
Statistical Model Checking for Distributed
Probabilistic-Control Hybrid Automata with Smart Grid

Applications

João Martins André Platzer João Leite
2011

CMU-CS-11-119

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

This technical report is a more detailed version of a published paper [12].

The power industry is currently moving towards a more dynamical, intelligent
power grid. This Smart Grid is still in its infancy and a formal evaluation of
the expensive technologies and ideas on the table is necessary before commit-
ting to a full investment. In this paper, we argue that a good model for the
Smart Grid must match its basic properties: it must be hybrid (both evolve over
time, and perform control/computation), distributed (multiple concurrently execut-
ing entities), and allow for asynchronous communication and stochastic behaviour
(to accurately model real-world power consumption). We propose Distributed
Probabilistic-Control Hybrid Automata (DPCHA) as a model for this purpose, and
extend Bounded LTL to Quantified Bounded LTL in order to adapt and apply ex-
isting statistical model-checking techniques. We provide an implementation of a
framework for developing and verifying DPCHAs. Finally, we conduct a case
study for Smart Grid communications analysis.

Keywords: statistical model checking, hybrid automata, hybrid systems, power
grid, smart grid

1 Introduction

The ultimate promise of the Smart Grid is that of a more stable, energy-efficient,
adaptable, secure, resilient power grid, while delivering cheaper electricity. Cur-
rently, energy consumption follows fairly predictable patterns that need to be very
closely matched by power generation (otherwise blackouts or damage to the in-
frastructure may occur). There are peak hours (e.g., people arrive home on a hot
summer day and turn on the AC), and low hours (e.g., during the night). Certain
power generators run permanently at 100% capacity, providing support to what is
known as the base load. More adaptable but more expensive generators change
their output to match demand, varying the price of energy throughout the day. Dur-
ing peak hours, it might be necessary to turn on highly adaptable and expensive
peak load generators, making energy extremely expensive for those few hours.

One of the core ideas of the Smart Grid is that generators will no longer pas-
sively adapt to consumption. Instead, power consumers both at the lower level
(e.g., appliances such as washing machines) and higher level (utilities serving some
geographical area) will feed their desired consumption back into the Grid. Indeed,
utilities and home-owners have already begun deploying smart meters and appli-
ances that make available more detailed, up-to-date energy consumption informa-
tion. This gives the smarter Grid better foresight, increasing its robustness and
its ability to reschedule non-critical appliances (e.g., the dishwasher) to off-peak
hours, reducing energy costs.

Given the size and criticality of the power infrastructure, it is clear that Smart
Grid technologies have to be analysed very carefully. Furthermore, the cost of
providing real test-beds for all technologies is prohibitive, especially if the infras-
tructure can sustain damage when things go wrong. Formal verification, on the
other hand, allows us to study a model of the system in question, sidestepping the
above issues. Given an appropriate model, we may then check the system for de-
sirable properties: how much can be saved with appliance rescheduling? Do Smart
Meters help in predicting and optimizing load? Does that prediction help balance
load across generators? Not only are the answers to these questions useful in fur-
thering our understanding of the technologies, they also give us hints about how
they may be improved upon before real-world deployment.

For the above reasons, we believe that formal verification of new technologies
is fundamental for the Smart Grid. The first step in this endeavour is to find ade-
quate models for the Grid. The models need to be flexible and generic so they can
be reused for multiple projects and ideas, yet match the nature and properties of
the Grid. Trying to force the use of models that do not fit the properties of the Grid
leads to modelling idiosyncrasies, effectively making modelling and verification
much harder than they need to or should be (humanly and computationally).

1

What, then, are the properties of the Smart Grid? Most importantly, it is
a cyber-physical system. Its infrastructure exists in the real-world and follows
the laws of physics (e.g., a generator increasing its output over time), but it also
contains control components that make decisions and change the state instanta-
neously. Thus, it is a hybrid system, i.e., has both continuous and discrete dynam-
ics. Some mathematical models and verification techniques for hybrid systems ex-
tend automata theory by allowing continuous evolution to occur in each state (e.g.,
[10, 6, 1]), but verification is known to be undecidable for most cases [6]. Differ-
ential Dynamic Logic (dL) allows the specification of both the properties and the
behaviour of a hybrid system [14] and provides a proof calculus for verification.

Another property of the Smart Grid is that it is distributed. The Grid is not
one monolithic system, but composed of a large number of distributed and com-
municating entities, from the power generators down to electrical substations to
the utilities, households, appliances and meters. All of these elements coexist,
communicate and cooperate with one another in real-time. Most automata models
support the notion of composition, allowing a fixed number of automata to exe-
cute concurrently. The Grid, however, is dynamically distributed: appliances are
turned on and off, power lines can be cut, and meters may fail. The model must
allow entities/elements to enter, leave and communicate as part of the system dy-
namics. Dynamic I/O Automata [9] allow a dynamic number of elements, but are
not hybrid. Quantified Differential Dynamic Logic (QdL) [15] also allows a dy-
namic number of elements and is hybrid, but like Dynamic I/O automata, has a
shared-memory communication model. Proposals for Smart Grid communication
are currently based on IP and message-passing protocols, so that forcing a fun-
damentally different shared-memory paradigm causes an oversimplification of a
critical component of the Grid.

Finally, the Grid exhibits stochastic behaviour. As we have seen, power con-
sumption follows dynamic but well-understood patterns. Using non-determinism
to model these patterns fails to encode the information that we have regarding
“normal” Grid behaviour. Hybrid system models are generally non-deterministic,
attempting to verify safety properties that hold even in the worst-case. In the Grid,
worst-case scenarios (e.g., all lines cut at the same time, all appliances always on)
are sure to bring about a complete collapse, and most safety properties will not
hold! Alternatively, a probabilistic model enables 1) a more detailed and accurate
representation of the Grid’s consumption patterns and 2) a more comprehensive
quantitative study. Since we know most interesting properties are not always true,
we may estimate the probability that they hold. This precludes QdL [15], which is
not stochastic, whereas Stochastic dL [16] is not distributed. I/O Automata have a
stochastic extension, but it is not distributed [9].

Petri Nets are inherently dynamically distributed and there have been stochas-

2

tic and differential extensions [17, 5]. However, the notion of markings flowing
place to place is not one that we find when designing the participants of the Smart
Grid. These participants would be composed of multiple markings scattered over
different places of the Petri graph. Several entities of the same class (e.g., mi-
crowaves), sharing the same “control” graph, would create a multitude of markings
superimposed in the same places. Markings would have to be associated with one
another to keep track of the entities as a whole, instead of considering an entity
as an indivisible structure. There is also no immediately available communication
mechanism for transmitting messages (with a payload). In conclusion, while many
Petri Net variants feature mechanisms very similar to those of the Smart Grid, it
is our belief their actual implementation is generally differs enough to warrant the
Grid a model of its own.

In [13] the state of the system is given by a composition of objects and mes-
sages. All objects evolve continuously as long as no invariant is violated, and fire
probabilistic discrete transitions when they are. Asynchronous communication is
achieved by assigning a delivery time to all messages upon creation. The deci-
sion to do a discrete or continuous transition depends exclusively on whether an
invariant is violated, making the dynamics of this model very restricted.

In summation, we need a model that is composed of many different entities.
These entities should be able to enter and leave the system at will, representing
failures and appliances being turned on or off. Furthermore, the entities must be
able to communicate asynchronously: given the scale of the Grid and the impact
of message delivery delays, it is unrealistic to assume synchronous (instant) com-
munication. Finally, the system must be able to behave probabilistically, in order
to encode uncertain environments, e.g., power consumption. To the best of our
knowledge, no existing model naturally incorporates all of these properties.

In this paper, we propose Distributed Probabilistic-Control Hybrid Automata
(DPCHA) as such a model. We take care that the system can be easily sampled
from (to obtain execution traces), with the objective of applying existing efficient
statistical verification techniques.

Previous work has shown that statistical model checking (SMC) is a promising
approach for the verification of probabilistic systems [4, 2, 3, 20, 7, 18, 8, 22, 21].
Given a property and a model, SMC techniques will repeatedly sample traces from
the model and check if they satisfy the property. Every new result provides more
information on whether the property holds for arbitrary traces. While known to be
unsound, SMC can arbitrarily approximate the probability that the property holds
very efficiently, making many otherwise intractable problems accessible.

Logics traditionally used in the specification of properties for these hybrid
systems generally consider a fixed state-space. This makes them insufficient for
the representation of properties of distributed systems. We propose Quantified

3

Bounded Linear Temporal Logic, an extension to Bounded Linear Temporal Logic
[22, 7, 4, 18] that handles the dynamic state space of DPCHA using quantification
over the elements of the system. A similar phenomenon has been studied in the
context of Java threads [19], for example, but not for cyber-physical systems.

The main contribution of this paper is the proposal of a model that naturally
adapts to Smart Grid scenarios and for which these techniques are applicable, en-
abling meaningful studies of the system.

We present some technical background in Section 2, and our DPCHA model in
Section 3. To specify properties we define QBLTL in Section 4. We briefly explain
Bayesian statistical model checking in Section 5, and develop an initial case study
in the Smart Grid domain in Section 6. We conclude in Section 7.

2 Preliminaries

Before developing the distributed model, we will begin by introducing how a single
entity behaves (e.g., microwave, generator). Thus, we briefly recall discrete-time
hybrid automata (DTHA) as described in [22]. Each entity must have a state, e.g.,
current and desired power output of a generator. The entity is in a location that
specifies how the state should flow as time passes, e.g., spooling up generator to
match desired output. Finally, the entity may decide to jump from one location to
another, e.g., the microwave switches to “defrost”. We refer to an entity’s situation
as the pair of its location and state. Thus, DTHA are hybrid because they allow
continuous evolution (time passing) and discrete transitions between locations.

Definition 1 (DTHA). A discrete-time hybrid automaton consists of

• 〈Q,E〉, a “control graph” with Q as locations and E ⊆ Q×Q as the edges

• Rn is the state space of the automaton’s state

• jumpe : Rn ⇀ Rn, a partial function defining how the state changes when
jumping along edge e

• ϕq : R≥0×Rn → Rn, flows. ϕq(t;x) is the result of a continuous evolution
at location q ∈ Q after time t when starting in state x ∈ Rn

• (q0;x0) ∈ Q× Rn, an initial situation

Suppose an entity is in a situation (q;x). It may jump along an edge e originat-
ing from q, updating its state according to jumpe. Or it may remain in q for some
time t, updating its state according to the flow ϕq (which can be, for instance, the
solution of a differential equation system). Since there might be multiple options
for the next step, the automaton is non-deterministic.

4

Definition 2 (Transition relation for DTHA). The transition relation for a DTHA
is defined as:

(q;x)
α−→ (q;x), where

• When α = t ∈ R≥0 is a time, then (q;x)
t−→ (q;x) iff x = ϕq(t;x)

• When α = e ∈ E is an edge from q to q, then (q;x)
e−→ (q;x) iff x =

jumpe(x)

It is only possible to jump along an edge e if the entity’s state is in the domain
of jumpe. In this case, we say that e is enabled and that jumpe works as a guard
for e. A scheduler δ : Q× Rn → R≥0∪E that, given a situation (q;x), decides the
next action α (a flow or an edge to jump), can be applied repeatedly to an entity’s
situation to obtain a trace for that entity.

We now have defined the dynamics of a single entity. To make it behave prob-
abilistically, all we need to do is to make δ : Q× Rn → D(E ∪ R≥0) return a
probability distribution over all possible actions instead of a single action α. Sam-
pling from this distribution gives the entity its next step.

3 Distributed Probabilistic Control Hybrid Automata

A single entity’s behaviour is given by its control graph, flows and jumps. We
have mentioned that traditional notions of automata composition are not dynamic
enough for the Grid. Configuration automata [9] keep track of multiple executing
entities (also automata) that can enter and leave the system, resulting in two layers
of automata that have no particular intuition in the Grid. Furthermore, the automata
force communication to be immediate and synchronous.

Instead, like in Petri Nets, we assume the control graphs for all types of entities
are given, so we understand how microwaves (for example) behave, but are not
required to know how many are present in the system. With the control graphs,
jumps and flows for each type of entity (e.g., microwave, meter), it is trivial to
encode the behaviour of all types of entities in one global control graph.

The global control graph accommodates several entities of each type, not unlike
Petri Net markings. These entities are characterised by their situation and execute
like a single entity from the previous section. This is the basic intuition for the
notions of Distributed Discrete-Time Hybrid Automata (DDTHA) and Distributed
Probabilistic Control Hybrid Automata (DPCHA) that we define below.

To maintain a sensible global notion of time, the DDTHA will do a continuous
transition only if all executing entities decide to do so. If any entity decides to do
a jump, then the other entities must either jump as well or flounder (i.e. doing a

5

discrete transition with no effect), keeping time unchanged. In this sense, discrete
transitions take precedence over continuous transitions, but consume no time.

We must still address the ability to communicate and to allow entities to enter or
exit the system. We reduce these two concerns (communication and dynamic num-
ber of entities) to five elementary actions: new[N], die, snd[l][T], recv[l][R],
jmp. Each edge in the control graph features an action. When an entity jumps
along that edge, its action is executed. jmp is a null action so that the entity simply
follows jumpe. new[N] additionally creates a new entity with a situation specified
by a functionN , and die makes the jumping entity exit the system. snd[l][T] and
recv[l][R] send and receive messages through a channel determined by function
l. The content of the sent message is given by function T , whereas the receiving
entity’s state is updated according to R, taking into account both its current state
and message content. To achieve asynchronous communication, sent messages are
stored at the global automaton level in a “buffer”, and are removed later when re-
ceived. Thus, each action is characterised by functions determining exactly how it
is executed. We let Ae denote the action of edge e, which happens in addition to
the effects of jumpe.

In summary, the control graph retains its general structure, but annotates each
edge with actions for communication and dynamism. Instead of a single initial
situation, we have an initial set of active entities and an initial situation for each
entity. Active entities all evolve time-synchronously, each following the rules of
DTHA. As entities jump along edges, they execute the associated actions, enabling
communication and complex interactions.

Definition 3 (DDTHA). A Distributed Discrete-Time Hybrid Automaton is com-
posed of

• Rn, the state space for each entity, with n ∈ N

• Rnm , the state space of each message’s content, with nm ∈ N

• A = {new[N],die,snd[l][T],recv[l][R],jmp}, the set of all actions,
with channel specification functions l : Rn → C, new entity creation func-
tions N : Rn → Q× Rn, message transmission functions T : Rn → Rnm

and message reception functions R : Rnm × Rn → Rn

• 〈Q,E〉, control graph with locations Q and edges E ⊆ Q×A×Q

• jumpe : Rn × Rn, a relation when Ae = recv or function jumpe : Rn →
Rn otherwise, defining acceptable state updates when jumping along edge e

• ϕq, as in Def. 1

6

• L: a (countable) set of entity identifiers

• A0 ⊂ L: a finite set of initial active entities

• S0 : A0 → Q× Rn, a function with a situation for each initial active entity

• C, a (countable) set of communication channels

The state of a DDTHA consists of the situations of all its entities, active and
past. Information about past entities is maintained, which is necessary for the
well-definedness property checking. The state also maintains a set of “in transit”
messages (sent but not received), enabling asynchrony of communication.

Definition 4 (State of a DDTHA). The state of a DDTHA is given by AS =
(A,S,M) with

• A ⊂ L a finite set of the labels of active entities

• S : L ⇀ Q× Rn, a partial function with the situation of active/past entities

• M ⊆ C × Rnm , a set of unreceived messages and respective channels

One interesting issue arises when an entity a decides (through a scheduler) to
flow for t time units but sometime at t′ < t some other entity b finishes its own
flow and schedules a jump. In this situation, the DDTHA also schedules a discrete
transition, but a cannot be allowed to reevaluate its previous decision to flow for
t time (e.g., the washing machine should not stop because someone turned on the
TV across the country). Therefore, we assume without loss of generality that each
entity stores in its state (e.g., in its first coordinate) how long it must still flow,
denoted by δ-time. In state (A,S,M), an entity a’s δ-time is denoted δ-timeS(a).
When the DDTHA schedules a discrete transition, any entity with non-zero δ-time
will flounder, thus only truly rescheduling once its flow decision finishes executing.

Another important element of discrete transitions is message reception. There
must be an injective mapping from “in transit” messages to receiving entities so
that they get exactly one message. Injection ensures each receiving entity gets at
most one message. Of course, the entities must react accordingly, and received/sent
messages are removed/added to M .

The following example justifies our choice of probabilities and asynchronous
communication and illustrates a simplified modelling of the Smart Grid.

7

· PC

Normal(5, εpc)

recv[lc][R]
p = 0.8

snd[lt][Tt]
p = 0.1

· · ·

Normal(7, εc)

snd[lc][Tc]
p = 0.5

Figure 1: Simplified Smart Grid

Example 1. Newest generation smart me-
ters feed up-to-date information into the
Grid, including power consumption from the
appliance level up to substation and util-
ity levels and so on; the Grid also needs
to match generator output with power con-
sumption. There is a Grid control infrastruc-
ture that maintains this fragile balance.

An ideal model for this scenario would
have entities representing appliances, con-
suming energy, shutting off and powering on, and sending messages into the Grid
through channel lc. Another (unique) entity, called the Power Controller (PC),
would react to messages from lc and control generator output by sending it mes-
sages through lt. Unfortunately, it is computationally infeasible to model every
appliance in a country-wide Grid (except maybe Monaco or Nauru!). A sensible
simplification instead represents classes of appliances that get turned on at around
the same time for a very similar duration, like ACs/computers in offices, the TVs
at home, etc. Ideally, the exact times and durations are given by probability dis-
tributions, simulating real-world behaviour. We obtain a much more manageable
number of entities by using classes of appliances instead of individual appliances.

Real networks become congested so that messages are not delivered instantly.
Probabilities can be used to simulate this delay: the PC’s choice for flow time,
for instance, could be given as a normal random variable Normal(5, εpc). The
PC then waits around 5s before getting the message. We may assign its individual
scheduler a 0.8 probability of jumping along a recv edge, so that there is a 0.2
chance it will be further delayed (simulating message loss and retransmission or
congestion). These remaining 0.2 can be split between sending control messages
to generators or deciding to do another flow.

To justify our choice of asynchronous communication, suppose that whenever
an appliance class entity sends a message, the PC is forced to ignore its δ-time
and synchronise to receive that message. The PC is deviating from its original
specification of continuous evolution according to a Normal RV, which would make
the semantics, meaning and usefulness of the model unclear.

The transition relation for DDTHA relies heavily on that for DTHA, in that sin-
gle entities will behave according to Definition 2. All this information is encoded
in the following definition.

Definition 5 (Transition for DDTHA). The transition relation of a DDTHA is de-
fined inductively as

(A,S,M)
α−→ (A,S,M)

8

where A is non-empty, α ∈ R≥0 ∪ (A→ (E ∪ R≥0 ∪ {F})), iff

• Ifα = t ∈ R≥0, then ∀a∈A a ∈ A, S(a)
t−→ S(a), δ-timeS(a) = δ-timeS(a)−

t and δ-timeS(a) ≥ 0

• If α = τ : A → E ∪ R≥0 ∪ {F}, then there are partial injective mappings
µc : {(c,Rnm) ∈ M} → {a ∈ A : τ(a) = (q,recv[l][R], q)} from
messages of each channel to entities scheduled to receive on that channel,
M = (M \⋃{range(µc) : c ∈ C})∪ {(l(S(a)), T (S(a))) : a ∈ A, τ(a) =
(q,snd[l][T], q)} and ∀a∈A if δ-timeS(a) > 0, then τ(a) = F , a ∈ A and
S(a) = S(a); otherwise if δ-timeS(a) = 0

– If τ(a) = t ∈ R≥0, then S(a) = S(a) except δ-timeS(a) = t

– If τ(a) = (q,jmp, q) ∈ E, then a ∈ A and S(a)
(q,q)−−−→ S(a)

– If τ(a) = (q,new[N], q) ∈ E, then a ∈ A, S(a)
(q,q)−−−→ S(a), and there

exists a completely new a /∈ A, a ∈ A such that S(a) = N(S(a))

– If τ(a) = (q,die, q) ∈ E, then a /∈ A and S(a)
(q,q)−−−→ S(a)

– If τ(a) = (q,snd[l][T], q) ∈ E, then both a ∈ A, S(a)
(q,q)−−−→ S(a)

and (l(S(a)), T (S(a))) ∈M
– If τ(a) = (q,recv[l][R], q) ∈ E, then µc(a) = (c, y) /∈ M with
c = l(S(a)), a ∈ A and (S(a), R(y, S(a)) ∈ jumpτ(a) and S(a) =
R(y, S(a))

There may be multiple messages to deliver to an entity, and vice-versa. To
remove this source of non-determinism, we simply use a combination of lexico-
graphical and temporal ordering to choose a single assignment.

Given a single-entity scheduler δ : Q× Rn → R≥0 ∪ E like those of DTHA,
we define a DDTHA scheduler ∆ for an automaton state (A,S,M) as follows

1. If ∀a∈A δ(S(a)) ∈ R, then ∆(AS) = min{δ(S(a)) : a ∈ A}

2. If ∃a∈A δ(S(a)) ∈ E, then ∆(AS) = τ , where for each a ∈ A:

τ(a) =

{
δ(S(a)) , δ-timeS(a) = 0

F , δ-timeS(a) > 0

This definition specifies global state behaviour from each entity’s individual
behaviour. It encodes the previously explained idea that the system will only evolve
over time as long as all entities wish to do so. As soon as one wishes to jump, all

9

entities that are not commited to continuous evolution will be allowed to jump. The
others will flounder, specified by action F .

Each scheduler ∆ yields a single execution of the system. These valid execu-
tions are called traces, and are formalised as follows.

Definition 6 (Trace of a DPCHA). A trace of a DPCHA is a sequence σ = (AS0, t0),
(AS1, t1), ..., with ASi as in Def. 4, ti ∈ R≥0 such that 1) AS0 = (A0, S0, ∅) and
2) for each i ∈ N>0 (up to the size of the trace if it is finite):

1. ASi−1
∆(ASi−1)−−−−−−→ ASi

2. ti−1 =

{
∆(ASi−1) , if ∆(ASi−1) ∈ R≥0

0 , if ∆(ASi−1) ∈ (L→ E ∪ {F})

Given the priority of discrete transitions, we make the assumption of diver-
gence of time, i.e., we do not consider schedulers whose traces have infinitely many
transitions in finite time. This ensures there is no infinite sequence of jumps, i.e.
that time actually passes and the system evolves.

To obtain DPCHA, we probabilise the single entity scheduler δ, from which the
global scheduler ∆ is obtained. In effect, we sample from each entity’s distribution
sequentially until all entities have decided on their course of action. From this set
of actions we construct the global action, and the distribution of the global DPCHA
action is derived from the distribution of the entities’ actions. This results in Dis-
tributed Probabilistic-Control Hybrid Automata, allowing us to formally specify
the model in Example 1.

4 Quantified Bounded Linear Temporal Logic

The next step towards applying (Bayesian) SMC techniques [22, 7] is to define a
way to specify properties and to check whether they are satisfied by the execution
traces of the system. These properties must deal with the distributed nature of the
Grid. For example, we want to be able to aggregate power demand, or how much
power is being generated in total.

We start from Bounded Linear Temporal Logic (BLTL) [22, 7, 4, 18], featuring
a strong bounded until Ut operator to deal with time. φ1 Utφ2 states that φ1 must
hold until φ2 holds and φ2 holds before the time bound t. It does not require φ1 to
hold when φ2 first holds, but it does require φ2 to hold at some point before t.

It has been proven that BLTL formulae can be checked with only finite traces
as long as the system guarantees divergence of time [22]. Unfortunately, BLTL
lacks the capability to express properties about a system with a dynamic number of

10

entities, and existing alternatives are domain-specific or bounded [19]. Each entity
contains its variables (e.g., refrigerator temperature), but to refer to those variables
we must first get a handle on the entity itself. We do this by allowing for quan-
tification over active entities in the system (i.e. actualist quantification). Similarly,
we allow any computable aggregation function to range over the entities and return
some aggregate value (e.g., max,

∑
). This results in Quantified Bounded linear

Temporal Logic, whose syntax is defined as follows:

Definition 7 (Syntax of QBLTL). Formulae of QBLTL are given by the following
grammar, with ∗ ∈ {+,−,÷,×,̂ } and ∼ ∈ {≤,≥,=}:

θ ::= c | θ1 ∗ θ2 | πi(e) |

∃

(e) | ag[e](θ), with i ∈ N, c ∈ Q
φ ::=

∃

(e) | θ1 ∼ θ2 | φ1 ∨ φ2 | ¬φ1 | φ1 Utφ2 | ∃e.φ1

In the above, e is a variable denoting an entity. πi(e) is the ith variable of entity
e. ag[e](θ) stands as a template for any computable, associative and commutative
aggregation function (e.g.,

∑
[e](πtemp(e))). We abuse notation to define

∃

(e) as
1) an indicator function for whether e is active, 2) formula evaluating to true iff
e is active. This is useful for filtering out entities in aggregations and specifying
properties quantifying over entities that exit the system. For example,

∑
[e](

∃

(e))
evaluates to the number of active entities in the automaton.

As usual, we define the other logical operators from Def. 7, e.g., φ1 ∧ φ2 ≡
¬(¬φ1∨¬φ2), and temporal operators such as Ftφ ≡ true Utφ (eventually φ holds
before t) and Gtφ ≡ ¬Ft¬φ (φ always holds until t).

The semantics of QBLTL are given with respect to traces and a variable assign-
ment η : V ars(φ) → L to entity labels (cf. Def. 3), where V ars(φ) is the set of
variables occurring in φ. η is used to keep track of which entity variables refer to,
as in first order logic.

Let σ = (AS0, t0), (AS1, t1), ... be a trace of a DPCHA. We define that trace σ
and assignment η satisfy a formula φ by a relation σ, η |= φ. Let σi be the trace suf-
fix of σ starting at position i, e.g., σ0 = σ and σk = (ASk, tk), (ASk+1, tk+1), ...
Let JθKη

σk represent the value of interpreting θ under ASk and assignment η, and
ASi = (Ai, Si,Mi) for all i ≥ 0.

Definition 8 (Semantics of QBLTL). The semantics of QBLTL for a trace σk =
(ASk, tk), (ASk+1, tk+1), ... are defined by the interpretation of terms:

• JcKη
σk = c,

• Jθ1 ∗ θ2K
η
σk = Jθ1K

η
σk ∗ Jθ2K

η
σk , interpreting the syntactic operator * by the

corresponding semantic operator *,

• Jπi(e)K
η
σk = xi, where Sk(η(e)) = (q;x) ∈ Q×Rn, and xi is the projection

to the ith coordinate of x,

11

• J

∃

(e)Kη
σk = 1 if η(e) ∈ Ak and 0 otherwise.

• Jag[e](θ)Kη
σk = ag

(
JθKη{e 7→l1}

σk , ag
(
..., JθKη{e7→ln}

σk

))
, where (l1, l2, ..., ln)

is some ordering of Ak (the result is independent of the ordering since ag is
associative and commutative),

and the following relation:

• σk, η |= ∃

(e) iff η(e) ∈ Ak
• σk, η |= θ1 ∼ θ2 iff Jθ1K

η
σk ∼ Jθ2K

η
σk , extending the syntactic comparison

operator ∼ to the corresponding semantic ∼,

• σk, η |= φ1 ∨ φ2 iff σk, η |= φ1 or σk, η |= φ2,

• σk, η |= ¬φ1 iff σk, η 6|= φ1 or it is false that σk, η |= φ1,

• σk, η |= φ1 Utφ2 iff there exists i ∈ N such that 1)
∑i

l=0 tk+l ≤ t, 2) for all
j such that 0 ≤ j < i, σk+j , η |= φ1 and 3) σk+i, η |= φ2,

• σk, η |= ∃e.φ1 iff there exists l ∈ Ak such that σk, η{e 7→ l} |= φ1

As usual in logic, σk, η |= φ is only well-defined if η contains an assignment
for every free variable of φ. In ∃e, e is a variable ranging over currently existing
entities. However, these entities may leave the system in the future, leaving us with
a “dangling” variable. We illustrate this next.

Example 2. Consider a model where a consumer entity is created whenever an
appliance is turned on, and that disappears when it is turned off. While verifying
this model we may want to check that some appliances are always running at high
power, e.g., a refrigerator with a consumption minimum of 300 watts. This property
can be expressed in the following QBLTL formula ∃e.G24hπconsumption(e) ≥ 300.

Given a trace for a sample day, we attempt to evaluate the formula. For in-
stance, suppose e represents a washing machine that is running at first, but finishes
its program and leaves the active Grid sometime later. What is the meaning of
πconsumption(e) ≥ 300 after the washing machine leaves the system?

The actualist semantics that we chose achieve what we believe is a good com-
promise that avoids semantic pitfalls, in the same vein as [15]. The key is to keep
track of past entities’ state in S so that the semantics are well-defined even with ex-
iting entities. The main point, however, is that the special predicate/term

∃

(·) can
be used to handle entities that have left the system. The property above should have
been ∃e.G24h ∃(e) ∧ πconsumption(e) ≥ 300, i.e. is there an entity that is permanent
and that is always consuming above 300.

12

We have made sure that our extensions are compatible with earlier SMC ap-
proaches [22, 7] so that we can lift the theory of SMC directly to our scenario.
First, we guarantee that finite simulations are sufficient for checking whether a
QBLTL formula is satisfied, because we cannot run infinite simulations. Due to
our setting, this is a straightforward extension of results from [22]. We define
a bound #(φ) of a QBLTL formula by having #(θ) = 0 for any term θ. For
any other logical connective excluding the until operator (e.g., ¬φ1, φ1 ∨ φ2), we
define the bound as the maximum of the bound of its direct subformulae, e.g.,
#(φ1∨φ2) = max(#(φ1),#(φ2)), and #(∃e.φ) = #(φ). Finally, #(φ1 Utφ2) =
t + max(#(φ1),#(φ2)). It can now be shown that φ is satisfied by two infinite
traces as long as the prefixes bounded by #(φ) of those traces are the same.

Lemma 1 (QBLTL has bounded simulation traces). Let φ be a QBLTL formula
and k ∈ N. Then for any two infinite traces σ = (AS0, t0), (AS1, t1), ... and
σ = (AS0, t0), (AS1, t1), ... with ASk+I = ASk+I and tk+I = tk+I , for all
I ∈ N with

∑
0≤l<I tk+l ≤ #(φ) we have that σk |= φ iff σk |= φ.

The proof is done by induction on QBLTL formulae. The original proof for
BLTL [22] extends directly to our additions. It then follows that sampling can be
bounded with #(φ).

Lemma 2 (Bounded sampling). The problem σ |= φ is well defined and can be
checked for QBLTL formulae φ and traces σ based only on a finite prefix of σ of
bounded duration.

Again, thanks to our compatible setting, the proof for this lemma lifts directly
from [22]. Without this result, SMC would not be applicable in our scenario.

5 Bayesian Statistical Model Checking

Statistical Model Checking [4, 2, 3, 20, 7, 18, 22, 21] is a conceptually simple
technique that has received attention due to its application to many practical situa-
tions. We follow the presentation of a Bayesian approach to the method closely, as
presented in [22].

SMC tries to determine the probability p that an arbitrary trace of an automaton
satisfies a QBLTL formula φ. Two core Bayesian approaches have been proposed:
interval estimation and hypothesis testing. These methods diverge from the tradi-
tional model checking problem in that a trace that does not satisfy a formula φ is
not a counter-example, but instead evidence that p < 1. For simplicity, we describe
the hypothesis testing algorithm in [22] and refer there for an interval estimation
algorithm.

13

The hypothesis testing algorithm attempts to solve the problem “is the prob-
ability that property φ holds greater or equal to θ”, also represented as P≥θφ.
That is, we compare the null hypothesis H0 : p ≥ θ with the alternate hypoth-
esis H1 : p < θ. We can represent the result of each sampled trace satisfying φ
by Bernoulli random variables with the real probability p. After n samples, we
have d = {x1, ..., xn} draws from those Bernoulli RV’s, and each result gives us
further evidence either for H0 or for H1. Since these hypothesis are mutually ex-
clusive, we can assume that the prior probabilities add to 1, P (H0) + P (H1) = 1.
Bayes’ theorem gives us the posterior probabilities as P (Hi|d) = P (d|Hi)P (Hi)

P (d)

with i ∈ {0, 1}, for every d with P (d) = P (d|H0)P (H0) + P (d|H1)P (H1) > 0,
which is always the case in this instance.

Definition 9 (Bayes factor). The Bayes factor B of sample d and hypotheses H0,
H1 is P (d|H0)

P (d|H1) .

The value of the Bayes factor as defined above, obtained from data d by sam-
pling and testing the property, can be seen as evidence in favour of the acceptance
of hypothesis H0. The inverse 1

B , on the other hand, is evidence in favour of H1.
We can then choose a threshold T for how much evidence is required before we
accept one of the hypotheses.

From [22], we know an efficient way to calculate the Bayes factor for H0, H1:

Bn =
1−

∫ 1
θ g(u)du∫ 1

θ g(u)du

(
1

F(x+α,n−x+β)(θ)
− 1

)
,

in the case of beta priors, where x is the number of successes in the draws d =
(x1, ..., xn) and F(s,t)(·) is the Beta distribution function with parameters s, t. The
actual algorithm can be found in Figure 2.

The algorithm samples traces from the DPCHA, then checks them against the
given formula φ. Since the result of these checks can be seen as drawing from a
Bernoulli RV with the desired probability, the algorithm then uses the Bayes factor
to calculate how much evidence is in favour of either H0 or H1. The amount
of evidence changes with each new draw, resulting in an algorithm that adapts
termination to the amount of information it can extract at each iteration. Eventually,
enough evidence is amassed for one of the hypotheses, and it is accepted. More
details about this and a more sophisticated estimation algorithm (that we use in the
following) can be found in [22].

14

Input: DPCHA automaton A, QBLTL property φ, probability θ, threshold T ≥
1 and Beta prior density g for unknown parameter p
n := 0 {// Total number of traces drawn}
x := 0 {// Total number of traces satisfying φ}
loop
σ := sample trace from DPCHA A {// using probabilistic ∆, see Sect. 3}
n := n+ 1
if σ |= φ (see Def. 8) then
x := x+ 1

end if
B := BayesFactor(n, x)
if B > T then

return H0 accepted
else if B < 1

T then
return H1 accepted

end if
end loop

Figure 2: Bayesian statistical model checking for hypothesis testing

6 Case Study: Smart Grid

We now develop a case study using a simplified model of Smart Grid every day
operations. We show the versatility of our model, how smoothly it fits to the ver-
ification methods defined previously, and how easily SMC can be used to check
important properties. Recall that the Smart Grid is a fusion of the Power Grid and
the Cyber Grid. The hope is that communication capabilities and direct feedback
from the consumer level will allow the Smart Grid to provide energy more effi-
ciently and cost-effectively. We use the techniques implemented in our framework
to study what properties of the communications layer of the Grid are important for
achieving this goal. We focus on the trade-offs between cost-relevant parameters
of the network and overall system performance and safety.

6.1 Model Description

Our model features several key components of the Smart Grid. It considers con-
sumers (refrigerators, computers, etc), which are responsible for the power de-
mand. On the other side, generators will produce the necessary power. The Smart
Grid control infrastructure is also represented as a single entity. It is responsible for
aggregating power output and consumption, and making the control decisions that

15

keep them close together to avoid blackouts and power spikes. Finally, the model
uses a consumer controller. While such an entity does not exist in the real world, it
is necessary here to organise the appearance of consumers.

6.1.1 Consumers

We will represent consumers by classes of appliances as in Example 1. This sim-
plification is what makes our model computationally accessible. It is, however,
innocuous: it simply does away with overly complex modelling details of no inter-
est to the high-level functioning of the Grid. We do not care about the exact number
of computers in use at a given point; we do care about the overall power consump-
tion of office, or home, appliances since they get turned on and then off at roughly
the same times. This type of behaviour, which explains the predictable patterns of
modern energy consumption, is typically bell-like. This represents all these appli-
ances being gradually turned on, reaching a peak energy demand, and then their
gradually shutting off and demanding less and less power. We also impose op-
tional limits to maximum consumption and maximum consumption increase (i.e.
its derivative). All the parameters that define this behaviour can easily be changed
to tweak the model for specific behaviours.

To simulate the feedback that Smart Meters send up the Grid, each consumer
will decide whether or not to send a message with its current power demand. This
decision is made at intervals given by a random variable δ ∼ Normal(5, 3). The
probability of sending a message increases with the time since the last sent mes-
sage. Messages sent by consumers, or classes of appliances, can be interpreted as
messages by local substations sending aggregated power consumption data to the
Grid control infrastructure.

Finally, if power consumption for a given entity is becoming very close to zero
(i.e. most appliances in this class have already shut down), then the consumer an-
nounces it will leave the system and removes itself entirely. Consumers converge to
zero only asymptotically in order to keep smooth, continuous behaviour. We only
remove them when consumption is close enough to zero not to make a difference
in global consumption values.

6.1.2 Generators

The model contains one generator that produces the Grid’s power output. The
generator has one goal power output, set by the power infrastructure to be slightly
above current power consumption. It also has detailed capabilities, such as how
fast it can decrease or increase power output, as well as its maximum acceleration
(and negative acceleration). These parameters can be used to encode the varying

16

degrees of flexibility (and cost!) of different types of generators.
The generator will always use maximum and minimum acceleration to reach

its desired output. Similarly to the consumer entities, generators periodically send
messages containing their current output to the Grid control infrastructure. If the
generator decides not to send a message, it receives control messages with 0.98
probability. This simulates a 0.02 probability of message loss. These control mes-
sages contain the desired power output, as decided by the Grid, and to which the
generator must immediately adapt.

The implementation of the generators and consumers actually makes certain
control decisions (such as when to stop accelerating power output) while doing
continuous evolution. Since these decisions are purely local and do not affect other
components of the system, the simplification has no impact on the model’s be-
haviour.

6.1.3 Power Controller

The most important component of the model is the Power Controller (PC). The
PC does control loops every δ ∼ Normal(5, 1) and makes decisions that keep the
Grid within satisfactory operational bounds (by keeping the difference between
power consumption and production below a given threshold). During these loops,
the PC receives messages both from the consumers and from the generators with
0.98 probability. The content of these messages is used to compute consumption
and total production values. Comparison between these two makes the PC decide
whether or not to send the generator a control message asking for it to spool up or
down. Notice that the PC only receives messages during the control loop, which
cannot interrupt continuous evolution. Therefore, these messages are not received
at the same time they are sent, and are actually in transit for some time.

In more complex scenarios with multiple generators, the PC will have to im-
plement a policy to decide which generator(s) will be asked to spool up or down in
response to change in power demand. It will have to weigh adaptability and cost
with the risk of not adapting fast enough to cope with the Grid’s fickle demands
during peak-time. Thus, the PC’s importance cannot be underestimated. It is, in
fact, the brain of the Smart Grid.

6.1.4 Consumer Controller

The Grid’s consumption patterns are emulated by the Consumer Controller (CC).
The CC responsible for spawning consumer entities with different parameters such
that global consumption behaviour mimics that of the real Grid. To do this, it

17

executes a control loop with the “usual interval”. During this loop, the CC’s role
is to decide whether to create a new consumer or not, up to a maximum of 20
consumers. This decision is made by flipping a biased coin whose probability
changes with the time of day. Of course, there is a higher probability of appliances
being turned on in the morning than, say, in the middle of the night. Table 1 shows
these probabilities.

1 2 3 4 5 6 7 8 9 10 11 12
0.2 0.05 0.07 0.1 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2
13 14 15 16 17 18 19 20 21 22 23 24
0.1 0.2 0.2 0.1 0 0 0 0 0 0 0 0

Table 1: Probability of creating a new consumer entity as a function of the time of day

Not only that, but consumers will behave differently depending on when they
are created. Consumers appearing during the night or late evening require less
energy but last longer (from seven to eight hours), and could represent street-lights
for example. Consumers appearing during the day usually need more energy and
last for only two to three hours, but have a higher probability of appearing.

6.1.5 Communication Overview

In this model, there are three main communication flows:

1. Consumers periodically send their consumption to the PC. This is meant
to represent the feedback loop of the Smart Grid. At the household level,
Smart Meters tally and send consumption information to the substations,
which aggregate all these demands, and in turn send them to the control
infrastructure. Consumer messages in our model represent this aggregated
data.

2. Generators do much the same as consumers: they report their output so that
it can be considered by the PC.

3. Finally, the PC sends control messages to the generators in order to control
Grid power output.

While flow 1. abstracts away the communication between Smart Meters and
the substation (recall that this is what makes the model computationally accessi-
ble), 2. and 3. are a fairly accurate representation of actual communication flow in
the Grid. This is actually the way the Grid is controlled, although there are addi-
tional geographic considerations in the real-world. As has been mentioned, current

18

Smart Grid proposals use IP networks - a kind of parallel Internet - for the Grid.
This matches our model’s message-sending abstraction, and the delays in receiving
messages are also accounted for by message reception not interrupting continuous
flow.

The global system, which can clearly be identified as the composition of dif-
ferent “types” of entities, can be seen in Figure 3.

1

Power Controller

·

Normal(5, 1)

trans[go][Go]
p = 0.4

recv[cf][Ci]
p = 0

recv[tg][Gi]
p = 0

Consumer

·····

Normal(5, 3)

trans[cf][Co]
p = 0.5

Graveyard

··die

p = 1

trans[tgr][I]
p = 0

Generator

·

Normal(5, 3)

recv[rg][Rg]
p = 0.8

trans[tg][Tg]
p = 0.1

Consumer Controller

·

Normal(5, 1)

new[N]
p = 0.1

recv[tgr][Cd]
p = 0.7

Figure 3: Smart Grid model

Figure 4 shows aggregate power consumption, generator output, the PC’s es-
timated consumption and the number of active consumer entities during one day.
The shape of sample curves matches the patterns observed in reality, with peak
times and a break for lunch. This indicates that our model, even simplified, sim-
ulates reasonable Grid behavioural patterns. While certain traces do not result in
curves of this particular shape, they still exhibit features found in the Smart Grid
such as high peaks, a base load, and both gradual and sudden ascents and descents.

6.2 Network Performance Evaluation

In this section we wish to investigate what the impact of network reliability on the
system level properties is by checking how resilient the Grid is to message loss.

19

Smart Grid

Power consumption # Elems * 100 Estimated Consumption Actual energy output

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5

Time (hours)

0

250

500

750

1,000

1,250

1,500

1,750

2,000
E

le
ct

ri
ci

ty

Figure 4: Smart Grid scenario with one generator

We use a benchmark of two core properties. Property (1) states that the output of
the generator is always within 400 units of the actual demand within a 24h period.
This can be encoded in QBLTL as:

G24h
∣∣∣∑[e]

(
Gen(e)πoutput(e)

)
−
∑

[e]
(
Cons(e)πconsumption(e)

)∣∣∣ < 400

Property (2) states that the PC’s estimate of power consumption is not too far
from the actual value. The PC’s variables 0 through 19 store the consumer’s last
consumption values (as given by their last messages). In QBLTL,

G24h
∣∣∣∑[e]

(
Gen(e)πoutput(e)

)
−
∑

[e] (PC(e) (π0(e) + ...+ π19(e)))
∣∣∣ < 250

Here, PC, Gen and Cons are simply indicator functions for whether the element
is the power controller, a generator or a consumer.

Property (2) is a pre-requisite for property (1). Without a good estimation
of power output, the PC can never request the correct changes to the generator.
Furthermore, property (1) is a “two-step” property in that the consumer information
must first reach the controller, and only then be retransmitted to the generator.

In our experiments to test resilience to message loss, we vary the probability of
message reception for the PC. Whenever there is a control decision the probability
that the PC will receive a message (indicating there was no message loss) can be
0.9, 9.95, 0.97, 0.98, 0.99 and 1.00. To test these properties we use Bayesian inter-
val estimation [22], which is a more expressive variant of the algorithm described
in Section 5. This algorithm returns a confidence interval where the probability
that the properties are satisfied lie. We can specify the size of the interval, as well

20

as the confidence coefficient, allowing it to be used for cursory and in-depth anal-
yses. Tables 2 and 3 summarise the results for intervals of 0.04 and a confidence
coefficient of 0.95.

1.00 0.99 0.98
Prob. [0.89, 0.93] [0.87, 0.91] [0.86, 0.90]

correct/total 508/557 582/651 634/720
0.97 0.95 0.9

Prob. [0.83, 0.86] [0.75, 0.79] [0.28, 0.32]
correct/total 745/879 914/1180 431/1423

Table 2: Interval estimation results for property (1)

1.00 0.99 0.98
Prob. [0.95, 0.99] [0.91, 0.95] [0.86, 0.90]

correct/total 180/183 399/426 608/685
0.97 0.95 0.9

Prob. [0.82, 0.86] [0.66, 0.70] [0.16, 0.20]
correct/total 754/893 998/1461 169/971

Table 3: Interval estimation results for property (2)

As one would expect, a higher probability of message delivery errors will ex-
ponentially decrease the probability that the Grid is “safe” by making the generator
output deviate too far from what the actual consumption is. We could now focus
further studies by restricting message delivery probabilities to 0.97 or 0.98 and
1.00. This analysis could help companies and utilities decide whether to invest
in more reliable communication infrastructures depending on how much they per-
ceive the risk to be. This can be further analysed by inspecting the traces that failed
to satisfy the desirable properties. Since the cost of increased reliability at the Grid
scale is extremely significant, these types of studies quantify risk and allow com-
panies to justify or refute enormous investments in, say, 0.99 or 0.995 reliable
infrastructures.

We also see that the stronger property (1) holds less often than the weaker (2),
as we foresaw. Furthermore, the discrepancy is directly proportional to the delivery
rate. This tells us that communication is central in the Smart Grid. Property (1),
by requiring communication from consumers to the PC to the generator, is clearly
affected by compounded delays of two hops, while (2) only requires one. It is also
strange that this role reverses with low enough delivery probability. This could be

21

because message loss causes the Grid to adapt more slowly, and thus cope better
with fast, but small, variations in power demand.

Network bandwidth is another very configurable network parameter that greatly
affects deployment costs. The Grid industry is still deploying networks that send
a few thousand bits per day. Using the above model with 0.98 message delivery
probability but doubling the consumer feedback interval from 5 to 10 minutes, we
obtain an interval of [0.80, 0.84] for property (1) and [0.78, 0.82] for (2). Once
again, a very quick analysis can be performed on this parameter, pruning non-
relevant values.

The ability to simulate the system and see its behaviour graphically made it
clear that the system is prone to over-production during the evening when the con-
sumers are shutting down. It also has some trouble keeping up with demand in
the morning, but to a lesser extent. This indicates that even simple forms of load
prediction would greatly help the PC in keeping the system within the safety con-
straints. Once again, this would be easily implementable within the existing frame-
work.

The ease with which one can change system parameters, specify properties and
check them enables us to quickly identify and study the critical parameters in the
Smart Grid infrastructure. For more complex scenarios with multiple generators,
for instance, the PC’s policy regarding which generators to spool up or down will
make or break Grid adaptability. In this case, multiple algorithms may quickly be
implemented and tested before one is chosen for deployment. This gives us much
higher confidence without having to use untested algorithms on very expensive,
real-world testing infrastructure.

7 Conclusions

In order to check for desirable properties of Smart Grid technologies, we defined
Distributed Probabilistic-Control Hybrid Automata as a model for hybrid systems
with a dynamic number of probabilistic elements, and Quantified Bounded Linear
Temporal Logic to specify properties about a distributed system. We also showed
that Bayesian statistical model checking techniques are applicable in this context
for verifying QBLTL properties. Finally, we developed a Smart Grid case study
where even a preliminary study revealed important cost-benefit relations relevant
to full-scale deployment.

22

References

[1] Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.H.: Hybrid automata: An
algorithmic approach to the specification and verification of hybrid systems.
In: Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) Hybrid Sys-
tems. LNCS, vol. 736. Springer (1992)

[2] Clarke, E.M., Donzé, A., Legay, A.: Statistical model checking of mixed-
analog circuits with an application to a third order delta-sigma modulator. In:
Haifa Verification Conference. pp. 149–163 (2008)

[3] Clarke, E.M., Donzé, A., Legay, A.: On simulation-based probabilistic model
checking of mixed-analog circuits. Formal Methods in System Design 36(2),
97–113 (2010)

[4] Clarke, E.M., Faeder, J.R., Langmead, C.J., Harris, L.A., Jha, S.K., Legay,
A.: Statistical model checking in BioLab: Applications to the automated
analysis of T-cell receptor signaling pathway. In: CMSB. pp. 231–250 (2008)

[5] Demongodin, I., Koussoulas, N.: Differential Petri nets: representing con-
tinuous systems in a discrete-event world. IEEE Transactions on Automatic
Control 43(4), 573–579 (1998)

[6] Henzinger, T.A.: The theory of hybrid automata. In: LICS (1996)

[7] Jha, S.K., Clarke, E.M., Langmead, C.J., Legay, A., Platzer, A., Zuliani, P.:
A bayesian approach to model checking biological systems. In: Degano, P.,
Gorrieri, R. (eds.) CMSB. LNCS, vol. 5688. Springer (2009)

[8] Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: An
overview. In: Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee,
I., Pace, G.J., Rosu, G., Sokolsky, O., Tillmann, N. (eds.) RV. LNCS, vol.
6418. Springer (2010)

[9] Lynch, N.A.: Input/Output automata: Basic, timed, hybrid, probabilistic, dy-
namic, ... In: Amadio, R.M., Lugiez, D. (eds.) CONCUR. LNCS, vol. 2761,
pp. 187–188. Springer (2003)

[10] Lynch, N.A., Segala, R., Vaandrager, F.W., Weinberg, H.B.: Hybrid I/O au-
tomata. In: Alur, R., Henzinger, T.A., Sontag, E.D. (eds.) Hybrid Systems.
LNCS, vol. 1066. Springer (1995)

23

[11] Martins, J., Platzer, A., Leite, J.: Statistical model checking for distributed
probabilistic-control hybrid automata in the smart grid. Tech. Rep. CMU-CS-
11-119, Computer Science Department, Carnegie Mellon University (2011)

[12] Martins, J., Platzer, A., Leite, J.: Statistical model checking for distributed
probabilistic-control hybrid automata with Smart Grid applications. In: Qin,
S., Qiu, Z. (eds.) ICFEM. LNCS, vol. 6991, pp. 131–146. Springer (2011)

[13] Meseguer, J., Sharykin, R.: Specification and analysis of distributed object-
based stochastic hybrid systems. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC.
LNCS, vol. 3927. Springer (2006)

[14] Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reas.
41(2), 143–189 (2008)

[15] Platzer, A.: Quantified differential dynamic logic for distributed hybrid sys-
tems. In: Dawar, A., Veith, H. (eds.) CSL. LNCS, vol. 6247. Springer (2010)

[16] Platzer, A.: Stochastic differential dynamic logic for stochastic hybrid pro-
grams. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE. LNCS, vol.
6803, pp. 431–445. Springer (2011)

[17] Trivedi, K.S., Kulkarni, V.G.: FSPNs: Fluid stochastic Petri nets. In: Marsan,
M.A. (ed.) Application and Theory of Petri Nets. LNCS, vol. 691. Springer
(1993)

[18] Wang, Y.C., Komuravelli, A., Zuliani, P., Clarke, E.M.: Analog circuit verifi-
cation by statistical model checking. In: ASP-DAC. pp. 1–6. IEEE (2011)

[19] Yahav, E., Reps, T., Sagiv, M.: LTL model checking for systems with un-
bounded number of dynamically created threads and objects. Tech. Rep. TR-
1424, Computer Sciences Department, University of Wisconsin (2001)

[20] Younes, H.L.S., Clarke, E.M., Zuliani, P.: Statistical verification of
probabilistic properties with unbounded until. In: Davies, J., Silva, L.,
da Silva Simão, A. (eds.) SBMF. LNCS, vol. 6527. Springer (2010)

[21] Younes, H.L.S., Simmons, R.G.: Statistical probabilistic model checking
with a focus on time-bounded properties. Inf. Comput. 204(9), 1368–1409
(2006)

[22] Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking
with application to Simulink/Stateflow verification. In: Johansson, K.H., Yi,
W. (eds.) HSCC. pp. 243–252. ACM (2010)

24

