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Abstract

This project describes a customizable MT evaluation metric that pro-

vides system-dependent scores for the purposes of tuning an MT system.

The features presented focus on assessing adequacy over �uency. Rather

than simply examining features, this project frames the MT evaluation

task as a classi�cation question to determine whether a given sentence

was produced by a human or a machine. Support Vector Machines are

applied to the classi�cation task and their con�dence score forms the ba-

sis of the evaluation score. In addition, syntactic features are introduced

via headword chain precision and recall features derived from dependency

parses. Results are presented showing higher sentence-level correlation

with adequacy than BLEU as well as an analysis of which features con-

tribute most to assessing adequacy.



1 Introduction

1.1 Background

Evaluating machine translation system output is a di�cult but important task
for the advancement of machine translation research. The need to monitor in-
cremental changes to MT systems has been one of the largest motivations for
creating automatic metrics such as BLEU (Papineni et al., 2002) and METEOR
(Banerjee and Lavie, 2005). Metrics tend to assign a single score that attempts
to capture the quality of the MT output in a consistent way that can be com-
pared to other results. Often, it is helpful to not only be able to evaluate a large
quantity of MT output, but output at the sentence or segment level, for which
BLEU is not well suited1. Other metrics, such as METEOR, address this by
putting more emphasis on recall and synonymy than on exact-match precision.
BLEU has also been criticized by a number of researchers for the following �aws:

• it admits a large amount of variation for equally scored hypotheses (Callison-
Burch et al., 2006)

• it favors �local word choice over global accuracy� (Charniak et al., 2003),
thereby favoring certain types of MT systems over others (Callison-Burch
et al., 2006)

• it does not correlate well with human judgments (Turian et al., 2003)
contrary to claims made by (Papineni et al., 2002) and (Doddington, 2002)

• it lacks �exibility for tuning to a particular MT task (Kuleska and Shieber,
2004; Och et al., 2003)

These shortcomings with BLEU motivate the need for a better way of measuring
the quality of MT output.

A di�erent approach to MT evaluation is to frame the task in terms of a
classi�cation problem (Kuleska and Shieber, 2004; Blatz et al., 2003). The chal-
lenge then becomes distinguishing between whether a sentence is the output
of an MT system or a human translator. This project builds on the work by
(Kuleska and Shieber, 2004), which used a support vector machine as a learning
mechanism for classifying a hypothesis translation as coming from a human or
a machine. In that experiment, the feature space was constructed by compar-
ing the hypothesis against all the reference translations and calculating feature
values (see Table 1). Absent in this list of features is recall, which is more
highly correlated with human judgments than precision (Lavie et al., 2004).
The absence of a measure for recall is another criticism of BLEU (Banerjee and
Lavie, 2005). Another learning approach to MT evaluation that addresses the
lack of �exibility in BLEU is BLANC (Lita et al., 2005). BLANC trains pa-
rameters using all common skip-grams and computes the overlap with reference
translations.

1BLEU uses the geometric mean for n-gram precision, so if higher order n-grams do not
occur in a given sentence, the BLEU score is zero.
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A challenge for the development of MT evaluation systems is the human
translation e�ort in creating the reference translations. One approach for in-
corporating paraphrases into MT evaluation by (Russo-Lassner et al., 2005),
which increases the number of reference translations arti�cially, describes a large
number of features that may be helpful to the classi�cation task (see Table 2).
Related work on using paraphrases for MT evaluation has been done by in-
troducing syntax and aligning the reference translations (Pang et al., 2003).
More relevant to this project, however, is the use of syntactic information as
features for training the learning mechanism. Incorporating this information
into an evaluation metric has been shown to improve correlation with human
judgments at the sentence and corpus level (Liu and Gildea, 2005).

1. n-gram precisions (similar to BLEU)

2. ratio of hypothesis length to reference length

3. word error rate as the minimum edit distance
between hypothesis and reference

4. word error rate independent of position

Table 1: Feature space considered by (Kuleska and Shieber, 2004).

1.2 Properties of Evaluation Metrics

There are many desirable features an MT evaluation metric should possess.
The background information in � 1.1 describes some of the shortcomings of
current metrics and motivates the need for further research into �nding the most
valuable features for e�cient, extensible MT evaluation. Ideally, MT researchers
would like a metric that measures di�erent aspects of MT quality. Toward
that end, this project evaluates adequacy in machine translation output using
support vector machines. Adequacy can be de�ned as a measure of the amount
of meaning preserved in the target language after translation from the source
language. A completely adequate translation would convey all of the meaning
and nuances intended in the source language. Solving the evaluation of adequacy
problem would involve solving the machine translation problem, since being
able to tell if all information in the source language was conveyed through the
target language could just be reversed to generate the target language output.
For the purposes of MT evaluation, therefore, the measure of adequacy we
are computing is the amount of meaning in the reference translation(s) that is
preserved in the MT output.

Evaluation metrics can give two types of scores. The �rst type is a system-
independent score given by common metrics such as BLEU, NIST, or METEOR,
where the scores for a given language are not dependent on a single system and
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1. Primitive Features:

(a) stemmed words co-occurrence

(b) noun phrase matching

(c) matching words that appear in the same
WordNet synset

(d) matching verbs that share the same se-
mantic class

(e) matching proper names based on POS
tags

2. Composite Features

(a) matching pairs of primitive features that
appear in the same relative order

(b) matching pairs of primitive features that
occur within a window of 2-5 words

3. BLEU score

4. Translation Error Rate (TER)

5. METEOR score

Table 2: Features considered by (Russo-Lassner et al., 2005).

can be compared against the scores of other systems for the same language pair.
Another type of score, while not as valuable for comparing separate systems, is
a system-dependent score. The purpose of a system-dependent score is to assist
in tuning the system. For such a metric to be bene�cial, it should correlate
well with human judgments and allow for nearly complete customization of
which parts of the MT output are being evaluated. System-independent metrics
o�er some customizability. For example, BLEU and NIST can look at di�erent
numbers of n-grams, while METEOR allows for various stemming modules.
However, a large number of the features examined by these metrics cannot be
modi�ed, and doing so would damage their ability to o�er system-independent
scores. A good system-dependent metric does not su�er from this weakness.

1.3 Evaluating MT Evaluation Metrics

For any MT evaluation metric to be truly useful, it is necessary to evaluate it
as well. The most common way that this has been done in the literature is
to determine how well MT evaluation scores of hypothesis sentences correlate
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with human judgments of those sentences. To determine correlation, the two
most commonly used approaches are Pearson correlation and Spearman's rank
correlation. These two formulations will be discussed in further detail in � 5.3.
Human judgments are known to correlate poorly with each other, since there are
a number of subjective factors that go into human decisions about a sentences
adequacy and �uency. To mitigate the e�ect that the di�erences in scoring
between di�erent judges has, human scores are percentile normalized (Blatz
et al., 2003).

1.4 Goals and Outline

The goals of this project are to create an MT evaluation metric that will produce
system-dependent scores for the purposes of tuning an MT system and exam-
ine how various features contribute to adequacy in MT system output. The
framework for the system should allow for di�erent types of machine learning
approaches to be plugged in without changing the underlying feature genera-
tion mechanism. In addition, the features themselves should be customizable
to allow the speci�c tuning of certain features in the MT system. In this way,
we will be able to explore the feature space to determine the contribution that
di�erent features have in distinguishing between high and low quality in MT
system output.

In � 2, we will discuss the various features that were explored in this project.
Then in � 3, we will examine the role and nature of the classi�er. We describe
our implementation in � 4 along with descriptions of issues that came up during
development and how they were addressed. Our experimental procedure will be
discussed in � 5 followed by a presentation of the results and error analysis in
� 6. We conclude in � 7 with a discussion of the overall results of this research
as well as possible future work in this area.

2 Features

There are many features that can be extracted from the comparison of a hy-
pothesis and reference translation at the sentence level. In the case of a single
reference translation, comparisons are made directly between the two sentences.
Having multiple reference translations can cause complications, since there are
a number of di�erent decisions that must be made. It is necessary to decide, for
example, whether to �nd the maximum of a measure among all the references,
or to average the values of the measure. If the average is used, another decision
must be made as to whether to use the geometric mean, the arithmetic mean or
the harmonic mean. This complication is part of the reason why BLEU relies
solely on precision and avoids recall. This project takes a di�erent approach
and relies on a single reference translation for producing scores. The remaining
references are used as training examples in the machine learning phase. This has
the bene�t of making the computations easier to perform, but the disadvantage
of losing some information that could contribute to better assessing MT output
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quality.

2.1 Token-based Features

Token-based features are those features that are determined by comparing to-
kens in the reference and hypothesis translations. These features examine only
the ways in which tokens do or do not appear in the hypothesis. These features
include precision, recall, word error rate, length ratio, and minimum edit dis-
tance, amongst others. Each of these features attempt to get at how closely the
hypothesis tokens match the reference tokens. Two common problems in MT
system output are lexical choice and word ordering. Intuitively, n-gram-based
features should be able to capture adequacy (and, to a certain extent, �uency)
since they look at matching words and sequences of words. Precision and recall
measures of n-grams provide helpful tools for determining whether the correct
lexical choices and orderings were made.

2.1.1 Precision and Recall

Precision is a measure that captures the ratio of the hypothesis tokens that
were valid. Recall measures the ratio of the reference tokens that were covered
in the hypothesis. When there is only a single reference translation, these two
measures are simple to calculate. Things become more complicated when there
are multiple reference translations. BLEU avoids the issue of multiple-reference
recall altogether and relies modi�ed n-gram precision (Papineni et al., 2002).
Modi�ed n-gram precision counts the maximum number of occurrences of any
given any word in any of the reference translations. That is the cap for the
number of times a hypothesis token of the same word type may be counted.
METEOR, recognizing that recall correlates better with human judgments than
precision, incorporates recall into its metric by comparing the number of words
in the MT output that are in the reference translation to the number of words
in the reference (Banerjee and Lavie, 2005).

Since our system relies on a single reference translation for computing mea-
sures, the method for calculating these measures on n-grams is straightforward.
We chose modi�ed n-gram precision as separate features for n = {1, 2, . . . , 9}
(eq. 1). Similarly, we calculated recall for the same values of n (eq. 2). Another
common practice is to use the harmonic mean of precision and recall as the F1
score (eq. 3. We also included F1 scores on n-grams of the same lengths, for a
total of 27 features.

Pn =
count(n-grams in hypothesis also in reference)

count(n-grams in hypothesis)
(1)

Rn =
count(n-grams in hypothesis also in reference)

count(n-grams in reference)
(2)

F1n =
2PnRn

Pn + Rn
(3)
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function minEditDist(target, source):

n = len(target)

m = len(source)

DM = createDistanceMatrix(n+1, m+1)

DM[0,0] = 0

for i = 0 to n:

for j = 0 to m:

DM[i,j] = min(DM[i-1,j] + 1,

DM[i-1,j-1] + 2 * (sourcej !=

targeti), DM[i,j-1] + 1)

return DM[i,j]

Figure 1: Minimum edit distance algorithm (Jurafsky and Martin, 2000).

2.1.2 Word Error Rate

In this project, we looked at two measures of word error rate, both described by
(Kuleska and Shieber, 2004). The �rst form looks at the minimum edit distance
between the hypothesis and reference in terms of words. The minimum edit
distance seeks to capture the number of insertions (words that were missing),
deletions (words that should not have been included), and substitutions (delete
and insert) that must occur in order to make the hypothesis and reference
sentences identical. The algorithm for calculating minimum edit distance is
given in �gure 1. The second form of word error rate is position independent
word error rate. This measure is calculated by removing the words in the shorter
sentence from the longer sentence and the taking the ratio of the remaining set
to the length of the longer sentence.

2.1.3 Length Ratio

The �nal non-syntactic feature used in this project was ratio of hypothesis length
to reference length. This feature was described in (Kuleska and Shieber, 2004)
and so was included for completeness. Similar to BLEU's brevity penalty, this
feature attempts to penalize MT output that is not of su�cient length.

2.1.4 Other Metrics

One of the advantages of this approach is that anything that can be calculated
can be used as a feature. Therefore it is possible to add the scores of other
metrics as additional feature types. However, due to the fact that this project
frames the question of MT evaluation as determining whether sentences are
produced by humans or by machines, the e�ectiveness of other metrics scores are
degraded, since the classi�er will see examples with high metric scores that are
labeled machine and examples with low metric scores that are labeled human.
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Figure 2: An example of a headword tri-chain.

2.2 Syntax-based Features

The main MT evaluation metrics in use to date do not use syntactic features as
part of the evaluation criteria. There are several problems that must be con-
fronted before syntactic features can play a signi�cant role in MT evaluation.
The �rst problem is that automatic parsers must be trained on data. If that
training data is from a di�erent domain than the sentences being parsed, qual-
ity will be degraded. Also, MT output is often �lled with noise that requires
the parser to be robust to ungrammatical or unusual constructions. While the
parser's failure to parse a sentence may be a strong indicator that the hypoth-
esis is the output of an MT system, it does not o�er much help in providing
�ne-grained quality estimates of MT output. Given a robust parser capable of
producing results for the majority of MT output, the next di�culty is determin-
ing which particular facets of the parses should be compared to best distinguish
between human and MT output. Finally, it remains an open question whether
parser output is a su�ciently discriminating factor to improve the quality of
MT evaluation metrics.

One approach to using syntactic features in MT evaluation has been the work
done by (Liu and Gildea, 2005). They used dependency parses to �nd matching
structures in the reference and hypothesis translations and computed a single
score for each sentence based on the number of matching headword chains. In
a dependency parse, each node of the tree is a word in the sentence. From each
node there is a link to the node that it depends on. Dependence is derived from
head-modi�er relations in the sentence. For example, determiners modify their
head nouns, object nouns modify their head verbs, etc. By creating arcs from
nodes to their immediate head nodes, a simple tree is produced that avoids �ner
distinctions such as phrasal nodes (NP, VP, etc.). Typically these trees are not
very deep, although that depends on the length and complexity of the sentence.
A headword chain is a recursive series of arcs leading from a child to its parent
up the tree (see �g. 2). In this example, over depends on triumph since it is part
of the constituent headed by triumph. Likewise, triumph depends on is since it
is a part of the constituent headed by is. These three words form a headword
trichain.

The headword chain metric (HWCM) used by (Liu and Gildea, 2005) calcu-
lated the value based on multiple reference translations. The reformulation for
a single reference translation is simply the precision of headword chain matches
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Kernel Equation

linear ~x · ~x′
polynomial (γ(~x · ~x′) + c)d

radial basis function (rbf) e−γ‖~x−~x′‖2

Gaussian e−
‖~x−~x′‖2

2σ2

sigmoid tanh(γ(~x · ~x′) + c)

Table 3: Common kernel functions.

in the hypothesis compared to the reference. Similar measures for recall and F1
score can also be calculated from this. In our system, all three measures were
implemented for headword chains of length n = {1, 2, . . . , 9}.

3 Classi�er

At the heart of this project is a binary classi�cation task: whether the sentence
was produced by a human (positive) or a machine (negative). The choice of
a classi�er is an important one and depends on many factors. In the case of
evaluating MT output, it is helpful to have a continuous score that represents
the con�dence the classi�er has in the output. Also, the classi�er should be
adaptable to di�erent feature spaces so that the ability to customize the system
is not compromised. Support Vector Machines (SVMs) have been used with
good results in text classi�cation tasks (Joachims, 2003). Previous work by
(Kuleska and Shieber, 2004) also used SVMs as the classi�er. Due to these
factors, SVMs were chosen as the classi�er for this project.

3.1 Properties of SVMs

Support Vector Machines classify items by �nding the maximum margin hyper-
plane that best separates the feature space. Each feature represents a dimension,
with each example being a vector in that n-dimensional space of features. Each
example is assigned a label (positive or negative, true or false, etc.). In this
n-dimensional space of features, if an n-1 dimensional hyperplane can be drawn
to separate the data according to their labels, we have a linear classi�er. SVMs
take this concept further, by adjusting this hyperplane so that the margin be-
tween examples and the hyperplane is maximized. The examples that reside on
the edge of this margin are called support vectors. If the space is not perfectly
separable, SVMs use slack variables so that counter-examples do not hinder the
classi�cation task too much.

One of the most important properties of SVMs is their ability to use a
kernel function. In the case where the examples in the feature space cannot be
separated by a hyperplane, the kernel function can transform this non-linearly
separable space into one that is. The kernel function may be applied at any
point in the classi�er calculation where a dot product is taken. Common kernel
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functions are given in table 3.
Aside from the kernel parameters, there are several other parameters for

an SVM that can be tuned. While it is possible to over�t the data by tuning
too much, sometimes it makes sense from a theoretical perspective. The most
important non-kernel parameter is cost. This is the trade-o� between errors on
positive and negative examples. The higher the cost, the more costly it is to
have an error on a positive example, the lower the cost, the more important it
is to classify negative examples correctly. In the case of classifying sentences
as human or machine, it may be more helpful to consider accuracy on human
examples as more important than accuracy on machine examples, since some
machine examples will have human-level quality.

One �nal note that is important to make: SVMs can be used for more
than just classi�cation. They are also frequently used for regression with great
success. In the case of multi-class classi�cation, the binary classi�er can be
used by splitting the problem into n binary classi�cations. So in the case of
movie recommendations, the overall classi�cation problem is to predict what
rating a user would assign a movie in the given range {1, 2, . . . , 5}. Split into
binary tasks, the classi�cations would be Is it a 1 or something else?, Is it a 2 or
something else?, etc. While this project makes no use of regression or multiclass
classi�cation, there are possibilities for future work that will be discussed in � 7.

3.2 Handling SVM Output

In classi�cation mode, an SVM outputs the distance from the test example to
the hyperplane. This distance is a loose measure of con�dence. The further
the distance (and thus the larger the absolute value of the output), the more
con�dent the SVM is of the classi�cation of this example. However, while these
distances are rough values of con�dence, they do not translate well to probability
estimates, since these values are not exactly proportional to membership in
the class (Zadrozny and Elkan, 2002). Several approaches have been taken to
transform SVM output into probabilities. Two approaches attempted in this
project are given below.

3.2.1 Fitting the Sigmoid

The simplest approach to obtaining probability estimates from SVM output
is to apply the logistic equation2 (Platt, 1999). This approach requires that
the parameterized form of the logistic equation be found so as to minimize the
negative log likelihood of the data. Probability estimates for the data are then
calculated as follows:

P (y = 1|f) =
1

1 + eAf+B
. (4)

2The logistic equation is also known as the sigmoid function. This term is more ambiguous,
because it is often used by researchers in neural networks and other �elds to refer to the
function given in table 3.
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Given u = svm output, v = labels

function pav(u, v):

n = length(u) \\ == length(v)

for i = 1 to n − 1:
if vi > vi+1:

replace vi, vi+1 with their average

for j = i − 1 to 0:
if vj > vj+1:

replace vj, vj+1, ..., vi+1 with average

Figure 3: The Pool Adjacent Violators Algorithm.

While minimizing the negative log likelihood gives better estimates for prob-
abilities, it is possible to optimize the values to di�erent functions. For this
project, the parametric logistic equation was found that maximized the Pearson
correlation of human judgments. This will be discussed in more detail in � 5.

3.2.2 Isotonic Regression

While �tting the sigmoid is straightforward and has been shown to give good
results, the pool adjacent violators (PAV) algorithm has been shown to give
more accurate results on certain data sets (Zadrozny and Elkan, 2002). PAV
works by performing isotonic regression on the correct labels of the data ordered
by their corresponding SVM output scores. SVM output is a numerical value in
the interval [−a,+b]. These scores are sorted in ascending order and then given
a label of 1 for positive examples and 0 for negative examples. If these labels
are already monotonically increasing, then nothing need be done and we have
correct probability estimates corresponding to the values of the SVM output (0
and 1). If the sequence of labels is not monotonically increasing, then we proceed
from left to right and stop at the �rst pair of violators. These adjacent violators
are pooled by replacing both with their average. It is possible for this to cause
another adjacency violation to the left in the sequence, so now computation
goes from right to left until there are no more violations. All violators that
were found are pooled and replaced by their average. Computation resumes
from left to right until the end of the sequence has been reached and there
are no more violators. The resulting sequence consists of values in the interval
[0, 1] and represent accurate probability estimates for their corresponding SVM
output scores. The SVM output scores can be used to create bins by which new
examples are assigned probabilities. The PAV algorithm is given in �gure 3.

The output of the PAV algorithm is a list of SVM output scores mapped to
a list of probability estimates, both monotonically increasing. Often there will
be sequences of probability estimates that are equal. These may be combined
to form bins of SVM output scores. Estimating the probability of unlabeled
data is done by �nding the bin of SVM output scores that it was classi�ed
as and returning the corresponding probability estimate for that bin. Other
techniques can be applied to smooth the probability estimate according to its
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location in that bin such as �tting it to the line formed along with the previous
bin's probability estimate.

4 Implementation

In keeping with the goal of customizability, the proposed framework for this
project does not rely on one speci�c classi�er, parser or set of features. This
framework allows for greater �exibility and choice by researchers seeking to tune
their system for speci�c tasks. Also, it allows the feature space to be explored
more systematically by allowing the user to be able to add and drop features
and classi�ers as needed. The general framework is given in �gure 4. The code
for this project was written in the python programming language. Parsers and
classi�ers are called from within the framework. The project version of the code
is not yet ready for distribution, but all of the features described in this paper
have been implemented.

In the text pre-processing phase, sentences are converted to lower case and
punctuation is removed. The resulting tokenized sentences are given beginning
and end sentence tags. After the pre-processing phase, sentence pairs consist-
ing of hypothesis and reference translations are fed into the feature generation
modules. These modules produce output that maps a feature type to numerical
weight for that feature. In the case of the syntactic feature module, the hypoth-
esis and reference translations are fed into the parser prior to calculating feature
weights. All of the feature maps are passed to the feature space constructor,
where the features are combined and examples are labeled.

Once the feature space has been created, training and testing �les are cre-
ated and the classi�er binary is called. We used two implementations for support
vector machines in this project. SVMLight is a light-weight SVM implementa-
tion that returns distance scores from the example to the hyperplane (Joachims,
1999). The other implementation we used was LIBSVM, which returns prob-
ability estimates for the classi�cation decision (Chang and Lin, 2001). Our
primary focus was on SVMLight since that o�ered more control over the SVM
output as it gives direct access to the distance scores. The external classi�er
returns its classi�cation scores for each example and the scoring module post-
processes these results to produce a �nal score. Scores may be calculated using
the sigmoid �tting (� 3.2.1) or pool adjacent violators (� 3.2.2) methods.

There were two main obstacles in the coding phase of this project. The
�rst is the use of a parser and the requirements speci�c to each parser. The
solution we decided upon was creating a single module that handled all of the
syntactic parsing and feature creation that is speci�c to the Charniak parser
and dependency extractor (Hwa and Lopez, 2004). This sacri�ces modularity
in terms of parser choice, but given more time, the module can be broken down
into parts and the framework shown in �g. 4 can be restored. The second
obstacle we faced was transforming classi�er output into a standard format.
For example, SVMLight returns the distance to the hyperplane while LIBSVM
returns a probability estimate. Due to time constraints, we have not solved
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Figure 4: System components.
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this problem in the code, however the solution we envision will be to create a
sub-module for each implementation of a classi�er that handles the output of
that classi�er and puts it in a standard form.

5 Experiments

5.1 Data Sets

The data set used in this project is a subset of the 2003 TIDES/MT Evalua-
tion Data that was used in the 2005 ACL Workshop on Intrinsic and Extrinsic
Evaluation Measures for MT and/or Summarization containing translations into
English from Arabic and Chinese. The data set consists of four human refer-
ence translations for both languages and the output of seven MT systems for
Arabic and eleven for Chinese. Two of the Arabic MT systems are commercial
o� the shelf systems (COTS), while four of the chinese systems are COTS. Hu-
man judgments have been provided all of the research MT systems. The judges
scores were normalized in the fashion described by (Blatz et al., 2003). Since
the COTS systems are lacking human judgments, that data was not used in this
project. As a result, each source language sentence in Arabic has four human
and �ve MT system translations. Each source language sentence in Chinese has
four human and seven MT system translations.

5.2 Experimental Setup

One human reference translation from each language will be held out for calcu-
lating feature values. For each set of translations, the data is split at random.
Half of the data is broken o� to form the training set, while a quarter each go to
the development and testing set. The development set is used to tune parame-
ters and the test set is used for �nal evaluation. Human examples are labeled
as +1 while machine examples are labeled −1. The number of human examples
and machine examples are balanced so that an equal number appear in each set.
The �nal metric scores for the system are given after applying sigmoid �tting
(� 3.2.1) or PAV (� 3.2.2). Experiments are repeated ten times using di�erent
random seeds and are all run on a single 3.06 GHz processor with 2 GB RAM.

5.3 Evaluation

Evaluation of the metric's ability to evaluate MT system output is done by �nd-
ing the correlation between the metric scores and the percentile-normalized hu-
man judgments. There are two primary ways of calculating correlation: Pearson
correlation and Spearman's rank correlation. Pearson correlation is calculated
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Metric Pearson Error Spearman Error
Metricsyn 0.2001 ±0.0083 0.1084 ±0.0094
BLEU 0.3315 ±0.0073 0.2979 ±0.0066

Metricnon 0.3550 ±0.0064 0.3337 ±0.0066
Metricall 0.3555 ±0.0057 0.3316 ±0.0064
METEOR 0.4076 ±0.0055 0.3893 ±0.0052
NIST 0.4083 ±0.0056 0.3997 ±0.0049

Table 4: Pearson and Spearman's rank correlation results.

as follows3:

r =
∑

XY − 1
N

∑
X

∑
Y√(∑

X2 − 1
N (

∑
X)2

) (∑
Y 2 − 1

N (
∑

Y )2
) , (5)

where X and Y are distributions corresponding to human judgments and the
metric output. Spearman's rank correlation requires that the two distributions
be converted to ranks. The di�erence in ranks from an item in one distribution
to the corresponding item in the other distribution forms the distance measure
di and the rank coe�cient is computed as follows:

ρ = 1 − 6
∑

d2
i

n(n2 − 1)
, (6)

where n is the number of values (Wikipedia, 2007). To compare this metric
to the predominant metrics in use currently, the correlation for BLEU, ME-
TEOR, and NIST are computed and reported as well. BLEU and NIST scores
are computed using the mteval toolkit version 11b. METEOR scores were
computed using METEOR version 0.5.1 with the exact and porter stemming
modules. WordNet synonymy modules were not used, which probably led to
lower correlations for that metric.

6 Results

The �nal best results for Pearson and Spearman's rank correlation are presented
in table 4. The metric used in this project outperforms BLEU, but consistently
does worse than NIST or METEOR. The reported �gures for our metric in
the row Metricall include all features described in � 2, except for F1 measures,
which tended to hurt correlation. The row Metricnon shows results without
any syntactic features, and the row labeled Metricsyn shows the results using
only syntactic features. These results were obtained using the linear kernel and
SVMLight. The SVM cost parameter and parameterized sigmoid parameters
were tuned using the development set by maximizing Pearson correlation with
human judgments. The reported results were evaluated on the held out test set.

3Credit: Hyperstat Online, available http://wwwdavidmlane.com/hyperstat/A51911.html.

15



1. Bigram Recall
2. Bigram Precision
3. Length Ratio
4. Headword Bichain Recall
5. Headword Bichain Precision
6. Word Error Rate
7. Unigram Recall
8. Unigram Precision
9. Five-gram Recall
10. Six-gram Recall

Table 5: Ten most important features derived from the SVM hyperplane.

Other kernels were attempted, but the correlation was typically substantially
lower.

To determine which features were contributing most to the classi�cation
decision, we examined the weights of the hyperplane using a script by Thorsten
Joachims4. The ten features that were consistently ranked most important are
given in table 5. While not the most useful, syntactic features do o�er some
informativeness for the classi�er. Based on the results in table 4, they did
not hamper accuracy and slightly decreased variance in correlation. In another
experiment, METEOR scores (using the single reference translation) were added
to the feature vector. The METEOR score moved to the top of the list as the
most important feature. This is not surprising since METEOR scores correlate
well with human judgments and so should be helpful in this task. However, it
also means that METEOR scores diminish the e�ect of other features. Also,
the improvement in correlation does not translate to higher correlation than
METEOR itself.

The classi�cation accuracy of the SVM varied depending on what value for
the cost parameter was chosen during tuning. Typically, accuracy averaged
68% overall, with 87% accuracy on human examples and 49% accuracy on MT
examples. When examining syntactic features only, it improved correlation
when accuracy on MT examples improved, however when all the features were
combined, correlation improved when accuracy on human examples improved.

7 Conclusions

The goals of this project were to create an MT evaluation system that could
be customized to evaluate speci�c features in the MT output and to examine
which features contribute best to assessing adequacy. To that end, we created
a modular MT evaluation system that is highly customizable and has better
sentence-level correlation than BLEU.

The limitation of using a single reference translation restricted the prob-

4Available http://www.cs.cornell.edu/People/tj/svm_light/svm2weight.pl.txt.
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lem to evaluating adequacy in terms of similarity to the reference translation.
Within this realm, the features we explored correlated more strongly with ade-
quacy than with �uency. While not reported, resutls for �uency were typically
15% lower. We examined matching headword chains between the reference and
hypothesis sentences and found that while there was some correlation with ad-
equacy, there was stronger correlation with non-syntactic features. Because of
the weak correlation of the syntactic features, the SVM discounted the features
dealing with syntax when combined with non-syntactic features. The e�ect of
this discounting is that syntactic features can contribute little bene�t even in
the cases where they provide stronger informativeness in predicting the correct
classi�cation.

A major theoretical shortcoming of this approach to MT evaluation is that
the classi�cation question is fundamentally �awed. Some MT output will be
human quality and so when the classi�er has to learn this example, it observes
features corresponding to human output with a contradictory label. It is our be-
lief that this contributes to error. Possible future work in this area could include
removing machine examples that have been ranked highly by human judges to
see what e�ect that would have on correlation performance. Another possible
extension to this work is to formulate the question as a multi-class classi�cation
question. The classi�cation task could then be to distinguish between human
and machine, and between good machine output and bad machine output. In
this case it may be bene�cial to use regression over labels of {0, 1, 2}, with 0
corresponding to bad machine output and 2 corresponding to human output.

It also would be interesting to see what e�ect the underlying parser has
(Lavie, 2007). Di�erent parsers with di�erent levels of robustness may produce
much di�erent results. Likewise, it would also be interesting to see how di�erent
classi�ers would perform on this data and if another classi�er is better suited
to this task. However, without addressing the underlying theoretical concern of
the classi�cation question, we do not believe that improvement would be very
substantial.
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