-
level overview of the approach this thesis takes to address these problems. In short, our approach
can be summarized by the following recurring steps:

1. A stochastic model of the world, which may be inaccurate in particular sets of similar con-
texts, provides information to the robot’s planner.

2. The planner makes decisions to try to optimize expected performance; for this, the planner
uses knowledge about RIMs in its planning models, and the robot’s uncertainty about them.

3. The robot acts upon the world based on the decisions made by the planner.

4. The robot accurately observes the actual outcomes of its actions, and monitors how they
differ from the expectations created by the planner.

5. If the monitor detects discrepancies between the robot’s expectations and the observed out-
comes, the robot reacts by either raising an anomaly alarm or applying a correction to its
model and continuing execution.

Figure 2.1 shows the interaction among the different components involved in this process.
To formalize this approach, we start by precisely specifying the scope of domains to which

our approach is applicable in Section 2.1. We then formalize the concept of context-dependent
model inaccuracies in Section 2.2. Section 2.3 gives an overview of our approach to detecting
these inaccuracies as RIMs. Finally, Section 2.4 gives an overview of how we enable robots to use
these detected RIMs to improve their decision-making process.

2.1 Domain formulation

This section formalizes the scope of domains on which our approach can operate. In particular, we
introduce a general concept of a stochastic outcome model that makes our approach applicable to
a variety of models commonly used in robotics, such as Markov Decision Processes (MDPs), fac-
tored MDPs, and reward models in Contextual Multi-Armed Bandit problems (C-MABs). Further-
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Figure 2.1: Structure of our robot architecture, including a Monitor module that modifies the
robot’s model. Our work focuses on the components enclosed in the blue dashed lines.

more, we illustrate some ways in which these models can be created in robot domains. Table 2.1
summarizes the most commonly used notation in this chapter and in the rest of the thesis.

The domains on which our approach can operate share these characteristics:
Continuous states and actions. In the domains of interest for this thesis, a robot ρ needs to per-

form tasks in a continuous state space S ⊆ Rds , by choosing from a continuous space of
actionsA ⊆ Rda to apply on the world. At each time step t, the robot is in a known state st,
and chooses apply action at.

Stochastic outcomes. Applying action at in state st yields an observable outcome zt ∈ Z. This
outcome is stochastic, and follows an unknown distribution P ∗(z|s,a), which depends only
on the robot’s state and the selected action.

Stochastic outcome models. The robot begins execution with a model θ0 of the distribution of
outcomes given a state and action:

θ0(s,a, z) = Pθ0(z|s,a) (2.1)

Ideally, for every state, action and outcome, Pθ0(z|s,a) closely approximates P ∗(z|s,a).
However, this thesis addresses domains in which, in some regions of state-action space,
Pθ0(z|s,a) significantly deviates from the true distribution P ∗(z|s,a).

2.1.1 Application to common robotics models

The general definition of stochastic outcomes z ∈ Z and their stochastic outcome model θ0 en-
ables our approach to be applied to various types of robotics domains. Table 2.2 provides a guide
for using our approach to detect and correct model inaccuracies for problems modeled as MDPs,
factored MDPs, and C-MABs, described in detail below.
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Notation Meaning
ρ Robot
S State space

s ∈ S State
A Action space

a ∈ A Action
X State-action feature space

x ∈ X State-action features
χ Feature-extracting function
Z Outcome observation space

z ∈ Z Outcome observation
Z ′ = X ×Z Contextual outcome space
z′ = (x, z) ∈ Z ′ Contextual outcome

Θ Model space
θ0 ∈ Θ Nominal behavior model
θ+ ∈ Θ Corrected model
P ∗(z|x) True (unknown) outcome distribution
Pθ(z|x) Outcome distribution according to model θ

Table 2.1: Table of commonly used notation for this thesis.

Domain type Predictive model name Outcome z Model θ0(s,a, z)
MDP Transition function state s′ Pθ0(s

′|s,a)
Factored MDP Transition function factor state component s′i Pθ0(s

′
i|s,a)

C-MAB Reward distribution reward r Pθ0(r|s,a)

Table 2.2: Guide to apply the work of this thesis to domains modeled as Markov Decision Pro-
cesses (MDPs), factored MDPs, and Contextual Multi-Armed Bandit problems (C-MABs)

MDPs. In MDPs, the state of the world evolves according to a stochastic transition function
P ∗(s′|s,a) that represents the probability of transitioning from state s to state s′ by applying
action a. In model-based approaches to MDPs, the robot explicitly builds an estimate Pθ0(s′|s,a)
of this transition function. To map these problems to our formulation, we let the outcome z of
applying action a at state s be the resulting state s′, and the stochastic outcome model is the
transition function estimate.

Factored MDPs. In many complex domains, the transition function estimate can be broken down
into various components: Pθ0(s′|s,a) =

∏
i Pθ0(s

′
i|s,a), where the conjunction of all factors s′i

is the resulting state s′. To map these problems to our formulation, we let the outcome z be
an individual s′i, and the stochastic outcome model is the corresponding factor in the transition
function estimate.
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C-MABs. In C-MAB problems, at each timestep t, the robot is given a context st and must
choose an action at, which yields an observable reward rt. This reward is drawn from an unknown
reward distribution P ∗(r|s,a), and the robot’s goal is to maximize its overall reward

∑
t rt. An

approach to solve these problems is to maintain an estimate Pθ0(r|s,a) of the reward distribution.
To map these problems to our formulation, we let the outcome z be the observed reward r, and the
stochastic outcome model be the reward distribution estimate.

2.1.2 Examples of nominal models and stochastic outcomes

Here, we describe some ways in which nominal models θ0 and their corresponding stochastic
outcomes z may be generated in robotics.

Nominal models may be generated from sensor redundancy: Autonomous robots often possess
various sensors that, while usually designed to provide feedback about different aspects of the
robot’s environment, often present overlap or redundancy in the information they provide. A few
examples of such redundancy include:
Duplicated sensor redundancy The easiest way to obtain redundant sensor data is to equip robots

with multiple copies of a sensor (e.g., two IMUs, two GPS sensors). Since these sensors
provide identical data, comparing observations between them is simple, and may amount to
translation and rotation between the sensors. We note that duplicated sensors are more useful
at detecting sensor failures than execution anomalies.

Odometry redundancy Robots often possess several sources of odometry data. For example,
the CoBot robots have wheel encoders, RGB-D image sequences, and Inertial Measurment
Units (IMUs), all of which can be used to obtain estimates of displacement over time in the
robot’s local frame of reference.

Range sensor redundancy Range to objects in the world can be extracted from various sensors,
such as depth cameras, stereo cameras, laser rangefinders, and radars. It is often possible to
transform these observations into comparable ones – for example, Figure 2.2 shows how a
depth image can be projected down to its 2D footprint, yielding it comparable to laser scan
information [7].

The robot’s models about the effects of its actions can also be used as nominal models for
execution. Most of the work in this thesis is based on this type of monitoring. Two of examples of
this type of monitoring are:
Motion model The motion model of the robot describes how its actuators respond given a certain

input. We have monitored the motion of the CoBot [63, 64] by comparing its expected
velocity given a motion command to the velocity measured by its wheel encoders. Figure 2.3
shows an example of what such comparison looks like for the CoBot.

Task performance The expected performance of a robot, as indicated by its planning module,
may be compared to actual performance. Examples of this include monitoring the time to
perform tasks of the CoBot, or the pass success rate of the CMDragons attempting to play a
game of keepaway [66].

These examples show that both low-level and high-level models of the robot’s actions can be
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Figure 2.2: Projecting a depth image down to its 2D footprint yields it comparable to a laser scan.
Thanks to Joydeep Biswas for the image based on his localization work [7].
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(c) Subtle anomaly

Figure 2.3: Comparison between expected forward velocity deduced from the robot’s motion
model and commands, and the observed forward velocity as measured by wheel encoders.
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monitored to produce measurable fit between models and execution.
We note that, in many cases, these comparisons between redundant sensors or between ex-

pected and observed action outcomes can be viewed as a process of generating residuals: a vector
of values that, under nominal execution, are near zero. The problem of generating robust residuals
that only deviate from 0 when execution is anomalous is beyond the scope of our thesis, but has
been analyzed by previous research (see Section 6.1). Instead, we assume that these comparisons
are noisy and focus on the problem of evaluating them robustly; these two approaches have been
contrasted in previous survey work [39]. Section 2.3 describes our approach to evaluating these
comparisons robustly.

2.2 Problem formulation

Ideally, the distribution θ0(s,a, z) = Pθ0(z|s,a) generated by the nominal model θ0 would ap-
proximate the true distribution for all states and actions:

Ideally: ∀(s,a) ∈ (S ×A) .θ0(s,a, z) ≈ P ∗(z|s,a) (2.2)

However, it is often the case that a model is not a good predictor for every state and action. In
particular, we are interested in domains in which there is some subset of the state-action space in
which the nominal model θ0 does not accurately describe execution. We focus on cases in which
this inaccurate subset is made up of a finite setR∗SA of connected regions of state-action space:

Contextual inaccuracies: R∗SA =
{
R∗SA ⊆ (S ×A)|(s,a) ∈ R∗SA ↔ θ0(s,a, z) 6≈ P ∗(z|s,a)

}
(2.3)

Many real-world domains have such connected regions of inaccuracy, as motivated in Section 1.2.
Furthermore, to maximize the generality of our approach, we allow these regions to be defined

over features extracted from the state-action space by a function χ : S × A → X ⊆ Rd. This
function might be handed to the robot, as in the work described in Chapter 3, or automatically
extracted by the robot from a large set of possible features, as in the work described in Chapter 4.
Under this more general definition, given x = χ(s,a), we define the finite setR∗ as:

Contextual inaccuracies (feature space): R∗ =
{
R∗ ⊆ X |x ∈ R∗ ↔ θ0(x, z) 6≈ P ∗(z|x)

}
,

(2.4)
The existence, shape, or effect of these inaccurate regions R∗ ∈ R∗ are unknown to the robot.

Our work consists on enabling robots to estimate these regions purely from sparse execution data.

2.3 Detection approach
This section gives an overview of our approach for detection of context-dependent inaccuracies in
the robot’s model.

The first approach that one may try is to compare individually each outcome observation re-
ceived from the world to its expected distribution given by the nominal model. This simple ap-
proach is indeed capable of detecting some anomalous behavior in execution. For example, if a
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robot’s motion model indicated that the robot’s next forward speed was expected to be distributed
asN (1m

s
, 0.1m

2

s2
), but the robot’s wheels are completely stuck and the next observation shows a for-

ward speed of 0m
s

, the robot may immediately detect the anomaly since P (v ≤ 0|µ = 1, σ2 = 0.1)
is vanishingly small. This thesis instead addresses the problem of subtle inaccuracies that cannot
be detected using a single outcome observation.

Our approach is to enable the robot to explicitly search for Regions of Inaccurate Modeling
(RIMs) of the context feature space X in which execution data is collectively unlikely given the
nominal model θ0. The problem of detecting RIMs has been most widely studied in the context of
disease outbreak detection (see Section 6.2.1). From this research, we borrow the general strategy
for detecting such RIMs: First, we find the region of context space most likely to be anomalous
–i.e., the region R+ that maximizes the likelihood ratio:

anom(R,Z,θ0) =
P
(
Z|execution in R does not follow θ0

)
P
(
Z|execution in R follows θ0

) . (2.5)

Then, we conduct a statistical test to determine whether R+ is, in fact, anomalous. This statistical
test consists of testing whether anom(R) > athresh, for a derived threshold athresh that corresponds
to a desired detection power.

2.3.1 Detection in low-dimensional spaces
The search for R+ cannot be conducted explicitly over all possibilities, since the set of all pos-
sible regions is infinite. In the disease outbreak community (e.g., [53]), this has most often been
addressed by performing two approximations:

1. Limit the search space to a set of parametric regions of the domain.

2. Search over a discrete set of these parametric regions, often by discretizing the domain.
Here, we borrow the idea of restricting the search to a family of parametric regions. However,
rather than explicitly searching over a discrete subset of these, we use optimization techniques
to search for R+. This approach scales better to domains with more than very few dimensions,
and does not require discretization of a continuous domain. Furthermore, since observations ar-
rive incrementally to the robot, solutions rarely change much from one time step to the next. Our
optimization-based algorithms can take advantage of this by making slight modifications to the so-
lution as new observations arrive, rather than restarting the search from scratch. One disadvantage
of using optimization techniques is that, given the nonlinear nature of the problem, they cannot
guarantee convergence to the globally optimal solution.

There are alternatives to finding R+ other than searching over a space of parametric regions.
For example, one could use regression trees to partition the domain into axis-aligned regions with
similar behavior, or one could use non-parametric approaches, such as Gaussian Processes, to try to
find RIMs. We have chosen to search over parametric regions because they provide a compact rep-
resentation and fast convergence for non axis-aligned regions. Exploring alternate representations,
while an interesting problem, is beyond the scope of this thesis.

Chapter 3 describes our work on detection of model inaccuracies in low-dimensional domains.
We present an algorithm for detection of single and multiple RIMs during execution, and empirical
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validation of these on the CoBot the CMDragons.

2.3.2 Detection in high-dimensional spaces
While the approach of Chapter 3 is effective in low- and mid-dimensional domains, its performance
degrades quickly with the dimensionality of the domain. It is neither efficient nor effective to
optimize RIMs in high-dimensional domains. To address this problem, we make a key observation:
in the vast majority of context-dependent model inaccuracies, the intrinsic dimensionality of the
inaccuracy is low; however, the robot does not know in advance which dimensions of its context
space will be affected by model inaccuracies.

Assuming intrinsic low dimensionality in RIMs enables us to present a search-based approach
over low-dimensional subspaces of the domain, to find the subspace that contains the maximum
anomaly region. The search tree root node is the zero-dimensional subspace that contains no
features, and the children of each node are the subspaces obtained by adding a single additional
feature to the parent node. We propose various heuristics to enable the robot to efficiently search
through this tree to find the subspace that contains the maximum anomaly region R+.

Chapter 4 presents this best-first-search algorithm in detail, and provides empirical evidence of
its effectiveness on real robot data.

2.4 Planning approach
Detected RIMs can be used by the robot’s planner to improve its task performance. This thesis
explores two aspects of this problem: model correction using RIM information, and planning that
accounts for the robot’s uncertainty regarding model inaccuracies.

2.4.1 Model correction
Robots can use information about detected RIMs to apply corrections to their models, which can in
turn lead to substantial performance improvement. To correct the robot’s model, we treat each de-
tected RIM R+

i as a newly discovered behavioral mode of the system, with a different distribution
of outcomes θi than the nominal model θ0.

The corrected model θi in region R+
i is obtained as the maximum likelihood model out of a set

of candidate models:

θi(R+
i |Z ′) ≡ arg max

θ∈Θ

 ∏
xt∈R+

i

Pθ(zt|xt)

 (2.6)

Then, the overall corrected model is given by a mixture of the models for each behavior:

θ+ =
∑
i

wiθ
i. (2.7)

The weights of this mixture model depend on the robot’s estimated probability that the world will
follow each of the behaviors, given the state in which it is located, and the action it chooses to take.
Section 3.4 presents the technical details of this model correction approach.
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2.4.2 Planning under RIM-uncertainty

In domains with sparse observations, multiple RIM-hypotheses might be consistent with the ob-
servations. Figure 2.4 illustrates a simple example of this in 2D: the observed data may be able to
tell the robot with statistical significance that there exists a RIM, but not its exact shape and size.

Figure 2.4: Observed outcomes during execution indicate the existence of a RIM. Blue ellipses
show some of the infinite number of RIMs that are consistent with the observations.

We approach the problem of uncertainty about the extent of these RIMs by enabling the robot
to represent each detected RIM as a distribution of possible parametric regions that are consistent
with the RIM, rather than as a single parametric region. Once the robot represents each RIM as a
set of possible parametric regions, it can reason more finely about whether a point in state-action
space lies within the detected RIM: it can reason about the probability that a point lies within a
detected RIM.

Representing this uncertainty enables our robots to effectively trade off exploration and ex-
ploitation. We develop an Upper Confidence Bound (UCB) algorithm, which has been applied in
various domains in previous research as an effective algorithm for the Multi-Armed Bandit prob-
lem, to work within the context of RIM-detection and correction.

Chapter 5 presents the technical details of our approach to enable robots to reason about RIM-
uncertainty, and an online learning algorithm for the Contextual Multi-Armed Bandit problem.

2.5 Chapter summary

This chapter presents a technical overview of the problem that this thesis addresses, and of the
approach the thesis takes to solve this problem.

Section 2.1 provides a technical definition of the range of domains to which the work of this
thesis applies: domains with continuous state and action spaces, in which the results of applying
actions are stochastic, and in which the robot has a nominal model of the stochastic distribution
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of these outcomes. The section shows that a wide variety of robotics domains fall under these
restrictions.

Section 2.2 formally defines the problem this thesis solves: there exist exist particular regions
of the robot’s state and action space in which the distribution of stochastic action outcomes deviates
significantly from the nominal stochastic model that the robot uses for planning.

Section 2.3 describes the general approach for detecting the existence and extent of such re-
gions in which the robot’s model is inaccurate. In low-dimensional domains, the robot uses an
optimization-based approach to finding a parametric region of state-action space in which its model
is inaccurate. In high-dimensional domains, the robot uses a search-based feature selection ap-
proach, in combination with the aforementioned low-dimensional approach, to find such regions
effectively.

Section 2.4 describes how the robot can autonomously use this detection to improve its plan-
ning performance. First, once the robot has found a region of state-action space in which its model
is inaccurate, the robot proceeds to apply a rough correction to its planning model in that particular
region. Furthermore, the robot reasons about its uncertainty regarding possible model inaccuracies
to improve its expected performance. Thus, the work on this thesis enables the robot to improve its
task performance online by detecting, correcting, and reasoning about its uncertainty about model
inaccuracies.
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Chapter 3

Detection and Correction of RIMs in
Low-Dimensional Spaces

This section describes our work on detecting and correcting Regions of Inaccurate Modeling
(RIMs) in the robot’s state-action space, during execution, in low-dimensional domains. The result
is an execution monitoring framework that enables robots to detect and correct RIMs online.

Algorithm 1 shows a simplified description of this monitoring process, first described in our
previous work [65]. At every time step t of execution, this monitor receives as input the nominal
model of execution θ0, the state st visited by the robot, the action at taken by the robot, and the
observed outcome zt of that action. First, the algorithm extracts relevant features from state-action
space (line 2); here, we assume the feature extraction function χ is given to the robot, but Chapter 4
describes our work to eliminate this assumption. Then, the contextual outcome observation (xt, zt)
is added to the set Z of all observations (line 3). The monitor proceeds to find RIMs fom Z and
θ0 (line 4), and correct the model accordingly (line 5).

Algorithm 1 Execution monitor procedure run every time step t of execution.
Input: model θ0 of nominal execution, world state st, chosen action at and observed outcome zt.
Output: corrected model θ+.

1: function MONITOR(θ0, st,at, zt)
2: xt ← χ(st,at) . Extract relevant features
3: Z ← Z ∪ (xt, zt) . Update set of observations (initially, Z = ∅)
4: R ← FindRIMs(Z,θ0) . Find anomalies
5: θ+ ← UpdateModel(θ0,R) . Correct model
6: end function

The core of the algorithm thus lies in detecting and correcting model inaccuracies. We divide
this problem into four components:
Measure of inaccuracy: Intuitively, we wish to detect and correct regions of state-action space in

which observations do not match the robot’s model. Because observations are stochastic, we
define this measure statistically: we use a likelihood ratio measure, widely used in statistics
and anomaly detection [14]. Section 3.1.1 describes this measure, and how we compute it.
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Search space of RIMs: We would like to search over all possible regions of state space to find in-
accurate ones. While some non-parametric methods can in fact represent arbitrarily-shaped
boundaries, here we opt for parametric approaches, which usually converge sparser observa-
tions, at the cost of expressiveness power. Section 3.1.2 describes the parametric space we
use in our completed work.

RIM-search algorithm: Given a search measure and space, we define the algorithm for search-
ing over this space. Here, we deviate from previous related work, which conducts explicit
searches, and take an optimization-based approach, which is better suited for robotics do-
mains. Section 3.2 describes the FARO [64] algorithm for domains with up to one RIM, and
Section 3.3 describes the DMAPS [65] extension for domains that may have multiple RIMs.

RIM-correction: Once RIMs are detected, our algorithms correct these inaccuracies to improve
the robot’s model. Section 3.4 describes how we address this in our work [65].

After describing each of these steps in detail, Section 3.5 describes how we evaluated these
detection and correction algorithms in multiple simulated and real robot domains.

3.1 Background: Inaccuracy measure and search space

The problem of detecting RIMs has been explored in non-robotics contexts, such as disease out-
break detection. From this previous work [53], we borrow the measure used to decide whether
a RIM is truly inaccurate, and the idea of using a particular family of parametric regions as the
search space. However, here we derive the specifics to fit our problem domains.

3.1.1 Inaccuracy measure anom(R,Z,θ0)

Following previous work, we define a RIM as a region R such that the likelihood of the data ob-
served in that region given the robot’s model is much lower than the likelihood of it given the best
fitting model. Thus, we use a likelihood ratio to define the inaccuracy measure1anom(R,Z,θ0)
of a region R given a set of observations Z = (xi, zi) and a nominal model θ0:

anom(R,Z,θ0) ≡ P (Z|R follows θ̂)

P (Z|R follows θ0)
, (3.1)

where θ̂ is the best fitting model from a set of possible alternate models Θ̂. This statistical measure
has various desirable detection properties, described in detail in previous work [53], including a
variant of the uniformly most powerful property, and its independence from data that lies outside
of R.

This inaccuracy measure depends only on the observations (xi, zi) contained in R, and not
explicitly on the shape of R itself. This implicitly assumes that we have no prior information

1Because our work is strongly inspired by work on anomaly detection, we interchangeably use the terms inaccuracy
measure, which reflects our specific purposes, and anomaly measure, which reflects the broader context for which this
measure has been used.
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about the likelihood of observing RIMs of particular shapes, which is a valid assumption in many
robotics domains. Adding such prior information is possible, as shown in Section 3.3.

Assumptions: To calculate the anomaly value of a region R, we will make two assumptions.
• We assume a particular set of alternate models θ̂: For all the states in a RIM, the mean µ of

the observations has been shifted by an unknown constant vector δ:

E
[
z|x, θ̂

]
= µ(x|θ̂) =

{
µ(x|θ0) + δ if x ∈ R
µ(x|θ0) otherwise

(3.2)

While other work (e.g., [67]) assumes a multiplicative offset, an additive offset fits our do-
mains best. In many monitoring applications, zero-mean observations (e.g., residuals) indi-
cate normal execution; thus a multiplicative constant would not distinguish between normal
and anomalous execution. This assumption results in a simple analytical form for Equa-
tion 3.1; in the future we may have to also consider inaccuracies that affect the variance of
observations rather than the mean.

• We assume independence between observations zi given the state of the robot xi. This
assumption, which is valid given an expressive enough state description, allows us to de-
compose the probabilities of Equation 3.1 into individual probabilities P (zi|xi, R,θ).

With these assumptions, Equation 3.1 becomes:

anom(R,Z,θ0) ≡
max
δ

∏
xi∈R

P (zi|µ(xi|θ0) + δ)
∏
xi /∈R

P (zi|µ(xi|θ0))∏
xi

P (zi|µ(xi|θ0))

=

max
δ

∏
xi∈R

P (zi|µ(xi|θ0) + δ)∏
xi∈R

P (zi|µ(xi|θ0))
(3.3)

The above expression is a general measure of anomaly for arbitrarily shaped regions R and
for arbitrary distributions P (z|x). To make it more concrete, we now derive the expression for
anom(R) for the normal distribution P (zi|xi,θ) ∼ N (µ(xi|θ),Σ(xi|θ)). We show the deriva-
tion for the normal distribution since it is one of the most commonly used. Analogous derivations
for other distributions, and for multiplicative shifts (instead of our additive shift δ), can be found
in related work [67]. For brevity, when discussing the nominal model θ0, we use the abbreviations
µi ≡ µ(xi|θ0), Σi ≡ Σ(xi|θ0).

For normal distributions, it is simpler to work with the logarithm of the likelihood ratio rather
than with the likelihood ratio itself. Since logarithm is a monotone function, the region that max-
imizes one will maximize the other. Defining an auxiliary variable ∆zi ≡ zi − µi, function
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F (R) ≡ ln anom(R) is given by 2

(3.4)

= max
δ

∑
xi∈R

[ln(P (zi|µi + δ,Σi)− ln(P (zi|µi,Σi)]

= max
δ

∑
xi∈R

1

2

[
∆z>i Σ

−1
i ∆zi − (∆zi − δ)>Σ−1

i (∆zi − δ)
]

= max
δ

∑
xi∈R

[
δ>Σ−1

i ∆zi −
1

2
δ>Σ−1

i δ

]

= max
δ

[
δ>
∑
xi∈R

(
Σ−1
i ∆zi

)
− 1

2
δ>
∑
xi∈R

(
Σ−1
i

)
δ

]
(3.5)

To find δ that maximizes this likelihood ratio we find the point where the derivative with respect
to δ is equal to 0: (∑

xi∈R

Σ−1
i ∆zi

)
−
(∑
xi∈R

Σ−1
i

)
δmax = 0

(∑
xi∈R

Σ−1
i

)−1(∑
xi∈R

Σ−1
i ∆zi

)
= δmax (3.6)

Substituting δmax back into Equation 3.5 gives the final expression for the quantity to maxi-
mize:

F (R) =
1

2

(∑
xi∈R

Σ−1
i ∆zi

)>(∑
xi∈R

Σ−1
i

)−1(∑
xi∈R

Σ−1
i ∆zi

)
(3.7)

This expression depends only on the nominal model θ0 and sufficient statistics of the observed
data. This is particularly useful when the state space is discretized and only sufficient statistics of
each discrete state, instead of all the data points, need to be stored.

3.1.2 Search space of RIMs: Parametric regions
While we would like to search over the space of all possible subregions of state-action space to
find RIMs, we choose to bound the search space to families of of parametric shapes. Previous
work on spatial anomaly detection has used various parametric shapes (e.g., circles [53] or ellipses
[54]). Previous work has argued that, while these regions only represent a small subset of all pos-
sible regions, their detection power extends significantly beyond the chosen shapes. Additionally,

2Unfortunately, capital letter Σ is the standard symbol for both summations and covariance matrices. While we
have kept this notation, we try to avoid confusion by always placing summation indices under Σ, while covariance
matrices are indexed by a subscript to the right of Σ.
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parametric shapes have the advantage of having an explicit concise parameter space over which to
conduct a search.

Throughout our work, we do not assume a particular choice of parametric shapes, and our
algorithms apply to any parametric shape (rectangles, ellipsoids, cylinders, etc.). The choice of
shape depends on the domain at hand.

In our implementations, we have chosen to use ellipsoids as the search space for RIMs. Our
motivation is that ellipsoids are a generic convex shape that support arbitrary rotations, translations,
and scalings, while requiring only O(d2) parameters. In a d-dimensional state space, an ellipsoid
can be parameterized by an d-vector u and a d × d positive definite matrix A as the set of points
that satisfy:

(x− u)>A−1(x− u) < 1 (3.8)

Thus, the parameter vector ψ(u,A) describing a particular ellipsoid is the linearized form of
u and A, consisting of d + d(d+1)

2
= 1

2
(d2 + 3d) dimensions. The search space is then the space

of such vectors ψ ∈ Ψ such that the derived matrixA is positive definite.

3.2 Detection of a single RIM

In this section, we use the anomaly measure3 anom(R) and the parametric search space defined
in Section 3.1 to describe the Focused Anomalous Region Optimization (FARO) algorithm for
detection of up to one RIM. While previous work in spatial anomaly detection has used similar
measures and parametric shapes, we present a different algorithm, more suited for online monitor-
ing of execution. As Section 6.2.1 discusses, previous search methods include exhaustive search
over discretizations of the optimization space, and other methods that scale exponentially with the
dimensionality of the data. Instead, we present an optimization-based approach.

Algorithm 2 describes this optimization process. It is an iterative optimization process that
maintains a set R of most promising candidate RIMs throughout time, bounding the size of this
set to a constant |R|max. At every timestep of execution, the approach begins by seeding a new
RIM candidate with a small region around the most recent observation (line 2). Then, the algorithm
optimizes each candidate RIM using a nonlinear optimization algorithm (line 5). For this thesis, we
have used the Cross-Entropy Method (CEM) of optimization, but we could replace it with another
optimization method Optimize, that takes as input a region R (or its parameter vector ψ(R)) and
a value function anom(·,Z,θ0) to be optimized.

Once every candidate RIM has been optimized, the algorithm must decide whether any of
the candidates are statistically anomalous, and return that candidate as a RIM. This decision is
based on comparing anom(R) to a threshold value athresh(t), which depends only on the domain
during nominal execution, and on the number t of observations (line 6). This threshold value can
be approximately mapped to a desired rate of false positives in detection through Monte Carlo
simulation [53]: we run FARO in N simulated nominal executions, and count the number of

3When clear from context, we will ommit Z or θ0 from anom(R,Z,θ0).
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Algorithm 2 FARO algorithm for detection of a single RIM.
Input: List of contextual observations Z, nominal model θ0, and maximum set size |R|max.
Output: A RIM R+, or ∅ if no RIM is detected.

1: function FARO( Z = [(xi, zi)|i = 0, . . . , t], θ0, |R|max)
2: R ← R∪ ball(xt) . Seed around latest x. Initially,R = ∅.
3: R+ ← ∅
4: for R ∈ R do
5: R← Optimize(R, anom(·,Z,θ0)) . Nonlinear optimization. We use CEM
6: if anom(R) ≥ athresh(t) then . Statistical test for anomaly
7: R+ ← R
8: end if
9: end for

10: if |R| > |R|max then
11: ReduceR to its |R|max elements of highest anom
12: end if
13: return R+

14: end function

simulations n(athresh, t) in which anom(R+) > athresh after t observations:

P
(
anom(R+) > athresh(t)|θ0

)
≈ n(athresh, t)

N
. (3.9)

Figure 3.1 illustrates two examples of FARO detecting RIMs in the simulated golf-robot do-
main. Section 3.5 describes thorough evaluations of the detection capabilities of FARO.

3.3 Detection of multiple RIMs
Section 3.2 describes our work on the FARO algorithm, created to detect RIMs in domains with up
to one RIM. Here, we present the theory and algorithm needed to extend these ideas to domains that
may have multiple RIMs. Section 3.3.1 derives the theoretical framework required for detection
of multiple RIMs, while Section 3.3.2 puts this theory into the DMAPS algorithm for detection of
multiple RIMs.

3.3.1 Multiple RIM detection theory
An intuitive (but ultimately insufficient) first idea on how to extend the formulation of Equa-
tion 3.1 to domains with multiple anomalies would be to simply maximize an analogous function
Anom′ (R) over setsR of regions, rather than individual regions R:

Anom′(R,Z,θ0) ≡
∏
R∈R

P (Z|R follows θ̂)

P (Z|R follows θ0)
(3.10)
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(a) P (z|s ∈ RIM) = 0.2. P (z|s /∈ RIM) = 0.8 (b) P (z|s ∈ RIM) = 0.5. P (z|s /∈ RIM) = 0.8

Figure 3.1: Synthetic data for a RIM (defined by red lines) created by an imperceptible bump (red
solid line) in the golf-robot scenario. Green circles and red exes mark successful and failed shots,
respectively. Blue ellipses show the RIMs found by FARO.

This formulation needs further work for two reasons: (1) overlap among regions needs to be
properly addressed to avoid double counting of observations, and (2) we want our formulation
to favor simpler hypotheses over more complex ones that try to explain the same observations.
For example, using Anom′(R) as the cost function, a hypothesis R with n anomalous regions,
each with one observation, would be considered as anomalous as a simpler hypothesis with one
anomalous region with those n observations.

To address the issue of double counting, we state the following natural assumption:
Assumption 1. During execution, each observation in Z is produced by exactly one behavioral
mode of the world. This mode could either be the nominal model, or one of the unmodeled models
in the RIMs.

In practice, what this assumption implies is that a single observation cannot contribute to the
anomaly value anom(R) of more than one region at a time during maximization.

The issue of favoring simpler hypotheses follows naturally from a proposed formulation of the
optimization problem that accounts for prior probabilities over regions: instead of finding the set
of regions that that maximizes Anom′(R), we search for the set R+ that maximizes the following
function Anom(R):

Anom
(
R,Z,θ0

)
≡
∏
R∈R

P
(
R follows θ̂|Z

)
P
(
R follows θ0|Z

) , (3.11)

which implicitly assumes that for any two regions Ri ⊆ X and Rj ⊆ X , “Ri is an anomalous
region” is conditionally independent from “Rj is an anomalous region”, given the list of observa-
tionsZ. In domains in whichZ is the only source of information about the presence of anomalous
regions, this assumption holds. However, there may exist domains in which this assumption does
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not hold: for example, a domain in which the robots knew in advance that there exist exactly n
anomalous regions. Addressing these domains is beyond the scope of this thesis.

The proposed formulation of Equation 3.11, leads to a more desirable optimization cost func-
tion, which naturally favors simpler hypotheses, as shown by Theorem 1 below:
Theorem 1. The set R+ of regions that maximizes Anom(R) is also the set that maximizes the
simpler function

F (R) ≡
[∑
R∈R

log(anom(R))

]
−
∑
R∈R

λ(R), (3.12)

with λ(R) = log
(

P (R is normal)
P (R is anomalous)

)
.

Proof. We can expand Equation 3.11 using Bayes’ theorem:

Anom(R) =
∏
R∈R

P (R is anomalous|Z)

P (R is normal|Z)

=
∏
R∈R

P (Z|R is anomalous)P (R is anomalous)
P (Z|R is normal)P (R is normal)

=

[∏
R∈R

anom (R)

][∏
R∈R

e−λ(R)

]
. (3.13)

Since log(Anom(R)) is a monotonically increasing function of Anom(R), we maximize log(Anom(R))
instead of Anom(R):

arg max
R⊆2X

[Anom(R)] = arg max
R⊆2X

[log(Anom(R))]

= arg max
R⊆2X

[[∑
R∈R

log(anom(R))

]
−
∑
R∈R

λ(R)

]
= arg max

R⊆2X
[F (R)] (3.14)

Corollary 1. In a domain in which the prior probability of region R being anomalous is uniform
for all R ⊆ X , F (R) reduces to

F (R) =

[∑
R∈R

log(anom(R))

]
− λ|R|, (3.15)

where λ is a constant.
For our completed work, we assume λ to be a constant for all regions, although incorporating

a non-uniform informative prior is a subject of interest for future work.
We note that, in domains in which RIMs are less probable than nominal behavior –i.e., λ(R) >

0– the cost function F (R) naturally favors simpler hypotheses with fewer anomalous regions.
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3.3.2 Algorithm for detection of multiple RIMs
Optimizing function F (R) is a hard, non-convex problem. Even the simpler problem of globally
optimizing for a single RIM is not tractable [64], which is why FARO uses an iterative optimization
approach. Here, we also use an iterative optimization approach for each candidate RIM. Further-
more, our algorithm takes a greedy approach to optimize for multiple RIMs: candidate RIMs are
optimized in sequence, in non-ascending order of their value anom(R).

Algorithm 3 describes the sequential optimization process of DMAPS. First, the algorithm
adds a small candidate region around the most recent observation to R in line 2, similarly to the
FARO algorithm. This set of regions is then sorted in non-increasing order of value anom(R) for
sequential optimization. At this point, in line 7, the sequential optimization over candidate regions
begins.

Algorithm 3 DMAPS algorithm for detection of multiple RIMs.
Input: List of contextual observations Z, and nominal model θ0.
Output: A setR of potential RIMs, along with their corresponding anomaly values.

1: function DMAPS( Z = [(xi, zi)|i = 0, . . . , t], θ0)
2: R ← R∪ ball(xt) . Seed around latest x. Initially,R = ∅.
3: R← Sort(R) . Descending order of anom(R)
4:
5: R ← ∅ . ResetR and F (R)
6: F ← 0
7: for R ∈ R do
8: R← Optimize(R, anom(·,Z,θ0)) . Nonlinear optimization. We use CEM
9: if log(anom(R,Z)) ≥ λ(R) then

10: R ← R∪R
11: F ← F + log(anom(R,Z))− λ(R)
12: end if
13: end for
14: returnR
15: end function

We note that this algorithm bears resemblance to the FARO algorithm. However, the results
derived in Section 3.3.1 enable the algorithm to keep candidates only if they add to the total value
of the set R.

For the optimization of each region R in line 8, we use the Cross Entropy Method (CEM) for
randomized optimization [81]. After optimizing a region from R into R′, the decision of whether
to add this region to the final output set is made in line 9. A region R′ is only added if it adds value
to the optimization cost function F .

The end result of the DMAPS algorithm is a set of regions R+ found to be most likely to be
the set of unmodeled regions of the domain. Note that this set is not a global optimum of cost
function F (R) for two reasons: First, the CEM optimization of each region R ∈ R finds a locally
optimal solution, rather than a globally optimal one. Second, the greedy sequential optimization
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over multiple anomalies is not a globally optimal assignment either, and counter-examples to its
optimality can be found. In spite of this, the detection of DMAPS, combined with the correction
presented in Section 3.4 has shown to significantly improve performance and prediction in complex
robot domains, as shown in Section 3.5.4.

3.4 Model correction using detected RIMs
Section 3.3 describes the DMAPS algorithm to find a set R of RIMs. This section describes how
robots can use this information to correct their planning models. This corresponds to line 5 in
Algorithm 1.

We seek to compute a corrected model θ+ based on the nominal model θ0 and the set R of
detected anomalous regions:

P (z|θ+) ≡ P (z|s,a,θ0,R) (3.16)

We assume that, when the robot performs action a in state s, the world behaves according to
its nominal model θ0 or one of the |R| behaviors θi detected by DMAPS. We denote the set of
plausible models as ΘR = {θ0} ∪ {θi|i ∈ 1, . . . , |R|}. By the law of total probability, we obtain:

P (z|s,a,θ+) =
∑
θi∈ΘR

[
P (z|s,a,θi,R)P (θi|s,a,R)

]
. (3.17)

The distribution of observations is a mixture of the distributions produced by the different
plausible models. We get a better idea of the parameters involved in Equation 3.17 by defining
αi(s,a,R) ≡ P (θi|s,a,R), and noting that z is independent ofR given the right model θi:

P (z|s,a,θ+) =

|ΘR|∑
i=0

[
αiP (z|s,a,θi)

]
(3.18)

Section 3.4.1 discusses the problem of estimating the model θi, while Section 3.4.2 discusses
the estimation of αi. Then, Section 3.4.3 describes how to bring these together into the final model
correction equations.

3.4.1 Estimating observation distributions

P (z|s,a,θi) describes the distribution of observations z given that the world is in a RIM de-
fined by model θi. For nominal execution, this is simply the model-given predicted distribution
P (z|s,a,θ0).

For the unmodeled behavior modes in each region Ri ∈ R, we assume for this work that the
form of the distribution is the same as in nominal execution, but the parameters are specific to each
unmodeled behavior. Thus, in the absence of prior knowledge about the distribution of anomalies,
the maximum likelihood estimate is used, as in Section 3.2:

θi ≡ arg max
θ̂∈Θ̂

 ∏
(xi,zi,θi)∈Z

1(xi ∈ R)
P (zi|θ̂(xi))

P (zi|θi)

 (3.19)
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In particular, for the examples of this work, we use Gaussian distributions and anomalies that
shift the mean µ of the distribution. In that case, the maximum likelihood distribution for model
θi is given by

P
(
z|s,a,θi

)
= N (µ0(s,a) + δ(Ri),Σ0(s,a)) . (3.20)

Here, µ0 and Σ0 are the parameters predicted by the nominal model θ0, and δ(Ri) is the maximum
likelihood shift in mean of Equation 3.6.

3.4.2 Estimating active behavior distributions

Coefficients αi = P (θi|s,a,R) describe the probability of the world being in each behavior model
θi (including nominal behavior) given that the robot takes action a in state s. First we note that,
for nominal behavior this probability is constrained to be

P
(
θ0|s,a,R

)
= 1−

|R|∑
i=1

P
(
θi|s,a,R

)
, (3.21)

so we focus on computing the probability of other behaviors.
The activation probability of each unmodeled behavior θi is given by:

P (θi|s,a,R) = P
(
θi|χ(s,a) ∈ Ri

)
P (χ(s,a) ∈ Ri) (3.22)

= P
(
Ri follows θi

)
P (χ(s,a) ∈ Ri) , (3.23)

where we have rewritten the first factor to make it clear the relationship to Equation 3.1 clear. The
activation of behavior mode θi thus depends both on whether feature state x = χ(s,a) ∈ X lies
inside of region Ri, and on our confidence that Ri is a RIM that behaves according to θi.

For our completed work, P (χ(s,a) ∈ Ri) simply indicates whether a state-action point be-
longs to region Ri:

P (χ(s,a) ∈ Ri) = 1(χ(s,a) ∈ Ri). (3.24)

In domains with noisy measurements of s, or with anomalous regions with fuzzy boundaries, a
softer definition of “belonging” to region Ri could be more appropriate.

To calculate the confidence value P
(
Ri follows θi

)
, we again employ Monte Carlo simulation,

similarly to how we use it in Section 3.2: We note that P
(
Ri follows θi

)
is a monotonically

increasing function of anom(R), as defined in Equation 3.1. There exists a function P : R → R
such that:

P(anom(R)) = P
(
Ri follows θi

)
. (3.25)

This function can be estimated by sampling: If it is possible to have access to state-action samples
distributed as those in Z and in the absence of anomalies, an empirical estimate P̂ can be created
from the empirical estimate of P (anom(R) > γ|R follows θ0) [53]. Therefore, we estimate the
desired confidence by:

P (bR|x(s,a) ∈ R,Z) = P̂(anom(R)) (3.26)

Coefficient αR is thus computed as:

αR(s,a,R) = 1 (x(s,a) ∈ R) P̂(anom(R)) (3.27)
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3.4.3 Applying model corrections

Defining P (z|s,a,θi) and αi for each plausible behavior fully defines Equation 3.18. Using
normal distributions as described in Section 3.4.1 and αi as defined in Section 3.4.2, we get the
corrected model:

P (z|θ+) =

P (z|µ0,Σ0)

(
1−

∑
R∈R

[
1 (x(s,a) ∈ R) P̂(anom(R))

])
+∑

R∈R

[
P (z|µ0 + δ(R),Σ0)1 (x(s,a) ∈ R) P̂(anom(R))

]
(3.28)

Given that x(s,a) can only be part of one anomalous region by Assumption 1, we get the final
expression for the distribution of observations:

P (z|θ+) =


P (z|µ0,Σ0)(1− P̂(anom(R)))+ if ∃R ∈ R s.t.
P (z|µ0 + δ(R),Σ0)P̂(anom(R)) x(s,a) ∈ R

P (z|µ0,Σ0) otherwise

(3.29)

From this expression, the planner can estimate different statistics of the predicted distribution
of z. For example, the expected value of z can be easily derived as

E[z|θ+] =

 µ0 + δ(R)P̂(anom(R)) if ∃R ∈ R s.t. x(s,a) ∈ R

µ0 otherwise
(3.30)

3.5 Empirical evaluation
Sections 3.1 through 3.4 describe our theory and algorithm contributions to online detection and
correction of RIMs. This section describes how we evaluated each of these contributions.

First, we present a summary of our evaluations of the FARO algorithm for online detection of
domains which may have a single RIM; our previous work [64] presents a more detailed description
of these evaluations. We evaluated FARO in two domains: synthetic data from the golf-robot
domain (Section 3.5.1), and real-world data from the CoBot service robots [95] (Section 3.5.2).
The objectives of experimenting in these two domains are that the first provides a simple and easily
visualizable domain, while the second provides a real-world application with a higher dimensional
state space; the two combined support the generality of the algorithm.

Then, we describe evaluations of the DMAPS algorithm, an the performance improvement
achieved by applying model corrections; these evaluations are more thoroughly described in pre-
vious work [65]. We describe the evaluation domain of soccer Interception-Keepaway in Sec-
tion 3.5.3, and then describe our experiments and results in Section 3.5.4.
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3.5.1 Golf domain single RIM detection
We first show experiments and results using synthetic data from the golf-robot domain described
in Section 1. Figure 3.2 shows this domain, in which the robot’s task is to repeatedly shoot a ball
into a hole on the far right side of the field. Shot observations arrive sequentially, and the locations
of shots are uniformly distributed across the field.

The domain has one RIM created by an imperceptible bump on the field, which causes the
robot to miss its target more often than expected when shooting from behind the bump.

(a) ln anom(R) = 10.0, 7 ob-
servations

(b) ln anom(R) = 20.6, 43 ob-
servations

(c) ln anom(R) = 40.8, 84 ob-
servations

Figure 3.2: Most abnormal ellipse found as more observations arrive. The sub-figures show the
state of the algorithm when three anomaly thresholds are reached. Parameter values are p = 0.8,
q = 0.5.

The experimental setup is as follows: the field measures 6 × 4 meters. The parameters in this
world are the shape and location of the unperceived obstruction obs, the probability p of success
during normal execution, and the probability q of success from locations that are blocked by obs
(abnormal execution), both of which are constant throughout their regions. For each test of each
of the experiments below, obs was sampled uniformly from the set of line obstructions where the
distance between the target and the center of obs is between 0.1 and 1.5 meters; the center of obs
is in the field, and the angle subtended by the endpoints of obs and the target is between π

16
and π

4

radians. This randomization created test RIMs of various shapes, sizes, and orientations.
The goal of the first experiment was to determine the effect of the number of available abnormal

data points on the effectiveness of the detection. To do this, we held both p and q constant and kept
track of the precision and recall rates of the algorithm as the number of abnormal data points
increased. In the context of this work, given a ground truth anomalous region S, precision and
recall of the estimated region R are defined as

precision =
| {si : si ∈ R ∩ S} |
| {si : si ∈ R} |

(3.31)

recall =
| {si : si ∈ R ∩ S} |
| {si : si ∈ S} |

(3.32)

Figure 3.3a show the results of these experiments for p = 0.8, q = 0.2. With a relatively low
number of samples (around 10), precision and recall both get to about 80%, and they keep slowly
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increasing as more data arrives. The anomaly value, on the other hand, appears to grow expo-
nentially as more abnormal data arrives (ln anom(R) grows linearly), showing that the algorithm
quickly gains the necessary confidence to declare that an anomaly occurred. Figure 3.2 shows
an example of how an ellipse evolves as more data becomes available. Both anom(R) and the
accuracy of the ellipse approximation increase with the number of abnormal data points.

Note that even when the ellipse approximates the true anomaly very well, as in Figure 3.2c,
precision and recall rates still do not reach 1.0. The first reason for this is that the true shape of
each region cannot be arbitrarily-well approximated by any ellipse; the efficiency of choosing a
relatively small parameterization (i.e., ellipses) comes with the cost of the inability to represent
regions arbitrarily well. The other reason why precision and recall do not reach 1.0 is that, if there
are missed shots outside of the truly abnormal region, an ellipse that includes those shots has a
higher value than an ellipse that does not, and conversely with successful shots that are inside of
the abnormal region; thus, for finite numbers of observations, the ellipse that maximizes anomaly
is not necessarily the one that best matches the true anomaly region.

(a) Precision, Recall and Anomaly value with
varying number of abnormal data points

(b) Precision, Recall and Number of abnormal
points when threshold anomaly was passed.

Figure 3.3: Synthetic data experiments results. Blue dashed lines indicate standard error bars. The
black dashed line is the highest anomaly value observed during nominal execution.

The goal of the second experiment was to determine the effect of the magnitude of the inaccu-
racy on the algorithm’s performance. To do this, we analyzed the number of data points required
for the detector to reach ln(anom(R)) = 41.6 (twice as much as the maximum observed during
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normal execution), as the abnormal distribution q approached the normal distribution p = 0.8.
Figure 3.3b shows the results of this experiment. The number of data points required to be certain
of an anomaly appears to increase exponentially as the anomalous distribution gets closer to the
normal distribution. This result is expected, as the number should go to infinity as q → p, at which
point the distributions are indistinguishable. Furthermore, it is noteworthy that the precision and
recall rate stay close to constant for a given anomaly threshold. This suggests that the precision and
recall performance of the detector is approximately independent of the magnitude of the failure,
given an anomaly threshold athresh.

3.5.2 CoBot motion single RIM detection
We also evaluated FARO by introducing inaccuracies in the CoBot’s motion model domain de-
scribed in Section 1.2.1. We define the motion state of the CoBot by its translational and rotational
position and velocities: x ≡ [x y φ ẋ ẏ φ̇]>; the observations of execution is z ≡ [∆ẋ ∆ẏ ∆v̇],
the vector difference between the CoBot’s measured velocity, obtained from its wheel encoders,
and its expected velocity, based on its velocity command and its state. These observations, which
are execution residuals, are expected to be near zero during nominal execution.

After running the CoBot for 20 minutes of nominal execution, and determining that the highest
anomaly value during nominal execution of ln(anom(R)) = 20.1, we proceeded to inject inaccu-
racies into its model and test the detector. We introduced four types of RIMs separately:
Encoder failure Every time the CoBot moves, one of its wheel encoders observes (1 − ε)d, at

each timestep, where d is the displacement of the wheel returned during nominal execution.
This failure mode evaluates FARO for RIMs that occupy the whole domain.

Collision During an otherwise normal run of the robot, a sudden collision happens. This failure
mode evaluates FARO for very small, localized RIMs.

Corridor failure The wheel encoders fail by returning (1− ε)d, as above, but only in a particular
corridor of the building. This failure mode tests FARO for RIMs of medium extent over
state-action space. We note that this RIM encompasses a particular sub-region of two of the
dimensions of state-action space, and it is global in the others.

Left turn failure The robot’s execution is nominal except when it turns left (i.e., φ̇ > 0), in which
case each of its wheels moves only at (1 − ε)v for a velocity command v. Since the robot
turns only at intersections or when it needs to face a doorway, this failure mode tests the
algorithm when small clusters of abnormal points happen infrequently and far apart.

For each of these experiments, the robot was commanded at a high level to navigate to various
offices around the building, using its autonomous navigation algorithms [8], and FARO was run-
ning constantly. The route the robot took was different each time, as it was simply commanded to
go to various rooms. Table 3.1 summarizes the results of running the algorithm under the different
failure modes, with ε = 0.05.

The algorithm shows high precision and recall for each one of the experiments. The variance in
the precision and recall rates is small but not insignificant, indicating that some runs were probably
more difficult than others. For example, recall may be higher for a run in which the robot goes
down the bad corridor in the same direction multiple times than for a run in which it went down
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RIM
Anomaly Thresh = 40.2 End of experiment

Data Points Precision Recall Anomaly Precision Recall
Encoder 58± 8.2 1.0± 0.0 0.76± 0.15 337± 14 1.0± 0.0 0.92± 0.03
Collision 4.5± 2.1 1.0± 0.0 0.81± 0.09 1535± 54 1.0± 0.0 0.85± 0.03
Corridor 60± 11 0.94± 0.02 0.77± 0.15 199± 28 0.97± 0.01 0.90± 0.02
Left turn 31± 5.1 1.0± 0.0 0.79± 0.07 203± 22 0.80± 0.18 0.47± 0.12

Table 3.1: CoBot experiment results. For each experiment, the table shows statistics at the time
the anomaly threshold (two times the largest anomaly observed during normal execution) was
surpassed, and statistics at the time the robot was stopped.

and up the bad corridor: In the latter case, the ellipse had to expand over a gap between regions
with φ ≈ α and those with φ ≈ π + α, where α is the angle of the corridor itself.

The experiment that stands out in terms of results is the Bad turn left, for which the recall
rate is significantly lower than the others. This is because the anomaly happens in very disjoint
regions of state space (only when the robot needs to turn left), with no data between them. This
also explains why the final recall in this failure mode is lower than at the time of detection: more
disjoint abnormal regions were visited after the time of detection, and some of them were not joined
to the main ellipse. This result shows promise for the potential addition of active exploration to
our algorithm: if two disjoint abnormal regions are detected, and there is no data supporting or
denying the existence of an anomaly between them, exploring that region would provide evidence
one way or the other.

3.5.3 Interception-Keepaway robot soccer domain
We evaluate the DMAPS detection algorithm of Section 3.3 and the benefits of model correction
as presented in Section 3.4 on a complex sub-problem of the robot soccer domain introduced in
Section 1.2.2. The domain, which we denominate Interception-Keepaway, is strongly inspired by
the Keepaway domain introduced for 2D robot soccer simulation [88].

Interception-Keepaway definition

The keepaway domain is a sub-problem of autonomous robot soccer that has become a benchmark
problem in the 2D simulated robot league [87]. In this domain, a team of n keepers tries to keep
the soccer ball within a bounded 2D region, and away from a team of m takers, who try to gain
possession of the ball. The task is divided into episodes, each beginning with the robots and the
ball in particular semi-random positions on the field [87]. An episode ends when the ball leaves
the bounded region or it is held by one of the takers for a significant period of time, at which point
a new episode begins. Robots are rewarded for each time step an episode persists.

To the best of our knowledge, Keepaway has not been introduced to a real robot domain before.
This is a problem that presents several challenges, such as the complex dynamics and noise of the
real world. Most important for our purposes, however, is the problem of adapting throughout a
single game. Unlike simulation, real robots cannot run millions of trials to approach an optimal
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policy. Running real robot trials takes human effort, causes wear on the robots (changing their
dynamics in the process), and cannot be sped up. Robots thus need to adapt online and from sparse
observations, especially to perform well against unknown opponents in realistic timescales.

For the work in this thesis, we use a modified version of the Keepaway problem, which focuses
on passing and preventing interceptions. The modifications are the following:
Takers behavior: In Keepaway, 2 takers go to the ball, to try to steal it from the keeper k0 cur-

rently holding it, while the remaining (m − 2) block possible passes. In our domain, takers
focus on ball interception rather than stealing a stationary ball: One taker positions itself be-
tween k0 and the most open keeper, at a small distance from k0, while the remaining takers
position themselves between k0 and each of its most open teammates ki, at a small distance
from ki. Keepers thus have two types of pressure from the takers: close marks on poten-
tial receivers and close marks on k0. When the ball is in motion, the taker with the lowest
interception time will attempt to intercept it.

Performance measurement: Instead of rewarding the duration of an episode, performance is
measured by the average completion rate of passes as n(success)

n(success)+n(failure)
. This performance

measure more directly focuses on the problem of passing. For this work, we define a suc-
cessful pass as one in which the ball touches a keeper before it touches a taker or goes out of
bounds, while a failed pass is one in which the ball touches a taker before it touches a keeper
or the ball goes out of bounds, but other definitions are possible.

Model correction for Keepaway

We focus on the passer’s decision making problem. Each time a keeper receives the ball, it must
choose where to pass next to maintain possession. The physical state of the world s is a vector of
size dim(s) = 6n+ 6m+ 4 containing the 2D translational coordinates li and 1D rotational coor-
dinates φi of each robot, their first time derivatives vb, and the ball’s 2D location lb and velocity4.
The actions available to the robot are the legal velocities vb (|vb| ≤ 8m

s
) at which it can kick the

ball, discretized by magnitude and direction.
We monitor the expected probability of success of passes, P (z = 1|s,a,θ0), where an obser-

vation of z = 1 means the pass succeeded and z = 0 means the pass failed. The nominal model θ0

is based on the planner’s estimate of the time ti(li,vi, lb,vb) that each robot i would need, starting
at location li with velocity vi, to intercept a moving ball starting at location lb with velocity vb.
Given such an estimate (e.g., [6]), the model computes the keepers’ time to ball tk:

tk(lb,vb) = min
i∈keepers

ti(li,vi, lb,vb), (3.33)

and similarly tt for takers. We thus define the nominal model θ0 as:

P (z|s,a = vb,θ
0) = Φ

(
tt(lb,vb)− tk(lb,vb)

σt

)
, (3.34)

4For this work, we have chosen to focus on ground passes, thus the third dimension of the world is ignored; also
missing is the ball spin and the robots’ internal states.
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Where Φ denotes the standard normal cumulative distribution, and σt is an uncertainty factor. That
is, we model the probability of success as being entirely dependent on which robot has the shortest
interception time, plus normal noise.

To conclude the definition of the monitor from Algorithm 1, we must define a feature extraction
function χ(s,a) (see line 2). For each expectation ei about taker robot i, we extract a 5-dimensional
feature vector:

χ(s,a) = (l′i,v
′
i, |vb|), (3.35)

where l′i and v′i are the location and velocity of robot i relative to the ball at the time the pass starts,
rotated by the direction of the pass. By excluding features of the keepers, we implicitly assume
that the only source of unmodeled behavior is the taker robots.

Algorithm 1 is thus fully defined for Keepaway, and runs each time a pass ends, providing
corrections to the planner.

The planning model used here is a simple one, as the focus of this work is performance im-
provement through execution monitoring, rather than optimal planning. We use a greedy planner
that chooses the action that maximizes the expected immediate reward. In Keepaway, that means
the passing robot maximizes the expected probability of success of its next pass, and does not
plan for multiple passes in the future. In practice, then, the planner always chooses the action that
maximizes Equation 3.30, where µ0 is given by the expectation of Equation 3.34. Section 3.5.4
presents an empirical evaluation of this monitor.

3.5.4 Interception-Keepaway multiple RIM detection and correction
To empirically demonstrate our model correction framework, we implemented it on the robot soc-
cer domain of Section 1.2.2. The algorithm was extensively evaluated using a realistic PhysX-
based simulator, which employs the same interface to the AI as the real world does, models the
robots at the component level, and simulates physics to high detail (e.g., it models the angular
momentum imparted on the ball when a robot touches it with its spinning dribbling mechanism).
Since we seek to improve high-level robot decisions, rather than low-level controllers, simula-
tion is a particularly useful means of obtaining statistically significant results, which can then be
corroborated on the real robots.

Evaluation Metrics

The first metric by which we evaluated the model-correction framework is Task Performance (TP).
The ultimate goal of our monitor is to improve TP in environments with RIMs, which makes it a
natural metric to evaluate our framework. TP was measured by the average pass completion rate
of a particular model θ as:

TP(θ) =
n(success|θ)

n(success|θ) + n(failure|θ)
. (3.36)

While TP is an intuitive evaluation metric, it is highly dependent on the task at hand. For ex-
ample, improving TP by 1% in a task that originally had 50% success rate is much less meaningful
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than improving TP in a task that originally had 98% success rate. An evaluation metric that more
objectively measures model correction performance is the Failure Reduction Rate (FRR) of the
corrected model θ+ with respect to the baseline model θ0:

FRR(θ+,θ0) = 1− 1− TP(θ+)

1− TP(θ0)
. (3.37)

FRR measures the expected percentage of failures that were eliminated by correcting the model.
A perfect learner, in a task for which perfect performance is achievable, would eventually reach
FRR = 1.

A different metric used for evaluation is Model Prediction Accuracy (MPA). While improve-
ment in TP is the main goal, it does not capture the full success or failure of the framework. We
are also interested in evaluating how well the predictions made by the corrected model match the
observations made during execution. Modeling the world accurately is desirable, independently
of TP, because it enables robots to generalize to different tasks in the same domain. For example,
models acquired during Keepaway learning could generalize to passing in the wider problem of
full soccer. MPA was measured by the average likelihood of observations given the model used for
prediction of that observation:

MPA(θ) =
1

|Z|
∑

(x,z)∈Z

P (z|x,θ). (3.38)

For all of our performance metrics, and throughout our experiments, we use as a baseline the
original model θ0.

When analyzing results, we keep in mind the timescale of the learning process in which we are
most interested. A game of robot soccer lasts 20 minutes (1200 seconds). During our keepaway
tests, we measured that robots completed, on average, around 0.45 passes per second. Therefore,
the upper limit number of passes they could perform in a game is around 540. A considerable
portion of that time will be spent not passing (e.g., opponent possession, dead time between plays,
shots on goal). However, this estimate lets our timescale of interest lies in the order of 102 passes.
The experiments conducted here thus focused on such timescales.

Experimental Results

First, we conducted extensive simulation tests to determine in a statistically significant way the
evolution of TP(θ+) and MPA(θ+) as the monitor acquires new observations. Figure 3.4a shows
a moving average (window size 50) measurement of TP and FRR as a function of how many passes
the robots have performed, demonstrating an evident performance improvement as the model is
corrected with experience. The first noteworthy aspect of this result is that performance quickly
improves with the first few observations: the first data point shows FRR ≈ 0.1; that is, averaging
over the first 50 observations, we see a 10% reduction in failures. Furthermore, as new pass results
are observed, performance keeps improving, achieving a failure reduction of about 40% within
the first few hundred passes. Conducting less extensive experiments on the real robots showed
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Figure 3.4: Moving average of passing performance evaluation as a function of number of passes
performed. The shaded area shows the 95% confidence margin; the dotted black horizontal line
indicates average baseline performance.
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a similar trend, shown in Figure 3.4b. Baseline and adaptation performance were both higher in
simulation than in the real robots, due to the complications added by the real world.

To evaluate MPA adequately, we ran experiments in which the robots ignored model corrections
suggested by the execution monitor. This allowed us to evaluate the predictive performance of the
monitor without the confounding factor of altered robot behavior. We evaluate MPA exclusively
for points inside of detected RIMs, as this is where model improvement is expected to occur due to
our monitor. For points that lie outside of the detected RIMs, the model (and thus MPA) remains
unchanged by the monitor.

Figure 3.5a shows MPA(θ+) evaluation for simulation. With model correction, observations
show a significantly better fit to the model than without correction. The ideal MPA = 1 is only
achievable by distributions with 0 variance, which is certainly not the case in our Keepaway do-
main. The realistic goal of the monitor is not to reach MPA = 1, but to show significant improve-
ment over the initial global model. Figure 3.5b shows less extensive real-robot test results, which
show a similar trend as simulation.
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Figure 3.5: Moving average of prediction accuracy MPA(θ+), as a function of observations inside
of RIMs. The shaded area shows the 95% confidence margin; the dotted black horizontal line
indicates average baseline MPA(θ0)

These results support the efficacy of our framework for short-term task performance and pre-
diction accuracy improvement. Anecdotal evidence from this domain also suggests a different
benefit of our approach: detected RIMs may have attached semantic explanation that may be ben-
eficial to system designers, or perhaps eventually to the robots themselves. After conducting the
experiments above, the model designers found that the discovered RIMs corresponded to flaws
in the design of their simple prediction model of Equation 3.34. Some RIMs corresponded to
inadequacies in the computation of navigation times tk and tt, while others corresponded to inad-
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equacies in the assumption that the probability of success corresponds exclusively to a smoothly
varying function of tt− tk. While we did not focus on the problem of assigning semantic meaning
to discovered anomalous subspaces, it is an area of interest for future research.

3.6 Chapter summary
This chapter presents the technical detail of this thesis’ approach to detecting context-dependent
model inaccuracies in low-dimensional planning spaces. The approach consists of enabling the
robot to autonomously search for the parametric region of state-action space in which observed
outcomes deviate most significantly from the robot’s nominal model, and then deciding whether
such deviation is statistically significant.

Section 3.1 sets up the necessary background material to develop the detection algorithm. First,
the section describes an inaccuracy measure that reflects the level of anomaly of the robot’s behav-
ior in a particular region of its state-action space; the robot searches for the region that maximizes
this inaccuracy measure. The section also presents the space over which the robot searches for
anomalies: a set of parametric regions.

Section 3.2 presents this thesis’ algorithm for detecting a single parametric Region of Inac-
curate Modeling (RIM). At each time step, the robot runs an optimization to find the parametric
region that maximizes the aforementioned inaccuracy value. Once the optimization finds this maxi-
mum anomaly region, a statistical test determines whether the detected region is likely to constitute
an anomaly.

Section 3.3 extends the notion of RIM-detection to domains with multiple model inaccuracies.
First, the section shows a derivation of a measure of inaccuracy for multiple regions of state-action
space. Then, the section presents an algorithm for effective detection of multiple RIMs.

Section 3.4 shows how the robot can use RIM-detection to improve task performance by apply-
ing corrections to its planning models. The robot creates a new planning model that is a mixture
model combining its original nominal model with newly discovered behavioral modes that corre-
spond to each of the detected RIMs.

Section 3.5 demonstrates empirically the value of this chapter’s technical contributions. The
RIM-detection algorithms successfully detect model inaccuracies in a variety of domains: the
CoBot mobile service robot, the CMDragons team of soccer-playing robots, and a synthetic golf-
robot domain. Furthermore, in the CMDragons domain, the robots were able to significantly im-
prove their performance online in a sub-problem of the robot soccer problem.
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Chapter 4

Detection of RIMs in High-Dimensional
Spaces

This chapter contributes an approach for RIM-detection that scales well to high-dimensional do-
mains. While Chapter 3 presents an approach that effectively detects RIMs in low-dimensional do-
mains online, the performance of this approach does not scale well to higher-dimensional spaces,
as the experiments in Section 4.2 show. Since most real robot domains have significantly higher
dimensionality than the experiments of Chapter 3, we seek to enable the robot to autonomously
find RIMs in such spaces.

Key assumption: Low-dimensional RIMs. To find RIMs in high-dimensional context spaces
efficiently and effectively, we assume that the RIMs can be fully described in a low-dimensional
projection of the robot’s observations, although the correct projection is unknown a priori. For
example, the golfing robot’s performance may be affected by an unseen bump on the field (2D
RIM), or by the wind velocity vector (3D RIM), or even by lighting conditions generated by the
sun at a particular time of the day, during some months of the year in a particular section of the field
(4D RIM); but not by a RIM that is intrinsically high-dimensional. In practice, this assumption
is met by every real-world model inaccuracy our robots have encountered. The challenge of the
problem, then, lies in identifying the best low-dimensional projection efficiently to find the RIMs
in that subspace.

Feature Selector for RIM-detection. To find the correct low-dimensional projection, we con-
tribute a Feature Selector for RIM-detection (FS-RIM) approach. This approach leverages the
work on RIM-detection in low-dimensional spaces of Chapter 3 to iteratively (a) conduct a heuris-
tic best-first search for subsets of features likely to contain RIMs, and (b) explicitly search for
RIMs in the most promising projections. The key to conducting this search effectively is to define
heuristics that informatively select projections likely to contain RIMs, without incurring in the full
cost of searching for RIMs in those projections.

Evaluation and results. We evaluate the effectiveness of FS-RIM in two domains: simulated
data from a high-dimensional version of the golf-putting robot scenario, and real motion data from
the CoBot mobile service robots [94]. Results show that the robots are able to autonomously detect
various types of injected model inaccuracies effectively and efficiently, significantly outperforming
the RIM-detection algorithms of Chapter 3 as domain dimensionality increases.
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Chapter organization. Section 4.1 presents the technical detail of our search-based feature
selection algorithm, while Section 4.2 validates this approach through experiments on the golf-
putting robot, CoBot, and spacecraft landing domains.

4.1 Feature selection algorithm

This section presents the technical details of the main contribution of this chapter: a Feature Se-
lector for RIM-detection (FS-RIM) in high-dimensional domains. Similarly to related work [64],
the goal is to find the region R+ of context space that maximizes the anomaly measure anom(R)
of Equation 2.5. The key assumption that enables FS-RIM to find the maximum anomaly region
R+ efficiently is that these RIMs are intrinsically low-dimensional regions embedded in a high-
dimensional context space. This enables the use of a search-based Feature Selection algorithm to
greatly reduce the dimensionality of the search for RIMs.

Wrapper-style feature selection

The FS-RIM feature selector is a wrapper-style algorithm [50], in which the optimal projection of
context space is found by evaluating the function to be maximized –i.e., by findingR+– in selected
low-dimensional projections of the full context space. Choosing a wrapper approach enables the
approach to leverage previously existing low-dimensional approaches (e.g., exhaustive search [53]
or the FARO optimization-based search [64]) in its search for high-dimensional RIMs. Thus, the
approach assumes that there exists an function, called findRIM(Z,θ0), which, given a set of low-
dimensional contextual observations Z and a model of nominal behavior θ0, can find the region
R+ that maximizes Equation 2.5.

Feature selection as best-first search

Since there are 2|F| different possible subsets of the full set of features F in the robot’s context
space, the core problem is to efficiently and effectively search through the space of possible pro-
jections: We want an algorithm that explores more informative projections –i.e., those that are
likely to contain high anomaly regions– before exploring less informative ones –i.e., those less
likely to contain high anomaly regions. FS-RIM uses an informed best-first search over elements
F ∈ 2F of the power set 2F of F . The search is conducted on a graph G in which the vertices
V (G) of the graph are the possible feature sets F ∈ 2F , and edges E(G) connect a vertex v0 = F
to a vertex v1 = F ∪ {f} if v1 is the result of adding a single feature to v0:

V (G) = 2F (4.1)

E(G) = {(F, F ∪ {f}) : F ∈ 2F , f ∈ F , f /∈ F} (4.2)

Figure 4.1 shows an abbreviated illustration of the first three levels of the resulting search tree,
which always starts with the empty set of features as the root.
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{}

{f1} {f2} {fn}. . .

H({}, f1) H({}, f2) H({}, fn)

{f1, f2} {f2, f3} . . . {f2, fn}

H({f2}, f1) H({f2}, f3) H({f2}, fn)

. . . . . . . . . . . .

Figure 4.1: Search tree for feature selection. The algorithm always starts the search with no
features, and at each step searches the node on the boundary of unvisited nodes with the maximum
heuristic value H .

Algorithm description

Algorithm 4 details the search procedure. The search starts by setting the boundary O of the
search to the empty set of features (line 3). For each step i of the search, the algorithm finds the
edges that lie at the boundary of the search (line 5) and determines which one to explore using
a heuristic value function H(e) (line 6). To explore the chosen edge (F−i , fi), the algorithm first
projects the original contextual observationsZ onto the space spanned by the union Fi = F−i ∪{fi}
(line 8). Then, the algorithm uses a low-dimensional search method findRIM to search for the most
anomalous region R+ in the resulting low-dimensional space (line 9). While this low-dimensional
search method can be one of many options –e.g., exhaustive search if the low-dimensional space is
small enough [53]–, here we use the FARO algorithm of Chapter 3. Once the search has completed,
and the most likely RIM R+ has been found, the algorithm decides whether the evidence is strong
enough to declare a significant model inaccuracy, or not (lines 14-18).

Algorithm parameters

Line 4 in Algorithm 4 specifies that the search continues until a domain-dependent maximum
number of nodes imax has been expanded. Depending on the requirements of the domain, this
search-ending constraint may be exchanged by a time limit instead of a maximum number of
expanded nodes. In general, the algorithm does not have a specific stopping condition for its
search, but its performance may only improve with execution time or maximum number of nodes
imax. If no model inaccuracy is detected during the allotted maximum number of iterations or
maximum time, the algorithm returns no inaccuracy.

The threshold athresh in line 14 is domain-specific, and can be computed to correspond to a
desired rate of False Positive detections. As specified in Section 3.2, an approximate map from
threshold to False Positive rate can be computed empirically through simulations of the domain
under nominal execution –for example, to determine the anomaly threshold for a False Positive
rate of 5%, one may run 100 simulations of the domain under nominal execution, run FS-RIM
each time, and then set the threshold athresh to the value of the fifth most anomalous region detected
during nominal execution. In our experiments, we have used this 5% False Positive rate.
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Algorithm 4 Algorithm for detection of a RIM in a high-dimensional context space.
Input: List of contextual observations Z, nominal behavior model θ0.
Output: A RIM R+, or ∅ if no RIM is detected.

1: function FS-RIM( Z = [(x0, z0), . . . , (xn, zn)], θ0)
2: R+ ← ∅ . Most anomalous region thus far
3: O ← {∅} . Graph search boundary
4: for i = [0, 1, . . . , imax] do
5: Ei ← {(F ∈ O, f ∈ F) : f /∈ F}
6: (F−i , fi)← arg maxe∈Ei [H(e)]
7: Fi ← F−i ∪ {fi}
8: Zi ← [(xit, zt) : xit = Project(xt,Fi)]
9: R+

i ← findRIM(Zi,θ
0)

10: if anom(R+
i ) > anom(R+) then

11: R+ ← Ri

12: end if
13: end for
14: if anom(R+) > athresh(Z,θ0) then
15: return R+

16: else
17: return ∅
18: end if
19: end function
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4.1.1 Search heuristic

A crucial step in Algorithm 4 is the choice of heuristic function H(e) in line 6. Computation of
this heuristic must be relatively efficient in comparison to the findRIM function of line 9, since the
former is invoked for each of the edges in the boundary of the search to decide which one is next
explored with the latter. Furthermore, the heuristic must be as informative as possible for RIM-
detection –i.e., it should approximate the anomaly value anom(R+) of the maximum-anomaly
region R+ in that projection.

To compute efficient and informative heuristics for each edge (F, f), FS-RIM leverages the fact
that the maximum anomaly region for the projections defined by F has been computed precisely
in earlier stages of the search, and that the maximum anomaly region for all the individual features
f can be computed only once in O(|F|) time. Thus, the heuristics can use the corresponding
maximum anomaly regions R+

F and R+
{f} in their computations with little extra cost.

We note that our feature selection algorithm’s performance relies on the informativeness of
these heuristics, which in turn relies on the informativeness of finding the maximum anomaly
region R+

F in a lower-dimensional subspace. In some degenerate cases, a model inaccuracy may
be completely hidden in each lower-dimensional space F , and only becomes perceptible when the
full subspace in which it lives is analyzed. Our algorithm is not able to effectively find the right
subspace in such degenerate cases.

For visualization purposes, we describe each heuristic using as an example an edge in which
F = {f1} and f = f2, shown in Figure 4.2. However, we note that F is a set that can contain zero
or more features, while f is a single feature to be added to F . Thus, even though bothR+

F andR+
{f}

appear as ranges along a single dimension in Figure 4.2, more generally, R+
F is a |F |-dimensional

parametric region (ellipsoid in this work), while R+
{f} is a one-dimensional parametric region. We

note that neither R+
{f} nor R+

F in Figure 4.2 contains all of the missed shots; this is because in their
respective 1D projections, extending the region to contain every missed shot would also require
containing many more scored shots, thus lowering the overall anomaly value anom of the region.

Anomaly sum heuristic (H1)

The first heuristic, computable in constant time, is given by the sum of the anomaly values of F
and f :

H1(e) = anom
(
R+
F

)
+ anom

(
R+
{f}

)
. (4.3)

Figure 4.3a illustrates the meaning of this heuristic in the case where F is a one-element set:
Heuristic H1 is given by the sum of the anomaly values of each of the two regions independently.

For each feature f , the maximum anomaly region R+
{f} needs to be computed only once at

the beginning of the search, so its cost per edge of the search is constant. Furthermore, since
the graph vertex containing F has already been explored, anom(R+

F ) has already been computed
by the time edge e is explored (see line 9 of Algorithm 4). This heuristic is very efficient, but
may not be extremely informative in domains in which F and f may not seem highly anomalous
independently, but they are together.
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Figure 4.2: Non-sutble golf domain RIM for heuristic visualization: every shot from within the
RIM (red lines) is missed (black circles) while every shot from outside the RIM is scored (white
circles). Blue dashed lines and squares show the maximum anomaly region when projecting onto
F = {f1}, while green dashed lines and diamonds show the maximum anomaly region along when
projecting onto f = f2.

(a) Heuristic H1 (b) Heuristic H2 (c) Heuristic H3

Figure 4.3: Visualization of the presented heuristics. Blue and green dashed lines show the relevant
regions in lower-dimensions, while cyan-highlighted data points are those that contribute to the the
heuristic value.
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Region intersection heuristic (H2)

The second heuristic is more informative than H1, but has a O(n) computational cost per edge,
where n is the number of data points. Given edge e = (F, f), This heuristic is obtained by
intersecting the points contained in the maximum anomaly regionR+

F from the subspace of features
F , with those contained in the maximum anomaly region R+

{f} of the single-dimensional space of
f , as illustrated in Figure 4.3b:

H2(e) = anom
(
R+
F ∩R+

{f}

)
. (4.4)

In this work, where we use ellipsoids as our chosen parametric regions for optimization, this
heuristic computes the anomaly value of the hyper-cylindrical region obtained from intersecting
R+
F and R+

{f}: R
+
F forms the elliptical base in F , while R+

{f} constrains the points to those in a
particular range along f . To compute H2, each point in R+

F is tested for belonging to the range
R+
{f}, leading to a O(n) computation for each edge.

Conditional range heuristic (H3)

Finally, we present a highly informative heuristic with a O(n2) computational cost. Given edge
e = (F, f), H3 computes the precise most anomalous range along dimension f , given only the
observations contained in R+

F , as illustrated in Figure 4.3c:

H3(e) = anom
(
R+
{f}|R+

F

)
. (4.5)

Similarly to H2, this heuristic computes the anomaly value of a hyper-cylindrical region with
base R+

F . However, this region is the most anomalous such hyper-cylinder, and thus H3 dominates
H2.

Heuristic H3 can be computed in O(n2) because the most anomalous range R+
{f} along a single

dimension f can be computed exactly in O(n2) using dynamic programming, as explained in
Appendix A. The same procedure can be used to compute R+

{f}|R+
F , using only points within

region R+
F . In cases in which the number of points n is prohibitively high, computational costs can

be diminished through the use of approximate methods for finding R+
{f} (e.g. [64]) or by binning

points along feature f .

4.2 Empirical evaluation
The performance of the contributed Feature Selector for RIM-detection (FS-RIM) was evaluated
via experiments on simulated data from the golf-putting domain, on real robot data from the CoBot
domain, and on unknown anomalies from the NASA spacecraft landing simulation. The primary
purpose of this experimental validation is to demonstrate a significant performance improvement
of RIM-detection algorithms in high-dimensional domains using FS-RIM, when compared to the
FARO method without feature selection, and when compared to non-informed search for Feature
Selection. Additionally, the experiments provide a comparison among the different heuristic func-
tions of Section 4.1.1.
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4.2.1 Experimental conditions
The experiments compare the performance of FS-RIM to that of RIM-detection using no Feature
Selection, and to RIM-detection using uninformed search as its method for Feature Selection.

Feature Selection for RIM-detection (FS Hi). This condition is the Feature Selection algorithm
presented in this chapter, with the various heuristics of Section 4.1.1.

No Feature Selection (No FS). This condition is exactly the FARO RIM-detection algorithm
of Chapter 3. We expect this algorithm to perform comparably to FS-RIM in low-dimensional
domains, but to perform substantially worse than FS-RIM in higher-dimensional domains.

Breadth-First Search Feature Selection (BFS). This condition uses the Breadth-First Search
uninformed search for feature selection, to achieve the same goal as the informed search of FS-
RIM. We expect this approach to perform comparably to FS-RIM when the ground truth RIM is
implicitly one-dimensional, since FS-RIM begins with a thorough search of the one-dimensional
subspaces of the domain, and in domains in which the proposed heuristics for FS-RIM are not an
informative descriptor of higher-dimensional RIMs. We expect this approach to perform less well
than FS-RIM in domains with multi-dimensional RIMs.

4.2.2 Evaluation metrics
The primary performance metric of FS-RIM is its ability to correctly identify data points that lie
within a RIM. This is achieved by comparing each point’s belonging to the ground truth RIM RGT

to its belonging to the maximum anomaly RIM R+ detected by FS-RIM, if any exists. For a given
experiment, then, the number of True Positives (TP), False Positives (FP), True Negatives (TN)
and False Negatives (FN) are given by:

TP =
∑

(xi,zi)∈Z

1(xi ∈ R+ ∧ xi ∈ RGT)

FP =
∑

(xi,zi)∈Z

1(xi ∈ R+ ∧ xi /∈ RGT)

TN =
∑

(xi,zi)∈Z

1(xi /∈ R+ ∧ xi /∈ RGT)

FN =
∑

(xi,zi)∈Z

1(xi /∈ R+ ∧ xi ∈ RGT) (4.6)

These measures are combined into a single standard F1 performance metric, which evenly
weights the precision and recall of the evaluated algorithms:

F1 =
2 TP

2 TP + FP + FN
(4.7)
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In particular, the performance of different detection algorithms is evaluated as a function of
domain dimensionality. We hypothesize that the performance of FS-RIM would be comparable to
FARO with no feature selection in lower-dimensional domains, but we expect to see a significant
difference in higher-dimensional domains.

Furthermore, we evaluate the performance of FS-RIM as a function of computational running
time. In all experimental conditions, the performance is expected to improve as the algorithm runs
for longer. In FS-RIM and BFS, this expected improvement is due to the search being able to
expand more nodes, while in FARO it is due to the optimization being able to explore more of the
optimization space. In both cases, we also expect the performance to plateau at a certain point in
time, once the best option (locally best for FARO) has been found. Evaluating performance as a
function of time is essential because the best-first search method presented here has the goal of
expanding nodes in an efficient order to avoid having to intractably search the entire space.

4.2.3 Golf-putting experiments
The first experimental domain is a variant of the golf-putting domain explained in Chapter 1.
While the binary-reward golf domain is useful for explanation and has been explored empirically
in previous work [64], here we explore empirically a continuous-reward variant: Instead of a binary
reward of 0 or 1, the robot receives a continuous reward proportional to how close to the target the
shot ends. This variant enables the work to focus on models defined as Gaussian distributions
throughout; however, similar mathematical derivations can be used for other types of distributions.

Nominal behavior model

The golf-putting domain was set up as a highly-controlled simulation, as an initial evaluation of
FS-RIM with fully known ground truth. In this simulation, the locations pi from which the robot
shoots are chosen uniformly and randomly throughout the field. By design, the robot has a single
action to shoot in the known direction of the target, and receives a noisy reward ri depending on
pi:

ri = r̄(pi) + ε (4.8)

where ε ∼ N (0, 0.12) is a normally-distributed noise term, and the expected reward r̄ at location
pi is given by a linearly-decreasing function of the distance di from pi to the target: r̄(pi) =
1.0 − 0.5 di

FieldLength
. During training, the robot has access to the expected reward function r̄(pi),

and the parameters of the noise ε are extracted from the data.

Context-dependent model inaccuracy

A straight bump, like that of Figure 1.2 is placed randomly on the field, in a different location
for each experiment. The bump is always perpendicular to the target on the right, at a minimum
distance of 5% of the field and a maximum distance of 75% of the field from the target. The center
of the bump is placed at an angle between 135 deg and 235 deg from the target, and its subtended
angle varies from π

8
to π

7
radians. When the robot takes a shot from a location pi behind the bump,

its expected reward is r̂(pi) = r̄(pi)− 0.2 instead of the original r̄(pi), creating region behind the
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bump in which the robot’s model is inaccurate. For each of the experiments below, the simulated
robot repeteadly took shots until it had shot 30 times from behind the bump.

High dimensional context

Additionally to the two dimensions defining the spatial golf field dimensions, higher context di-
mensions were introduced as required for each experiment. The value of each data point in each of
the added dimension is uniformly distributed in the range [−1,+1]. The desired outcome of this
experiment, then, is for FS-RIM to be able to distinguish the two features that affect the model in-
accuracy –i.e., the x and y spatial dimensions– from the remaining dimensions, which are irrelevant
to how well the model predicts the robot’s reward.

Experimental results

Figure 4.4 shows an example of the detected RIM in a 100-dimensional domain, using FS-RIM
with heuristic H3. The algorithm correctly identifies that the shown projection is the most infor-
mative one, and proceeds to run an optimization over possible ellipses to find the one most likely
to be a RIM.

Figure 4.5 shows the performance of FS-RIM using the three different heuristics of Sec-
tion 4.1.1 (FS Hi), as well as that of the original FARO algorithm [64] without Feature Selection
(No-FS) and the uninformed Breadth-First Search (BFS) approach to Feature Selection.

The first result is that the performance of No-FS quickly degrades with the increasing dimen-
sionality of the domain. In a 2D environment, No-FS reaches peak performance before the FS
methods since it does not need to initially compute the heuristic values for each feature. However,
this small time advantage is overshadowed by the performance deficiency in higher dimensions.

The FS-RIM approach also significantly outperforms the uninformed BFS approach, especially
as the dimensionality of the domain grows. The heuristics of FS-RIM guide the search to explore
the right two-dimensional subspace much more quickly than BFS, which expands the nodes in an
order that does not correlate to anomaly value.

Figure 4.5 also shows that the performance of the FS algorithms scales well with dimensional-
ity. The time required to reach peak performance for each of the heuristics changes from about 18
seconds in the 2D domain, to between 20 and 30 seconds in the 100D domain. Furthermore, the
performance of the algorithms, especially for heuristic H3, does not degrade greatly between the
2D and the 100D domains.

4.2.4 CoBot experiments

We are interested in monitoring the motion model of the CoBot robots, very similarly to Sec-
tion 3.5.2. However, while Section 3.5.2 assumed a relatively low-dimensional domain (6D), this
evaluation will focus on a high-dimensional state-action space. There is a high-dimensional space
of contextual variables that may affect the robot’s performance, such as the robot’s position, veloc-
ity and orientation, the presence of humans, the time of the day or day of the week, the presence of
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Figure 4.4: Example of FS-RIM applied to a 100-dimensional golf domain. The green ellipse
shows the detected RIM, while the red straight lines surround the ground truth RIM. The intensity
of each point shows the received reward, while the background intensity shows the expected reward
throughout the domain.
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(a) 2 Dimensions (b) 4 Dimensions (c) 8 Dimensions (d) 100 Dimensions

Figure 4.5: Detection performance of FS-RIM with different heuristics (FS Hi), no Feature Selec-
tion (No FS), and Breadth-First Search Feature Selection (BFS) as a function of algorithm running
time, in the simulated Golf-putting domain. Shaded areas show a standard error above and below
the mean.

obstacles in its path, its battery voltage, the amount of sun that shines into its sensors, among many
others. This section examines model inaccuracies that affect different subsets of these features.

Projecting the data onto informative subsets of features can be crucial for finding RIMs of
the CoBot’s space. For example, Figure 4.6 shows data in which the CoBot’s motion is subtly
inaccurate in a particular corridor of the building; projecting the data onto the spatial location of the
robot reveals a clear cluster of highly-unlikely points in a particular corridor, likely to yield a region
with high anomaly value, while projecting onto the angular velocity and time dimensions does not
reveal any clear pattern of unlikely observations. On the other hand, Figure 4.7 shows data in
which the CoBot’s motion is subtly inaccurate when it turns left –i.e., its angular velocity is greater
than 0; projecting onto the angular velocity dimension reveals a cluster when the angular velocity
is positive (the time dimension is shown simply for ease of visualization), while projecting onto
the dimensions of the robot location does not reveal any clear pattern. We thus seek an approach
that can reliably project the data onto informative dimensions efficiently.

Nominal behavior model

The experiments in this chapter focus on the robots’ motion models, and are very similar to those
in Section 3.5.2. For the nominal model, we treat the CoBot’s motion as a factored MDP, and we
focus on the factor that determines the CoBot’s velocity vt+∆t at time t + ∆t given its velocity
vt at time t and its velocity command ut at time t; ∆t is the latency of a velocity command. Our
estimate of the CoBot’s velocity transition function is determined by the CoBot’s acceleration limit
Amax and the covariance Σ(vt+∆t|vt,ut) of its actuator’s noise obtained from nominal execution:

P (vt+∆t|vt,ut) ∼ N (µ(vt+∆t|vt,ut),Σ(vt+∆t|vt,ut)) , (4.9)
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Figure 4.6: Data from a motion inaccuracy affecting the CoBot in a particular corridor of its
domain, shown in two different projections. The likelihood of each individual observation is shown
using the provided color scale.
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Figure 4.7: Data from a motion inaccuracy affecting the CoBot when it turns left, projected onto
two different pairs of features.
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where the expected velocity µ(vt+∆t|vt,ut) is given by

µ(vt+∆t|vt,ut) = vt + bound (ut − vt, Amax) . (4.10)

Thus, as shown in Table 2.2, our nominal model θ0 is given by

θ0(vt,ut,vt+∆t) ∼ N (µ(vt+∆t|vt,ut),Σ(vt+∆t|vt,ut)) (4.11)

We note that for this model we assume that all of the stochasticity in the system comes from the
CoBot’s actuation, and not from its velocity measurements. We use this approximation to satisfy
the fully-observable assumption throughout this thesis; Chapter 7 discusses future relaxation of
this assumpption.

High-dimensional context

The CoBot operates in an unconstrained office environment, and thus its domain is naturally high-
dimensional. To vary the dimensionality of the context space in these experiments, different subsets
of the robot’s context space were pre-selected:
7D context space: Time (1D), robot estimated position (2D) and orientation (1D), linear and an-

gular velocity commands (3D).

15D context space: 7D context plus robot battery voltage (1D), progress information along the
current navigation graph edge (3D), depth-camera plane-extraction statistics (4D).

30D context space: 15D context plus depth values from 15 laser rangefinder rays, uniformly-
spaced along the rangefinder’s field of view.

100D context space: 15D context plus depth values from 85 laser rangefinder rays, uniformly-
spaced along the rangefinder’s field of view.

Context-dependent model inaccuracies

Two different types of model inaccuracies were injected into the robot’s motion execution:
Corridor failure (Figure 4.6) When moving in a particular corridor of the building, one of the

robot’s wheel encoders observes 0.95d, at each timestep, where d is the displacement of the
wheel observed during nominal execution. Thus, the RIM encompasses non-zero velocity
points in a rectangular region of physical space.

Left turn failure (Figure 4.7) The robot’s execution is nominal except when it turns left (i.e.,
φ̇ > 0), in which case each of its wheels moves only at 0.95v for a velocity command v.
Since the robot usually turns only at intersections or when it needs to face a doorway, this
failure mode tests the algorithm when the anomalous data is quite far apart in physical space
and time, but close along the angular velocity dimension.

These different types of inaccuracies affect different regions of the robot’s context space, thus
testing the generality of our feature selection algorithm.
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Experimental procedure

For all the experiments, the CoBot was commanded, at a higher level, to navigate to various random
points in the same floor of its. The chosen path, as well as lower-level behaviors like obstacle
avoidance and localization are handled by pre-existing algorithms [8]. The variance of the noise in
Equation 4.11 was estimated from nominal execution data captured over approximately 10 minutes
of robot execution. Then, each of the testing anomalous conditions was run 10 times, each for
approximately 3 minutes of execution.

Experimental results

Figure 4.8 shows an example of a detected RIM on the Corridor Failure scenario. We note that the
robot autonomously found the most informative projections for RIM-detection, as well as the RIM
approximation within the projected subspace.
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Figure 4.8: Example of FS-RIM applied to the Corridor Failure. (a) An informative projection
enables detection of a region containing collectively-highly-unlikely observations. (b) Detection
performance.

Similarly, Figure 4.9 shows an example of FS-RIM in the Left Turn Failure scenario. In this
case, FS-RIM finds the most anomalous region to lie only along the angular velocity dimension,
and thus appears as the region above the horizontal green line in Figure 4.9a. Most of the False
Negatives in the Left Turn Failure scenario are points with angular velocity near 0. The deviation
from nominal of these points is very small, since it is proportional to the angular velocity itself;
thus, these points would not increase the anomaly value of the detected RIM.

Figures 4.10 and 4.11 show the performance of FS-RIM in the Corridor Failure and Left Turn
Failure scenarios respectively. Similarly to the golf-putting results of Section 4.2.3, FS-RIM en-
ables the robot to detect RIMs in high-dimensional domains much more effectively than not using
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Figure 4.9: Example of FS-RIM applied to the Left Turn Failure. (a) The optimal detected region
lies only along the angular velocity dimension (above the green line). (b) Detection performance.

FS-RIM. In the Corridor Failure domain, FS-RIM shows slightly better performance than BFS. In
the Left Turn Failure domain their performances are equivalent; this is expected behavior, as the
Left Turn Failure domain has a one-dimensional RIM (see Section 4.2.1).

In these domains, the three heuristics did not show a significant difference in performance from
each other. We hypothesize that this, as well as the overall better performance of the various al-
gorithms on these domains, is due to the higher density of data, which enables the robot to more
clearly differentiate between nominal and anomalous execution. Figures 4.10d and 4.11d show a
distinct shape: a quick increase in performance score, followed by a short plateau, followed by
another increase and the final plateau. The first increase reflects the robot computing the anomaly
value of the entire data set –i.e., the 0D projection at the root of the search tree. The first plateau
happens while the robot computes the maximum anomaly region R+

{f} for each feature f , as re-
quired for each of the heuristics of Section 4.1.1. Finally, the next increase happens as the robot
finds the right projection onto the 2D physical space in Figure 4.10d, and onto the 1D angular
velocity space in Figure 4.11d.

4.2.5 Spacecraft landing experiments

The NASA spacecraft landing simulation provides the inputs and outputs of the autonomously-
landing spacecraft of Figure 1.3b on the surface of a planet. As described below, the two main
challenges of this domain are: 1) The prediction model was built entirely from training data, with
no analytical component; 2) the model inaccuracies in this domain were entirely unknown to the
algorithm designers and trainers.
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(a) 7 Dimensions (b) 15 Dimensions (c) 30 Dimensions (d) 100 Dimensions

Figure 4.10: Detection performance in the real-robot CoBot domain under a Corridor Failure. As
the dimensionality of the domain increases by adding more features from execution, RIM-detection
using informed Feature Selection (FS Hi) with various heuristics significantly outperforms not
using Feature Selection (No FS), and slightly outperforms Breadth-First Search (BFS).

(a) 7 Dimensions (b) 15 Dimensions (c) 30 Dimensions (d) 100 Dimensions

Figure 4.11: Detection performance in the real-robot CoBot domain under a Left Turn Failure. As
the dimensionality of the domain increases by adding more features from execution, RIM-detection
using informed Feature Selection (FS Hi) with various heuristics significantly outperforms not
using Feature Selection (No FS), but is comparable to Breadth-First Search (BFS).
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Nominal behavior model

We created a data-driven model of nominal execution of the landing spacecraft. Using a Kernel
Density Estimation approach 1, we seek to predict the set of sensor readings at time t + 1 based
on the sensor readings at time t and the actuator inputs at time t. For this thesis, we assume
total observability of the environment, and thus we assume any discrepancy between predictions
and observations stems from actuator noise or from model inaccuracies. We therefore model this
domain as a Markov Decision Process (MDP) in which the perfect sensor readings form the state
s, and the actuator inputs constitute the action a:

θ0(s,a, s′) = Pθ0(s
′|s,a). (4.12)

We approximate this probability as a normal distribution with the mean and variance deter-
mined by a kernel-weighed estimate:

µ(st+1|xt = χ(st,at)) =

∑n−1
i=1 K(xt,x

i)si+1∑n−1
i=1 K(xt,xi)

, (4.13)

where xi are the n data points observed in the training set, and K is a kernel function that de-
termines the proximity between two data points –in this case, it was a Gaussian kernel function.
The variance Σ of the observations is obtained in a similar fashion, using a weighted sum over the
squared deviation from the mean:

Σ(st+1|xt = χ(st,at)) =

∑n−1
i=1 K(xt,x

i) (si+1 − µ(st+1|xt)) (si+1 − µ(st+1|xt))>∑n−1
i=1 K(xt,xi)

(4.14)

High-dimensional context

The domain is high-dimensional in the space of both its inputs and outputs. The data streams
from the simulation include sequences of 25-dimensional time stamped sensor data, including
spacecraft velocity from various sensors, spacecraft altitude, attitude, gravity and mass sensors,
and sensed position. Along with these, the data stream also includes a 4-dimensional thruster
command. However, the robot has no semantic meaning attached to any of these readings, other
than being able to distinguish sensor readings from commands. The monitor must find, as early
as possible during execution, whether there are inconsistencies between the commands and the
received sensors, and in which contexts. Thus, the context space of the domain is 29-dimensional,
while the outcome space is 25-dimensional.

Context-dependent model inaccuracies

The context-dependent model inaccuracies in this domain were injected by members of the JPL
team, and were unknown to the experimenters. During various testing cases, different data streams

1Since our work does not focus on model-building, but rather detection of model inaccuracies, we did not seek
more sophisticated modeling schemes.
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were affected by context-dependent inaccuracies, causing the data to diverge significantly from
its nominal behavior. The developers/trainers of the algorithm were handed various runs from 12
different types of context-dependent anomalies, with no further information about each type of
anomaly.

Experimental procedure

First, the nominal behavior model was trained with each of the 50 available nominal execution
data sets. Furthermore, we used the data from these nominal runs to extract the correct value for
threshold athresh of Algorithm 4 in Section 4.1, as described in Section 3.2. We set this threshold
value to raise an execution anomaly alarm when the confidence exceeds 95%. Figure 4.12 shows
the obtained threshold, as a function of execution time. There are two periods of time at which
the required threshold anomaly rises significantly: the first is when the robot decides to turn on
its thrusters, which happens at somewhat different conditions even during nominal execution; the
second is near the end of the simulation, in which the robot’s behavior is highly variable even
during nominal execution as well.
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Figure 4.12: Illustration of threshold athresh, derived empirically from nominal spacecraft landing
execution; threshold is at the 95% confidence margin.

The goal of this domain is to be able to detect anomalies early during execution. However,
FS-RIM has the limitation (further discussed in Chapter 7) of not being an online algorithm. Thus,
for each of the anomalous data sets, we ran our FS-RIM algorithm on increasingly large portions
of the test set, increasing by 100 data points at a time, with the data sorted in chronological order.
The detection algorithm finalized when an model inaccuracy was detected with 95% confidence, or
when the entire data set was evaluated without finding a model inaccuracy. Since we do not possess
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ground truth information about the nature of the inaccuracy, our evaluation consists entirely on the
ability of FS-RIM to detect an anomaly.

Experimental results

Table 4.1 summarizes the results of applying FS-RIM to the spacecraft landing scenario. Of the 12
anomalies injected by a third party, 9 of them were consistently detected by our algorithm, and 2
were inconsistently detected.

Anomaly identifier Detection consistency Average observations needed (total ∼ 8400)
Fault 1 Consistent 100
Fault 2 Consistent 7100
Fault 3 Consistent 7100
Fault 4 Inconsistent –
Fault 5 Consistent 7000
Fault 6 Not detected –
Fault 7 Inconsistent –
Fault 8 Consistent 7100
Fault 9 Consistent 250
Fault 10 Consistent 200
Fault 11 Consistent 2000
Fault 12 Consistent 2000

Table 4.1: Detection results from the spacecraft landing simulation domain. Of the 12 anomalies,
all unknown to the robot and developers, the algorithm detected 9 every time, and 2 of them
inconsistently. Only one of the anomalies went undetected consistently.

Some of the less subtle anomalies that affected the robot throughout its context space, such
as faults 1, 9, and 10, were almost immediately detected by our algorithm: sensor rfpisen in fault
1 showed zero-readings randomly throughout execution; in fault 9, the sensed mass was slightly
higher than predicted by the model throughout; in fault 10, the sensed altitude was consistently
slightly higher than predicted by the model.

Many of the more subtle anomalies were detected with around 7000 observations, which is the
time when the spacecraft turns on its thrusters. In these, the root of the anomaly is less clear, but
the robot quickly detects behavior that deviates from nominal.

Future work includes further analysis of these results, with the collaboration of the third party
anomaly-injecting collaborators at JPL. Given that the algorithm has produced detections, knowl-
edge of the nature of each anomaly would enable us to evaluate the detection results against ground
truth information.
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4.3 Chapter summary
This chapter presents an algorithm for detecting RIMs in high-dimensional robot domains. The
key underlying assumption of the approach, which very often holds in real robot domains, is that
any RIMs are intrinsically low-dimensional, but embedded in a high-dimensional space. Thus, the
solution involves a feature selection algorithm in which the robot projects its outcome observations
onto low-dimensional spaces, and proceeds to detect RIMs using the algorithms of Chapter 3.

Section 4.1 presents the technical details of the contributed feature selection algorithm. The al-
gorithm conducts a best-first search over the space of possible low-dimensional projections to find
the one that contains the maximum anomaly region. This search begins in the zero-dimensional
projection, and expands by adding one feature at a time to one of the explored projections. The
order of this expansion depends on a heuristic anomaly value of each projection.

Section 4.2 experimentally validates the feature selection algorithm with real robot experi-
ments. The algorithm is capable of finding model inaccuracies in various high-dimensional robot
domains: the CoBot mobile robot, a NASA spacecraft landing simulation, and a high-dimensional
version of the synthetic golf-robot domain. Furthermore, the algorithm vastly outperforms the low-
dimensional algorithm of Chapter 3, and also outperforms an alternate feature selection approach
that uses uninformed search, rather than informed search.
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Chapter 5

Planning under RIM-uncertainty

This chapter discusses the problem of enabling robots to improve performance online by making
plans that account for uncertainty about Regions of Inaccurate Modeling (RIMs) in their planning
models. Up to this point of the thesis, the robot’s actions have only been affected by the changes
that our RIM-detection and correction algorithms make to the robot’s models. That is, we have
focused only on creating a monitor that observes the robot’s execution and applies changes to
its planning models. In this chapter, on the other hand, we make changes to the robot’s planner,
enabling it to take actions that account for RIM-uncertainty.

Exploring better-than-expected actions. The experiments of Chapter 3 demonstrate that robot
performance can be significantly improved through passive detection and correction of RIMs:
when there are action outcomes that do not meet the robot’s expectations, the robot’s performance
is often hindered by plans that do not execute as expected. This chapter demonstrates that robot
performance can be further improved by enabling robots to to find actions that lead to better-
than-expected performance. Figure 5.1 shows an example of one such better-than-expected model
inaccuracy in the golf-putting domain. Finding these better-than-expected inaccuracies can often
only be achieved through active exploration of the robot’s state-action space: the robot needs to
take actions that its nominal model θ0 does not consider optimal, but which may be optimal due to
context-dependent inaccuracies in θ0.

Continuous Contextual Multi-Armed Bandit (CC-MAB). In particular, this chapter focuses
on the problem of online learning in the CC-MAB problem: At each time step, the robot finds itself
in a given continuous-valued state st, given which it must choose an action at; after performing the
action, the robot observes a reward rt, drawn from a stochastic distribution P ∗(r|s,a), which is an
unknown function of the given state st and the chosen action at. In particular, we use the domain
of Figure 5.2, in which the soccer robot must repeatedly shoot against an opponent goalie with
unknown behavior, so as to try to maximize its overall scoring reward. In this domain, the robot’s
state is described by the ball’s position on the field at each episode; the robot must choose as an
action the target on the goal line at which to shoot the ball; after the shot, the robot observes whether
its shot successfully got past the goalie and into the goal –or, for a more fine-grained reward, the
robot observes the distance from the goalie and the goal-posts at which the shot passed. While
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(a) Nominal performance model in context space (b) Better-than-expected model inaccuracy

Figure 5.1: Illustrative example of a better-than-expected model inaccuracy

this chapter focuses on the CC-MAB, which is a specific subproblem of Reinforcement Learning
(RL), many of the ideas regarding enabling robots to reason about uncertainty with respect to RIMs
generalize straightforwardly to other RL problems; we will highlight these generalizations in the
corresponding sections below.

Upper Confidence Bound for CC-MAB. Previous research has shown that the Upper Confi-
dence Bound (UCB) algorithm is an effective solution to various types of Multi-Armed Bandit
problems (e.g., [3, 85]). In particular, a state-of-the art approach to CC-MAB problems is the is
the Contextual Gaussian Processes Upper Confidence Bound (CGP-UCB) algorithm [52]. This
algorithm maintains an estimate of the expected reward as a function of the given state and the
robot’s chosen action in the form of a Gaussian Process (GP). This model for approximating the
expected reward is able to provide both an estimate for the function itself as well as a measure for
the uncertainty of the model at each point in the state-action space. Given these estimates, one
can implement the UCB algorithm, which amounts to, at each episode, choosing the action a that
maximizes a weighted sum between the expected reward r̂ and the uncertainty σr̂ about it.

Chapter contribution. This chapter provides the necessary formulation to apply the UCB algo-
rithm when the robot detects RIMs in its state-action space. To apply UCB to a domain with RIMs,
we enable robots to represent their uncertainty with respect to these RIMs to obtain estimates of
the expected reward r̂ and the robot’s uncertainty σr̂ about that estimate. Given these estimates, the
robot can apply UCB straightforwardly. Another contribution of this chapter is to combine the con-
tinuous modelling capabilities of GPs, with the discrete- or abrupt-change detection capabilities of
RIM-based approaches, into a single online learning algorithm.
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(a) Goal scored

(b) Shot blocked

(c) Shot out of bounds

Figure 5.2: Our robot (blue) taking shots (orange ball and trail) on the nominal behavior goalie
(yellow). The robot’s probability of scoring depends heavily on the shot distance from the goal.
Thick blue and yellow lines show robot trajectory for the past second.
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Chapter organization. Section 5.1 introduces some background information about the CGP-
UCB algorithm. To effectively trade off exploration and exploitation, Section 5.2 extends the
notion of RIMs to reason about the robot’s uncertainty with respect to their spatial extent and their
effect on the reward function. Finally, Section 5.3 presents empirical evidence from a physics-
based simulation of the soccer-shooting domain showing that combining these two approaches
yields faster learning than either approach on its own.

5.1 Background: Upper Confidence Bound and Contextual Gaus-
sian Processes

In multi-armed bandits, contextual multi-armed bandits, and continuous contextual multi-armed
bandits domains, the Upper Confidence Bound (UCB) algorithm has been shown to achieve no-
regret online learning. In general, this approach selects, at each episode, the action that maximizes
a linear combination of the action’s estimated expected reward r̂, and the robot’s uncertainty σr̂
about that estimate. This enables the robot to effectively trade off exploitation, by choosing actions
with high estimated expected reward, and exploration, by choosing actions with high uncertainty
about the estimated expected reward.

Contextual Gaussian Process Upper Confidence Bound.

Particularly, we are interested in the continuous contextual multi-armed bandits domains –i.e., the
robot is given a context st (the continuous state of the world, not chosen by the robot), and it
chooses an action at; a reward rt is observed immediately, and a new episode begins with the
robot in a new random state. The goal of the robot is to maximize its overall reward

∑
t rt.

In the case of these continuous contextual multi-armed bandits, previous research [52] has
shown that a Contextual Gaussian Process UCB (CGP-UCB) algorithm achieves sub-linear regret
in learning, given sufficient smoothness in the reward function. This approach estimates the ex-
pected reward, as a function of the given state s ∈ S and chosen action a ∈ A, using Gaussian
Processes (GPs) regression [79]; more generally, as in the rest of this thesis, the GP estimates the
expected reward as a function of a feature vector xt extracted from st and at: xt = χ(st,at).
During each episode, the algorithm chooses the action at that maximizes a weighted sum of the
estimated expected reward function r̂(xt) and the uncertainty about this estimate σr̂(xt):

at = arg max
a∈A

[
r̂(χ(st,a)) + β

1/2
t σr̂(χ(st,a))

]
, (5.1)

where β1/2
t is an appropriately-chosen coefficient to trade off exploitation and exploration [52].

While this approach has performance guarantees given a sufficiently smooth reward function, it
does not for domains with discrete changes in the reward as a function of the state and action.

In our previous work [60], we have successfully applied an approach very similar to this CGP-
UCB to achieve online learning of free kick policy in robot soccer –the main difference being that
the robot has to select among a finite set of actions. Appendix B describes this application of
GP-based online learning in detail.
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5.2 Upper Confidence Bound for domains with RIMs
To incorporate the notion of Regions of Inaccurate Modelling (RIMs) into the UCB algorithm,
we must be able to define estimates for the expected reward function r̂, as well as the robot’s
uncertainty σr̂ about it. As described in Section 3.4, the expected reward function can be estimated
by applying the maximum likelihood shift to each RIM. However, previous work has not addressed
the problem of uncertainty in RIM-modeling. Section 5.2.1 explains in detail how to describe and
estimate the various types of uncertainty about RIMs; Section 5.2.2 then describes the updated
computation of the expected reward estimate r̂, while Section 5.2.3 explains the computation of
the robot’s uncertainty σr̂ about r̂. Section 5.2.4 brings those concepts together into the RIM-UCB
algorithm, while Section 5.2.5 goes one step further and combines RIM-UCB with CGP-UCB into
a RIM +GP-UCB algorithm.

5.2.1 Uncertainty in RIM-modelling
In RIM-detection, there are three sources of uncertainty:
Existence Uncertainty about the existence of a RIM in a particular point in context space

Extent Uncertainty about the spatial extent of each RIM in the context space

Effect Uncertainty about the effect of the RIM on the outcome distribution –e.g., how much is the
expected reward shifted inside each RIM.

Existence Uncertainty

The existence uncertainty is generally captured by the anomaly value of each RIM: higher values
indicate higher confidence in the existence of the RIM. As shown in Section 3.4.2, a map P :
R→ R from anomaly value anom(R) to the probability of anomaly of a region R can be obtained
through monte-carlo simulations of the nominal domain:

P(anom(R)) ≈ P (R is anomalous) (5.2)

Additionally, the robot may have a prior estimate about the probability of a RIM for each point
in state-action space, even before any outcome observations have been made. We capture this prior
distribution as a zero-mean Gaussian Process, which is updated every time an observation is made
that contradicts evidence for a RIM.

Extent Uncertainty

It is frequently the case, especially in domains with sparse data, that the precise extent of a RIM
cannot be known exactly, even when the presence of such a RIM is known with high confidence.
Figure 5.3 illustrates this problem: even though it is clear that a RIM exists around the highly-
anomalous observations, there are many possible RIMs consistent with such data.

To capture the extent uncertainty, we extend the notion of a RIM by representing each RIM
not as a single parametric region, but rather a set R of parametric regions Ri that together capture

73



(a) Samples from the RIM of Figure 5.1b overlaid
with the nominal model.

(b) Examples of various parametric regions consis-
tent with the execution data.

Figure 5.3: Illustration of the extent uncertainty problem: although it is clear from the data that a
RIM exists, there are many parametric regions consistent with the data.

an estimate of the distribution over possible extents of the RIM. In particular, in the case of a
non-subtle RIM like that of Figure 5.3a, we want the set R to contain at least one of the most
specific consistent hypotheses and at least one of the most general consistent hypotheses [36]1, as
illustrated in Figure 5.4.

To define the set R, we first define a modified anomaly cost function anom+(R, λ) that trades
off between a region’s anomaly value and their size, according to a parameter λ:

anom+(R, λ) = anom(R) + λV (R), (5.3)

where V (R) represents the volume of region R. Then, each RIM is thus represented by a setR of
regions Ri that maximize cost functions with different rewards for smaller and larger region sizes:

Λ ≡ {λmin, λmin + ∆λ, . . . , λmax −∆λ, λmax} (5.4)

R ≡
{

arg max
R

[
anom+(R, λi)

]
|λi ∈ Λ

}
(5.5)

Figure 5.3b shows an illustration of what such a set of regions may look like; Section 5.3 contains
actual depictions from a robot domain.

This set of regions R, when appropriately weighed, approximates the distribution over possi-
ble spatial extents of the RIM. To achieve this approximation, each parametric region is weighed
proportionally to its relative probability of being a true anomaly. Then, the probability that a point
x is in RIMR is:

P (x ∈ R) ≈
∑

Ri∈R P(anom(Ri)1(x ∈ Ri)∑
Ri∈R P(anom(Ri))

. (5.6)

1In the case of ellipsoids, there is no single most specific or most general consistent hypothesis.

74



(a) Most specific consistent RIM-hypothesis (b) Most general consistent RIM-hypothesis

Figure 5.4: Illustration of one each of the most specific and most general RIM-hypotheses consis-
tent with the observed execution data.

Expressing each RIM as a distribution of parametric regions increases the expression power of
the approach: whereas previous work on RIM-detection treats each observation as either belonging
to a RIM or not, this approach enables the robot to reason about points in state-action space that
have some probability between 0 and 1 of belonging to the RIM.

Effect Uncertainty

The effect uncertainty describes the uncertainty about how the behavior of the world is different in
a RIM than what the nominal model θ0 predicts. This thesis focuses on effects that shift the mean
of the reward function by a constant vector δmax (see Section 3.1); thus, the effect uncertainty of
the effect of an individual parametric region R is defined by the estimated standard error of the
observed shifts δt ≡ (zt − µt(θ0)) from the most likely shift δmax:

σ2
r̂(R|Z,θ0) ≈ 1

n

(
1

n− 1

∑
xt∈R

(δt − δmax)2

)
(5.7)

To extend this formulation to a distributionR, each parametric region is weighed according to
its probability of containing the query context x

σ2
r̂(x|R,Z,θ0) ≈

∑
Ri∈R P(anom(Ri))1(x ∈ Ri)σ2

r̂(R
i|Z,θ0)∑

Ri∈R P(anom(Ri))1(x ∈ Ri)
(5.8)

5.2.2 Estimation of the expected reward
The UCB algorithm requires the robot to be able to estimate, for each point x ∈ X , the expected
reward, as well as the robot’s uncertainty about that estimate.
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The expected reward is a mixture model between the original expected reward function r̂0,
potentially augmented with the GP corrections, and the estimated reward r̂1 determined by the
RIMR (this extends straightforwardly to multiple RIMs). We estimate the probability distribution
of the reward function, given a context x = χ(s,a), as:

r̂(x|R,Z) = r̂0(x|Z)(1− P (x ∈ R)) + r̂1(x|R,Z)P (x ∈ R), (5.9)

where P (x ∈ R) is the probability of the chosen point being inR, as defined in Equation 5.6. We
can rewrite these probabilities as w0 and w1 to highlight that this distribution is a mixture-model:

r̂(x|R,Z) = w0r̂0(x|Z) + w1r̂1(x|R,Z) (5.10)

5.2.3 Variance of expected reward
The variance of a one-dimensional mixture distribution with weights wi, means µi and variances
σ2
i is given by

σ2 =
∑
i

wi((µi − µ)2 + σ2
i ), (5.11)

where µ is the mean of the mixture distribution. Thus, in our mixture distribution specifically, the
variance is given by

σ2
r̂(x|R,Z) =w0((r̂0(x|Z)− r̂(x|R,Z))2 + σ2

r̂0
(x|Z))+

w1((r̂1(x|R,Z)− r̂(x|R,Z))2 + σ2
r̂1

(x|R,Z)), (5.12)

where w0, w1, r̂0, r̂1, r̂ are defined as above, σ2
r̂0

is the uncertainty of the original model –e.g., the
GP variance– and σ2

r̂1
is the estimated standard error of Equation 5.7.

5.2.4 RIM-UCB algorithm
Having a notion of the expected reward function as well as the robot’s uncertainty about it enables
us to apply the UCB algorithm straightforwardly, as Algorithm 5 shows. The algorithm first finds
the distribution of possible RIMs. Then, it computes the expected reward and uncertainty about
it. In practice, line 3 may not have a closed-form solution. In our experiments, we discretize the
action space to search for the one with maximum value.

5.2.5 RIM +GP-UCB algorithm
While we have formulated the UCB algorithm in the context of RIM-detection, here we seek to
combine the benefits of RIM-UCB –i.e., discrete behavior transitions– with those of CGP-UCBP
–i.e., continuous model corrections.

To combine these algorithms into a RIM +GP-UCB algorithm, we create a GP that stores the
residuals ∆Zθ+ of each outcome observation with respect to the corrected model θ+ of our RIM -
detector. Algorithm 6 shows the procedure of detecting RIMs and creating the residual GP G.
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Algorithm 5 RIM-UCB algorithm for online learning in the presence of RIMs in Continuous
Contextual Multi-Armed Bandit problems.
Input: world state st, nominal model θ0, set of contextual observations Z.
Output: chosen action at.

1: function RIM-UCB(st,θ0,Z)
2: R ← FindRIMs(Z,θ0) . Find RIM distributionR (Chapter 3 + Eq. 5.5)
3: at = arg maxa∈A

[
r̂(χ(st,a)|R,Z) + β

1/2
t σr̂(χ(st,a)|R,Z)

]
. UCB + Eq. 5.9, 5.12

4: return at
5: end function

Given this procedure and the resulting RIM-distribution R and residual GP G, the robot pro-
cedes to choose the optimal action very similarly to Algorithm 5. However, the mean and variance
of the estimated distribution use the residual mean r̂G(x) and uncertainty (σGr̂ (x))2 from the GP
as well as those from the RIMs:

r̂0(x|Z, G) ≡r̂0(x|Z) + r̂G(x)

r̂1(x|R,Z, G) ≡r̂1(x|R,Z) + r̂G(x)

r̂(x|R,Z, G) =r̂0(x|Z, G)(1− P (x ∈ R)) + r̂1(x|R,Z, G)P (x ∈ R), (5.13)

Similarly, we obtain the combined variance:

σ2
r̂0

(x|Z, G) ≡(σGr̂ (x))2

σ2
r̂1

(x|R,Z, G) ≡σ2
r̂1

(R,x|Z) + (σGr̂ (x))2

σ2
r̂(x|R,Z, G) =w0((r̂0(x|Z, G)− r̂(x|R,Z, G))2 + σ2

r̂0
(x|Z, G))+

w1((r̂1(x|R,Z, G)− r̂(x|R,Z, G))2 + σ2
r̂1

(x|R,Z, G)), (5.14)

Algorithm 6 Augmented RIM-detection function that also returns a residual Gaussian Process.
Input: Contextual observations Z, model θ0 of nominal execution.
Output: RIM-distributionR, residual Gaussian Process G.

1: function FindRIMsGP (Z,θ0)
2: R ← FindRIMs(Z,θ0) . Find RIM distributionR (Chapter 3 + Eq. 5.5)
3: θ+ ← UpdateModel(θ0,R) . Correct model
4: ∆Zθ+ ←

{(
xt, zt − E[θ+(st,at, z)]

)
|(xt, zt) ∈ Z

}
. Compute residuals

5: G← BuildGP (∆Zθ+) . Create residual GP
6: return (R, G)
7: end function

Thus, the Gaussian Process models the deviation of the reward function from the corrected
model θ+, rather than the deviation from the nominal model θ0. We evaluate this combined ap-
proach in the experiments of Section 5.3.
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Algorithm 7 RIM +GP-UCB algorithm. Combines RIM-UCB (Algorithm 5) with CGP-UCB [52].
Input: world state st, nominal model θ0, set of contextual observations Z.
Output: chosen action at.

1: function RIM-UCB(st,θ0,Z)
2: (R, G)← FindRIMsGP (Z,θ0) . Find RIM distributionR (Eq. 5.5)
3: at = arg maxa∈A

[
r̂(χ(st,a)|R,Z, G) + β

1/2
t σr̂(χ(st,a)|R,Z, G)

]
. Eq. 5.13, 5.14

4: return at
5: end function

5.3 Empirical Evaluation

This section describes the empirical evaluation of our online learning algorithm using the RIM-
UCB and RIM +GP-UCB algorithms on a Continuous Contextual Multi-Armed Bandit problem.
Section 5.3.1 describes the robot soccer domain on which we apply our algorithm; Section 5.3.4
describes the experimental setup, and Section 5.3.5 describes the experimental results.

We evaluate the contributed algorithms on a two-dimensional robot soccer domain. Applying
the RIM-UCB algorithm to high-dimensional robot domains is straightforward using the feature
seclection approach of Chapter 4. Applying the RIM +GP-UCB algorithm to high-dimensional
domains is less straightforward, since the performance of Gaussian Processes tends to diminish
significantly with the dimensionality of the domain. However, the problems of online learning
and Bayesian Optimization in higher-dimensions are actively being explored in the literature, for
example, by assuming that the high-dimensional function to be learned can be decomposed into
low-dimensional additive components [44].

5.3.1 Online learning domain: Scoring on an opponent goalie

To evaluate our online learning algorithm, we address a sub-problem of the robot soccer domain.
A single offense robot must repeatedly shoot on the opponent’s goal, with the intention of scoring
as many goals as possible, despite the presence of an opponent goalie.

State-action space

The initial location of the ball on the field is always along the center line that joins the opponents’
goal to our goal, and its position s along that line is randomly given to the robot at the beginning of
each episode. The robot cannot dribble or pass the ball; it must shoot the ball directly from location
s to the opponent’s goal. The robot always shoots at the maximum allowed speed of 8m/s, but it
can choose the point a on the goal line at which to aim its shot. Thus, the state-action space of this
problem is two-dimensional and therefore easily visualizable.
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Reward

For this task, we do not use a simple 0-1 reward depending on whether the robot scores a goal. To
facilitate faster learning, we instead use a continuous reward that is proportional to the distance at
which the shot passes from the goalie and the goal posts. That is, given that the ball passes by the
goalie at a distance dg and it crosses the goal line at a distance dp from the closest post, the reward
is given by:

r = min(dg, dp). (5.15)

This reward function is illustrated in Figure 5.5. If the ball enters the goal (Figure 5.5a), the reward
is greater than 0. If the ball is blocked by the goalie, the reward is negative (Figure 5.5b). Similarly,
if the ball leaves the field outside of the goal, the reward is negative (Figure 5.5c). The distribution
of the reward is intrinsically noisy, due to the noise in actuation of the shooting robot: its heading
angle at the time of the shot has normal noise, whose variance is estimated from training data.

dg > 0

dp > 0

(a) Positive reward (goal)

dg < 0

dp > 0

(b) Negative reward (goalie block)

dg > 0

dp < 0

(c) Negative reward (goal miss)

Figure 5.5: Reward function illustration for the soccer shooting domain. The minimum signed
distance between the ball (orange small circle) and the goalie (large yellow circle) dg or between
the ball and the closest goal post (rectangle edge) dp determine the reward.

Nominal outcome model

Based on a prediction of the goalie’s behavior, and knowledge of the noise in actuation while
shooting, the offense robot can create a stochastic nominal model of the expected reward for each
possible shot. In accordance with Table 2.2, the nominal model of our robot is given by:

θ0(s,a, r) = Pθ0(r|s,a) (5.16)

We approximate this distribution as a normal distribution with mean µ0(r|s,a) and variance
σ2

0(r|s,a).
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Nominal model mean. The mean of the distribution is given by the minimum between the dis-
tance dp(a) between the goal post and the intended target a, and the distance dg(a) that the ball is
projected to pass from the goalie, if shot at its intended target a:

µ0(r|s,a) = min(dp(a), dg(a)). (5.17)

Computing dp(a) is trivial, since the goal post does not move. Computing dg(a) requires modeling
the opponent’s behavior, and depends on the initial distance d0

g(a) from the goalie to point a, and
the maximum distance dmax

g (tbg(a)) that the goalie can travel in the time tbg(a) it takes the ball to
reach the goalie’s path after being shot toward a:

dg(a) = max
(
0, d0

g(a)− dmax
g (tbg(a))

)
−Rρ −Rb, (5.18)

where Rρ is the goalie’s radius and Rb is the ball’s radius.
To compute distance dmax

g (tbg(a)), our robot assumes that the opponent goalie will use its max-
imum acceleration Amax in a parallel direction to the goal line to attempt to intercept incomping
shots. First, the robot computes the time tbg(a) that the ball will take between the beginning of
the shot and when it passes by the goalie; this time can be derived from the distance dbg(a) that
the ball must travel, the sliding and rolling friction coefficients of the surface on which it travels,
and the equations of motion of a sliding and rolling ball [41]. The maximum travel distance of the
goalie in time tbg(a) is given by:

dmax
g (tbg(a)) =

1

2
Amax(tbg(a)− tlat)

2, (5.19)

where tlat is the estimated latency of the opponent goalie’s reaction to a shot. This assumes the
goalie starts with 0 speed, and it does not reach its maximum speed. Both of these are reasonable
assumptions in our robots, but the model can be straightforwardly relaxed.

Nominal model variance. To estimate the variance of the reward distribution, we note that the
angle at which the robot shoots is approximately normally distributed around the angle at which it
intends to shoot, with constant variance σ2

α, which we estimate from training data. Given that the
angle of the shot is normally distributed with constant variance σ2

α, the distance from the intended
target a at which the ball crosses the goal line is also approximately normally distributed, but with
a variance that depends on the distance between the shot source s and the target a:

σ0(r|s,a) ≈ tan(σα)d(s,a) (5.20)

Thus, the nominal model of the robot is its reward distribution:

Pθ0(r|s,a) ∼ N (µ0(r|s,a), σ0(r|s,a)) (5.21)

5.3.2 Opponent model RIMs: Goalie vulnerabilities
To evaluate the ability of our FS-RIM algorithm to find opponent weaknesses, we test it on goalies
with different vulnerabilities. Figure 5.2 shows the nominal behavior of the goalie, in which it
applies maximum acceleration to attempt to block each shot. We evaluate our algorithms against
vulnerable goalies that deviate from this nominal behavior in different ways:
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Region goalie (Figure 5.6) In a particular region (marked with black lines) of the state-action
space of the shooting robot, the shots yield significantly more reward than expected. This
condition tests a clear discontinuity in the reward distribution of the domain.

Obstructed goalie (Figure 5.7): There is an obstruction on the field that does not allow the goalie
to see the ball when the ball is behind the obstruction. As a result, the goalie remains in its
default position while it cannot perceive the ball, instead of blocking the incoming shot.
Thus, for some region of state-action space, the goalie only perceives the incoming shot
once it is too late to block it.

Overshoot goalie (Figure 5.8): An opponent goalie that the CMDragons encountered in 2015
had the following flawed policy: During each timestep of an incoming shot, apply maximum
acceleration toward the path of the ball. This policy caused the goalie to sometimes over-
shoot the ball trajectory since it would not start decelerating until it was aligned with the ball
trajectory. We call this weakness the overshoot goalie.

Each of these opponent weaknesses affects the behavior of the world in different sets of contexts,
unknown to our robot except through its execution outcome observations.

Figure 5.6: Region-Goalie behavior: When the state-action (s,a) of the robot is within the black
parallelogram –where the x axis shows the ball initial position s along the mid-line and the y axis
shows the y value of the chosen target a on the goal line– the goalie concedes significantly higher
reward than expected.

5.3.3 Planning policies
We wish to evaluate different planning policies to compare their performance as a function of time:
Upper Confidence Bound using Gaussian Processes (GP-UCB): Our robot chooses its action

according to the CGP-UCB algorithm, as described in Section 5.1.

Upper Confidence Bound using RIMs (RIM-UCB): Our robot chooses its action according to
the RIM-UCB algorithm of Section 5.2.4.

Upper Confidence Bound using RIMs and Gaussian Processes (RIM +GP-UCB): Our robot chooses
its action using a combination of RIM and GP modeling, as described in Section 5.2.5.

For all of these policies, if there are multiple actions that maximize the value function, the robot
chooses one at random.
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(a) Goalie obstructed by obstacle (b) Goalie no longer obstructed, fails to move in time

Figure 5.7: Obstructed Goalie behavior: The goalie cannot perceive the ball when the black obsta-
cle lies between itself and the ball. Thus, it is unable to block some otherwise-blockable shots.

(a) Goalie moves in the right direction to block (b) Goalie fails to decelerate in time, misses the ball

Figure 5.8: Overshoot Goalie behavior: The goalie always applies maximum acceleration toward
the ball path, and thus sometimes fails to decelerate in time.
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5.3.4 Experimental setup

We evaluate the online learning algorithm on a physX-based simulation of the CMDragons. Each
experimental run is a sequence of episodes that proceed as follows:

1. The ball is automatically placed in a random location st along the center-line joining the
center of the two goals, and our robot is placed in a random location on the field.

2. The opponent goalie takes its preferred position given st.

3. Our robot is allowed to take a shot at on the opponent goalie.

4. Once the shot is complete, either because it has crossed the goal line or because it has
changed direction after hitting the goalie or the goal post, the robot observes its reward
rt perfectly, and a new episode begins.

5. If our robot does not take a shot within 10 seconds, a new episode begins.
Throughout each experimental run, we record the state st, action at and reward rt in each

episode. We conduct 10 runs for each of the goalie conditions of Section 5.3.2, for each of the
planning policies of Section 5.3.3.

5.3.5 Experimental results

This section presents the results of running the different exploration policies on the different vul-
nerable goalies. We draw two general conclusions: 1) The performance of each policy significantly
depends on the smoothness properties of the reward function in each domain, and 2) In general,
combining our RIM-based approach with the GP-based approach provides robust performance
across domains with different smoothness properties.

Region Goalie. Figure 5.9 shows an example of our RIM-UCB algorithm running on the Region
Goalie domain. Figure 5.10a shows the reward obtained by the different policies on the Region
Goalie. This domain has a very discontinuous transition in the performance of the robot over
its state-action space, which is reflected in a significant difference in performance between the
algorithms: The RIM-UCB and RIM +GP-UCB algorithms outperform the GP-UCB algorithm.
Interestingly, RIM-UCB learns significantly faster than RIM +GP-UCB. We hypothesize this is
because RIM-UCB only corrects the model when it has higher certainty of a model inaccuracy,
and thus is less suceptible to make incorrect corrections based on noise early on.

Obstructed Goalie. Figure 5.11 shows an example of our RIM-UCB algorithm running on the
Obstructed Goalie domain. Figure 5.10b shows the results of the different learning policies on the
Obstructed Goalie. This domain has an abrupt, but not discontinuous transition in the performance
of the robot over its state-action space: when the robot takes a shot such that the ball is behind the
obstruction, its chances of scoring are significantly higher than shooting just a bit differently, such
that the ball is not obstructed from the goalie. In this domain, all of the policies perform similarly,
within the margin of error of each other.
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(a) 14 outcome observations

(b) 24 outcome observations

(c) 44 outcome observations

(d) 100 outcome observations

Figure 5.9: Example of the most anomalous region distribution (red ellipses) found during execu-
tion in the Region Goalie domain. Each pair of concentric circles shows an outcome observation:
position shows the starting ball position s (x−axis) and chosen action a (y−axis); the outer and
inner circles show the expected reward r̂0 from the nominal model and the observed reward rt
respectively (darker is lower).
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(a) Region-Goalie (b) Obstructed Goalie

(c) Overshoot Goalie

Figure 5.10: Moving average reward of the different online learning policies as a function of time,
against different goalies. Shaded areas indicate 95% confidence intervals.
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(a) 9 outcome observations

(b) 24 outcome observations

(c) 44 outcome observations

(d) 100 outcome observations

Figure 5.11: Example of the most anomalous region distribution (red ellipses) found during exe-
cution in the Obstructed Goalie domain. Concentric circles have the same meanings as those in
Figure 5.9
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Overshoot Goalie. Figure 5.12 shows an example of our RIM-UCB algorithm running on the
Overshoot Goalie domain. Figure 5.10c shows the results of the policies on the Overshoot Goalie.
The context-dependent inaccuracy in this domain shows a significantly smoother transition than
the one in the other domains. Because of this smoothness, there is no significant difference among
the performance of the three different methods; GP-UCB seems to obtain slightly larger reward,
but it is within the margin of error.

5.4 Chapter summary
This chapter presents an approach to enable robots to optimize their planning considering their
own uncertainty about possible RIMs in their domains. To achieve this performance improvement,
the approach first enables the robot to represent its uncertainty about RIMs; once the robot is able
to represent this uncertainty, it can create plans that balance exploration –i.e., taking actions that
reduce uncertainty about RIMs– with exploitation –i.e., taking actions that are known to yield high
reward.

Section 5.1 provides the necessary background for this chapter. The section describes the Up-
per Confidence Bound algorithm for solving multi-armed bandit problems, and the Contextual
Gaussian Processes Upper Confidence Bound in particular, which applies to domains with contin-
uous state and action spaces, such as our domains of interest. In this algorithm, the robot represents
its model, as well as its uncertainty about this model, using Gaussian Processes. Then, it uses the
Upper Confidence Bound algorithm to effectively trade off exploration and exploitation.

Section 5.2 presents the proposed solution in technical detail. First, the approach enables robots
to represent their uncertainty about possible RIMs in their domains. The robot approximates the
probability distribution for each RIM with a collection of parametric regions of similar shapes,
which are all consistent with the robot’s outcome observations. Given this representation of the
robot’s uncertainty about each RIM, the section derives the expression for the robot’s resulting
estimated model, as well as its uncertainty about the model, defined over the robot’s state-action
space. Given the robot’s estimate of the model and its uncertainty about it, the robot uses the
Upper Confidence Bound algorithm to choose actions that effectively trade off model refinement
and reward-gathering.

Section 5.3 demonstrates the value of the contributed approach empirically in a domain con-
sisting of a soccer-playing robot that needs to repeatedly shoot on an inaccurately-modeled goalie
to maximize its scoring. Experimental results show that, in domains with sharp discontinuities in
the reward function, this thesis’ RIM-based approach outperforms the state-of-the-art Gaussian-
Processes-based approach to online learning. Furthermore, experiments show that combining the
two approaches yields the best results.
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(a) 10 outcome observations

(b) 28 outcome observations

(c) 50 outcome observations

(d) 100 outcome observations

Figure 5.12: Example of the most anomalous region distribution (red ellipses) found during ex-
ecution in the Overshoot Goalie domain. Concentric circles have the same meanings as those in
Figure 5.9
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Chapter 6

Related Work

We seek to enable robots to adapt at execution time, in the presence of RIMs in their state-action
space, to optimize performance.

Section 6.1 contextualizes our work within the Execution Monitoring (EM) literature, which
has historically addressed the problem of online detection of discrepancies between nominal planned
execution and actual execution. However, unlike previous work in EM, we detect this off-nominal
behavior as statistical collective anomalies in regions of the robot’s state-action space.

Section 6.2 contextualizes our work within the Anomaly Detection (AD) literature, which has
extensively studied the problem of finding spatial outliers. From them, we borrow the concept of
contextual collective anomalies that enables our robots to detect subtle off-nominal behavior in
particular RIMs; however, we adapt and apply this concept to online robot execution monitoring.

Finally, since we address the problem of online performance optimization in domains with
model uncertainty, Section 6.3 relates our work to the Reinforcement Learning (RL) literature. We
borrow existing approaches to this problem from the RL community, but adapt them to enable
robots to explicitly reason about RIMs and their uncertainty about these RIMs.

In general, then, the biggest difference between our work and previous work is the joint ap-
plication of concepts from these three fields, enabling robots to detect and reason explicitly about
RIMs in their planning models.

6.1 Execution Monitoring

The problem of execution monitoring, also called Fault Detection and Identification (FDI), or Di-
agnosis (DX), depending on the community [18], is concerned with detecting, identifying and
recovering from failures in execution. Execution monitoring is a well-established problem in vari-
ous areas of scientific research, and the complex and unpredictable nature of robotics domains has
led to increased exploration of execution monitoring in robotics [76]. Below, we situate our work
in the context of the execution monitoring community. We only present related work in the field as
it pertains to our work, but there are several surveys of execution monitoring as a general problem
(e.g., [35, 40]) and specifically in robotics (e.g., [1, 76]). Throughout this section, we draw specific
comparisons between our work and others in the field. However, the main distinguishing prop-
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Execution Monitoring

Model-free
[77, 78]

Model-based

Qualitative
[25, 27, 31, 32, 55, 56, 96]

Quantitative

Robust residual
generation

[100, 35, 59, 98]

Robust residual
evaluation

[71, 75, 97]

Figure 6.1: Rough taxonomy of execution monitoring methods inspired by previous survey
work [39]. Our approach lies in the Robust residual evaluation leaf.

erties of our work are common to most of the approaches below: Execution monitoring research
has focused on detection of faults characterized by a single unexpected observation, or sequences
of unexpected observations; our work, on the other hand, focuses on detection of regions of the
domain in which observations do not match expectations. Furthermore, our work seeks to enable
robots to reason about their uncertainty about such expectations and act accordingly.

6.1.1 Taxonomy of execution monitoring approaches
Figure 6.1 shows a taxonomy of execution monitoring methods, strongly inspired by pervious
survey work [39], and to the level of granularity appropriate for our work. At the highest level,
execution monitoring can be divided into model-based methods, which achieve monitoring using
models of the system, and model-free methods, which detect failures using only observed data. We
are interested in adaptation in domains in which robots have access to partially accurate models of
the world, and thus we focus on model-based monitoring; however, model-free methods have also
been successfully applied in robotics [77, 78].

Model-based methods can be roughly separated into those that use qualitative models of the
world, and those that use quantitative models of the world.

Qualitative model-based approaches use logic as the primary tool for monitoring. A common
approach is to monitor the execution of plans using preconditions and effects of actions to check
that the plan being executed is still consistent [27, 31, 96] or optimal [32]. In addition, temporal
plan constrains may also be monitored [25, 55, 56]. Some of the challenges of qualitative model-
based execution monitoring include reacting only to relevant changes in the world, and detecting
plan failure as early as possible during execution.

Quantitative model-based approaches usually rely on the generation and analysis of numerical
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residuals, rather than on logical elements. Residuals are differences between model-generated
estimated values and the values observed during execution. In nominal execution, residuals are
expected to be zero-mean vectors, and failures are detected as significant residual deviations from
zero.

A comparative study of qualitative and quantitative approaches to model-based monitoring [18]
has shown that there is very significant overlap between the expressive capabilities of both ap-
proaches. However, qualitative model-based methods are often used for higher level plan monitor-
ing and diagnosing the reasons for these faults (e.g., [22, 21]), since they are based on the language
of logic. On the other hand, quantitative model-based methods are generally used to monitor
stochastic and continuous systems. Research efforts have attempted to reconcile these approaches
into a joint framework that leverages the strengths of each [18, 34]. Furthermore, other approaches
implicitly combine these by monitoring logical properties in a probabilistic manner [99]. In our
work, we have approached the problem from a quantitative perspective, since we have focused on
detection of failures in stochastic, continuous systems. The problem of incorporating our approach
into qualitative methods is briefly discussed in Section 2.1.2.

Within the context of quantitative model-based monitoring, previous work [39] has argued
that there are two ways to address stochasticity in the world: Robust residual generation meth-
ods, such as detection filters [98], robust observers [100], pairity relations [35] and Kalman filter
methods [59], attempt to generate residuals that are minimally sensitive to noise and maximally
sensitive to faults, while robust residual evaluation methods focus on using noisy residual mea-
surements to detect faults in the system while minimizing false positive detections. Our work on
failure detection has focused on residual evaluation, rather than generation, although incorporating
robust residual generation methods would fit in straightforwardly with our approach. Section 6.1.2
compares our work more extensively to previous work that qualifies as robust residual evaluation
methods.

6.1.2 Failure detection from noisy observations
We are interested in the problem of detecting RIMs given a list of stochastic contextual observa-
tions in which the robot’s state st and action at provide the context, and the outcome zt is the
observation to be monitored. Most work in execution monitoring has focused on fault detection
given a single observation zt or a sequence of observations [zi|i = 0, 1, . . . , t], not using infor-
mation about the context in which such residuals were observed. Several algorithms have been
developed to address this problem, and their properties, such as speed of detection and detection
power, have been extensively studied.

Two of the most studied algorithms, Sequential Probability Ratio Test (SPRT) [97] and Cumu-
lative Sum control charts (CUSUM) [75], detect faults using thresholds on the likelihood ratio of
residual observations, given a nominal model θ0, and an alternative failure model θ1. These algo-
rithms can be very efficiently computed by maintaining an aggregate statistic St and updating it in
constant time with a new observation zt. However, they require prior knowledge about the fault
model θ1, or sets of models {θi} for multiple fault detection [71]). In contrast, we are interested
in problems in which the distribution of observations in the RIMs is unknown.

The Generalized Likelihood Ratio (GLRT) approach uses the maximum likelihood estimate of
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Method Spatial Contextual Collective Tractable Incremental Sparse
SPRT 3 3 3 3

CUSUM 3 3 3 3

GLRT 3 3 3 3

Spatial Outlier 3 3 3

Context Outlier 3 3 3 3

Image Anomaly 3 3 3

Spatial Scan 3 3 3 3

FARO/DMAPS 3 3 3 3 3 3

Table 6.1: Comparison of different methods for anomaly detection and execution monitoring along
various dimensions.

θ1 for detection of faults with unknown parameters. Faults are again detected by thresholding a
statistic St. However, St requires computation that is no longer constant, but linear in t.

We have also worked on the problem of detecting failure from noisy sequential data [63].
Appendix C describes the work we conducted, in which we enabled the CoBot mobile robots to
detect Motion Interference of various types using a Hidden Markov Model to capture the transitions
between the different states of the robots.

In our approach, we seek to use similar statistical techniques as these well established methods.
However, the key difference is that we need to detect inaccuracies that are constrained to particular
regions of the robot’s state-action space. Thus, we must use methods that consider the full contex-
tual observation (st,at, zt), rather than just the outcome zt. Section 6.2 describes how we achieve
this using techniques from Anomaly Detection.

6.2 Anomaly Detection

The Anomaly Detection community has extensively explored the problem of finding anomalies in
spatial data. Table 6.1 summarizes the distinctions between our approach and previous work, as
we describe more extensively below.

Previous survey work of Anomaly Detection research [14] generally classifies anomaly detec-
tion methods along four dimensions: nature of the data, availability of labeled data, type of output
produced, and types of anomalies detected. For the sake of completeness, we situate our work
along these four dimensions; we note, however, that the main distinguishing feature of our work is
the types of anomalies detected.
Data nature We are primarily interested in problems in which both the state-action space and the

expected observations could be continuous variables, but our algorithms extend naturally to
problems in which the expected observations are binary variables. We have not addressed the
problem of categorical or binary state-action spaces, but we believe extending our methods
to such domains is a relevant problem, especially if trying to extend our methods to higher-
level plan monitoring.
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Label availability Throughout our work, we assume that a model of nominal execution is avail-
able to the robots, but that different types of unforeseen anomalies could occur. In the context
of Anomaly Detection work [14], this is similar to a semi-supervised domain, in which la-
beled data only of nominal execution is available to the algorithms (we also assume that this
data has been accurately captured in a model). This is in contrast to unsupervised domains
in which no observations are available beforehand, and to supervised domains in which both
nominal and anomalous behaviors have been previously observed.

Output Anomaly Detection algorithms may output anomaly scores or simply a decision regarding
the existence of an anomaly. At different stages of our work, our algorithms may need to do
either of these, depending on whether the task at hand is only to detect failure in execution,
or to modify the behavior of robots based on the detection of failure. Our algorithms must
also output the subspace of the domain in which an anomaly is detected.

Type of Anomaly This is the dimension along which our work differs from most other work, since
most work on Anomaly Detection has focused on the problem of detecting single outlier
observations during execution [14]. In contrast, we are interested in anomalies that are both
contextual and collective. Below, we briefly describe each of these characteristics.

Given our model-based approach to execution monitoring, our augmented observations z′i con-
tain not only the observations zi to be monitored, but also the context in which such observations
were made –i.e., the state si and action ai that led to such observation. This division of the data
into two sets of dimensions with different semantics differs from most work on anomaly detection,
in which data consists of a single vector to be compared to others. In our work, spatial context
is given by the state-action point that produces each observation; however, non-spatial context,
such as time sequences (e.g., [82, 93]), categorical profiles (e.g., [37, 9]), or graph connectivity
(e.g. [89]), has also been explored in the literature. Spatial contextual anomalies have been studied
as points z′i = (xi, zi) for which the value of zi is significantly different to that of the k near-
est neighbors of xi. Several algorithms have been developed to detect such anomalies [51, 57],
and a formalization of the spatial outlier problem has been formulated [83]. Our work is different
from these in that our anomalies are not only contextual, but also collective, in the sense that any
single observation may not constitute an anomaly, and one must instead analyze groups of related
observations to find anomalies.

Collective anomalies have been most widely studied in time series analysis, in which the goal
is to detect sequences of observations that are anomalous [47, 46, 12]. Many of the approaches
discussed in Section 6.1 could be classified as temporal collective anomaly detection algorithms in
which the goal is to find sequences of observation that do not fit the expected model of execution.
Our problem of interest is more general since our observations are related along multiple continu-
ous dimensions (of which time may be one), rather than purely temporally related. Because of this,
we need to develop different techniques that apply more generally, but which may not outperform
techniques developed specifically for temporal anomaly detection.

The problem of detecting spatial collective anomalies has received significant attention from
the Computer Vision (CV) community, as it can be used to detect anomalous regions of images, or
simply to segment regions that stand out. Unfortunately, the algorithms developed for CV are not
directly applicable to our problem: Images provide dense observations, in the sense that every pixel

93



in the image provides an observation that can be used for detection. Thus, CV techniques often
exploit the lattice structure of image pixels to use graph-based algorithms to extract anomalous
regions of the image (e.g., [30, 84]). This contradicts our goal of detecting anomalies from sparse
observations over a continuous domain. Furthermore, since CV is highly focused on 2D or 3D
images, CV algorithms are usually not applicable to problems of higher dimensions, such as our
robotics problems.

Detection of spatial collective anomalies has also been addressed using spatial scan statis-
tics [53]. Since our method is significantly influenced by work in this area, Section 6.2.1 situates
our work in more detail within spatial scan statistics work.

6.2.1 Spatial scan statistics

The spatial scan statistic [53] is an approach for detecting regions of a multi-dimensional point
process in which the number of observed points is significantly different from the number expected
from a given model. As noted in previous work [53], such statistic has a wide range of applications,
from forestry to astronomy; however, it has been most often studied in the context of early disease
outbreak detection. The core idea of the algorithm is to search over a set of subspaces of the
process domain to find the subspace R+ that maximizes the following likelihood ratio Λ(R):

Λ(R,Z) =
maxθ∈Θ P (Z(R),θ)

P (Z(R),θ0)
, (6.1)

where Θ is the space of distribution parameters, θ0 are the nominal distribution parameters, and
Z(R) are the set of observations seen in R. This approach searches for the subspace R+ most
likely to be anomalous, after which it can perform inference to determine whether there exists
an anomalous subspace of the domain, and where the anomaly is located. As originally devel-
oped [53], the algorithm for searching over the space of possible subspaces R is not scalable to
higher dimensions, because it performs an exhaustive search over the space of circular subspaces
to find the one most likely to be anomalous; this search algorithm is feasible for the original context
of the algorithm, in which only a 2-dimensional space had to be searched.

Our goal, with respect to anomaly detection, is to use the concepts of spatial scan statistics to
create algorithms that allow runtime monitoring of robots. While more recent work has further
developed the spatial scan statistics approach in several directions, none of the derived algorithms
is directly applicable to runtime detection of anomalies of various shapes in continuous higher-
dimensional domains. For example, exhaustive search of elliptical regions [54] or more efficient
search for axis-aligned rectangles [70] have been proposed, but they do not scale well with the di-
mensionality of the domain. Graph-based approaches [28, 91] assume some connectivity between
the data, which is not obviously obtained from sparse observations in higher dimensions. The Fast
Subset Scan [68, 69], while efficient, limits its search to only subsets of regions of fixed radius
around each observation.

Our approach to anomaly detection, described in Chapter 3, uses optimization to tractably
search for anomalous regions, incrementally at runtime, in higher-dimensional robot domains.
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Method MB TO SG NM MSM OL
Min-error AL 3 3

Max-reward AL 3 3 3

Model+Correction 3 3 3

Model-free RL 3 3 3

E3 / R-MAX 3 3 3

Function Approx MB RL 3 3 3 3

MMRL 3 3 3 3 3

RL-CD 3 3 3 3 3

RIM-UCB 3 3 3 3 3 3

Table 6.2: Comparison of different active approaches to learning describing whether they are
Model-Based (MB), are Task-Oriented (TO), provide Spatial Generalization (SG), discover New
Models (NM), support Multiple Spatial Models (MSM), and learn OnLine during execution (OL).
We contribute an online approach that support multiple spatial models.

6.3 Planning under model uncertainty

The RIM-UCB approach presented in Chapter 5 enables robots to make intelligent decisions de-
spite inaccuracies in their models. Through RIM-UCB, robots can effectively trade off exploitation
and exploration with respect to model inaccuracies. This exploration problem may be approached
in two different ways, depending on the domain: In some domains, the robot can explore its do-
main with the sole purpose of refining its model to optimize future performance. In other domains,
the robot does not have access to its task domain before its deployment, and thus must simultane-
ously optimize its performance while refining its models. Sections 6.3.1 and 6.3.2 describe related
work pertinent to these two situations, respectively. Table 6.2 summarizes the relationships drawn
below.

6.3.1 Offline active model learning
In many domains, robots can explore their domain with the sole purpose of optimizing future
performance. For example, the CoBot robots might explore their buildings to get better models
during the times when they have no scheduled tasks.

One strategy could consist of randomly exploring their domain, thus refining their models
in random points. However, with real robots, it is often expensive to collect large amounts of
data. Furthermore, we are particularly interested in scenarios in which only some subspaces of the
domain have inaccurate modeling. For these reasons, we explore techniques that are more data
efficient than random exploration.

In particular, Active Learning (AL) is concerned precisely with the problem of deciding where
an agent should sample to improve its model of the world. AL has been employed in various
robotics applications, such as learning the kinematics of a 2 DOF arm [16, 17], deciding which ex-
periments a robot scientist should perform [48], and classifying visual input for a mobile robot [24].
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However, the goal of these methods is to minimize future classification or regression error, while
we are interested in active learning to optimize future task performance. Previous robotics work
has explored AL to optimize the performance of a snake robot overcoming obstacles [92], and of a
grasping hand [20]. The goal of these methods is to learn an approximation of the reward function
from scratch; on the other hand, we seek a method to learn the boundaries of unmodeled modes of
the system in which most of the domain is already well modeled.

The model plus correction approach [13] is a notable example of how robots might learn
situation-dependent refinements to an existing model. In this approach, robots use their models
to derive a policy, except for specific situations in which the model is known to be insufficient,
in which case expert input replaces the model. The expert must decide when to give corrections,
and decisions about whether to use the original model or the corrections are made by a predefined
similarity threshold. In contrast, we seek algorithms in which the robots autonomously find situa-
tions in which their models are insufficient, actively try to correct their models, and autonomously
generate the boundaries and characteristics of these discovered models.

6.3.2 Online active model learning
In some domains, it is not possible for the robot to explore its environment prior to task deployment.
In these cases, the robot must then refine its model while trying to perform a task as close to
optimally as possible. For example, the CMDragons soccer robots can only attempt to correct their
models about opponents online during their game.

In such domains, Reinforcement Learning (RL) techniques address the issues of balancing
exploration with exploitation for a robot that does not have a perfect model of its world. On the
extreme end of non-complete modeling, Model-free RL approaches, such as Q-Learning [33] and
policy gradient descent [90], have shown great performance in various robotics domains without
explicitly modeling the world. Since they require no domain knowledge, model-free approaches
are very general. While this generality is appealing and necessary in situations where modeling
is impractical, model-free learning tends to be not very data-efficient and is not generalizable to
different tasks within the same environment [2, 43].

In our domains of interest, we assume that a significant amount of domain knowledge is avail-
able; in fact, we address domains in which most of the domain is already well modeled, and our
algorithms find specific subspaces in which the model is not sufficient. Therefore, model-based
RL is more closely related to our work. Model-based RL approaches learn a model of the domain,
and subsequently use such models for planning actions [43].

Various algorithms in model-based RL explicitly address the exploration vs exploitation prob-
lem. The E3 [45] and R-MAX [10] algorithms guarantee near-optimal RL in polynomial time in
the case of finite states and actions. However, they do not address the problem of generalization
to unseen state-actions, and therefore are not applicable to our domains of interest, in which only
sparse observations are available. Other algorithms for model-based RL have addressed the prob-
lem of generalization, usually via function approximation techniques [42, 72, 38]. In contrast to
these algorithms, we seek to leverage knowledge about the fact that our model is accurate with the
exception of a few unknown subspaces of the domain; this knowledge may enable our algorithms
to achieve higher data efficiency than previous algorithms.
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The problem of Multiple Model-based RL (MMRL) of the world has been explored by pre-
vious work, mostly for cases in which the number of different models is known a priori [15, 26].
Reinforcement Learning with Context Detection (RL-CD) [19] addresses a similar problem to
ours, in that they seek to automatically generate new models throughout execution while doing
RL. However, the switch among their models is a temporal one, in which only one model is active
throughout space at a time. In contrast, we wish to infer spatial switches, and create new models
accordingly.

The bottom line innovative contribution of our work is this discovery of new modes of behavior
in state-action space, and the active characterization of the extent and behavior of these modes, with
the end goal of task performance optimization.
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Chapter 7

Conclusion

This chapter concludes the thesis with a summary of the work presented here, followed by a dis-
cussion of the implications of this work and of possible future work.

7.1 Thesis summary
Thesis problem. This thesis addresses the problem of enabling robots to act robustly, using
sparse execution data, in the presence of subtle and context-dependent inaccuracies in their plan-
ning models. This problem arises in many complex robot domains in which it is infeasible for the
robots to have globally accurate models at the beginning of their deployment. This infeasibility
often arises because complex domains are far too large to explore exhaustively at training time, or
because the robots cannot be trained in precisely the same domain as their deployment domain, or
because computational restrictions require simple models that cannot capture the full complexity
of the domain. These context-dependent model inaccuracies affect robot performance in particular
regions of their state-action space, so this thesis focuses on detecting, correcting, and planning
taking into account these regions.

Thesis approach. We present an approach that enables robots to explicitly reason about paramet-
ric Regions of Inaccurate Modeling (RIMs) in their state-action space. Approximating these in-
accuracies as parametric regions enables robots to improve their execution robustness from sparse
execution data by detecting these RIMs, correcting their models accordingly, and reasoning about
the robot’s uncertainty with respect to the existence, effect, and extent of these RIMs.

Contribution 1: RIM-detection and correction in low-dimensional domains. This work en-
ables robots to detect and correct RIMs in their planning models online in low-dimensional do-
mains. Our approach treats the problem of detection as an optimization problem, in which the
robot searches for the parametric region of state-action space in which the contained data is most
likely to have come from a different distribution than what its nominal model expected. Once the
robot finds such region, it can use a statistical test to determine whether the unlikelihood of that
data is statistically significant enough to be described as an anomaly. Given this detection, the
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robot can proceed to apply a correction to its model that shifts the mean of the model’s distribution
by the most likely amount, according to the observed execution data. Empirical tests have shown
that such corrections can significantly improve robot performance in complex tasks, such as robot
soccer keepaway, with sparse execution data.

Contribution 2: RIM-detection and correction in high-dimensional domains. We extend
the RIM-detection and correction approach to work effectively in high-dimensional domains. To
achieve this, we assume that RIMs are intrinsically low-dimensional, but are embedded in a high-
dimensional space; we argue that this is not a very restrictive assumption. This low-dimensional
RIM assumption enables us to approach the problem as a search through low-dimensional sub-
spaces of the robot’s state-action space. This Feature Selection for RIM-detection (FS-RIM) ap-
proach uses best-first search to effectively search for the subspace of the domain that contains
the most anomalous parametric region. We present three different heuristics for this best-first
search, which trade off computational complexity and informativeness. Empirical evaluation on
real CoBot data and on the golf-putting domain shows that FS-RIM vastly outperforms the perfor-
mance of our low-dimensional approaches in high-dimensional domains.

Contribution 3: Online learning in the presence of RIM-uncertainty. We enable robots to
make plans that take into account their uncertainty about the existence of context-dependent inac-
curacies in their models. The robot has three types of uncertainty about these inaccuracies: un-
certainty about whether these inaccuracies exist, uncertainty about their exact effect on the model,
and uncertainty about the spatial extent of their effect in state-action space. We formulate mathe-
matically how the robot can estimate each of these. In particular, to estimate its uncertainty about
the spatial extent of model inaccuracies, we enable the robot to maintain an approximation to the
distribution over possible RIMs. Representing these uncertainties enables the robot to estimate
the expected value of its model’s outcome predictions, as well as its own uncertainty about this
estimate. Thus, the robot is able to use the well-established Upper Confidence Bound algorithm to
effectively trade off exploration and exploitation in a Contextual Multi Armed Bandit problem. In
the future, this formulation could be applied to other Reinforcement Learning problems.

Related work. Our approach brings together ideas from the fields of Execution Monitoring
(EM), Anomaly Detection (AD) and Reinforcement Learning (RL) to enable robots to act ro-
bustly in the presence of model inaccuracies. From EM we take the idea of online monitoring
to detect discrepancies between expectations generated by the robot’s model of nominal execu-
tion, and stochastic observations received during actual execution. However, unlike most work in
EM, we detect this off-nominal behavior as statistical collective anomalies in specific regions of
the robot’s state-action space. This concept of spatial collective anomalies, borrowed from AD
literature, enables our robots to detect subtle deviations from nominal behavior from collections
of observations that are contextually, and not necessarily temporally, correlated. Finally, we take
ideas from the Reinforcement Learning community to enable robots to balance actions that refine
their knowledge of RIMs with those that maximize their reward. We adapt the Upper Confidence
Bound algorihtm to enable the robot to explicitly reason about RIMs.

100



Evaluation in complex robot domains. Aside from the theoretical and algorithmic contribu-
tions, this thesis contributes evaluation on various complex robot domains. We evaluate our ap-
proach on the CoBot service robot, which autonomously performs tasks in the Gates-Hillman
Center at Carnegie Mellon University. This domain shows our approach working on an uncon-
strained environment in which the robot interacts on a daily basis with untrained humans. We also
evaluate on the CMDragons soccer robot team. This domain evaluates our approach on a highly
dynamic and adversarial domain. Importantly, it tests our approach in a domain that requires fast
adaptation to an opponent that is inevitably inaccurately modeled in some situations. Finally, we
evaluate our approach on the NASA spacecraft landing simulation. This domain demonstrates our
approach detecting model inaccuracies of which the researchers were unaware, and on a model
built entirely from a stream of data. Together, these domains demonstrate the general applicability
of our approach to complex model-based robot domains.

7.2 Discussion and future work

This section discusses the implications of the work in this thesis, as well as possibilities for ex-
tending this work in the future.

7.2.1 Reasoning about discrete changes

This thesis enables robots to detect regions of their state-action space in which execution is anoma-
lous, correct these anomalies, and plan accounting for them. While previous work has addressed
the problem of estimating models and correcting them online, the bulk of that work consists of
applying continuous corrections to the model.

While continuous corrections are often necessary, many of the inaccuracies in the real world
are instead discrete. For example:
• A team of soccer robots must decide which opponents to mark, and they do so based on

the state of the world. At some point, a very small change in the state of the world will
cause a defender to switch from marking one opponent to marking another, who now poses
a higher threat. This is an entirely discrete transition in the world –i.e., the robot does not
smoothly change its marking behavior as a function of the world state. Similar discrete
behavior transitions –e.g., play-switching, role-switching– occur at various levels of robot
soccer and similar multi-robot domains.

• The CoBot robot has many unmodeled discrete transitions: the sun shining through the
window, which affects its sensors, affects a very specific region of the building; the transi-
tion between soft carpet and rough tile is entierly discrete; the hallways of its building get
crowded very quickly when class lets out. These discrete, or quasi-discrete transitions, may
best be modeled as such.

Thus, we believe a valuable contribution of this thesis is to enable the robot to discover these
discrete transitions in behavior as a function of its state-action space, and to model them separately
from the rest of the space.
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7.2.2 Explicit search for maximum anomaly

A key distinguishing attribute of this thesis, with respect to previous robotics work, is the explicit
search for parametric regions of maximum anomaly value. This search enables robots to detect
model inaccuracies from sparse execution observations. Even though throughout this thesis our al-
gorithms search for ellipsoids of maximum anomaly, the approach can straightforwardly be applied
to parametric regions of other shapes, or even to soft regions –i.e., regions with smooth boundaries
whose smoothness can be controlled parametrically. It seems possible that even non-parametric ap-
proaches could borrow the idea of choosing hyper-parameters such that they maximize an anomaly
value, rather than to optimize the fit to the observed data. We do not advocate for this choice in ev-
ery domain, but we hypothesize that it might help in domains in which the goal is to find anomalies
from sparse data.

7.2.3 Combining discrete and continuous approaches to model inaccuracies.

This thesis presents an online learning method that combines the parametric RIMs-based approach
to model inaccuracies from this thesis with the non-parametric, Gaussian Processes (GP)-based
approach to correcting models that is most frequent in the literature. Combining these two ap-
proaches enabled the robot’s model correction to be robust in domains in need of smooth model
corrections as well as those in need of discrete model corrections.

This work scratched the surface of combining such continuous, data-intensive approaches –
e.g., Gaussian Processes (GPs)– with discrete, sparse-data-oriented approaches –e.g., RIMs. For
example, in addition to combining the approaches simultaneously to achieve high continuous and
discrete performance, one could combine them such that RIMs dominate corrections early in exe-
cution, when the data is sparser, while GPs dominate later in execution, when the data is dense. We
believe such a combination could yield approaches that enable fast adaptation, as well as long-term
fine-grained model estimates.

7.2.4 Time-dependent model inaccuracies

Inaccuracies in robot models often have a time-dependent component: the world may behave
differently from expectations only for a specific time interval, or may do so in a periodic way.
As long as time is included as one of the features in the robot’s context space, our approach is
able to detect and characterize model inaccuracies that happen within a specific time interval.
Periodic inaccuracies, on the other hand, would only be correctly detected and characterized if
the underlying information for the periodicity is included as one of the features in the robot’s
context space. For example, a particular corridor in the Cobot’s building may be overcrowded on
Wednesdays at 2 pm because a class ends at that time. Using our approach, the CoBot could only
correctly characterize this periodic model inaccuracy if it had the day of the week and the time of
day as features in its context space.
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7.2.5 Separating inaccuracy detection from model correction
Throughout this thesis, we constrained the search for RIMs to those that have the effect of shifting
the mean of the expected distribution in a particular region of context space. Upon detection, we
presented an approach to model-correction that patches the nominal model with mean-shifted dis-
tributions in the detected RIMs. In some domains, the algorithm creators may have more specific
knowledge about the form of the distribution, even in RIMs in the domain. As an example, it may
be known that, even when the dynamics of a domain do not follow the expected distribution, they
are still linear in nature. In such domains, it may be desirable to separate the detection step –which
would continue as presented in this thesis– from the model correction step –which could consist,
for example, of finding the best-fitting linear model for the detected RIM.

7.2.6 Theoretical guarantees of RIM-based online learning
We have demonstrated the value of our RIM-based online learning approach using empirical data
from the robot soccer domain. However, one of the valuable attributes of the GP-based Upper Con-
fidence Bound approach is its proven no-regret guarantees, given sufficient smoothness conditions
about the robot’s model. In the future, we would like to explore the problem of finding similar
performance guarantees for our approach.

A challenge when addressing that problem is finding the correct set of assumptions about the
underlying domain. Since this thesis explicitly targets domains with discrete transitions, we can-
not adopt smoothness assumptions like the ones from the GP-based approach. However, some
assumptions would be needed, since otherwise there could be a single point in state-action space
that yields infintely more reward than every other point, and it is impossible for the robot to ex-
plore every pair of states and actions. One possible assumption could relate to the minimum size
of RIMs in the domain: if RIMs are assumed to be larger than ε, then the assumption-less problem
above would not apply. Alternatively, one could make assumptions about the distribution of RIMs
in the domain, and attempt to make probabilistic claims about the regret of the algorithm.

Whatever the assumptions may be, we believe providing theoretical guarantees would be a
valuable contribution to enable further adoption of our approach.

7.2.7 Other types of reasoning about RIM-uncertainty
This thesis presents an approach to reason about the existence of RIMs in robot planning models,
as well as an approach to represent the robot’s uncertainty with respect to possible RIMs. With
these tools, we have enabled our robots to effectively trade off exploration and exploitation in an
online learning multi-armed bandit domain. One possible extension to our work is to use these
tools in other types of domain that require reasoning about model uncertainty.

Bounded risk

Recent work [73, 74] has examined the problem of planning in stochastic systems using the notion
of “bounded risk”–i.e., planning such that the probability of failure is bounded. Similarly, instead
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of reasoning about stochastic but fully known models, the robot can reason about bounded risk in
the context of stochastic and inaccurate models. In particular, the robot can take into account its
uncertainty about RIMs during the risk allocation process.

Risk-sensitive planning

Similarly, reasoning about model uncertainty could affect the performance of risk-sensitive robots [49].
These are robots that care not only about the expected performance of their policies, but also the
variance in performance. A risk-seeking robot prefers policies with higher variance in perfor-
mance, while a risk-averse robot prefers policies with lower variance. In our domains, for example,
a risk-seeking robot might intentionally try to visit locations of state-action space where it believes
there might be a RIM of unmodeled high reward, even if there might not actually be a RIM there,
which would result high negative reward.

Safe Exploration

The algorithms we have presented for exploration in search of advantageous RIMs does not ex-
plicitly account for safety. There may be certain regions of state-action space that the robot should
never visit. This notion may be encoded into our algorithms in two different ways: first, the robot
could have infinitely negative expected reward for such regions of state-action space; alternatively,
the robot could explicitly encode some state-action pairs that are never allowed, and exclude those
from its search for the optimal action to take.

Generally, reasoning about uncertainty is necessary in many robotics applications, and we have
provided the tools needed to reason about uncertainty about context-dependent inaccuracies in
robot planning models.

7.2.8 The value of parametric regions for human operators

One of the potentially significant advantages of detecting model inaccuracies as parametric regions,
and one which we have left largely unexplored, is the value that human robot operators could derive
from these parametric regions.

We, the algorithm designers, have experienced anecdotal evidence of this value multiple times
throughout this thesis. A concrete example emerged from detecting RIMs in the moving ball
interception model of the CMDragons [66]. In this domain, our model estimates the time that
each robot needs to be able to intercept a moving ball. Using our RIM-detector on our own team,
without any injected model inaccuracies, yielded a significant RIM: when our robot was aligned
with the trajectory of the ball at the time the ball starts moving, it often took significantly more
time than predicted to intercept the ball. When we found this anomaly, we delved into the robot
logs to find its root cause. Because the RIM pointed to a specific set of situations –i.e., when our
robot was aligned with the trajectory of the ball when the shot starts– finding the relevant data and
analyzing them was relatively effortless. This analysis led the developers to discover an unintended
behavior of the ball interception algorithm, which instructed the robot to stand still and wait for
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the ball to arrive to it, instead of moving toward the moving ball to intercept it sooner. Correcting
this unintended behavior led to significant passing performance in the CMDragons.

In general, because parametric regions are compactly represented, they often easier to under-
stand for human developers than nonparametric methods. In the future, we would like to explore
the hypothesis that reporting the parametric RIM to a human operator can lead to significantly
faster discovery of the root source of anomalies in robot behavior, when compared to simply rais-
ing an execution alarm, or when compared to characterizing the anomaly in a nonparametric way.

7.2.9 Applying RIM-detection and correction to other complex domains
The evaluation domains in this thesis show the general applicability of reasoning about RIMs:
the same ideas apply to the CoBot mobile service robot, the CMDragons soccer-playing robots,
and the NASA spacecraft. More generally, these ideas apply to domains in which the robot has
an observable but stochastic model of nominal behavior used for planning. Table 2.2 shows, for
example, how our approach can be used for domains in which the robot models the behavior
of the world as an MDP, as a factored MDP, and as a bandit reward function. We expect this
formulation to be readily applicable to find and react to inaccuracies in various real-world domains,
from autonomous cars’ imperfect models of their motion dynamics and traffic paterns, to robot
manipulators’ imperfect models for approaching and grasping objects.
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Appendix A

Computing R+ in 1D

In a one-dimensional domain, the convex region (e.g., ellipse) of maximum anomaly R+ can be
computed in quadratic time, with respect to the number of data points, using dynamic program-
ming. This algorithm exploits the fact that sufficient statistics for the anomaly measure of the union
of two non-overlapping regions R1 and R2 can be computed in constant time once the sufficient
statistics for each of them has been computed. Thus, starting with regions that surround each in-
dividual data point, the maximum anomaly region R+ is found by merging adjacent regions and
calculating their anomalies.

The anomaly measure of Equation 2.5 can often be computed from sufficient statistics of the
data Z(R). For example, as shown in previous work [64], when trying to find a shift in the
mean of normally-distributed observations, the logarithm of the anomaly F (R) = log anom(R) is
computed as:

F (R) =
1

2

(∑
xi∈R

Σ−1
i ∆zi

)>(∑
xi∈R

Σ−1
i

)−1(∑
xi∈R

Σ−1
i ∆zi

)
(A.1)

where Σi is the expected covariance of observation zi, and ∆zi is the deviation of observa-
tion zi from its expected value, according to the nominal model. Thus, the statistics S∆z =∑
xi∈R Σ−1

i ∆zi and SΣ =
∑
xi∈R Σ−1

i are sufficient for computing anom(R). Furthermore, given
the statistics for two non-overlapping regions (S1

∆z, S
1
Σ) and (S2

∆z, S
2
Σ), the statistics for the com-

bination of their data is simply S1+2
∆z = S1

∆z + S2
∆z and S1+2

Σ = S1
Σ + S2

Σ. Thus, it is possible to
create a function anom(S) that computes the anomaly value from sufficient statistics of a region,
and a function merge(S1, S2) that merges sufficient statistics from two non-overlapping regions;
both of these run in constant time.

Given these sufficient statistics, Algorithm 8 describes the procedure of finding the region R+

of maximum anomaly in 1D. The algorithm finds the range R+ = [x−R,x
+
R], where x−R,x

+
R ∈ R.

First, the observations are sorted along their context dimension (line 2). This ordering enables
the dynamic programming to create a table (line 3) such that, by the end of the procedure, this
table T [i][j] contains sufficient statistics of the observations in the range

[
Z ′j,Z

′
j+i

]
to compute

its anomaly value. This is achieved by first storing the statistics of each individual point in T [0][j]
(lines 5– 7), and then incrementally computing the statistics of larger regions by combining smaller
ones (lines 8– 12). Finally, the most anomalous range can be computed by finding the statistics in

115



T that produce the maximum anomaly value (lines 13–15). Figure A.1 illustrates the contents of
the table for an example with 4 observations.

Algorithm 8 Algorithm to find the region R+ of maximum anomaly in a one-dimensional domain.
Input: Set of 1D contextual observations Z, nominal model θ0.
Output: The region R+ that maximizes anom(R).

1: function FINDANOM1D( Z = [(xt, zt)|t = 0, . . . , N ], θ0)
2: Z ′ ← sort(Z)
3: . 2D table stores stats of range

[
Z ′j,Z

′
j+i

]
4: T ← table(|Z ′|, |Z ′|)
5: for j ∈ |Z ′| do
6: T [0][j]← anomStats(zj)
7: end for
8: for i← 1 to |Z ′| do
9: for j ← 0 to |Z ′| − i do

10: T [i][j]← merge(T [i− 1][j], T [0][i+ j])
11: end for
12: end for
13: (i∗, j∗)← arg max(i,j) [anom (T [i][j])]

14: R+ ←
[
Z ′j∗ − ε,Zj∗+i∗ + ε

]
15: return R+

16: end function

S([x0,x0]) S([x1,x1]) S([x2,x2]) S([x3,x3])

S([x0,x1]) S([x1,x2]) S([x2,x3])

S([x0,x2]) S([x1,x3])

S([x0,x3])

Figure A.1: Dynamic programming procedure to obtain the range of maximum anomaly value in
1D. Each entry contains the sufficient statistics S[xi,xi+j] required to compute anom([xi,xi+j]).
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Appendix B

Online Learning of Robot Soccer Free
Kicks using Gaussian Processes

Online learning is an appealing and challenging problem in the domain of autonomous robot soc-
cer. Online adaptation is essential to optimize performance against previously unknown opponents
with varied strategies. However, the planning space of the team is extremely large, and the robots
only have a few minutes of execution to adapt. This chapter focuses on online learning for offen-
sive free kicks –i.e., free kicks taken by our team from the opponent’s half of the field– for which
we would want to find weaknesses in the opponent’s marking, leading to repeated scoring.

In a game of the RoboCup Small Size League (SSL) 1 soccer, there are around 10 to 20 offen-
sive free kicks per game, making it necessary to adapt from sparse data. To this end, we approach
the problem as a multi-armed bandit problem [85], in which the team must choose among a small
finite set of pre-computed Free Kick Plans (FKPs) as their actions, which yield a reward of 1 if they
score a goal within a short time after the free kick –e.g., the FKP of Figure B.1– or 0 otherwise.
The effectiveness of different FKPs heavily depends on the location from which the free kick is
taken, so we approach the problem as a contextual multi-armed bandit problem [29] with a metric
context [85].

Our proposed approach to learning is for the team to model an estimate of the reward function
using Gaussian Process-based regression [79] for each FKP, and then choosing the next action to be
the one that maximizes the Upper Confidence Bound (UCB) acquisition function [86], thus guar-
anteeing a no-regret learning process. This approach is closely related to the Contextual Gaussian
Process Upper Confidence Bound (CGP-UCB) approach described in Section 5.1.

We evaluate our online learning algorithm using a physics-based SSL soccer simulation. We
demonstrate the effectiveness of the algorithm against three realistic defending teams, each with
different weaknesses and strengths.

Concretely, this chapter presents three contributions: (a) A framework for modeling the prob-
lem of online learning of free kicks as a contextual multi-armed bandit problem, (b) An algorithm
for addressing this problem, and (c) empirical evidence for the effectiveness of the algorithm.

1wiki.robocup.org/wiki/Small Size League
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(a) FKP setup (dashed circle robot passes ball)

(b) FKP execution and scoring (dashed circle robot shoots ball)

Figure B.1: Free Kick Plan (FKP) successfully executed at RoboCup 2015. Yellow circles show
our team’s robots. We present an algorithm for learning effective FKPs online.
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(a) Setup: Kicker on the left, others
at psi

(b) Move to target locations (thin
yellow lines)

(c) Pass and score (ball path in or-
ange)

Figure B.2: Plan fk5 at RoboCup: Kicker (left yellow) passes as teammates (yellow) charge to the
opponent’s (blue) goal (top).

B.1 Background: Robot soccer and free kicks

The problem of reinforcement learning has been addressed in several robot soccer applications,
such as simulation of keepaway [88] and layered learning of soccer behaviors [58]. However,
online learning has not been applied nearly as frequently. Online learning has been applied to
adjust weights of different formations depending on their success [11], and to improve the models
of passing success against an unknown opponent [65]; neither of these explicitly addressed the
exploration vs. exploitation problem. One of the reasons for the lack of research on online learning
for robot soccer is the difficulty of the problem: since soccer games only last a few minutes, and
each opponent is only encountered once, robots must learn from very sparse data in a very high-
dimensional domain. This is the reason why our work focuses on learning from a small set of
actions in the more specific domain of robot soccer free kicks.

In the SSL, free kicks are a method of restarting the game after an infraction, or after the ball
has left the field. A free kick is awarded to one of the teams at the closest legal location to the
infraction. Until the kicking team restarts play by touching the ball, all robots from the opposing
team must maintain a distance of at least 50cm from the ball. In this chapter, we focus on online
learning for offensive free kicks, since they provide semi-controllable initial conditions for our
plans –the ball is stationary, and we can choose where to position our robots – and they provide
scenarios with a relatively high chance of scoring, especially since we focus on offensive free kicks
on the opponent’s half of the field.

B.2 Free kick planning as a bandit problem

The full planning space of offensive free kick plays consists of continuous and high-dimensional
state and action spaces. The full state space consists of more than 80 physical dimensions, in-
cluding the position, orientation, and velocities of the 12 robots and the ball, plus the state of the
game and the internal state of each team. The action space is also high-dimensional, as robots
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can move arbitrarily within physical limitations, and they can execute long sequences of passes,
dribbling and shooting. We propose to make online learning feasible from sparse observations by
greatly reducing the planning space and modeling the problem as a contextual multi-armed bandit
problem.

State Space. Offensive free kicks allow our team to control the initial conditions of the world
to a large extent: the ball is stationary at position pb, and we can place our robots at arbitrary
feasible initial conditions. Furthermore, we assume that the adversary does not change its behavior
throughout the game, and thus the opponent’s reactions to our plans are relatively repeatable as
well. We therefore reduce the planning state s to the two-dimensional initial ball location s = pb

from which the free kick is taken. The effectiveness of different plans highly depends on pb.

Action Space. To reduce the size of the action space, we define a set of Two-Step Free Kick
Plans (2FKPs) that consist of the following sequence: First, every robot ρi, excluding the goalie ρg
and the free kick taker ρk, proceeds to a setup location psi ; then, the robots proceed to final target
locations pfi , while ρk passes to the best potential target robot ρ∗, at the best computed location p̂fi
within a fixed radius of pfi . Given a team of Nρ robots, then, a 2FKP can be expressed as a vector
a of length 2(Nρ − 2) of locations psi and pfi for each potential receiver. 2FKPs are expressive
enough to contain dynamic plans with psi 6= pfi , yet simple enough to enable a bandit formulation,
rather than more general reinforcement learning [43] over long sequences of actions.

We further restrict the set of possible free kicks –because of our goal of learning from sparse
observations– to a finite set of 2FKPs containing Na elements: A = {a1,a2, . . . ,aNa}. Thus,
during each offensive free kick, the team must choose among Na possible actions.

Figure B.2 illustrates an example of a 2FKPs being executed during RoboCup 2015. In this fk5

plan, all the robots except for ρg and ρk spread around the midfield for the setup (Figure B.2a), and
then proceed to charge forward to locations around the opponent’s goal (Figure B.2b) to receive a
pass and shoot (Figure B.2c).

Reward Function. We seek to maximize the number of goals scored during offensive free kicks,
and thus we specify the rewrad function r as r = 1 if our team scores within time tFK of the kick,
or r = 0 otherwise. Time tFK is a threshold indicating an approximate time after which scoring is
no longer attributed to the chosen 2FKP; in our work, tFK = 10s.

B.3 Online learning over a set of 2FKPs

We enable online learning by (1) modeling an approximation to the expected reward function
r̄(s,a) as a function of the state of the world s and the chosen action a, and (2) appropriately
choosing actions that intelligently trade-off exploitation of known good actions, with exploration
of actions with uncertain results.
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Approximating r̄ using Gaussian Processes We approximate r̄ using Gaussian Processes (GPs)-
based regression [79]. We do this through a bank of GPs {GPa1 ,GPa2 , . . . ,GPaNa}, one for each
available action. We start by approximating r̄ by a prior function r̂a0 (s); then, we use subsequent
observations (si,ai, ri) of free kick states si, chosen action ai, and resulting reward ri to update
this estimate online. Thus, the approximating function r̂(s,a) is given by:

r̂(s,a) = GPa
(
s|r̂a0 , (s1, r1), . . . (sn, rn)

)
,

where each pair (si, ri) is an observation in which ai = a. Our algorithms can query this bank of
GPs to find the expected value µ(s,a) and the variance Σ(s,a) of the estimate expected reward
function r̂(s,a). Figure B.3 shows the expected value function mu estimated from success and
failure data of a particular 2FKP.

(a) Reward: 0 (black), 1 (white) (b) Reward function estimate

Figure B.3: Example expected reward estimate over valid free kick locations. We only show
samples from one half of the field length-wise, as our implementation assumes symmetry.

Upper Confidence Bound Online Learning Given estimates for the mean and variance of the
modeled reward function, we use the Upper Confidence Bound (UCB) algorithm to choose the
next action a, given state s:

a(s) = arg max
a′∈A

[µ(s,a′) + βσ(s,a′)] , (B.1)

where β is a parameter that controls the level of exploration vs. exploitation in the algorithm.
The UCB algorithm has been shown to be a no-regret algorithm [86], guaranteeing that difference
between the reward of our chosen action and the reward of the optimal action grows sublinearly as
the team learns which action to take.

Algorithm 9 illustrates the process of online learning of FKPs during a game. If the team must
select a free kick plan to execute, it uses Equation B.1 to choose the next action. At the end of the
play, the team sees a reward of either 0 or 1, depending on whether it scored a goal, and adds the
observation to the right GP.
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Algorithm 9 Free kick plan online learning procedure.
procedure LEARNFREEKICK(game state)

if game state = select free kick then
si ← pb

ai = arg maxa∈A [µ(si,a) + βσ(si,a)]
end if
if game state = play end then

ri ← 1 if goal, 0 otherwise
Add (si, ri) to GPai

end if
end procedure

B.4 Experimental results
The goal of this work is to achieve advantageous FKP adaptation online during RoboCup games.
In fact, during RoboCup 2015, our team did perform such adaptation during real games, and it
won the SSL tournament. However, it is very difficult to accurately evaluate the amount of credit
that the online learning of free kicks deserves in that victory due to (i) lack of ground truth, (ii)
small number of games, and (iii) the large proportion of the games that does not involve free kicks,
such as offense coordination during regular gameplay [61]. Thus, we instead present a controlled
experimental evaluation of our algorithm.

We evaluate the proposed FKP modeling and action selection algorithm on a PhysX-based
simulation of a robot soccer game of the SSL. We equipped the team with 6 different 2FKPs,
illustrated in Figure B.4. Here, we describe how we obtained the true expected reward function of
each 2FKP, and the results of evaluating our algorithm against three different defending teams.

B.4.1 Defense teams
We evaluated our online learning algorithm against three different defense teams. For each defense,
the closest robot to the goal is the goalie, who intercepts incoming shots, and the closest robot to the
ball attempts to gain control of it by driving to intercept it optimally. One or two of the remaining
robots, depending on how many are needed, block open angles from pb to the goal.

The remaining robots are assigned to block threats on the goal from the most threatening op-
ponents. This evaluation of threats is different for each defense. The Time Defense ranks opponent
threats based on how long it would take each robot located at location pi to receive a pass from pb

to pi, assuming a ball speed of 5m/s, and then shoot on the goal, assuming the maximum legal shot
speed of 8m/s, prioritizing robots with shorter times. The Angle Defense ranks opponent threats
based on the size of the open angle they have on the goal from their location pi, prioritizing robots
with wider shooting angles. The Combined Defense ranks opponent threats based on a combination
of the measures of Time and Combined, using the open angle measure of Angle only if the robot’s
open angle is smaller than a threshold φmax. If multiple robots have an open angle wider than φmax,
they are compared based on the time measure of Time. This realistic defense threat evaluation is
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(a) fk1 (b) fk2 (c) fk3

(d) fk4 (e) fk5 (f) fk6

Figure B.4: Available free kick plans. Circles mark initial receiver locations psi , while Xs mark
their target locations pfi . Plots assume that pb is in the left half of the field; otherwise, the plans are
mirrored about the x-axis.

(a) Time defense (b) Angle defense (c) Combined defense

Figure B.5: Optimal action map. Different colors represent different FKPs, consistent with the
colors of Figure B.4. Color intensity, between 0 and 1, is the nonlinear function

√
r̄ for ease of

visualization.
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the actual evaluation used by the CMDragons SSL team [6], who are the current champions of the
SSL [62].

B.4.2 Online learning evaluation
To evaluate our algorithm against the 3 different teams above, we first obtain an accurate estimate
of the expected reward function r̄a, for each action a, and for each of the 3 teams. Then, using
online learning, we evaluate the evolution of the expected regret in time.

True Expected Reward. For each 2FKP, we ran extensive simulation free kicks from a fine grid
of locations pb, and used GPs to model the expected reward. This function approximation becomes
increasingly accurate as we run more free kicks; we obtained the true reward function with∼ 1000
free kicks for each 2FKP. Figure B.5 illustrate the resulting expected reward function of the optimal
action a∗ for each free kick location pb on the field.

Online Learning Performance. We evaluated our algorithm against each defense by conducting
sequences of free kicks from the forward-left quadrant as during training, but using a random
sequence instead of a grid sequence. Furthermore, the team selected their action according to our
online learning algorithm. For each chosen action, we measured the expected regret R as:

R(ai|si) = max
a′∈A

[
r̄a
′
(si)− r̄ai(si)

]
(B.2)

Figure B.6 illustrates the average evolution of regret for each defense team, along with the
expected reward of the optimal action and the expected reward of the chosen action. The optimal
reward, as we average over more learning episodes, converges toward a horizontal line, different
for each of the three defenses. The regret decreases significantly even within the first 10-20 free
kicks, and for the Time defense it nearly reaches 0 within that time; this indicates that our algorithm
could significantly improve the performance of our team during RoboCup games.
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(a) Time defense
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(c) Combined defense

Figure B.6: Results of online learning against three defense teams. Average regret decreases
quickly for each of the defenses. Shaded areas indicate a 95% confidence interval for the value
of each function.
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Appendix C

Detection of Anomalous Motion Data
Sequences in the CoBots

This appendix describes our previous work [63] on detection of anomalies in sequences of obser-
vations. The sequential nature of the anomalies contrasts with the approach throughout this thesis,
in which time is only one of the dimensions taken into account when finding correlations among
the data.

C.1 The Motion Interference detection problem

This work focuses on detecting anomalies in the motion of the CoBot robots. We focus on the
following types of motion interference, as they are the most relevant to the CoBot’s execution,
though we believe our algorithm is more generally applicable to motion interference.

Collision with partially detectable objects (collision) While the fairly reliable perception mech-
anisms of the CoBots, combined with obstacle avoidance algorithms, can provide successful
local navigation the vast majority of the time, there are some obstacles that are either un-
detectable or only partially detectable to the sensors. Transparent obstacles are particularly
challenging for such light-based sensors, but opaque obstacles can also be only partially de-
tectable. For example, the top of the table shown in Figure C.1a is too tall for either the
Kinect or the laser range-finder to perceive it. While the robot avoids the leg of the table
successfully, it cannot detect and avoid the much larger full width of the table, leading to
potential collisions.

Being held by a person (hold) In some situations, a person may want to stop the CoBot’s motion,
and though the CoBots have emergency stop buttons, a person’s first reaction when needing
to stop the robot may reasonably be to directly stop it by holding it, as shown in Figure C.1b.
Furthermore, the effect of being suddenly grabbed and stopped seems very similar to the
effect of a head-on collision between the robot and a transparent or otherwise undetectable
wall. In either case, it is important for the robot to be able to detect the situation and react
accordingly.
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(a) Collision (b) Hold (c) Stuck

Figure C.1: Types of Motion Interference considered in this work: (a) Collision against a partially
detectable obstacle, (b) Being held by a person, and (c) Having one or more wheels stuck

Having one or more wheels stuck (stuck) Several events in the environment might cause one or
more of the robot’s wheels to get stuck. For example, a person might accidentally place their
foot in front of the robot’s wheels during navigation (see Figure C.1c), or the robot could
have trouble passing over gaps or level changes, such as the entrance into an elevator. Addi-
tionally, a similar type of motion interference might occur independently of the environment
due to malfunctioning wheel motors.

Note that all of the described forms of interference will have a similar effect on the robot:
the robot’s motion in the direction of travel will be impeded, and thus its velocity is going to be
diminished to a value smaller than the given velocity command. Because of this similarity, all of
these events are grouped for this work under the category of Motion Interference, and are treated as
equivalent events. Experimental results in Section C.3 support this abstraction. In the case of non-
equivalent events, however, the model can readily support detection of different types of events by
adding the appropriate states to the model of Section C.2.

C.2 A HMM for Motion Interference detection

Hidden Markov Models are particularly well-suited for modeling an MI detector: even though
the CoBots don’t have sensors to directly detect MI events, the occurrence of these events can
be inferred from the observations that are available to the robot. HMMs provide an appropriate
framework to perform these inferences.

A Hidden Markov Model M can be defined as a 5-tuple M = {S,Π, A,O,B}, where
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Stop

Accel

Decel

Constant

MI

Figure C.2: Diagram of the HMM modeling the Motion Interference Monitor. Ellipses represent
hidden states, while arrows represent transitions between states.

S = {si} the set of hidden states in M
Π = {πi} the initial distribution of M such that

P (S1 = si) = πi
A = {aij} the transition probabilities such that

P (St+1 = sj|St = si) = aij
O = {~oi} the space of possible observations
B = {bi} the emission probabilities such that

P (~oj|St = si) = bi(~oj)
For the detector described in this work, each possible simple behavior of the robot is repre-

sented by a state in S. The possible behaviors assigned to the CoBot for purposes of MI detection
are S = {stop, accel, constant, decel,mi} representing the states where the robot is stopped, ac-
celerating, at constant positive speed, decelerating, and having its motion interfered, respectively.
A diagram for the resulting HMM is shown in Figure C.2. Since the robot always starts from the
stop state, the respective values for Π are Π = {1, 0, 0, 0, 0}.

Transition probabilities between pairs of states were determined from hand-labeled gathered
training data. In general, given a set of observations accompanied by state labels St for all times
0 ≤ t ≤ T ,

aij =

∑T−1
t=0

(
δSt,si · δSt+1,sj

)∑T−1
t=0 δSt,si

, (C.1)

where δi,j is the Kronecker delta function. That is, the transition probability from state si to sj
is given by the total number of labeled observations in which the robot transitioned from state si
to sj divided by the total number of labeled observations in which the robot transitioned from si
to anywhere. The only transition probabilities not calculated using Equation C.1 were transitions
into MI ai,mi∀i 6= mi. Given the rarity of MI events in normal CoBot runs, MI events had to
be artificially created to gather significant data for experimenting, and thus the real probabilities
to transition from a different state to the MI state are extremely difficult to gather. Because of
this, these values were set to ai,mi = pmi, where pmi is the only parameter for the MI detector.
Tuning pmi has the effect of varying the total number of MI events detected, and therefore it serves
as a parameter to find the desired trade-off value between precision and recall of MI events (see
Section C.3 for more details).
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Observation space O may vary greatly depending on the sensors of the specific robot and
the type of event that needs to be detected. For the task of detecting MI events in the CoBot,
observations were of the form

~ot = (ut − vt, at, jt, ut), (C.2)

where ut is the commanded forward velocity of the robot, and vt, at and jt are the forward velocity,
acceleration and jerk of the robot as measured by its wheel encoders. The reasoning for each
observation and the method for obtaining it are the following:

Velocity difference ut − vt.
One can expect that when the robot’s movement is being interfered, its measured velocity would

be significantly lower than its commanded velocity. While ut is directly obtained as a com-
mand, vt needs to be calculated from the individual encoder velocities. Velocity vt was
obtained from the least squares solution transforming the encoder values for each of the four
wheels to forward, sideways and rotational components of the robot’s velocity.

Acceleration at.
There are times during normal (i.e., not MI) robot motion when the velocity difference ut − vt

is significantly positive. For example, when the robot accelerates from a stopped position to
full speed, the change in ut is discrete, while vt smoothly changes from 0 to ut over time.
Thus, ut−vt alone is not a sufficient observation to detect MI events. Therefore, acceleration
at is added as an additional layer to distinguish between these events: while an accelerating
robot has a positive acceleration, a robot during a MI event usually has either negative (at the
moment the MI event begins) or near-zero (once velocity has stabilized) acceleration. at can
be obtained by applying linear regression to the last Na measures of velocity vt as a function
of t, and then getting the slope of the resulting line. Even though at could be obtained from
only the last 2 values of vt and t, a larger number Na is used to reduce the effects of noise in
the data. Na must be large enough to negate the effects of noise, but small enough to provide
a meaningfully recent value for at. For this work, Na = 4.

Jerk jt.
In the event that the robot’s motion is disrupted while the robot is accelerating, it might be the case

that the positive acceleration continues for a while until the final velocity under the distur-
bance is reached. In these cases, at might be within the normal parameters of an accelerating
motion at any instant, but the change in acceleration in time may provide valuable informa-
tion to distinguish MI acceleration from normal acceleration. For this reason, the second
time derivative of the velocity is also used as part of the observations. Jerk jt is obtained by
dividing the difference between the two last acceleration measurements by the difference in
time between measurements. However, since jerk is significantly more sensitive to noise in
the data than acceleration, a larger number of measurements Nj ≥ Na is used to calculate
the accelerations to be used for jt, for purposes of further smoothing of noise at the cost of a
more outdated jerk measurement. For this work, Nj = 8.

Velocity command ut.
The final attribute of the observation is simply the commanded velocity ut. The only purpose of

130



this attribute is to distinguish between the stop state, where ut = 0, and the constant state,
where ut 6= 0. Otherwise these states would have identical properties.

There are a couple of design decisions behind the use of the attributes of Equation C.2 as obser-
vations. First, notice that only the forward velocity, acceleration and jerk of the robot are used.
While the CoBot’s base is omnidirectional, most of its movements are restricted to the forward
direction (plus rotations), given that most of its sensors are pointing forward. Therefore, using
only the forward direction has the benefit of requiring estimation of fewer parameters at little cost.
Furthermore while the CoBot has other sensors (e.g., Kinect, infrared sensors) that could provide
estimates of velocity apart from the encoders, for this work only encoder estimates were used.
While encoders provide the simplest method for velocity estimation, the biggest concern with us-
ing them as the only estimator is that, on extremely slippery surfaces, the robot’s wheels could
keep spinning at the commanded velocity even during an MI event. We determined, however, that
even in the most slippery surfaces in the CoBots’ environment (i.e., hardwood floors), slipping was
not enough to make MI events undetectable using only encoder-based velocities. If this were not
the case, however, additional sources of velocity information could be added as observations at the
cost of additional parameter estimation.

Finally, emission probabilities B are calculated from hand-labeled training data in a similar
manner to transition probabilities A. For the specific monitor described in this work, two assump-
tions are made about the data: the attributes in the observation are conditionally independent, and
the first three can be modeled as Gaussian distributions (the fourth attribute needs not be a Gaus-
sian because all that matters is whether it is equal to 0 or not). While neither of these assumptions
strictly hold for the case in question, they are good enough approximations, as evidenced by the
results in Section C.3. Furthermore, these assumptions are not required in the model, but they
simplify it; therefore, in cases where these assumptions are too strong for a detector to perform
well, they can be eliminated at the cost of further model complexity and parameter estimation.
Rewriting the observation attributes as (o1 ≡ ut − vt, o2 ≡ at, o3 ≡ jt, o4 ≡ ut) for brevity, the
emission probabilities can then be written as:

bi(o1, o2, o3, o4) = P (o1, o2, o3, o4|St = si)

=
4∏
j=1

P (oj|St = si)

=
3∏
j=1

f(oj;µi,j, σ
2
i,j) · P4(o4, i), (C.3)

where the individual probabilities are defined as:

f(oj;µi,j, σ
2
i,j) =

1

σi,j
√

2π
e
−

(oj−µi,j)
2

2σ2
i,j (C.4)

Pi(o4) =


δ0,o4 if i = 1

1 if i = 2, 4, 5
1− δ0,o4 if i = 3

(C.5)
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Figure C.3: Sample of data gathered from a normal (control) run of the CoBot navigating in its
environment. The top figure shows the velocity command and the measured velocity over time,
while the bottom stacked probability figure shows the respective assigned probabilities P (St =
si|O) (each between 0 and 1) for each state given the sequence of observations.

Equation C.4 simply describes a Gaussian probability distribution whose parameters were ob-
tained from training labeled data, while Equation C.5 describes the probability of observing a
certain velocity command ut = o4 depending on the current state: if the state is stop, then o4 = 0
always; if the state is constant, then o4 6= 0, and in any other state o4 could be anything.

Having defined all S,Π, A,O,B, the HMM-based MI detector is fully defined. Now, given any
sequence of observations, the probability of being in state MI at each time can be calculated using
an algorithm such as the forward algorithm described in [80]. Then, if P (St = smi|O) > thresh
(for this work, thresh = 0.5), an MI event has been detected at time t.

C.3 Detector performance results

C.3.1 Methods
To gather the necessary data for training and testing of the detector, two long control runs (no MI
events) and 29 short test runs (with MI events) were conducted on the CoBot robot. For each run,
the robot was instructed at a high level to move from its current location to a different location in
the building; during navigation, the driving commands, encoder-based velocity and times of MI
events (perceived by a human observer) were recorded. The control runs, during which a human
supervisor made sure no MI events happened, lasted about 3 minutes each, and gave a total of 7145
observations. A subset of the data gathered during a control run is shown in Figure C.3. The test
runs were each much shorter, focusing on the MI event, and giving a total of 8101 observations.
Of the test runs, 15 contained collision events, 6 contained hold events, and 8 contained stuck
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(a) Collision data
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(b) Hold data
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(c) Stuck data

Figure C.4: Examples of data gathered from MI runs. As in Figure C.3, top figures show velocities
while bottom figures show probabilities for each state. Figures show (a) a collision against a
partially detectable obstacle right as the robot starts to move, (b) somebody holding the robot as it
is accelerating, and (c) something interfering with a wheel’s rotation when the robot is traveling at
constant speed. Vertical dotted lines indicate the beginning of an MI event, while rise in P (St =
smi|O) above 0.5 indicates detection of the event.

events. Figure C.4 shows the data gathered from three of these experiments.
To train and test the detector, for each run of the robot, each observation was manually labeled

as one of stop, accel, constant, decel or MI. Given that the MI times were previously recorded,
each observation during those periods was labeled as MI. When the robot travels at constant speed
(and similarly at 0 speed), the standard deviation of the velocity measured from the encoders is
about σ = 0.028m/s. From this, each observation where the velocity command ut was 0 and the
measured velocity vt was within σ of 0 was labeled as stop. Similarly, each observation where
|vt − ut| ≤ σ, ut 6= 0 was labeled as constant. Labeling accel (or decel) observations consisted
of the following: every observation after an increase (or decrease) of ut, and while |vt − ut| > σ
was labeled as accel (or decel, respectively). Other observations (i.e., noisy observations where
|vt − ut| > σ but ut had been constant) were labeled as constant.

The performance of the detector was then tested using leave-one-out cross-validation: for a
given parameter set, 31 tests were conducted (one for each labeled run of the robot). For test i, all
runs except for run i were used for training the detector (i.e., obtaining the transition and emission
probabilities of the HMM), which was then tested on run i. A true positive detection happened
when at least one frame within a time interval labeled as MI was classified as MI. A false positive
detection was defined as each group of consecutive frames outside of the time intervals labeled as
MI that were classified as MI, given that such a group was not just a continuation of a true positive
detection (sometimes the probability of being in state MI could take a few frames to decay after
the robot had overcome the MI event; this was not considered a false positive). A false negative
was defined as each MI-labeled time interval where no MI event was detected.
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Figure C.5: Trade-off between precision and recall rates for motion interference detection, as
parameter pmi is varied.

C.3.2 Results

The goal of the MI detector presented in Section C.2 is to detect MI events reliably and within a
useful time from initial interference. The proposed measures for judging the model are therefore
precision and recall rates of MI event detection, as well as the average and median time to detection
from when interference starts.

The only parameter of the model, transition probability pmi, was varied to find the trade-off
between precision and recall rates. For each tested parameter value, a full test –i.e., a set of 31
cross-validation tests as described in Section C.3.1– was conducted, giving the results shown in
Figure C.5. For the purposes of the CoBot project, it was essential that the model be optimized
for precision, given that the project focuses on giving a high degree of autonomy to the robot, and
stopping execution for false positive detections would hinder this autonomy.

An optimal parameter value for our purposes was pmi = 5×10−8, since it had the highest recall
rate for which 0 false positives were detected. For this value, the precision rate was 100% while the
recall rate was 93.1%; the average time to detection from initial motion interference was t̄ = 0.647
seconds. The median time to detection was significantly lower than this, at tm = 0.36 seconds,
reflecting the fact that a few outlier detections took significantly longer than the average detection
time. These outliers were mostly MI events that started from the stop state (e.g., Figure C.4a);
this can be explained by the fact that the wheel’s accelerations looked normal in the beginning,
even if they were mostly slipping while spinning, before their behavior was abnormal enough
to be detected as an MI event. This suggests that perhaps adding an estimate of velocity from
a different sensor as an observation could help diminish the average time of detection. Overall,
however, the detection time was usually well under a second, which is a useful time-frame for
many applications, such as stopping when being held from a dangerous situation, or reacting to an
inescapable collision.
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C.4 Discussion
We presented an HMM-based model for Motion Interference (MI) detection for a mobile robot.
We identified the sensory observables of the robot and three types of motion interference. Through
experiments conducted on the CoBot service robot, we have shown that such a model can success-
fully detect events that are not directly perceivable by the robot. Our work in general contributes an
approach in which robots can reason about specific events by looking at their internal and external
sensed state with input from their commanded controls. While this work focuses on the detection
of MI events rather than actions to recover from them, we considered a base stop command to the
robot when the event is detected, and will pursue research on other possible actions.

The MI events we considered limit the forward velocity of the robot, but other types of MI
events could be detected using a similar approach (e.g., pushing the robot so that its measured
velocity is above its velocity command). It is in principle feasible to detect anomalies in the
behavior of the robot even if these anomalies have not been explicitly modeled: the formulation
of HMMs allows us not only to calculate the probability of being in a particular state given a
series of observations, but also the probability that a model describes the observable of a robot
given a particular series of observations [80]; one could thus expect that a robot that has fallen
in an unmodeled state would yield a significantly different model probability distribution than a
robot running normally (i.e., within the model). In this way, HMM-based models for execution
monitoring could provide a natural model for implementation of hybrid model-based and model-
free monitoring. Finding whether this is a practical method to detect anomalies in our robots is a
topic of future research.
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