Child Development, March /April 2004, Volume 75, Number 2, Pages 428 -444

Development of Numerical Estimation in Young Children

Robert S. Siegler and Julie L. Booth

Two experiments examined kindergartners’, first graders’, and second graders’ numerical estimation, the in-
ternal representations that gave rise to the estimates, and the general hypothesis that developmental sequences
within a domain tend to repeat themselves in new contexts. Development of estimation in this age range on 0-to-
100 number lines followed the pattern observed previously with older children on 0-to-1,000 lines. Between
kindergarten and second grade (6 and 8 years), patterns of estimates progressed from consistently logarithmic to
a mixture of logarithmic and linear to a primarily linear pattern. Individual differences in number-line esti-
mation correlated strongly with math achievement test scores, improved estimation accuracy proved attribu-
table to increased linearity of estimates, and exposure to relevant experience tended to improve estimation

accuracy.

Estimation is a pervasive process in the lives of both
children and adults. How much time will it take to
get home? How much money will the food in the
grocery cart cost? How heavy is this object? How far
is the distance between here and there? How many
weeks will it take to write this paper? Without the
ability to estimate reasonably accurately, life would
be difficult.

Despite the importance of estimation both in the
classroom and in everyday life, far less is known
about its development than about the development
of other basic quantitative abilities, such as subitiz-
ing, counting, and adding (Dowker, in press; Geary,
1994). One reason for the discrepancy is that esti-
mation subsumes a much greater range of tasks and
knowledge than the better understood quantitative
processes. Some estimation tasks—for example, es-
timating distance, time, or money—require knowl-
edge of measurement units such as miles, minutes,
or dollars; other estimation tasks—for example, es-
timating the number of people in a room or dots on a
page—do not. Similarly, some uses of estima-
tion—for example, estimating national populations
and land areas—require prior knowledge of the
entities whose properties are being estimated; other
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uses of estimation—for example, estimating the
number of candies in a jar—do not. This variability
of tasks and prerequisite knowledge has made it
difficult to identify the processes that unite all types
of estimation and to formulate experimental para-
digms that are useful for investigating their devel-
opment.

The present study is based on an explicit as-
sumption about the core process of estimation: Esti-
mation is a process of translation between alternative
quantitative representations. Some estimates involve
non-numerical —to—non-numerical translations, for
example, translating perceived brightness into line
lengths. Other estimates involve numerical-to-nu-
merical translations, for example, translating a mul-
tidigit multiplication problem into an estimated
product. Yet other estimates involve numerical —to—
non-numerical translation, for example, presenting
children with a number and asking them to locate its
position on a number line.

This last task, the one presented in the current
study, was appealing for several reasons. First, the
task is a relatively pure measure of numerical esti-
mation in that it does not require knowledge of
measurement units or particular entities. Second, the
task is ecologically valid; many classrooms, includ-
ing those of the participants in the study, include
number lines, and many teachers, again including
those in this study, use number lines to teach nu-
merical concepts. Third, the task makes possible re-
latively straightforward tests of alternative models of
numerical representation (as described later).

The task also allowed us to examine a broader
question about development. Classic developmental
theorists, including Piaget and Inhelder (1956),
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Vygotsky (1934/1962), and Werner (1957), proposed
that developmental changes at different ages and
over different time spans show extensive parallels.
The present study examined whether this perspec-
tive can help modern investigators anticipate pat-
terns of change with age and experience, even in
domains such as numerical estimation, which none
of the classic theorists studied. In the following sec-
tions we summarize existing understanding of the
development of estimation and describe the current
study and how it seeks to advance that under-
standing.

Current Understanding of the Development of Numerical
Estimation

The most consistent conclusion reached by in-
vestigators of the development of estimation is that
young children are not very skillful estimators. This
conclusion has been reached by investigators
studying estimation of various properties, including
distance (Cohen, Weatherford, Lomenick, & Koeller,
1979), money (Sowder & Wheeler, 1989), number of
discrete objects (Hecox & Hagen, 1971), and answers
to arithmetic problems (LeFevre, Greenham, & Na-
heed, 1993). The problem has been ascribed to var-
ious causes: mindless symbol manipulation, reliance
on procedures rather than principles, lack of number
sense, and lack of relevant central conceptual struc-
tures (Case & Sowder, 1990; Hiebert & Wearne, 1986;
Joram, Subrahmanyam, & Gelman, 1998; Sowder,
1992). Another factor that may play a large role is
reliance on inappropriate representation of numbers.

Alternative  representations of numbers. Several
groups of investigators have hypothesized that
children’s estimation reflects their internal rep-
resentation of numbers. However, the hypothesized
representations vary considerably. Dehaene (1997)
suggested that people of all ages from infancy to
adulthood, as well as many other animals, rely on a
logarithmic ruler representation. Relative to a linear
representation of numbers, a logarithmic repre-
sentation exaggerates the distance between the mag-
nitudes of numbers at the low end of the range and
minimizes the distance between magnitudes of
numbers in the middle and upper ends of the range.
Thus, within a logarithmic representation such as
that in Figure 1, the psychological distance between
the numbers 1 and 75 is greater than that between 75
and 1,000. Reliance on the logarithmic ruler rep-
resentation is said to “occur as a reflex” (Dehaene,
1997, p. 78), one that cannot be inhibited. Dehaene
presented considerable evidence consistent with the
use of this representation. For example, when adults
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are asked to draw lines of whatever length they wish
or to generate numbers randomly, the line lengths
and numbers fit a logarithmic function; both adults’
and children’s solution times on magnitude-com-
parison problems fit the same function (Banks & Hill,
1974; Sekuler & Mierkiewicz, 1977).

Gibbon and Church (1981) proposed an alternative
representation, which they labeled the accumulator
model. Like the logarithmic ruler model, the accu-
mulator model has been hypothesized to be used by
people of all ages (Brannon, Wusthoff, Gallistel, &
Gibbon, 2001). The basic claim is that numbers and
other quantities are represented as equally spaced,
linearly increasing magnitudes with scalar varia-
bility. This last property involves representations
becoming noisier, and therefore more variable, with
increasing magnitude; amount of variability in-
creases linearly with the number being represented.
Commenting on the possibility that people might
be capable of other representations, in particular,
the logarithmic ruler representation, Brannon et al.
(2001, p. 243) argued, “Given the current state of
knowledge, we view the idea that number is rep-
resented both linearly and logarithmically as un-
parsimonious.” Like Dehaene (1997), proponents of
the accumulator model have presented a consider-
able body of evidence consistent with the proposed
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Figure1. Predicted estimates of the logarithmic ruler and linear
ruler models, when both are constrained to pass through the
endpoints of the number line. Relative to the linear function, the
logarithmic ruler model exaggerates distances at the low end of
the numerical scale and understates them at the high end. Thus, if
a child relies on a logarithmic representation, the psychological
distance between 0 and 75 would be greater than that between 75
and 1,000.
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representation. For example, Huntley-Fenner (2001)
found that on a dot-estimation task, 5- to 7-year-olds’
means and variances fit the predictions of the model.

Case and Okamoto (1996) proposed a third hy-
pothesis, one that depicted children of different ages
as using different representations but children of a
given age as using a single representation. Of partic-
ular relevance to the present study, they proposed
that 4- and 5-year-olds possess only a qualitative
central conceptual structure for representing num-
bers (e.g., “This collection has a little and this one a
lot”), whereas 6-year-olds and older children possess
and consistently rely on a linear structure. Before
acquisition of the linear structure, which Case de-
picted as a number line with linearly increasing
magnitudes and which we refer to as the linear ruler
representation, accurate numerical estimation is said
to be impossible (Case & Sowder, 1990). Like the
proponents of the logarithmic ruler and accumulator
models, Case and his colleagues presented a great
deal of evidence consistent with use of the hypoth-
esized representation. For example, they showed
that 4-year-olds generally could not accurately esti-
mate which of two single-digit numbers was closer
to a third, whereas 6-year-olds generally could (Case
& Okamoto, 1996).

Multiple representations hypothesis. All three of
these models provide plausible accounts of how
people represent numbers and other quantities.
However, none of the models seems likely to be
people’s only representation. Instead, it seems
probable that individuals know and use multiple
representations of numbers, that contextual variables
influence which representation is chosen in a given
situation, and that the range of situations in which
children rely on each representation changes with
age and numerical experience.

These hypotheses reflect not only the particulars of
estimation but also a broader approach, overlapping
waves theory (Siegler, 1996). In a wide range of do-
mains, people know and use multiple rules, strate-
gies, and representations. It seems likely that this is
the case with estimation as well. In particular, from
infancy onward, children may be capable of using
logarithmic and accumulator representations. Sub-
sequent experience with the formal number system
in counting, arithmetic, and other numerical contexts
may lead children to add linear representations, as
well as a variety of categorical representations of
numbers (odd-even, square—nonsquare, decade
name —other, etc.) to the earlier representations. Rather
than any one representation being the representation
of numbers, varied representations may coexist and
compete, with different representations being used

most often in different situations. With age and ex-
perience, children may rely increasingly on the most
appropriate representation for the situation.

The use of multiple representations of numerical
magnitude makes sense because different rep-
resentations are most advantageous under different
circumstances and at different points in the learning
process. Consider logarithmic and linear rep-
resentations, the representations that figure most
prominently in the present study. Logarithmic rep-
resentations seem especially useful as an initial rep-
resentation of an unfamiliar range of numbers
because such representations discriminate to a greater
extent among numbers at the low end of the range
than do linear representations. When children are
first learning about the numbers 0 to 100, such
enhanced discrimination among the magnitudes of
numbers at the low end of the range is especially
useful because these numbers come into play more
often in single-digit addition and subtraction,
counting, and other early numerical activities than
do numbers higher in the range (Ashcraft & Christy,
1995; Hamman & Ashcraft, 1986). On the other hand,
linear representations discriminate more clearly in
the middle and high end of the range (Figure 1).
Discriminating among the magnitudes of these lar-
ger numbers becomes increasingly important as
children encounter, and try to understand the results
of, multidigit addition and subtraction and single-
digit multiplication and division problems in first
and second grades.

Support for the multiple-representations perspec-
tive, and against the view that people rely on any
single representation of numbers, was provided by
Siegler and Opfer (2003). They asked second-, fourth-,
and sixth-grade students and adults to estimate the
placement of numbers on number lines. Some of the
lines had endpoints of 0 and 100, whereas other lines
had endpoints of 0 and 1,000; the lines were other-
wise unmarked.

A striking developmental change, from reliance on
a logarithmic representation to reliance on a linear
representation, occurred between second and sixth
grade on the 0-to-1,000 lines. The logarithmic func-
tion accounted for 95% of the variance in second
graders’ median estimates on these number lines,
whereas the best fitting linear function accounted for
only 63%. In contrast, sixth graders” and adults” es-
timates fit a perfectly linear pattern; the best fitting
linear function accounted for 100% of the variance in
median estimates at each age, whereas the logarith-
mic function accounted for 73% and 78% of variance
among sixth graders and adults respectively. Anal-
yses of individual participants’ estimates showed



the same developmental sequence. For example, the
estimation patterns of 91% of second graders were
better fit by a logarithmic function than by the best
fitting linear function; the corresponding figure for
adults was 0%.

Findings on the 0-to-100 task indicated that the
logarithmic representation was not the only one that
second graders could use. Almost half (43%) gener-
ated logarithmic patterns of estimates in the 0-to-
1,000 context but linear patterns in the 0-to-100
context. The task that children were asked to per-
form also exerted an influence; although only 9% of
second graders generated a linear pattern on the 0-
to-1,000 number line when presented a number and
asked to mark its position with a hatch mark, 50% of
the same children did so when presented a hatch
mark on the line and asked to indicate the number
that corresponded to it. Thus, estimation patterns, and
presumably the representations used in generating
them, vary with age, numerical context, and task.

Siegler and Opfer’s (2003) results argued against
the logarithmic ruler, accumulator, and linear ruler
models of estimation and indeed against any model
that hypothesizes use of a single representation.
Arguing against the logarithmic ruler model was the
finding that all adults and sixth graders generated a
linear pattern of estimates on both 0-to-100 and O-to-
1,000 number lines. Arguing against both the accu-
mulator model and the linear ruler model was the
finding that almost all second graders and about half
of the fourth graders generated a logarithmic pattern
of estimates on the 0-to-1,000 number line. Arguing
against all three models and any other model that
proposes that people of a given age, or people in
general, possess only a single representation of
numbers, were the effects of task and numerical
context within individual children.

The Present Study

Siegler and Opfer’s (2003) findings raised several
questions about the development of estimation. One
question concerned parallels in developmental se-
quences at different ages in different numerical
contexts. On the number-to-position 0-to-1,000 task,
second graders consistently relied on the logarithmic
representation, fourth graders sometimes did the
same and sometimes relied on the linear rep-
resentation, and sixth graders consistently relied on
the linear representation. The ideas of the classic
theorists suggested that this sequence on the O-to-
1,000 number lines might have been preceded by a
parallel sequence on 0-to-100 lines. The change was
expected to occur between kindergarten and second
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grade for this numerical range because it is in this
period that most children first gain extensive ex-
perience with this range of numbers.

A second purpose of the study was to test the
relation of number-line estimation to broad measures
of mathematical understanding, in particular, math
achievement test scores. Case and Okamoto (1996)
proposed that construction of the linear ruler rep-
resentation of numbers at around age 6 allows
children to solve a wide range of mathematical
problems that they could not solve previously. These
investigators’ arguments for the central importance
of such a representation in early mathematics
learning suggest that individual differences in
number line estimation among 5- to 7-year-olds
would be positively related to individual differences
in math achievement test scores. On the other hand,
Dowker’s (in press ) review of studies of estimation
indicated that even within the category of estimation
tasks, individual differences on one task are fre-
quently unrelated or minimally related to individual
differences on others. The present research allowed
examination of whether number-line estimation was
in fact related to math achievement.

A third purpose of the study was to test the con-
tributions of two potential sources of age-related
improvement in estimation: increasing reliance on
linear representations and increasing precision of
estimates. Siegler and Opfer’s (2003) explanation for
why estimates became increasingly accurate with
age was that children increasingly relied on linear
representations. Another (nonexclusive) possibility,
however, was that estimates might become increas-
ingly accurate because of age-related improvements
in ability to place estimates in their intended posi-
tions. Supporting this view was the finding that the
absolute fit of the best fitting function to individual
children’s estimates tended to increase with age and
experience. This possible source of age-related im-
provement seemed even more likely to be influential
in the current study of 5- to 7-year-olds because of
young children’s imperfect motor control and gen-
erally high variability of thinking. To assess this in-
fluence on estimates, we asked children to estimate
the position of each number twice (separated by an
average of 24 other estimates). The difference be-
tween the two estimates of the same number pro-
vided a measure of the variability of estimates,
independent of the linearity of the medians of the
pairs of estimates.

A fourth question concerned the malleability of
number-line estimation. If children were presented
relevant experience, would their estimation on this
task rapidly improve? If so, children are capable of
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generating more advanced representations of num-
ber than they typically display. This hypothesis was
tested in Experiment 2 and is described in more
depth in that context.

In Experiment 1, we presented kindergartners,
first graders, and second graders with 48 number-
line-estimation items, 2 each of 24 numbers between
0 and 100. The central prediction was that there
would be a developmental progression from pre-
dominantly logarithmic to a mix of logarithmic and
linear to predominantly linear patterns of estimates.
Other predictions were that estimation accuracy
would correlate positively with math achievement
test scores; that both increasing linearity and de-
creasing variability would contribute to age-related
improvements in estimation accuracy; and that lin-
earity, variability, and accuracy of estimates all
would improve with age and grade.

Experiment 1

Method

Participants. Participating in this study were 85
students (44 males, 41 females): 21 kindergartners
(mean age =5.8, SD =.33), 33 first graders (mean
age =6.9, SD =.36), and 31 second graders (mean
age=7.8, SD =.31). Among the participants, 67%
were Caucasian, 32% were African American, and
1% were Asian. One child did not seem to under-
stand the task and therefore was excluded from
consideration. The experimenter was a Caucasian
female graduate student, the second author.

Children were recruited from three schools that
included both middle- and low-income families. The
percentages of children in the three schools who
were eligible for the free or reduced-fee lunch pro-
gram were 41%, 43%, and 49%. Teacher responses to
a questionnaire indicated that number lines were
used as part of the curriculum in all classrooms.
Participation in the experiment was voluntary, and
children received no tangible compensation for tak-
ing part.

Materials. Stimuli for the experiment were 48
sheets of paper, each with a 23-cm line printed across
the middle, with 0 at the left end and 100 at the right
end. A number between 0 and 100 was printed at the
top of each page. To improve our ability to dis-
criminate between linear and logarithmic estimation
patterns, numbers below 30 were oversampled, with
10 numbers between 0 and 30 and 14 numbers be-
tween 30 and 100. The 24 numbers presented were 3,
4,6,8,12,17,21,23,25,29,33,39,43, 48,52, 57, 61, 64,

72,79, 81, 84,90, and 96. Within each set of 24 number
line sheets, the pages were ordered randomly.

Each participant’s Stanford Achievement Test
score (SAT-9) for mathematics was also obtained.
The test was administered to all children in the dis-
trict near the end of the academic year, 3 to 4 months
after the experimental session. The SAT-9 is a mul-
tiple-choice academic achievement test for which
national norms are available (Assessment Resource
Center, 2002).

Procedure. Children met one on one with the ex-
perimenter for a 20-min session at a time deemed
appropriate by their teacher. At the beginning of the
session, children were told that they would be given
number lines with 0 at one end and 100 at the other
end and that they would show the experimenter
where they thought different numbers would fall on
the line by marking the right location with a pencil.
No feedback was provided about any of their marks,
though the experimenter periodically offered general
praise for doing a good job.

Results

Accuracy of estimates. To obtain an overall sense of
the accuracy of children’s estimates, we computed
each child’s percent absolute error:

Estimate — Estimated Quantity
Scale of Estimates '

To illustrate how this measure works, if a child was
asked to estimate the location of 72 on a 0-to-100
number line and placed the mark at the point that
corresponded to 84, the absolute error would be 12%,
(84-72)/100.

A one-way analysis of variance (ANOVA) on the
relation of grade to percent absolute error indicated
that individual kindergartners’ estimates were con-
siderably farther from the correct position than were
those of first or second graders (percent absolute
error =27%, 18%, and 15%, respectively), F(2,
82) =21.65, p<.01, n2 = .35. These results indicated
that the accuracy of estimation in the current study
was comparable to that obtained by Siegler and
Opfer (2003) for second graders, the one age group
included in both experiments (12% in the earlier
study, 15% here with a lower socioeconomic status
sample).

Pattern of estimates. The initial analyses in this set
examined the fit of linear, logarithmic, and ex-
ponential functions to the median estimates of chil-
dren, grouped by grade level, for each of the 24
numbers that were presented. Medians rather than
means were used to minimize the effect of outliers.
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Figure2. Progression from logarithmic pattern of median estimates among kindergartners (left panel) to linear pattern of estimates among

second graders (right panel) in Experiment.

The exponential function fit the data much less well
than the other two functions; therefore, it was not
included in further group-level comparisons.

As shown in Figure 2, the kindergartners” median
estimates for each number were better fit by the
lo%arithmic function than by the linear function
(R==.75 vs. 49). To test the significance of the dif-
ference, we performed a paired-sample ¢ test com-
paring the absolute value of the difference between
the median of children’s estimates for each number
and the prediction for that number generated by: (a)
the best fitting linear model and (b) the logarithmic
model. The difference between the predictions of the
logarithmic function and the kindergartners’ median
estimates was significantly less, indicating that the
logarithmic function better fit the kindergartners’
estimates, t(47) =3.84, p<.01, d=.55. In contrast,
second graders’ median estimates were better fit by
the linear function than by the logarithmic function
(R* =95 vs. .88), H47) =2.99, p<.01, d = .43. At the
first-grade level, the logarithmic function and the
linear function fit about equally well (R*=.95 and
90), t(47) =1.69, p=.10, d = .24. (The fact that the
absolute fit was high for both functions reflects the
mathematical relation between the two; for perfectly
linear data with a slope of 1, a logarithmic function
that goes through both endpoints accounts for 84%
of the variance.)

To test whether these findings regarding group
medians also fit individual children’s performance,
we examined the fit of linear, logarithmic, and ex-
ponential functions to each child’s estimates. The
model that fit the most individual children varied
with age, XZ(Z, N=280)=12.33, p<.01. The percen-
tage of children whose estimates were best fit by the
logarithmic function decreased from 81% to 64% to

45% between kindergarten and second grade. The
percentage of children whose estimates were best fit
by the linear function increased from 5% to 30% to
55% over the same period. Performance of the re-
maining 14% of kindergartners and 6% of first gra-
ders was best fit by the exponential function.

Next, to quantify changes with age in the linearity
of individual children’s estimates, the variance ac-
counted for by the best fitting linear function for each
child’s estimates was examined. The best fitting lin-
ear function accounted for an average of 24% of the
variance in individual kindergartners’ estimates,
59% for first graders, and 64% for second graders.
First and second graders’ estimates fit the linear
function considerably better than did kindergart-
ners’, F(2, 82) = 23.63, p<.01, n> = .37.

In addition to estimates becoming more linear
with increasing age and experience, the slopes of the
best fitting linear function also moved increasingly
toward 1.00, the ideal slope relating estimates to
numbers presented. The mean slope of individual
kindergartners’ estimates was lower than the slopes
of first and second graders (mean slopes = .33, .58,
and .60, respectively), F(2, 82)=11.23, p<.01,
n%=.22.

Variability of estimates. To examine age or grade
trends in the variability of estimates, we conducted a
one-way ANOVA on the relation of grade to the
mean for each child of the absolute difference be-
tween the two estimates for each number. As an-
ticipated, the mean difference between individual
children’s two estimates decreased from kindergar-
ten (17.5) to first and second grades (11.6 and 10.7,
respectively), F(2, 82) =14.43, p<.01, n2 =.26. Con-
trary to the prediction of the accumulator model, but
consistent with Siegler and Opfer’s (2003) findings
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with older children, variability of estimates was un-
related to the magnitude of the numbers being esti-
mated. Numerical magnitude accounted for 0%, 2%,
and 7% of the variance in variability of estimates for
kindergartners, first graders, and second graders,
respectively.

Linearity, variability, and accuracy of estimates. The
parallel age trends in linearity, variability, and ac-
curacy suggested that the improvements in linearity
and variability might both contribute to improve-
ments in the accuracy of estimates. To test whether
this was the case, we computed a pair of regression
analyses of the separate contributions of each vari-
able to estimation accuracy. One regression analysis
involved entering one variable before the other and
observing the additional variance contributed by the
second variable. The other regression analysis in-
volved entering the two variables in the opposite
order.

As illustrated in Table 1, degree of linearity proved
to be the sole unique predictor of estimation accu-
racy. Regardless of whether the analysis was com-
puted across grades or within grade, the linearity of
each child’s estimates invariably added at least 20%
of variance in the child’s percent absolute error to
that accounted for by the variability of the child’s
estimates. In contrast, the variability of each child’s
estimates never added more than 1% to the variance
accounted for by linearity of the child’s estimates.
Thus, despite the parallel age trends of linearity,
variability, and accuracy, the decreases in variability
of estimates did not contribute to the increases in
accuracy with age and grade.

Number-line estimation and math achievement. To
examine the relation of the quality of number-line
estimation to a broad measure of mathematical pro-
ficiency, we computed partial correlations, control-
ling for age within grade, between each child’s
estimation accuracy and that child’s performance on

Table 1

the math section of the SAT-9. Percent absolute error
predicted math achievement test scores at all three
grade levels: kindergarten, pr(18) = — .45, p<.05;
first grade, pr(30) = — .66, p<.01; and second grade,
pr(28) = — .37, p<.05. Within each grade, the smaller
a child’s percent absolute error of estimates, the
higher was that child’s achievement test score.

To test whether this result was unique to the
measure of estimation quality, we performed parallel
analyses using an alternative measure of quality:
variance accounted for by the linear function. The
results paralleled those found previously. The fit of
the linear function to each child’s estimates corre-
lated with the child’s math achievement test score at
all three grade levels: kindergarten, pr(18)=.57,
p<.01; first grade, pr(28) = .69, p<.01; and second
grade, pr(28) = .39, p<.05. The more linear a child’s
number line estimates, the higher was the child’s
achievement test score.

Discussion

The results provided strong support for the hy-
potheses that motivated the experiment. The same
developmental sequence—from predominant re-
liance on a logarithmic representation to a mixture
of reliance on logarithmic and linear representations
to predominant reliance on a linear representa-
tion—was present among kindergartners through
second graders on the 0-to-100 number lines as had
been present among second through sixth graders on
the 0-to-1,000 lines. Accuracy of estimation on the
number-line task correlated with math achievement
at all three grade levels. The only departure from
expectation was that increasing linearity of estimates
appeared to be the sole source of the improvement in
estimation accuracy. Variability of estimates showed
the expected decrease with age and experience, but it

Linearity and Variability as Predictors of Percent Absolute Error: Experiment 1

Analysis Sample R R%Linvar Added R? Significance

1. Linearity entered before variability All children .79 .79 0 ns
Kindergartners .21 .21 0 ns
First graders .79 .80 .01 ns
Second graders .76 77 .01 ns

RzVar RZVar +Lin

2. Variability entered before linearity All children 21 .79 .58 p<.01
Kindergartners .01 21 .20 p<.05
First graders .10 .80 .70 p<.01
Second graders 13 77 .64 p<.01




did not explain any variance beyond that which
could be explained by the linearity of estimates.
The results of Experiment 1 also raised the ques-
tion: How malleable is young children’s estimation?
Individual children’s estimates became more accu-
rate and linear with age and experience, but even in
second grade, the estimates remained far from per-
fect. Second graders’ estimates were off by an aver-
age of 15%, the best fitting linear function accounted
for an average of 64% of the variance in their esti-
mates, and the linear function was the best fitting for
only 55% of children. The second graders’ estimates
were superior to those of kindergartners but well
below the levels attained on the same task by sixth
graders and adults in Siegler and Opfer (2003).

Experiment 2

Experiment 2 was designed to test whether the ac-
curacy and linearity of young children’s estimates
could be increased by a procedure designed to trig-
ger cognitive conflict. The experiment involved
asking children first to locate 10 evenly spaced
numbers on a single number line; then to think about
these initial estimates and, if desired, to revise the
estimates on the original number line; and then to
generate final estimates of all of the numbers’ loca-
tions on a new number line. This procedure was
expected to increase accuracy and reliance on linear
representations because children who were capable
of generating linear representations but were not
relying on them on this estimation task would see
that numbers that should be evenly spaced were not.
The main hypothesis was that children who received
this experience would subsequently generate more
accurate and more linear representations when pre-
sented the original task involving a single estimate
on each number line than children in a control group
who were given additional trials on the original one-
estimate-per-number-line task.

A second change in the procedure, presentation of
an orienting trial at the beginning of the experiment,
was adopted to insure that children understood the
number-line task. On the orienting trial, all children
first were asked to estimate the location of a number
on a number line, then received feedback on the
number’s correct location, then were shown the lo-
cation of their estimate alongside the correct location,
and then were told why the correct location was
correct. The logic was that this experience might help
children understand the task.

Experiment 2 included four phases. In the first
phase, children received the orienting trial. In the
second phase, they received a pretest identical to the
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Experiment 1 number-line estimation task. In the
third phase, they received the experimental or con-
trol manipulation. In the fourth phase, they received
a posttest much like the pretest. The main hy-
potheses were that the experimental manipulation
would increase the accuracy and linearity of esti-
mates and that the other results would replicate
those from Experiment 1.

Method

Participants. Participating in Experiment 2 were
60 children (27 males, 33 females): 20 kindergartners
(mean age=6.1, SD =.31), 19 first graders (mean
age=7.1, SD = 44), and 21 second graders (mean
age=28.2, SD=.71). All of the children were re-
cruited from three schools in the same school district
as in Experiment 1. Participation was voluntary, and
students received no compensation for taking part in
the study. The experimenter was the same Caucasian
female graduate student as in Experiment 1.

The populations of the schools were similar to
those of the schools whose students participated in
Experiment 1, both in racial composition and in
economic status. Among Experiment 2 participants,
71% were Caucasian, 27% were African American,
and 2% were Asian. The percentages of children in
each school who were eligible for the free or re-
duced-fee Iunch program were 35%, 43%, and 49%.
As in Experiment 1, teachers in all classrooms re-
ported that they used number lines in their curricu-
lum.

At the outset of the study, children in each of the
three grades were randomly assigned to the experi-
mental or control group. More than 90% of children
completed all four phases of the experiment; how-
ever, 5 children did not. Two children were absent on
all days when the posttest was administered, 1
child’s family moved out of the district before the
posttest was given, and 2 children did not under-
stand the task (e.g., 1 put every estimate at the
midpoint of the number line). Performance of the 2
children who did not understand the task was not
included in any data analysis; performance of the 3
children who completed the pretest but not the
posttest was only included in analyses of pretest
data.

Procedure and materials. The Experiment 2 proce-
dure was similar to that in Experiment 1 but in-
cluded two sessions, each with two phases. The two
sessions were separated by roughly a week, with
each session taking about 20 min.

The first phase of Session 1 was an orienting trial.
The single feedback problem in this phase (the only
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feedback in the experiment) differed slightly for the
older and younger children. First and second graders
were presented a 0-to-100 number line and asked to
mark the location of 50. Following the child’s esti-
mate, the experimenter presented a number line that
indicated the correct placement of 50, compared the
correct placement with the child’s estimate, and ex-
plained that the number being estimated was half-
way between the endpoints so that its location
should also be halfway between them. Kindergart-
ners were presented a number line with 10 rather
than 100 at the right end and were asked to mark the
location of 5 on it. The reason the kindergartners
were presented the 0-to-10 number line was that
their greater familiarity with the numbers 0 to 10
increased the likelihood that they would understand
the lesson of the orienting task.

In the second phase of Session 1 (the pretest), all
children were presented the same 24 estimation
items twice each on standard 0-to-100 number lines
as in Experiment 1. Kindergartners were also pre-
sented an additional 18 estimation items on 0-to-10
number lines, 2 presentations each of the numbers 1
through 9.

The procedure followed in the first phase of Ses-
sion 2 depended on whether the child was in the
experimental or control group, with the problems
again varying with the child’s age. In the control
group, first and second graders were presented the
same 24 numbers on the same 0-to-100 number line
as on their pretest; kindergartners were presented
the same 9 numbers on 0-to-10 number lines as on
the 0-to-10 portion of their pretest.

In the experimental group, first and second gra-
ders were presented a single number line with 10
numbers printed in random order above it (5, 15, 25,
35, 45, 55, 65, 75, 85, and 95); kindergartners were
presented the numbers 1 to 10 inclusive printed in
random order above a 0-to-10 number line. The ex-
perimenter asked the child to place a hatch mark to
indicate the location of each number on the number
line and to write the number they were estimating
above the corresponding mark. If the child could not
write a number, the experimenter asked what num-
ber the child had in mind and wrote the number for
the child. The experimenter also indicated that chil-
dren could estimate the numbers’ location in any
order they wished and that if at any time they be-
lieved that their hatch mark was in the wrong place,
they could erase it and place it where they thought it
should go. After locating the 10 numbers, children
were given an unfilled number line, identical to the
initial one, and asked to place their final estimates for
each number on that sheet. The children’s earlier

estimates remained present while they made their
final estimates, which provided a chance for them to
think about the estimates and to make any changes
that seemed warranted.

The second phase of Session 2 was a posttest in
which children in both experimental and control
groups estimated the locations of the same numbers
on the same type of number line as on the pretest.
The time required for Session 2 was similar for the
control and experimental groups at a given age, as
was the total number of estimates. First and second
graders in the experimental group were presented 44
trials versus 48 for peers in the control group; kin-
dergartners in the experimental group were pre-
sented 14 trials versus 18 for peers in the control
group. Data from the math section of the SAT-9
were obtained 1 to 2 months after the experimental
sessions.

Results and Discussion

We first discuss the data from the pretest and then
effects of the experimental manipulation. Because all
of the analyses parallel those in Experiment 1, we
describe them more briefly here.

Accuracy of estimates. A one-way ANOVA on the
relation of age or grade to percent absolute error on
the pretest replicated the Experiment 1 findings.
Kindergartners’ estimates were considerably farther
from the correct answer than were the estimates of
first or second graders (percent absolute error = 24%,
14%, and 10%, respectively), F(2, 57) = 30.64, p<.01,
n%=.52.

Pattern of estimates. As in Experiment 1, group
medians were used to test the fit of each function to
the estimates produced by children in each grade.
Again, the exponential curve fit children’s pretest
estimates for each number much less well than the
linear or logarithmic functions; therefore, it was not
included in further analyses of group medians. As
shown in Figure 3, the median estimates of the kin-
dergartners were better fit by the logarithmic func-
tion than by the linear function (R°=.89 vs. .69),
t(47) =3.09, p<.01, d = 45. In contrast, the median
estimates of second graders were better fit by the
linear function than by the logarithmic function
(R* = .97 vs. .85), t(47) = 6.33, p<.01, d = 91. At the
first grade level, the fit of the logarithmic and linear
functions did not differ (R®> = .94 and .92), t(47)<1.

Analyses of the estimates of individual children
yielded a similar pattern of results. The vast majority
of children (all but one child) were best fit by the
logarithmic or linear models; only these children
were examined further. The type of function that fit
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Figure3. Progression from logarithmic pattern of median estimates among kindergartners (left panel) to linear pattern of estimates among

second graders (right panel) in Experiment 2.

the most children varied with age, x*(2, N=
59) =17.31, p<.01. Kindergartners were more likely
to be best fit by the logarithmic function (80%) and
less likely to be best fit by the linear function (15%)
than predicted by chance. In contrast, second graders
were more likely to be best fit by the linear function
(81%) and less likely to be best fit by the logarithmic
function (19%) than predicted by chance. Also as in
the analysis of group medians, the estimates of in-
dividual first graders were equally likely to be best
fit by linear and logarithmic functions (42% and 58%
of children, respectively).

An analysis that treated linearity of individual
children’s estimates as a continuous variable pro-
vided converging evidence. A one-way ANOVA in-
dicated that the fit of the linear function to individual
children’s estimates increased with grade, F(2,
57) =37.30, p<.01, n2 = .57. The linear function
provided a better fit to second graders’ estimates
than to those of first graders (mean R* = .86 vs. .68)
and a better fit to first graders’ estimates than to
those of kindergartners (mean R* = .68 vs. .31).

In addition to estimates becoming more linear
with age and experience, the slopes of the best fitting
linear function also increased. The mean slope of
individual kindergartners” estimates was lower than
those of first and second graders, which did not
differ (mean slopes = .38, .62, and .72, respectively),
F(2,57)=15.68, p <. 01, n* = .36.

Variability of estimates. A one-way ANOVA on the
relation of age or grade to the mean absolute differ-
ence between the two estimates of each number that
each child provided indicated that as in Experiment
1, variability decreased with grade, F(2, 57) = 34.14,
p<.01, n*>=.55. Kindergartners' estimates were
more variable than those of first graders, and first

graders’ estimates more variable than those of sec-
ond graders (mean difference =153, 9.1, and 6.7,
respectively). As in Experiment 1, numerical mag-
nitude was unrelated to the variability of estimates,
accounting for 3%, 8%, and 6% of variance among
kindergartners, first graders, and second graders,
respectively.

Linearity, variability, and accuracy of estimates. Re-
gression analyses of the separate contributions of the
linearity and variability of each child’s estimates to
that child’s estimation accuracy, beyond the con-
tribution of the other variable, indicated that as in
Experiment 1, degree of linearity was the sole source
of the relation. Linearity invariably added at least
32% to the percent absolute error that could be ac-
counted for by variability, but variability never ad-
ded more than 2% to the variance that could be
accounted for by linearity (Table 2). Thus, despite the
parallel age trends of variability and percent abso-
lute error, increased linearity entirely accounted for
the improvements in estimation accuracy.

Number-line estimation and math achievement. Tests
of the correlation between individual children’s es-
timation accuracy and their performance on the
mathematics section of the SAT-9 indicated sig-
nificant relations at two of the three grade levels.
Again partialing out age, the correlation for second
graders was pr(17) = —.76, p<.01, and for first gra-
ders, pr(15) = — .60, p<.01. The correlation for kin-
dergartners was not significant but was in the same
direction, pr(17) = —.32. In all cases, the smaller a
child’s percent absolute error of estimates, the higher
was the child’s math achievement test score. Rela-
tions between linearity and achievement test scores
were present at the same grades: second grade,
pr(17) = .81, p<.01, and first grade, pr(15)=.54,
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Table2

Linearity and Variability as Predictors of Percent Absolute Error: Experiment 2

Analysis Sample R%in R%LinVar Added R? Significance

1. Linearity entered before variability All children .90 .90 0 ns
Kindergartners .75 77 .02 ns
First graders .87 .87 0 ns
Second graders .81 .81 0 ns

RzVar R2Var+Lin

2. Variability entered before linearity All children .58 .90 32 p<.01
Kindergartners .18 77 .59 p<.01
First graders 49 .87 .38 p<.01
Second graders .20 .81 .61 p<.01

p<.05. A nonsignificant trend in the same direction
was present for kindergartners, pr(17) = .29.

Effects of experimental manipulation. Although we
expected that the experimental manipulation might
be particularly helpful to kindergartners, the ex-
perience proved more confusing than helpful to
them. Accuracy of kindergartners in the experi-
mental group actually decreased relative to its level
before the experimental manipulation (percent ab-
solute error = 12% on the 0-to-10 pretest and 16% on
the experimental task), £(10) = 2.28, p <.05. Accuracy
of estimates of kindergartners in the control group
also decreased somewhat but not significantly (per-
cent absolute error =15% and 18%), t(8) = 1.08, ns.
Because the experimental manipulation did not have
the expected effect on kindergartners, their perfor-
mance was not examined further.

On the other hand, the experimental manipulation
had the anticipated effects on the estimates of first
and second graders. Percent absolute error of first
and second graders in the experimental group de-
creased from the pretest to the experimental session
(11% on the pretest, 8% on the posttest), (16) =2.32,
p<.05, d =.56. In contrast, among peers in the con-
trol condition, percent absolute error was unchanged
(13% both times). Similarly, the fit of the linear
function increased from the pretest to the experi-
mental task (mean R?=.80 and .94), #(16) =4.02,
p<.01,d = .84. Again, no such difference was present
among peers in the control group (mean R* =.75 and
73), t(19)<1.

To determine whether the experience of placing all
estimates on a single number line improved first and
second graders’ estimation on the original one-esti-
mate-per-number-line task, we compared their
pretest and posttest performance. Within-subject ¢
tests showed that percent absolute error of first and
second graders in the experimental group tended to

improve from the pretest to the posttest (11% vs. 9%),
t(16) =1.72, p=.10, d = 42. In contrast, percent ab-
solute error of children in the control group did not
change between pretest and posttest; if anything, it
became slightly worse (13% and 14%), t<1.

Similarly, the fit of the linear function to the esti-
mates of individual first and second graders in the
experimental group tended to increase from pretest
to posttest (mean R?>=.80 and .85), t(16)=1.82,
p<.10, d = 45. In contrast, the fit of the linear func-
tion to the estimates of peers in the control group did
not change from pretest to posttest (mean R*=.75
and .73), t(19) = .63, ns. Thus, first and second gra-
ders’ estimates of multiple numbers on a single
number line were more accurate than their pretest
estimates of a single number on each number line,
and the experience of estimating the positions of
multiple numbers on a single number line tended to
improve their later performance on the original es-
timation task.

General Discussion

Results from Experiment 2, like those from Experi-
ment 1, supported the hypotheses about develop-
mental changes and individual differences that
motivated the study. The predicted developmental
sequence emerged in both experiments: Almost all
kindergartners generated logarithmic patterns of
estimates, most second graders generated linear
patterns of estimates, and first graders split evenly
between the two patterns. The two experiments also
told a consistent story regarding the contributions of
changes in the linearity and variability of estimates
to these changes in accuracy. The timing of im-
provement in both linearity and variability re-
sembled the timing of improvement in estimation
accuracy, but only changes in linearity contributed



independent variance to the changes in accuracy.
Findings about individual differences also were
consistent across the two experiments. In each case,
controlling for age and grade, individual differences
in number-line estimation were strongly related to
individual differences in math achievement, espe-
cially for first and second graders.

Results of Experiment 2 also indicated that, for
first and second graders, estimating the locations of
multiple numbers on a single number line, and being
asked to correct whatever errors were evident, pro-
duced more accurate and more linear estimates than
the original one-location-per-number-line task. The
experience also improved subsequent performance
on the original task. These findings have several
implications, both for understanding the develop-
ment of estimation and for understanding cognitive
development more generally.

Interpreting Logarithmic-Estimation Patterns

In both experiments, kindergartners’ estimates
clearly fit a logarithmic function. However, before
concluding that this logarithmic data pattern re-
flected an underlying logarithmic representation of
numbers, it seems important to address several
questions: Could the logarithmic pattern of estimates
have masked an underlying linear representation or
perhaps two separate linear representations, one for
small numbers and one for large numbers, rather
than a logarithmic representation? If the logarithmic
data pattern did imply a logarithmic representation,
was this representation used on all trials or only on
some? Finally, what might the contents of a loga-
rithmic representation of numbers be?

First, consider whether the logarithmic data pat-
tern was evidence for an underlying logarithmic re-
presentation of numbers. As Surber (1984) noted,
any estimate requires not only assigning values to
stimuli but also mapping the values onto the re-
sponse scale. Thus, kindergartners’” logarithmic pat-
tern of estimates might have obscured an underlying
linear representation of numbers. This could have
occurred in three ways: (a) if kindergartners were
confused about the number line or how their rep-
resentations of numerical magnitudes could be
mapped onto it, (b) if kindergartners used a loga-
rithmic mapping function to map a linear rep-
resentation of numbers onto the number line, or (c)
if oversampling of numbers at the low end of the
distribution led kindergartners to spread out their
estimates at that end.
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Although each of these interpretations was pos-
sible, several aspects of the data argued against each
of them. At least three types of data would be diffi-
cult to explain if children did not understand the
number-line response format or how their rep-
resentation could be mapped onto it. One source of
evidence was the high absolute fit of the logarithmic
function to kindergartners’ estimates (75% and 89%
of the variance in the two experiments); confusion
does not ordinarily produce such systematic patterns
of data. Second, the large majority of individual
kindergartners (81% and 80% in the two experi-
ments) showed a logarithmic pattern of estimates,
again not what would be expected if children were
confused. Third, in Siegler and Opfer (2003), on two
number-line tasks that were identical except for the
number at the right end of the line, many second
graders who generated linear estimation patterns on
the 0-to-100 lines generated logarithmic patterns on
0-to-1,000 lines. The mapping task was identical in
the two cases: Why would the same child be able to
map a linear representation onto the number line in
one case but not the other?

Several considerations also argued against the
possibility that a logarithmic mapping function
might have been superimposed onto a linear rep-
resentation of numbers to yield a logarithmic pat-
tern of estimates. The Siegler and Opfer (2003)
finding is again relevant: Why, in a situation in
which all mapping requirements were identical,
would a child use a linear mapping function to
generate responses on a 0-to-100 line but a logarith-
mic function to generate responses on a 0-to-1,000
line? In addition, previous studies that have directly
examined preschoolers’ mapping function have
concluded that it probably is linear (e.g.,, Cuneo,
1982). Moreover, a wide range of research with
children, adults, and nonhuman animals, using a
wide range of response formats and measures, has
produced evidence of logarithmic representations of
numerical magnitude (Banks & Hill, 1974; Dehaene,
1997).

Oversampling of numbers at the low end of the
distribution also seems insufficient to explain the
kindergartners’ logarithmic pattern of estimates. The
oversampling account does not explain why, if both
kindergartners and second graders based estimates
on linear representations, the kindergartners would
have been affected by the skew distribution but the
second graders would not have been. The account
also does not explain why, in Siegler and Opfer
(2003), second graders were able to resist the dis-
tribution bias for numerical estimates on the 0-to-100
scale but not the 0-to-1,000 scale. In addition, the
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procedures that have yielded evidence for such
context effects on numerical estimation (e.g., Birn-
baum, 1974) differ from the present procedure in at
least two important ways. One crucial difference is
that the demonstrations of context effects have in-
volved presenting the entire set of numbers before
judgments were made, which made the numerical
context clear in advance. Another crucial difference
is that responses in those studies required partici-
pants to assign numbers to qualitative rating cate-
gories (e.g., very large, very small), which are
inherently relative to the context, rather than re-
quiring absolute judgments of numerical locations
on a number line. Still, it would be worthwhile to
examine whether the logarithmic to linear shift
would appear with unbiased sampling of numbers.
Our prediction is that it would.

Another issue regarding the relation between the
logarithmic data pattern and the underlying rep-
resentation was whether kindergartners’ pattern of
estimates might have reflected two linear rep-
resentations, one for small numbers and one for large
numbers, rather than a single logarithmic rep-
resentation. Several of the considerations noted
previously are relevant to this issue as well. First, the
logarithmic function provides a very good fit to the
data; considerations of parsimony argue against as-
suming two separate functions unless there is com-
pelling evidence for them. Second, logarithmic
representations of magnitude have been found in a
wide range of studies with non-numerical stimuli,
such as studies of adults drawing line lengths (Banks
& Hill, 1974); the small-large number distinction
could not have produced those findings. Third, Fig-
ures 1 and 2 indicate that if there were a break point
between two linear functions, it would be around 20;
there was no obvious reason why kindergartners
would view 15 as a small number but 25 as a large
number. Thus, there seemed to be little reason to
conclude that kindergartners’ estimates reflected two
separate linear representations.

A third issue regarding the relation between data
and representation concerns whether individual
children relied on a given representation on all trials
or whether they relied on different representations
on different trials. The overlapping waves perspec-
tive posits that in many situations children rely on
different strategies or representations on different
trials. However, this is not always the case; for ex-
ample, most children use a single approach on bal-
ance-scale problems (Siegler & Chen, 1998). The
present method did not allow assessment of in-
dividual children’s representations on each trial,
which precluded strong conclusions regarding this

issue. Formulation of alternative methods that allow
trial-by-trial assessment of representations is needed
to resolve this issue.

A fourth issue concerns the content of the rep-
resentations that underlie logarithmic and linear
patterns of estimates. Following Case and Okamoto
(1996), we suspect that children’s representations of
numerical magnitudes include a strong spatial
component, such that larger numbers are translated
into larger spatial entities. This may be one reason
children as young as 5 years could perform the
number-line task in reasonable ways after very brief
(about 30s) instructions. Kindergartners might well
require longer and more detailed instructions, and
perhaps practice as well, to perform many other
numerical -to—non-numerical translations, for ex-
ample, translating numbers into brightness or loud-
ness. Converging evidence comes from findings that
visuospatial deficits often accompany deficiencies in
numerical processing (Geary, 1994). One way to test
the interpretation would be to determine whether
experimental manipulations that interfere with spa-
tial processing hinder numerical magnitude proces-
sing as well.

Implications Concerning Acquisition of Linear
Representations

How do children come to rely increasingly on
linear representations for representing numbers in
the 0 to 100 range? Gaining experience with numbers
in the 20 to 100 range in the latter part of first grade
and throughout second grade seems likely to be a
large part of the answer. It was this belief, together
with the findings of Siegler and Opfer (2003), that led
us to hypothesize that reliance on linear representa-
tions would increase substantially in this age range.

In addition to experience in school, informal
learning activities, in particular playing board
games, also may contribute to increased reliance on
linear representations in this age or grade range.
Case and Griffin (1990) noted that such games are
played far more in middle-income homes than in
low-income homes and suggested that this differ-
ence contributes to differences among children in
numerical understanding in the early elementary
school years. Building on this logic, Griffin, Case,
and Capodilupo (1995) formulated an instructional
intervention that emphasized board games; the in-
tervention led to large and durable improvements in
math performance on both investigator-designed
measures and standardized achievement tests.

The success of this instructional intervention
makes a great deal of sense. Playing board games



provides multiple, redundant cues to the meaning of
numbers. The larger the number that appears on the
spinner or dice, (a) the greater the distance the
child’s token traverses, (b) the longer the time it takes
to move the token to its destination, (c) the greater
the number of discrete moves the child makes if
moving the token one square at a time, and (d) the
greater the number of words the child states if
counting the token’s movements while moving it.
Thus, board games provide children with strongly
correlated spatial, temporal, kinesthetic, and verbal
or auditory cues to numerical magnitude. The mul-
tiple sources of redundant information constitute an
ideal support for constructing a linear representation
of numerical magnitude.

The present findings also raise the issue of when
children first generate linear representations of sin-
gle-digit numbers. Results from Huntley-Fenner
(2001) suggest such representations are produced by
age 5 years. In this study, 5-year-olds were presented
a number line with the numbers 1 to 20 along it in a
linear array (ascending order, evenly spaced). On
each trial, children saw 5, 7, 9, or 11 small squares
briefly displayed on a screen and then were asked to
point to the number along the number line that
matched the number of objects. Children’s mean
estimates increased linearly with set size, suggesting
that they relied on a linear representation. The linear
spacing of the numbers along the number line seems
likely to have been an important support for the
linear pattern of responses because it provided spa-
tial cues to support the numerical cues. Nonetheless,
the results suggest that under supportive circum-
stances, 5-year-olds can use linear representations.

The present results also raise issues regarding
numerical magnitude representation at the other end
of the developmental period. In particular, if pre-
sented unfamiliar ranges of numbers, such as 0 to
10,000,000, would adults also show logarithmic pat-
terns of number line estimates? The present analysis
suggests that if computation of percentages were
precluded, for example, by short time limits, adults
would deviate from their usual linear representa-
tions and instead generate logarithmic patterns.

Although experience with particular ranges of
numbers seems important for promoting reliance on
linear representations, a general understanding of
the decimal system also seems essential, especially
for representing unfamiliar ranges of numbers.
Number lines might provide a useful instructional
tool for enhancing such understanding. One possi-
bility is that encouraging children to locate a wide
range of numbers on number lines, and providing
feedback concerning the numbers’ actual locations,
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might increase understanding of the decimal system
and reliance on linear representations of numbers.
Consistent with this hypothesis, first and second
graders who participated in Experiment 2 tended to
generate more linear patterns of estimates after a
single trial in which they were asked to locate 10
numbers between 0 and 100 on a single number line
and to think about the relations among the numbers’
locations.

Another promising instructional strategy that is
already sometimes used in schools is be to encourage
children to locate benchmarks on number lines (e.g.,
fourth, half, three fourths) and to use those bench-
marks to help locate other numerical magnitudes.
The fact that adults and older children appear to use
such benchmarks in number-line estimation (Siegler
& Opfer, 2003) is one argument in favor of this ap-
proach. In addition, number lines have several ad-
vantages for classroom use, both practical and
conceptual. They are easy to generate, can be used to
examine understanding of the magnitudes of any
range of numbers, and make possible the under-
standing that all types of numbers are meaningful
entities whose magnitude is defined by the decimal
system. Thus, experience with number-line estima-
tion may help children understand the meanings of
numbers.

Although the experience of placing many num-
bers of a single number line increased the accuracy of
first and second graders’ estimates, the same ex-
perience did not help kindergartners estimate more
accurately. One possible reason is that kindergart-
ners may have interpreted the request to revise their
original answers as indicating that those answers
were wrong. Without a clear idea of how the answers
should be revised, the kindergartners may simply
have become confused. Alternatively, fatigue may
have been a problem; kindergartners’ decreased ac-
curacy from pretest to posttest in both the experi-
mental and control conditions is consistent with this
interpretation. Whatever the reason, it was clear that
the number-line experience that helped first and
second graders did not help kindergartners.

Implications for Understanding Individual Differences

The correlations in both experiments between
number-line estimation and math achievement test
scores indicate that number-line estimation is far
from an isolated task. Instead, consistent with the
view of Case and Okamoto (1996), construction of a
linear representation of numbers seems crucial to
mathematical development in the early elementary
school period. Case and his colleagues did not study
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number-line estimation, but the social class differ-
ences and instructional effects that they reported
provide persuasive evidence for the centrality of a
linear representation of numerical magnitudes to
mathematical development in this period.

The results of both Case and Okamoto (1996) and
the present experiments suggest a prediction re-
garding individual differences: Reliance on a linear
representation within a given number range should
be related to ability to learn answers to unfamiliar
arithmetic problems in that range. The effect should
be concentrated on problems with answers in the
compressed part of the logarithmic distribution and
should be evident in the quality of errors as well as in
the rate of learning correct answers. In particular, for
problems whose answers are in the compressed part
of the logarithmic representation, first graders whose
number-line estimation indicates a linear rep-
resentation should produce errors that are closer to
the correct answer than those of peers whose num-
ber-line estimates better fit a logarithmic function.

Implications for a General Understanding of Development

The finding that development of numerical rep-
resentations in the 0 to 100 range between kinder-
garten and second grade parallels development in
the 0 to 1,000 range between second and sixth grades
is reminiscent of a general theme in the writings of
classical developmental theorists, in particular, Pia-
get (1954), Vygotsky (1934/1962), and Werner (1957).
All three theorists hypothesized that development is
marked by parallel patterns of changes at different
ages and over different time spans. Although this
proposal has not received much attention in recent
years, data from contemporary research provides
reason to suspect that the classic theorists were right.

One type of parallel that has emerged in con-
temporary research involves age-related changes at
different levels of complexity in the same domain.
The present findings and those of Siegler and Opfer
(2003) regarding estimation provide one example.
Findings from arithmetic provide another. Learning
of single-digit multiplication, which in the United
States starts around age 8, shows many similarities to
learning of single-digit addition, which starts years
earlier. In both tasks, individual children tend to use
between three and five strategies, choices among the
strategies are adaptive from early in the acquisition
process, development involves increasing reliance
on more advanced procedural strategies and on re-
trieval from memory, and adults continue to use
procedural strategies on around 20% of trials rather
than always relying on retrieval (Ashcraft, 1992;

Geary, 1994; Geary & Wiley, 1991; LeFevre, Bisanz,
et al., 1996; LeFevre, Sadesky, & Bisanz, 1996; Siegler,
1987, 1988; Siegler & Shrager, 1984). Such parallels
are in no way limited to numerical tasks or even to
cognitive development. Karmiloff-Smith (1992) has
documented numerous parallels in her represen-
tational redescription model, in areas including
development of grammar, storytelling, and map-
making skills. Similarly, Adolph (1997) found that
several aspects of strategy choices in motor activity
that emerge in the context of crawling down ramps
later repeat themselves when children become able
to walk down the ramps.

Another common parallel occurs between early
patterns of accuracy and later patterns of solution
times. Again, findings from arithmetic are illus-
trative. Frequency of errors of children just learning
to multiply have been found to be more predictive of
adult solution times than any structural predictor,
such as the product, sum, or square of the sum
(Siegler, 1988). Similar findings have emerged in
addition (Campbell & Graham, 1985, Groen &
Parkman, 1972; Siegler & Shrager, 1984). Again, the
parallels are not limited to arithmetic. For example,
in language development, age of acquisition of a
word is highly predictive of adults’ naming time for
the word; the effect is present beyond cumulative
frequency, protoypicality, phoneme length, number
of letters, and imagability (Moore, Valentine, &
Turner, 1999; Morrison, Ellis, & Quinlan, 1992).

A third parallel involves similarities in acquisi-
tions over different time grains. Strong parallels exist
between the changes over years observed in cross-
sectional and longitudinal studies and the changes
over days or weeks observed in microgenetic studies
in which children have a denser exposure to relevant
experience. As in the previous parallels, relevant
data come from studies of arithmetic. Cross-sectional
and microgenetic studies of single-digit addition
show the same strategies being discovered in the
same order, the same slow generalization of newly
discovered strategies, and the same shift toward
increasing use of retrieval (Siegler, 1987; Siegler
& Jenkins, 1989). Similar acquisition patterns also
emerge when adults learn to solve letter arithmetic
problems, such as b+e =g (Logan & Klapp, 1991;
Zbrodoff & Logan, 1986). Recent reviews of micro-
genetic studies from diverse areas of cognitive de-
velopment also have noted extensive parallels with
findings from traditional cross-sectional studies in
the strategies that emerge, the order in which they
emerge, the pervasiveness of strategic variability,
and the persistence of older inefficient strategies
after discovery of more efficient approaches (Kuhn,



1995; Miller & Coyle, 1999; Siegler, 2000). Thus, the
message of the classic theorists that development is
marked by parallel changes at different ages and over
different time spans may be a useful heuristic for
modern students of cognitive development as well.
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