
 Combining Personalized Agents to Improve Content-
Based Recommendations

Jason M. Adams, Paul N. Bennett, Anthony Tomasic

CMU-LTI-07-015

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

5000 Forbes Ave., Pittsburgh, PA 15213
www.lti.cs.cmu.edu

© 2007, Jason M. Adams, Paul N. Bennett, Anthony Tomasic

Combining Personalized Agents to Improve Content-Based

Recommendations

Jason M. Adams Paul N. Bennett∗ Anthony Tomasic

Carnegie Mellon University Microsoft Research Carnegie Mellon University

jmadams@cs.cmu.edu paul.n.bennett@microsoft.com tomasic@cs.cmu.edu

December 12, 2007

Abstract

Ratings-based recommender systems typically pre-
dict user preferences for items based on the user's
preference history, information about items, and the
preferences of similar users. In content-based rec-
ommending, the similarities between items the user
has previously expressed interest in form the basis
for recommending new items. There are a number
of practical reasons why users may not rate all of
the items they have experience with, a fact that in-
dicates ratings are not missing at random. We in-
troduce a missing data model that takes this obser-
vation into account. By combining the personalized
content models with missing data models, we build
classi�er agents for each user using the predicted rat-
ings of the �rst two models. These stacked agents
use collaborative �ltering to construct a hybrid rec-
ommender system that improves upon the baseline
scores produced by the content-based recommender
on a popular movie ratings data set.

1 Introduction

Ratings-based recommender systems serve many pur-
poses for e-commerce. For customers, they help over-
come information overload by providing new prod-
uct recommendations they were unaware of. Often,

∗This author's research contributions were made while a
postdoctoral fellow at Carnegie Mellon.

these recommendations provide them options simi-
lar to those enjoyed in the past, but the real bene-
�t comes when the recommendations point out high
value items that would have gone unnoticed. In turn,
these systems help companies by boosting sales and
building customer loyalty as they provide a more
valuable service.

The two primary approaches to computing recom-
mendations are content-based and collaborative �lter-
ing. The former seeks to �nd similarities between
items by comparing item characteristics. In the do-
main of movie ratings, these pro�les may consist of
actors, directors, genres, production companies, etc.
Collaborative �ltering exploits the similarity in pref-
erences between di�erent users to predict preferences
on new items. These two approaches are often com-
bined into a hybrid approach. A uni�ed hybrid model
combines both content-based and collaborative char-
acteristics into a single model, rather than incorpo-
rating one approach into another [1].

In this paper, we describe a framework that com-
bines missing data scores with content-based recom-
mendations to produce a hybrid recommendation sys-
tem. In the �rst stage, personalized user agents pro-
duce recommendations for items with a content-based
approach. Next, a second agent models the likeli-
hood that the user already knows this item to be
interesting. This model of the missing data is com-
bined with the personalized content agents to form
a stacked agents model using collaborative �ltering.
With this technique, we show improved results over

1

Figure 1: The Stacked Agents Model.

a baseline content model.

In Section 2, we begin with a description of the
stacked agents model, with the details of our im-
plementation in Section 3. In that Section, we also
describe how support vector machines serve as the
learning mechanism for providing item ratings and
missing data predictions. In Section 4, we describe
our experimental setup and report on our results us-
ing the MovieLens data set in Section 5. In Section 6,
we discuss related work followed by possibilities for
future work are given in Section 7. We end the paper
with our conclusions in Section 8.

2 Stacked Agents Model

In a recommendation setting, the user is not able
to rate every item (otherwise, providing recommen-
dations would be pointless). In most common in-
terfaces and situations, the system is only able to
present a small subset of items to the user. For vari-
ous reasons, most users will not rate every item they
have had experience with and could provide a rating

for. We propose this assumption as one aspect of the
missing data mechanism for recommender systems.
The research done to date has largely assumed that
data is missing at random [13], with the exception
of [14]. Since it is not possible to determine empir-
ically, we make the assumption that unrated items
are not missing at random. From this assumption,
it follows that features of items that have been rated
correlate with features of items that have not been
rated.
We can use content-based models to attempt to

predict a user's rating for any item based on the char-
acteristics of the item and previous items the user has
rated. These models operate under the assumption
that the user will like items similar to other items
they are interested in. Likewise, we can apply sim-
ilar content-based models to the task of determin-
ing whether a user is likely to already have found
an item to be interesting. Content-based models are
often weak when it comes to predicting items that
a user likes but are dissimilar to other items they
have rated highly. Collaborative �ltering overcomes
this approach by looking at similarities in user pro-
�les. By combining the content-based approaches as
the input to a collaborative �ltering system, it was
our intent to mitigate the e�ect of the weakness of
content-based models and exploit the advantage of
collaborative �ltering.
The stacked agents model (presented in Figure 1)

combines content-based recommendations and scores
on missing data with collaborative �ltering to pro-
duce a uni�ed hybrid recommender system. In the
content pre-processing phase, data is gathered about
the items being recommended, which is then used
to train the learning algorithm for the personalized
content-based and missing data agents. Content-
based agents predict the user's rating for each item
using only information gathered about that item.
Known-interest agents assign scores to those predic-
tions representing the level of certainty the system
has in them. Together these models can identify
where we are con�dent about a user's interest from
a content perspective. These predictions and missing
data scores are carried forward into a pre-processing
phase, where content information may be optionally
recombined as additional features. The learner is

2

then trained on the predictions and content infor-
mation to make �nal predictions of user ratings for
items.
The missing data model is a classi�er that is equiv-

alent to a con�dence score of how likely it is the user
will rate an item in the limit. Another way of think-
ing of this score is as how likely it would be for the
user to choose the item. Having a score for each item
could help many applications. In a recommender sys-
tem, it is often bene�cial to have ratings for items
that o�er the most discriminatory power. The items
that partition the space most e�ectively can be cho-
sen from the list of items the user is likely to have
rated but actually has not. These items can then
be presented to the user to rate so that high quality
predictions can be produced more e�ciently.
Our system combines personalized recommender

agents for each user into a uni�ed stacked model
through the blending of a missing data score with
content-based recommendations. Each user's agent
predicts ratings for all items with a standard content-
based method. A similar content-based approach is
used to build a classi�er to predict which items the
user would be likely to rate. The missing data value
and the predicted rating are then combined as a sin-
gle feature in the stacked model, representing both
the rating and missing data for that user and item.
This creates an n×m collaborative �ltering matrix,
where n is the number of users and m is the number
of items. The value in each cell ai,j is the weighted,
predicted rating of user i for item j.

2.1 Personalized Content Model

The �rst component of the stacked agents model is
the construction of personalized, content-based rec-
ommender agents for each user. In content-based rec-
ommending, features are collected for the items being
recommended to produce a set of item characteristics
stored in a feature vector, ~x. A label y for each vector
indicates the actual rating of the user for the item,
and ŷ indicates the predicted rating. Figure 2 shows
the con�guration of the feature vector.
In general, content features can be produced from

any sort of metadata or descriptions associated with
an item. In our case, we crawled data from the

Internet Movie Database (IMDB)1 to obtain semi-
structured textual descriptions of each item.
As is common in content-based recommender sys-

tems as well as information retrieval systems, we
create a feature for each term in the descriptions
and calculate that feature's value by using term fre-
quency/inverse document frequency (TFIDF) [1, 5].
For a discussion of how TFIDF is computed in our
system, please see the Appendix. For our content-
based models, we use TFIDF to compute weights for
the features that describe each item. Further details
of the content-based representation are presented in
Section 3.

2.2 Missing Data Model

The second component of our model is the missing
data model. This model assigns a score to each pre-
diction qu,v produced by the content-based agents,
for user u and item v. The purpose of this model is
to produce a value corresponding to the user's inter-
est in the item. To construct this classi�er, we use
feature vectors identical to those used by the content-
based recommender agents. The labels assigned to
each item correspond to whether the user has rated
the item or not. The output of the classi�er is a con-
tinuous value in the interval (−∞,∞) and has been
shown to correspond to a poorly calibrated log-odds
estimate of the missing value rmissing given the user
u and item v [4, 17]:

ŷ ≈ log
P (rmissing|u, v)

1− P (rmissing|u, v)
. (1)

By applying the sigmoid function in Equation 2 to the
predicted value ŷ, we obtain Equation 3, an estimate
of the probability of the item being missing given the
user and item.

sigmoid(x) =
1

1 + e−x
, (2)

P (r|u, v) ≈ sigmoid(ŷ) (3)

We then assign a missing data score based on the
estimated probability by considering values near 1 to

1http://www.imdb.com

3

be missing and values near 0 to be not missing :

qu,v = sigmoid(−ŷ). (4)

2.3 Delta Space

We perform a pre-processing step on the data by con-
verting it into delta space. The average rating for
each item v is found without considering the ratings
by user u. This produces a delta score, δ. Each rat-
ing for that item is then transformed according to
this delta value to produce the rating ru,v used by
our system. Speci�cally, where r′u,v is the initial rat-
ing by user u ∈ U for item v, the delta rating ru,v is
computed as

ru,v = r′u,v −
1

‖U − u‖
∑

u′∈U−u

r′u′,v (5)

2.4 Stacked Agents Model

The �nal component of our model is the stacked
model. We combine the rating predictions produced
by the content-based agents with their missing data
scores to produce a single, combined prediction for
each user and item. Given a predicted rating pu,v for
user u and item v, the combined prediction is de�ned
as

r̂u,v = pu,v × qu,v. (6)

The feature vector ~ru,v consists of the combined pre-
dictions of all other users for item v. This feature
vector may optionally contain the item characteristics
feature vector ~x used by the other two types of agents
to produce the �nal feature vector ~zu,v for user u and
item v (see Figure 3). The matrix of combined pre-
dictions re�ects the standard setup for collaborative
�ltering algorithms [9]. However, since the collabora-
tive �ltering matrix is boosted by content-based pre-
dictions, it constitutes a uni�ed hybrid recommenda-
tion system. A machine learning algorithm may then
be trained on the feature vectors for a given user to
produce predicted ratings.

Stage Description

1 Produce predicted ratings pu,v for
each user u and item v using the
content model

2 Produce missing data scores qu,v

for each user and item under the
same content model

3 Combine scores to produce
stacked feature vectors ~zu,v for
each user and item

4 Train the learning algorithm to
produce �nal predictions ŷu,v

Table 1: Stages used in our approach.

3 Implementation

Our system was implemented to produce movie rat-
ings using a four stage approach (see Table 1). The
�rst stage consists of pre-processing the data and cre-
ating the feature vectors for each user as input to
the leaner. This processing step is done for both the
content-based agents and the missing data agents.
The second stage trains SVMs for each user using the
output of the �rst stage and produces predictions for
the next stage. The third stage processes this out-
put and creates the feature vectors for the stacked
agents model. The �nal stage trains the learner on
this output and produces predictions for each user
and item.

3.1 Support Vector Machines

For our learner, we used the support vector machine
implementation SVMlight [11]. SVMs partition a
complex feature space by �nding the maximum mar-
gin hyperplane that separates the data. One advan-
tage of an SVM is its use of a kernel function. The
kernel space with an appropriate non-linear kernel
allows the SVM to solve the problem as if it were
linearly separable. A test example x is classi�ed de-
pending on the sign of the side of the hyperplane
in which it lies. By calculating the distance of the
example from the hyperplane, the SVM essentially
provides a built-in estimate of the reliability of the

4

Item Feature Vector Labels Predictions

1 ~x1 y1 ŷ1

2 ~x2 y2 ŷ2

...
...

...
...

m-1 ~xm−1 ym−1 ŷm−1

m ~xm ym ŷm

Figure 2: User pro�le matrix for personalized content
and missing data agents.

Actors Actresses
Directors Genres
Keywords MPAA Ratings
Plot Summaries Producers
Production Companies Release Dates
Movie Length

Table 2: Content features extracted from IMDB.

prediction, and it corresponds to a poorly calibrated
log-odds estimate (see Section 2.2) [4, 17].

The weights for each feature in the content model
feature vector are computed using TFIDF as de-
scribed in Section 2.1. Each feature listed in Table 2
is weighted according to the number of times it oc-
curs and the number of movies it occurs in. Duplicate
terms and people were treated as single features. For
example, if Tom Cruise were both a producer and an
actor in some movie, he would be treated as a sin-
gle feature with a term frequency of two. The total
number of movies in which he was either an actor,
director or producer would constitute the document
frequency for his feature.

The test set is held out as a means of validating
the output of the SVM for all three models. Feature
computations ignore the test set and use only the fea-
tures that appear in the training set. The prediction
set (for the content and missing data models) consists
of all items in the system using only the features that
were present in the training data.

After the personalized content and missing data
models have been assembled from the data, the SVM
is trained on the corresponding training set to pro-

duce the predictions that will be fed into the stacked
model. Validation is done prior to stacking using a
held out test set for these two models. For the person-
alized content model, we used the linear kernel for the
SVM, a standard practice in text classi�cation. Af-
ter training, the SVM produces a model �le for each
user that can be used for classifying new examples.
The SVM is then tested on the test set as a means
of verifying how well it has learned the user's pro�le.
This veri�cation is done using the NMAE score de-
scribed in Equation 8 in Section 5. Next, the SVM
classi�es the prediction sets to produce predictions of
the user's rating for every item as well as a missing
data score for each item. For the content-based rec-
ommender, we chose the linear kernel for the SVM.
We used regression mode to produce output as a rat-
ing value, rather than as a classi�cation. We chose
the Gaussian kernel to model the missing data since
it allows for a non-linear decision surface that has
neighborhoods and matches our intuition that rated
data will tend to clump into neighborhoods. For the
Gaussian kernel, there is a γ parameter that can be
tuned for each user. We used 4-fold cross valida-
tion on the training set to tune each value of γ. For
both kernels, it is possible to tune the cost factor by
which positive and negative examples are weighted.
We found that tuning this parameter tended to yield
worse results than leaving it at the default value of
an even trade-o�.

The output of the SVMs trained for the personal-
ized content and missing data models is the input to
the stacked agents model. Figure 3 shows the con�g-
uration of the new user pro�le matrix in this model.
The vector ~x is the feature vector from Figure 2, with
weights readjusted to re�ect the movies present in the
new training set. A test set is held out to measure re-
sults. The new feature vector ~r is the set of combined
predictions calculated as described in Section 2.4.

The �nal stage consists of training and testing the
SVM for each user using these new feature vectors.
In our preliminary experiments, the Gaussian kernel
performed the best for the stacked agents model. In
this case, we used 4-fold cross validation on the train-
ing set to tune each value of γ and we ignored the cost
factor due to its detrimental e�ect.

5

Figure 3: User pro�le matrix for stacked agents model for user i. Element ru,v is the combined prediction
(equation 6) of user u for item v. Note that the user himself is not included in his own feature vector.

4 Experiments

We report on experiments using the 1M MovieLens
data set made available by the GroupLens project2.
This data set consists of approximately one million
ratings by 6040 users on 3800 movies. Ratings con-
sist of the values {1, 2, . . . , 5}, with each user hav-
ing at least 20 ratings. Content features were de-
rived from IMDB and any feature that appeared in
only one item was discarded, a standard text clas-
si�cation practice. We extracted a total of 151,822
features from IMDB that corresponded to movies in
the MovieLens data set. Many movie titles given in
the MovieLens data set did not match the movie ti-
tles listed in IMDB, so those titles were manually
changed to match IMDB. We base our experiments
on the setup described by [13]. Our experiments fol-
low Marlin's model of weak generalization, in which
movies are held out for each user and the learner pre-
dicts the ratings of the held out set.

To perform our experiment, we selected 5000 users
from the MovieLens data set. For each user, one
movie was held out as the test set for leave-one-out
and the rest were used as training data. The stacked
agents model was trained on each user to produce
predicted ratings for the test case. We compute the
NMAE for each user and report the average NMAE
across all users as described in the next section. All

2http://www.grouplens.org

experiments were performed on a machine consisting
of four 3.06 GHz Pentium 4 CPUs with 2 GB RAM.

5 Results

5.1 Methodology

To evaluate our results, we use the normalized mean
absolute error (NMAE) described by [13]. The mean
absolute error (MAE) is de�ned as

MAE =
1
N

N∑
i=1

|yi − ŷi|, (7)

where N is the number of items, yi is the actual rat-
ing for item v, and ŷi is the predicted rating. This
is calculated for each user and then averaged. The
MAE is normalized with a normalization constant
that depends on the rating scale. The normaliza-
tion constant is the expected mean absolute error
of uniformly distributed ratings with random predic-
tions. For MovieLens, where ratings are de�ned as
{1, 2, . . . , 5}, the normalization constant is 1.6. Thus,
the NMAE for our data set is de�ned as

NMAE =
MAE

1.6
. (8)

The error for the missing data model is measured
simply as the ratio of incorrect classi�cations to the
total classi�cations. We also report the number of

6

missing data scores that occurred in the margin, that
is, scores that the SVM did not indicate were reliable.
We compare our results to the baseline NMAE given
by our content model.

5.2 Discussion

The results of our experiments are summarized in
Table 3. Performing the processing for the personal-
ized content and missing data agents took approxi-
mately 70 hours, and the stacked agents model took
another 17 hours. Of the nearly 152,000 features we
extracted, an average of around 16,000 were used in
the content-based agents for each user, while nearly
all were used in the missing data agents. As can
be seen in the table, the stacked agents model im-
proves over the content model NMAE score of 0.4405
by 1.703% when content features are omitted in the
stacked agents model. This result shows that it is
possible to improve over a baseline content model us-
ing missing data scores and the stacked agents model.
We attempted four experiments, in which the user
and test sets were held constant and two parameters
were modi�ed. The �rst parameter was the inclu-
sion of the content features as features in the stacked
agents model. The second parameter was pruning of
the feature space so that the combined predictions
(equation 6) with the lowest absolute value were dis-
carded. We chose to remove 50% of the features in
this manner for this test. We found that the best
results were obtained by not using the content fea-
tures, while pruning the combined predictions had
only a negligible e�ect.
We further analyzed the results of our data set

by comparing the actual and predicted results of the
stacked agents model. Figure 4 shows the distribu-
tion of users per rating score in delta space. The valid
values for delta space are {−4,−3, . . . , 3, 4} since the
rating scale for MovieLens is {1, 2, . . . , 5}. The pre-
dicted ratings are more heavily concentrated around
the average rating, indicating that the SVM guesses
the average score more often than it occurs in the
data. One possible reason for this discrepancy is that
if the data is not linearly separable, it minimizes the
cost to guess the average rather than guessing a value
that deviates from it too greatly.

6 Related Work

Hybrid recommendation systems have often been
used to avoid weaknesses in standalone content-based
and collaborative �ltering approaches. The creators
of Fab, an early hybrid recommendation system,
pointed out that content-based systems alone suf-
fer from over-specialization [2]. This occurs when
the system is only able to recommend items scoring
highly against a user's pro�le, and is therefore unable
to recommend anything that is not similar. Collab-
orative techniques do not su�er from this shortcom-
ing, so a combination of the two approaches is a nat-
ural extension. However, collaborative approaches
su�er when new items are introduced. If there are
no ratings for a new item, there is no way to rec-
ommend it, even if it is an item that is similar to
others a user has chosen. Again, the combination
of the two approaches seems obvious, since content-
based approaches are ideally suited for this situation.
In the case of the Fab system, and others, hybrid
approaches improved on the results of standalone ap-
proaches [2, 21, 15]. These improved results were one
motivation for our use of a hybrid recommendation
system as the basis for the stacked agents model.

Other approaches, such as latent semantic analysis
(LSA), have looked at ways of reducing the dimen-
sionality of the collaborative �ltering matrix, which

Figure 4: Comparison of actual and predicted rat-
ings.

7

Content
Fea-
tures

Stacked
Prun-
ing

Content
Model
NMAE

Con�dence
Model
Error

%
Con�dence
in the
Margin

Stacked
Model
NMAE

Improvement
over
Content

+ - 0.4405 0.0414 21.42% 0.456125 -3.547%

+ + 0.4405 0.0414 21.42% 0.455625 -3.434%

- - 0.4405 0.0414 21.42% 0.433000 +1.703%

- + 0.4405 0.0414 21.42% 0.433000 +1.703%

Table 3: Results for the MovieLens data set.

is sparse [21, 20]. LSA in this context seeks to �nd re-
lationships between users by �nding the low-rank ap-
proximation to the sparse collaborative �ltering ma-
trix. Singular Value Decomposition (SVD) has also
been applied to collaborative �ltering by �nding the
optimal user-item matrix decomposition according to
squared error. SVD has trouble with sparse matrices
with many missing values and will often over-�t, but
a recently proposed Variational Bayesian approach
somewhat overcomes this by introducing priors. The
squared error objective function is replaced with a
probabilistic model leading to signi�cant improve-
ments over regular SVD on the Net�ix Prize3 data
set [12]. Maximum Margin Matrix Factorization, on
the other hand, does not limit the dimensionality of
the matrix, but instead limits the number of dimen-
sions that are considered important [18]. MMMF
has led to much improved results, outperforming the
best results reported by Marlin, which used a vari-
ety of machine learning techniques [13]. MMMF has
been extended using ensembles, producing the cur-
rent state of the art results [6]. Rather than reducing
dimensionality in the collaborative �ltering matrix,
our approach reduces the e�ect of each user's rating
by the missing data score corresponding to that user
and item.
Support Vector Machines have been applied to

the problem of text categorization with good results
[10]. Content-based recommendations �t well with
the term-document paradigm in information retrieval
and so their use as a machine learning technique in
this arena seemed natural. Joachims also reports that
SVMs are able to perform in high-dimensional feature

3More information available at
http://www.net�ixprize.com.

spaces, which is ideal for our approach since we do not
perform any sort of dimensionality reduction. Other
�ndings have shown that SVMs perform worse than
kNN for the collaborative �ltering domain [8]. Addi-
tional work has been done on improving kNN using
data from the Net�ix Prize competition [3]. In that
work, Bell and Koren show that substantial improve-
ments to kNN for the task of collaborative �ltering
can be made by changing the approach to normal-
izing the input data and by altering the method for
relating users (or items). The Gravity Recommen-
dation System uses a variety of di�erent approaches
including kNN, neural networks, clustering and ma-
trix factorization that are interpolated into a �nal
model [22]. Their results on the Net�ix Prize data
set show that machine learning approaches are useful
especially in conjunction with matrix factorization-
based approaches.

The notion of user agents for recommender sys-
tems have been described by a number of researchers.
Good et al describe the use of personal user agents
that act as �lterbots for creating a hybrid recom-
mender system [7]. The �lterbots are information
�ltering agents that seek to reduce the noise in the
collaborative �ltering results using content informa-
tion. This idea was later extended to improve recom-
mendations in situations when either new items have
received few ratings or new users have provided few
ratings [16]. Another early approach to agent-based
recommendation systems used agents that formed
shared interest groups between users in a collab-
orative �ltering setting [23]. The interest groups
could then dynamically update as user preferences
evolved. Recently, CinemaScreen has used recom-
mender agents that weight the output of collabora-

8

tive �ltering system based on a content-based �ltering
system [19].
Our system takes a di�erent approach by stacking

predictions for movies that are missing in the data.
We combine personalized content models with miss-
ing data models to produce item-based predictions
of user ratings. The stacking model combines these
scores and each user agent is trained using an SVM
to produce recommendations. This approach yields
a uni�ed hybrid recommendation system capable of
improving on content-based ratings.

7 Future Work

The combination of the content-based and collabo-
rative �ltering approaches has many advantages over
pure collaborative �ltering [1, 20]. One particular
weakness of collaborative �ltering is the cold-start
problem, which occurs when either a user has rated
too few items to build an accurate user pro�le or an
item has too few ratings for collaborative �ltering to
be very useful. Because we combine content-based
with collaborative �ltering, we expect our method
will perform very well on the cold-start problem. In
future work, we intend to examine how well our ap-
proach handles situations when there are few users
rating an item and when a user has rated only a few
items. We believe we will �nd that our system per-
forms well in these cases and outperforms approaches
that rely on pure collaborative �ltering.
Another area we would like to explore is what ef-

fect the machine learning algorithm has on the ac-
curacy of the system. We used SVMs as our learn-
ing algorithm, but it may be that other algorithms,
such as kNN or decision trees, will outperform SVMs.
Other feature selection techniques could also lead to
improved results. Under our model, we apply the
sigmoid function (Equation. 2) to the output of the
missing data model to produce a score in the interval
[0, 1]. It may be possible to improve classi�cation ac-
curacy for the missing data model by using a held-out
set to tune the parameters a and b in the parameter-
ized version of the sigmoid function:

qu,v =
1

1 + eax+b
. (9)

We use a simple thresholding function where features
that appear in only one item are removed. It may be
bene�cial to use mutual information or chi-squared to
prune additional features to make the feature space
easier to separate.

8 Conclusions

Producing high quality recommendations is an im-
portant tool for web-based businesses. Content-based
recommenders use similarities between items to pro-
vide recommendations based on items the user has
already rated. While often useful at overcoming cold-
start problems, content-based recommenders su�er
from being unable to recommend items the user may
still enjoy but which are di�erent from the ones he
has rated. Another di�culty in recommendation sys-
tems lies in discriminating between information that
is missing because the user has not provided enough
ratings, and information that is missing because the
user has no experience with the item. In our sys-
tem, we have built classi�ers that act as personal-
ized content and missing data models. These scores
are combined in a collaborative �ltering framework to
train personalized stacked agents for each user. By
doing so, we show improved results over our baseline
content-based recommender system. We also show
one possible way of incorporating a missing data
model into a hybrid recommender system. We be-
lieve future work will show that our system leads to
improvements on the cold start problem.

References

[1] Adomavicius, M.-G., and Tuzhilin, M.-A.

Toward the next generation of recommender sys-
tems: A survey of the state-of-the-art and pos-
sible extensions. IEEE Transactions on Knowl-
edge and Data Engineering 17, 6 (2005), 734�
749.

[2] Balabanović, M., and Shoham, Y.

Fab: content-based, collaborative recommenda-
tion. Commun. ACM 40, 3 (1997), 66�72.

9

[3] Bell, R., and Koren, Y. Improved
Neighborhood-based Collaborative Filtering.

[4] Bennett, P. N. Using asymmetric distribu-
tions to improve text classi�er probability esti-
mates. In SIGIR '03 (2003).

[5] Breese, J. S., Heckerman, D., and Kadie,

C. Empirical analysis of predictive algorithms
for collaborative �ltering. In Uncertainty in
Arti�cial Intelligence. Proceedings of the Four-
teenth Conference. (1998), pp. 43�52.

[6] DeCoste, D. Collaborative prediction using
ensembles of Maximum Margin Matrix Factor-
izations. Proceedings of the 23rd international
conference on Machine learning (2006), 249�
256.

[7] Good, N., Schafer, J. B., Konstan, J. A.,
Borchers, A., Sarwar, B. M., Herlocker,

J. L., and Riedl, J. Combining collaborative
�ltering with personal agents for better recom-
mendations. In AAAI/IAAI (1999), pp. 439�
446.

[8] Grcar, M., Fortuna, B., Mladenic, D.,

and Grobelnik, M. kNN versus SVM in
the collaborative �ltering framework. In We-
bKDD 2005: KDD Workshop on Web Mining
and Web Usage Analysis, in conjunction with
the 11th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining
(KDD 2005) (Aug. 2005).

[9] Herlocker, J. L., Konstan, J. A.,

Borchers, A., and Riedl, J. An Algorithmic
Framework for Performing Collaborative Filter-
ing. In SIGIR '99: Proceedings of the 22nd An-
nual International ACM SIGIR Conference on
Research and Development in Information Re-
trieval (1999), ACM, pp. 230�237.

[10] Joachims, T. Text categorization with su-
port vector machines: Learning with many rele-
vant features. In ECML '98: Proceedings of the
10th European Conference on Machine Learning
(London, UK, 1998), Springer-Verlag, pp. 137�
142.

[11] Joachims, T. Making large-scale support vec-
tor machine learning practical. Advances in
kernel methods: support vector learning (1999),
169�184.

[12] Lim, Y., and Teh, Y. Variational Bayesian
Approach to Movie Rating Prediction.

[13] Marlin, B. Collaborative �ltering: A machine
learning perspective. Master's thesis, University
of Toronto, 2004.

[14] Marlin, B. M., Roweis, S. T., and Zemel,

R. S. Unsupervised Learning with Non-
Ignorable Missing Data. In Proceedings of the
10th International Workshop on Arti�cial Intel-
ligence and Statistics (AISTATS 2005) (2005),
pp. 222�229.

[15] Melville, P., Mooney, R. J., and Nagara-

jan, R. Content-boosted collaborative �lter-
ing for improved recommendations. In Eigh-
teenth national conference on Arti�cial intelli-
gence (Menlo Park, CA, USA, 2002), American
Association for Arti�cial Intelligence, pp. 187�
192.

[16] Park, S.-T., Pennock, D., Madani, O.,

Good, N., and DeCoste, D. Naive �lterbots
for robust cold-start recommendations. In KDD
'06: proceedings of the 12th ACM SIGKDD in-
ternational conference on knowledge discovery
and data mining (New York, NY, USA, 2006),
ACM Press, pp. 699�705.

[17] Platt, J. C. Probabilistic outputs for sup-
port vector machines and comparisons to regu-
larized likelihood methods. In Advances in Large
Margin Classi�ers, A. J. Smola, P. Bartlett,
B. Scholkopf, and D. Schuurmans, Eds. MIT
Press, 1999.

[18] Rennie, J. D. M., and Srebro, N. Fast max-
imum margin matrix factorization for collabora-
tive prediction. In ICML '05: Proceedings of the
22nd international conference on Machine learn-
ing (New York, NY, USA, 2005), ACM Press,
pp. 713�719.

10

[19] Salter, J., and Antonopoulos, N. Cine-
mascreen recommender agent: Combining col-
laborative and content-based �ltering. IEEE In-
telligent Systems 21, 1 (2006), 35�41.

[20] Schein, A. I., Popescul, A., Ungar, L. H.,
and Pennock, D. M. Methods and metrics for
cold-start recommendations. In SIGIR '02: Pro-
ceedings of the 25th annual international ACM
SIGIR conference on Research and development
in information retrieval (New York, NY, USA,
2002), ACM Press, pp. 253�260.

[21] Soboroff, I., and Nicholas, C. Combin-
ing content and collaboration in text �ltering.
In Proceedings of the IJCAI '99 Workshop on
Machine Learning in Information Filtering (11
Aug. 1999), pp. 86�91.

[22] Takacs, G., Pilaszy, I., Nemeth, B., and
Tikk, D. On the Gravity Recommendation Sys-
tem.

[23] Uchyigit, G., and Clark, K. Agents that
model and learn user interests for dynamic col-
laborative �ltering. In Cooperative Information
Agents VI : 6th International Workshop, CIA
2002, Madrid, Spain, September 18 - 20, 2002.
Proceedings (2002), vol. 2446/2002 of Lecture
Notes in Computer Science, Springer Berlin /
Heidelberg, p. 152.

Appendix

Let ti,j be the number of times that term i occurs
in document j. The normalized term frequency is
computed as follows:

tfi,j =
ti,j

maxk(tk,j)
, (10)

where the normalization value is the number of oc-
currences of the most frequent term in document j.
The inverse document frequency for term i is de�ned
as

idfi = log
N

ni
, (11)

where N is the total number of documents and ni

is the number of documents containing term i. The
product of the term frequency and inverse document
frequency is the TFIDF weight for term i and docu-
ment j:

wi,j = tfi,j × idfi. (12)

11

