
Combinatorial Preconditioners and Multilevel Solvers
for Problems in Computer Vision and Image Processing?

Ioannis Koutis Gary L. Miller David Tolliver

Computer Science Department
Carnegie Mellon University

Abstract. Linear systems and eigen-calculations on symmetric diagonally dom-
inant matrices (SDDs) occur ubiquitously in computer vision, computer graphics,
and machine learning. In the past decade a multitude of specialized solvers have
been developed to tackle restricted instances of SDD systems for a diverse collec-
tion of problems including segmentation, gradient inpainting and total variation.
In this paper we explain and apply the support theory of graphs, a set of of tech-
niques developed by the computer science theory community, to construct SDD
solvers with provable properties. To demonstrate the power of these techniques,
we describe an efficient multigrid-like solver which is based on support theory
principles. The solver tackles problems in fairly general and arbitrarily weighted
topologies not supported by prior solvers. It achieves state of the art empirical re-
sults while providing robust guarantees on the speed of convergence. The method
is evaluated on a variety of vision applications.

1 Introduction

The Laplacian operator ∇2 has played a central role in computer vision for nearly 40
years. In Horn’s early work, he employed finite element methods for elliptical operators
in shape from shading [20], to produce albedo maps [21], and flow estimates [22].
In Witkin’s seminal work [39] he studied the diffusion properties of matrix equations
derived from ∇2 for linear filtering, later generalized by Perona and Malik [30] to the
anisotropic case.

In recent years, combinatorial Laplacians of graphs have formed the algorithmic
core of spectral methods [34, 29, 2, 40, 10, 15, 27, 11], random walks segmentation [15],
in-painting [36, 28, 4], and matting methods [27]. Given the power of modern iterative
solvers, we believe that reducing traditional image processing problems, such as Grady
et al.’s work [17] on Mumford-Shah segmentation, to SDD systems at the inner loop
is a critical endeavor. To this end, we note that non-linear filtering operations such
as `2, `1 Total Variation [31, 9] and Non-Local Means [8, 7] can also be formulated
as optimizations with these linear systems at their core. Further, we provide timing and
modern complexity bounds for computer vision methods in §4 that require the solutions
to SDD systems at their core.

? This work was partially supported by the National Science Foundation under grant num-
ber CCF-0635257 and the University of Pittsburgh Medical Center under award number A-
006461.



2 Ioannis Koutis Gary L. Miller David Tolliver

From a practical standpoint, modern photos and videos, and medical images de-
rived NMR and CT scanners provide enormously detailed portraits of a scene. As the
resolution of imaging hardware has pushed at the limits of computational feasibility,
researchers inevitably arrived at the study of iterative and hybrid solvers. Recently,
vision and graphics researchers have developed specialized solvers [36, 13, 4, 28], and
heuristic solvers with impressive empirical performance [33, 28, 18, 16]. In either case,
the methods place strict requirements on the system, such as unit weight edges or 4-
connectivity. For the methods that handle general weights, including Algebraic Multi-
grid (AMG) [32, 6], the solvers are based on heuristics and offer no guarantees on the
speed of convergence. Indeed many applications, such as the spectral segmentation and
convex programming, require wildly varying weights and often employ randomly sam-
pled and loosely localized topologies. Furthermore, the heuristic nature of the solvers
is generally undesirable in certain commercial applications, e.g. medical, where robust
and timely behavior is a critical issue.

Given modern data volumes and reliability requirements it is clear that a SDD solver
with provable convergence properties and sound theoretical machinery is important for
the advancement and real-world success of methods based on linear system solutions.
In this work we introduce the Combinatorial Multigrid Solver (CMG), a state of the
art solver with provable properties. The CMG solver is based on principles of support
theory for graphs, a set of techniques developed for the construction of combinatorial
preconditioners, i.e. graphs that are simpler than a given graph and approximate it well
in a precisely defined sense. An ancillary goal of this paper is to review certain useful
fragments of support theory and apply them to analyze solvers.

2 Support Theory for graphs

Support Theory was developed for the study of Combinatorial subgraph precondition-
ers, introduced by Vaidya [38, 23]. It has been at the heart of impressive theoretical
results which culminated in the work of Spielman and Teng [35] who demonstrated
that SDD systems can be solved in nearly-optimal Õ(n logO(1) n) time and later in the
work of Koutis and Miller [25] who formally proved that SDD matrices with planar
connection topologies (e.g. 4-connectivity in the image plane) can be solved asymptoti-
cally optimally, in O(n) time. We dub these solvers hybrid solvers since they combine
algorithms and ideas from direct solvers, preconditioned Conjugate Gradient, and re-
cursion.

2.1 Reduction of SDDs to Laplacians

A matrix A is SDD if it is real symmetric and Aii ≥
∑

j 6=i |Aij | for 1 ≤ i ≤ n. The
Laplacian A of a graph G = (V,E,w), where w is a non-negative weight function
on the edges, is defined by Ai,j = A(j, i) = −wi,j and Ai,i =

∑
i 6=j wi,j . Thus

Laplacians are SDD matrices having non-positive off diagonals and zero row sums. We
briefly describe how any SDD system can be reduced to a Laplacian. SDD systems with
positive off-diagonals can be reduced to the case of non-positive off diagonals using a
very light-weight reduction known as the double-cover construction [19]. Assuming



Lecture Notes in Computer Science 3

now negative off-diagonals, nodes with positive row sums can be viewed as nodes that
have an implicit edge to a new “grounded node”. In general they do not cause any
significant changes in the Laplacian solver [5, 24].

2.2 Preconditioners - Motivating Support Theory

Iterative algorithms, such as the Chebyshev iteration or the Conjugate Gradient, con-
verge to a solution using only matrix-vector products with A. It is well known that
iterative algorithms suffer from slow convergence properties when the conditioning of
A, κ(A), - defined as the ratio of the largest over the minimum eigenvalue of A - is
large [1].

Preconditioned iterative methods attempt to remedy the problem by changing the
linear system to B−1Ax = B−1b. In this case, the algorithms use matrix-vector prod-
ucts with A, and solve linear systems of the form By = z. The speed of convergence
now depends on the condition number κ(A,B), defined as

κ(A,B) = max
x

xTAx

xTBx
·max

x

xTBx

xTAx
(1)

where x is taken to be outside the null space of A. In constructing a preconditioner B,
one has to deal with two contradictory goals: (i) Linear systems inB must be easier than
those in A to solve, (ii) The condition number must be small to minimize the number
of iterations.

Historically, preconditioners were natural parts of the matrix A. For example, if B
is taken as the diagonal of A we get the Jacobi Iteration, and when B is the upper
triangular part of A, we get the Gauss-Seidel iteration.

The cornerstone of combinatorial preconditioners is the following intuitive yet paradigm-
shifting idea explicitly proposed by Vaidya: A preconditioner for the Laplacian of a
graph A should be the Laplacian of a simpler graph B, derived in a principled fashion
from A.

2.3 Graphs as electric networks - Support basics

There is a fairly well known analogy between graph Laplacians and resistive networks
[12]. If G is seen as an electrical network with the resistance between nodes i and j
being 1/wi,j , then in the equation Av = i, if v is the vector of voltages at the node, i is
the vector of currents. Also, the quadratic form vTAv =

∑
i,j wi,j(vi − vj)2 expresses

the power dissipation on G, given the node voltages v. In view of this, the construction
of a good preconditioner B amounts to the construction of a simpler resistive network
(for example by deleting some resistances) with an energy profile close to that of A.

The support of A by B, defined as σ(A/B) = maxv v
TAv/vTBv is the number

of copies of B that are needed to support the power dissipation in A, for all settings
of voltages. The principal reason behind the introduction of the notion of support, is to
express its local nature, captured by the Splitting Lemma.

Lemma 1 (Splitting Lemma). If A =
∑m

i=1Ai and B =
∑m

i=1Bi, where Ai, Bi are
Laplacians, then σ(A,B) ≤ maxiσ(Ai, Bi).



4 Ioannis Koutis Gary L. Miller David Tolliver

The Splitting Lemma allows us to bound the support of A by B, by splitting the
power dissipation in A into small local pieces, and “supporting” them by also local
pieces in B.

For example, in his work Vaidya proposed to take B as the maximal weight span-
ning tree of A. Then, it is easy to show that σ(B,A) ≤ 1, intuitively because more
resistances always dissipate more power. In order to bound σ(A,B), the basic idea to
let the Ai be edges on A (the ones not existing in B), and let Bi be the unique path in
the tree that connects the two end-points of Ai. Then one can bound separately each
σ(Ai, Bi). In fact, it can be shown that any edge in A that doesn’t exist in B, can be
supported only by the path Bi.

As a toy example, consider the example in Figure 1(a) of the two (dashed) edges
A1, A2 and their two paths in the spanning tree (solid) that share one edge e.

A2

e A1

(a) A graph and its spanning tree
- obtained by deleting the dashed
edges.

v7

r1
r2

V1
V2

v2

v3

v4

v5

v6

v7

v1

v1

v2

v3

v4

v5

v6

(b) A graph and its Steiner pre-
conditioner

Fig. 1.

In this example, the dilation of the mapping is equal to 3, i.e. the length of the
longest of two paths. Also, as e is uses two times, we say that the congestion of the
mapping is equal to 2. A core Lemma in Support Theory [3, 5] is that the support can
be upper bounded by the product congestion∗dilation.

2.4 Steiner preconditioners

Steiner preconditioners, introduced in [19] and extended in [26] introduce external
nodes into preconditioners. The proposed preconditioner is based on a partitioning of
the n vertices in V into m vertex-disjoint clusters Vi. For each Vi, the preconditioner
contains a star graph Si with leaves corresponding to the vertices in Vi rooted at a vertex
ri. The roots ri are connected and form the quotient graph Q. This general setting is
illustrated in Figure 1(b), consisting of good clusters.

Let D′ be the total degree of the leaves in the Steiner preconditioner S. Let the
restriction R be an n ×m matrix, where R(i, j) = 1 if vertex i is in cluster j and 0



Lecture Notes in Computer Science 5

otherwise. Then, the Laplacian of S has n+m vertices, and the algebraic form

S =
(

D′ −D′R
−RTD′ Q+RTD′R

)
. (2)

A worrying feature of the Steiner preconditioner S is the extra number of vertices.
So how do we even use it? Gremban and Miller [19] proposed that every time a system

of the formBz = y is solved in an usual preconditioned method, the system S

(
z
z′

)
=(

y
0

)
should be solved instead, for a set of don’t care variables z′. They also showed

that the operation is equivalent to preconditioning with the dense matrix

B = D′ − V (Q+DQ)−1V T (3)

where V = D′R, and DQ = RTD′R. The matrix B is called the Schur complement
of S with respect to the elimination of the roots ri, further it is a well known that B is
also a Laplacian.

The analysis of the support σ(A/S), is identical to that for the case of subgraph
preconditioners. For example, going back to Figure 1(b), the edge (v1, v4) can only be
supported by the path (v1, r1, v4), and the edge (v4, v7) only by the path (v4, r1, r2, v7).
Similarly we can see the mappings from edges in A to paths in S for every edge in A.
In the example, the dilation of the mapping is 3, and it can be seen that to minimize the
congestion on every edge of S (i.e. make it equal to 1), we need to take D′ = D, where
D are the total degrees of the nodes in A, and w(r1, r2) = w(v3, v5)+w(v4, v7). More
generally, for two roots ri, rj we should havew(ri, rj) =

∑
i′∈Vi,j′∈Vj

wi,j . Under this
construction, the algebraic form of the quotient Q can be seen to be Q = RTAR.

So far no special properties of the clustering have been used. Those come into play
in bounding the support of S by A, σ(S/A). In [26] it was shown that the support
σ(S/A) reduces to bounding the support σ(Si, A[Vi]), for all i, where A[Vi] denotes
the graph induced in A by the vertices Vi. When are these bounded? Before we answer
this question, let us recall the definition of conductance.

Definition 1. The conductance φ(A) of a graph A = (V,E,w) is defined as

φ(A) = min
S⊆V

w(S, V − S)
min(w(S), w(V − S))

wherew(S, V −S) denotes the total weight connecting the sets S and V −S, and where
w(S) denotes the total weight incident to the vertices in S.

The main result of [26] is captured by the following Theorem.

Theorem 1. The support σ(S/A) is bounded by a constant c independent from n, if and
only for all i the conductance of the graphAo[Vi] induced by the nodes in Vi augmented
by the edges leaving Vi is bounded by a constant c′.

Although Theorem 1 doesn’t give a way to pick to clusters, it does provide a way to
avoid bad clusterings.



6 Ioannis Koutis Gary L. Miller David Tolliver

2.5 Support Theory & Grady’s clusterings

In recent work [16], Grady proposed a multigrid method where the construction of the
“coarse” grid follows exactly the construction of the quotient graph in the previous sec-
tion. Specifically, Grady proposes a clustering such that every cluster contains exactly
one of certain pre-specified “coarse” nodes. He then defines the restriction matrixR and
he lets the coarse grid be Q = RTAR, identically to the construction of the previous
Section. The question then is whether the proposed clustering provides the guarantees
that by Theorem 1 are necessary to construct a good Steiner preconditioner. In the fol-
lowing Figure, we replicate Figure 2 of [16], with a choice of weights that force the
depicted clustering.

1

M M

1 1

2 1

1

2

1

Fig. 2. A bad clustering

Every cluster in Figure 2 contains exactly one black/coarse node. The problem with
the clustering is that the top left cluster, has a very low conductance when M >> 1.
In general, in order to satisfy the requirement of Theorem 1, there are cases where the
clustering has to contain clusters with no coarse nodes in them.

It is interesting that the Maximally Connected Neighbor (MCN) algorithm proposed
in [16] comes very close to the clustering algorithm proposed in [26]. Of course, it is
imaginable that there are instances where MCN may not induce bad clusterings. On
such instances, Grady’s clustering has provable properties. Grady’s solver is a multigrid
solver, but as we will see in Section 3, multigrid solvers and Steiner preconditioners are
closely related.

3 The Combinatorial Multigrid Solver

In this section we describe the Combinatorial Multigrid Solver. As we will see, the
CMG solver matches the simple form of AMG, but with two distinguishing features:
(i) The “coarsening” strategy is markedly different; it is in fact easier to implement and
faster than the various AMG coarsening strategies. (ii) The algorithm is truly “black-
box”, in stark contrast which AMG which employs an extensive list of algorithmic
knobs.



Lecture Notes in Computer Science 7

3.1 A graph decomposition algorithm

According to the discussion of §2.4, the crucial step for the construction of a good
Steiner preconditioner is the computation of a group decomposition that satisfies, as best
as possible, the requirements of Theorem 1. Before the presentation of the Decompose-
Graph algorithm, that extends the ideas of [26], we need to introduce a couple of defi-
nitions. Let volG(v) denote the total weight incident to node v in graphG. The weighted
degree of a vertex v is defined as the ratio

wd(v) =
vol(v)

maxu∈N(v) w(u, v)
.

The average weighted degree of the graph is defined as awd(G) = (1/n)
∑

v∈V wd(v).

Algorithm Decompose-Graph

Input: Graph A = (V,E,w)
Output: Disjoint Clusters Vi with V =

⋃
i Vi

1. Let W ⊆ V be the set of nodes satisfying wd(v) > κ · awd(A), for some constant
κ > 4.
2. Form a forest graph F , by keeping the heaviest incident edge of v for each vertex
v ∈ V in A.
3. For every vertex w ∈W such that volT (w) < volG(w)/awd(A) remove from F the
edge contributed by w in Step 2.
4. Decompose each tree T in F into vertex-disjoint trees of constant conductance.

It is not very difficult to prove that the algorithm Decompose-Graph produces a
partitioning where the conductance of each cluster depends only on awd(A) and the
constant κ. In fairly general topologies that allow high degree nodes, awd(A) is con-
stant and the number of clusters m returned by the algorithm is such that n/m > 2
(and in practice larger than 3 or 4). There are many easy ways to implement Step 3. Our
current implementation makes about three passes ofA. Of course, one can imagine vari-
ations of the algorithm (i.e. a correction step, etc) that may make the clustering phase
a little more expensive with the goal of getting a better conductance and an improved
condition number, if the application at hand requires many iterations of the solver.

3.2 From Steiner preconditioners to Multigrid

Multigrid algorithms have been a very active research area for nearly three decades.
There are many expository article and books, among which [37]. In order to describe
the reasoning that leads to our Combinatorial Multigrid Algorithm, we will need to
shortly review the basic principles behind the generic two-level iteration.

Algebraically, any of the classic preconditioned iterative methods, such as the Jacobi
and Gauss-Seidel iteration, is nothing but a matrix S , which gets applied implicitly to
the current error vector e, to produce a new error vector e′ = Se. For example, in the



8 Ioannis Koutis Gary L. Miller David Tolliver

Jacobi iteration we have S = (I−D−1A). This has the effect that it reduces effectively
only part of the error in a given iterate, namely the components that lie in the low
eigenspaces of S (usually referred to as high frequencies of A). The main idea behind
a two-level multigrid is that the current smooth residual error r = b− Ax, can be used
to calculate a correction PTQ−1Pr, where Q is a smaller graph and P is an m × n
restriction operator. The correction is then added to the iterate x. The hope here is that
for smooth residuals, the low-rank matrix PTQ−1P is a good approximation of A−1.
Algebraically, this correction is the application of the operator T = (I − PTQ−1PA)
to the error vector e. The choice of P and Q is such that T is a projection operator with
respect to the A-inner product, a construction known as the Galerkin condition. Two-
level convergece proofs are then based on bounds on the angle between the subspace
Null(P ) and the high frequency subspace of S.

At a high level, the key idea behind CMG is that the provably small condition num-
ber κ(A,B) whereB is given in expression 3, is equal to the condition number κ(Â, B̂)
where Â = D−1/2AD−1/2 and B̂ = D−1/2BD−1/2. This in turn implies a bound on
the angle between the low frequency of Â and the high frequency of B̂ [26]. The latter
subspace includes Null(RTD1/2). This fact suggests to choose RTD1/2 as the projec-
tion operator while performing relaxation with (I − Â) on the system Ây = D−1/2b,
with y = D1/2x. Combining everything, we get the following two-level algorithm.

Two-level Combinatorial Multigrid

Input: Laplacian A = (V,E,w), vector b, approximate solution x, n×m
restriction matrix R
Output: Updated solution x for Ax = b

1. D := diag(A); Â := D−1/2AD−1/2;
2. z := (I − Â)D1/2x+D−1/2b;
3. r := D−1/2b− Âz; w := RTD1/2r;
4. Q := RTAR; Solve Qy = w;
5. z := z +D1/2Ry
5. x := D−1/2((I − Â)z +D−1/2b)z

The two-level algorithm can naturally be extended into a full multigrid algorithm, by
recursively calling the algorithm when the solution to the system with Q is requested.

4 Experiments

Many computer vision problems naturally suggest a graph structure - for example the
vertices often correspond to samples (e.g. pixels, patches, images), the edge set estab-
lishes pairwise comparisons or constraints encoded in the graph and the weights are
either data driven (for clustering) or the result of an ongoing optimization procedure
(weights in the tth iteration of Newton’s method).

In this section we demonstrate our general case combinatorial multigrid precondi-
tioner (CMG) solver on a suite of applications taken from computer vision. The data is
presented relative to the timing of a direct methods, found in MATLAB and LAPACK,
for reference. We emphasize that our goal is not to perform numerical comparisons



Lecture Notes in Computer Science 9

with any of the previous solvers, but rather to demonstrate that fast solvers with prov-
able properties (such as CMG) are within the realm of practical implementation. The
presented solver was written in a combination of C and MATLAB with modest attention
paid to code optimization.

Notation The weighted laplacian matrix A can be factored as A = ΓTWΓ where Γ is
a edge-node incidence matrix, and W is a nonnegative diagonal weight matrix over the
edges. The normalized Laplacian is defined Â = D−1/2AD−1/2 = I−D−1/2GD−1/2

where D is the weighted degree matrix and G the weighted adjacency matrix. Recall
that quadratic form xTAx can be written in several forms xTDx−xTGx =

∑
i dix

2
i −

2
∑

ij wijxixj =
∑

ij wij(xi − xj)2.

4.1 SDD Linear Systems

Sparse, unit weight, SDD linear systems arise in non-local means[8, 7], gradient inpaint-
ing [36, 28, 4], segmentation [14], regression and classification [41] and related data
interpolation optimizations. For example, the in-painting functional f(x) = minx :
(Γx − ∆)TW (Γx − ∆), where ∆ is a vector of target gradient values to be exhib-
ited in the image x and Γ is a generalized gradient operator, requires the solution to
ΓTWΓx = ΓTW∆. When W is the identity and Γ embodies a 4-connected topology
these systems can be efficiently solved (provably) by geometric multigrid methods in-
cluding the method described herein. For unit and weighted general planar systems the
asymptotic complexity of solving Ax = b is O(n) [26].

When W is a more general nonnegative diagonal matrix and Γ encodes non-planar
connectivity many multigrid methods will fail. Figure 3 shows such a class of problems
in a log-log plot for weighted 3D graphs derived from a 3D CT Study of an oncology
phantom – with the edge weighting: wuv = exp

(
−(Iu − Iv)2/σ2

)
between neigh-

boring voxels u and v, where Iu denotes the intensity of voxel u. Solving such 3D
lattice SDDs, and general topologies, requires only O(nlogo(1)n) [35] work, however
we observe linear work empirically.

Eigencalculations: Calculating a minimal, say k−dimensional, eigenspace of an SDD
matrix forms the computational core of the spectral relaxation for NCuts [34], spectral
clustering [29], Laplacian eigenmaps [2], diffusion maps [10], and the typical case for
Levin et. al.’s image matting algorithm [27]. Recall that eigensystems satisfy the fol-
lowing equations for a Laplacian Azi = φizi and generalize to Axi = λiDxi where
we assume D is positive definite diagonal in general, and typically D is the weighted
degree matrix (see §2.4).

For the generalized problem, efficient computation of the k eigenpairs (xi, λi), such
that λ1 ≤ λi ≤ λk+1, depends upon the relationship to a normalized Laplacian, Â. Â is
possessed of the same eigenvalues {λi} as the generalized problem, with eigenvectors
yi that map to generalized vectors under the operator D1/2: xi = D1/2yi.

We find the set of eigenvalues and vectors by inverse powering, i.e. repeated solves
of the problem Âqt+1 = qt, coupled with a Krylov space method such as the Lanczos
algorithm. In [35] the number of inverse powers required was shown to be O(log n)



10 Ioannis Koutis Gary L. Miller David Tolliver

to calculate a vector with a Rayleigh quotient arbitrarily close to that of the minimal
eigenspace. Thus the general case complexity of an eigencalculation remainsO(n logo(1) n).
In essence by employing the CMG solver we achieve approximate NCuts solutions in
time roughly proportional to sorting the vertices (pixels) by intensity. Timing results
for estimating (x2, λ2) on three panoramic landscape image derived graphs is shown in
column 4 of Table 1 (edge weightings as in above).

Convex Programming and Reweighted Problems: The optimization of convex func-
tionals such as “`2 − `1 Total Variation”[31], given by: f(x) = minx : ||x − s||2 +
λ|∇x|1 for an input signal s, and related problems can be accomplished using Newton’s
method with log-barriers in O(n1.5 logo(1)(n)) time with modern solvers. For TV, the
computational crux of each iteration is the solution of a SDD system with iteration
dependent edge weights for the Laplacian modeling the `1 penalty on spatial gradients
|∇x|1. As the program iterates, the weights on edges between regions of different inten-
sity approach zero; such weightings radically violate the conditions required by most
multi-grid methods. CMG is suitable for such weightings, and further, the clustering
determined by the steps in §3 are generally preserved across iterations thus requiring
linear work to update the preconditioner, unlike, direct methods which require recom-
puting the factorization from scratch. This property is also useful for other iterative
methods such as robust least squares. Timing results on the panoramic image problems
can be found in columns 5 and 6 of Table 1.

8 9 10 11 12 13 14 15 16 17
−1

0

1

2

3

4

5

6

7

8
Log(seconds) vs. Log(|V|)

Fig. 3. Relative speeds of the CMG solver (black) and MATLAB’s “\” operator (grey) on
weighted graphs with 6 connected 3D lattices derived from a CT study. The X-axis is shown
in log scale over |V |, the number of variables in the system. For reference, the execution time for
the CMG solver on a problem with 27 million variables is ≈ 50 seconds.



Lecture Notes in Computer Science 11

Size in Mega-pixels “\” CMG “\”+eigs CMG+eigs `2, `1 w “\” `2, `1 w CMG
2M 45s 8s 1.6m 59s 5.1m 31s
10M 4.9m 22s 7.6m 2.7m 49.4m 3.7m
50M NA 1.1m NA 7.1m NA 14.6m

Table 1. Two dimensional comparison with MATLAB for solutions on weighted 2D problems
(with O(|V |) super-lattice topology) at 2, 10, and 50 megapixels. The construction of the CMG
hierarchy takes less than 5 seconds for the 50M problem. For CMG, the majority of the compute
time is consumed by the solver iteration, for direct methods computing the factorization is most
time consuming.

5 Discussion

Finally, by segregating the code for solvers (and eigen-calculations) from that of the
applications we harvest improved modularity, reliability and factorizations of the sys-
tem. Thus, 1) errors can be isolated to either the solver or the application, 2) as new
solvers become available they can be easily adopted and perhaps most importantly 3)
it relieves the application designer of the burden of implementing the state-of-the-art in
solver technology.

We feel that significant improvements are still to be made in the solver and eigen-
solver technology. We envision major new applications for these solvers in scientific
computing, image processing, data-mining, and machine learning. Finally, to ease adop-
tion of hybrid solvers, an implementation of the CMG solver will be made available in
the near future.

References

1. O. Axelsson. Iterative Solution Methods. Cambridge University Press, New York, NY, 1994.
2. M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data repre-

sentation. Neural Computation, 15(6):1373–1396.
3. M. Bern, J. R. Gilbert, B. Hendrickson, N. Nguyen, and S. Toledo. Support-graph precondi-

tioners. SIAM J. Matrix Anal. Appl., 4:930–951, 2006.
4. P. Bhat, B. Curless, M. Cohen, and C. L. Zitnick. Fourier analysis of the 2d screened poisson

equation for gradient domain problems. In ECCV, 2008.
5. E. G. Boman and B. Hendrickson. Support theory for preconditioning. SIAM J. Matrix Anal.

Appl., 25(3):694–717, 2003.
6. A. Brandt. General highly accurate algebraic coarsening. 2000.
7. T. Brox, O. Kleinschmidt, and D. Cremers. Efficient nonlocal means for denoising of textural

patterns. Trans. on Image Processing.
8. A. Buades, B. Coll, and J. Morel. Nonlocal image and movie denoising. IJCV, 76(2):123–

139, 2008.
9. T. Chan and J. Shen. Image Processing And Analysis: Variational, Pde, Wavelet, And

Stochastic Methods. SIAM, 2005.
10. R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner, and S. W. Zucker.

Diffusion maps geometric diffusions as a tool for harmonic analysis and structure definition
of data. PNAS, 102(21):7426–7431, May 2005.

11. T. Cour and J. Shi. Solving markov random fields with spectral relaxation. AISTATS, 2007.
12. P. G. Doyle and J. L. Snell. Random walks and electric networks, 2000.
13. G. Gilboa and S. Osher. Nonlocal operators with applications to image processing. July

2007.



12 Ioannis Koutis Gary L. Miller David Tolliver

14. L. Grady. Multilabel random walker image segmentation using prior models. In CVPR,
volume 1 of CVPR, pages 763–770, San Diego, June 2005. IEEE, IEEE.

15. L. Grady. Random walks for image segmentation. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 2(11):1768–1783, 2006.

16. L. Grady. A lattice-preserving multigrid method for solving the inhomogeneous poisson
equations used in image analysis. ECCV, 5303:252–264, 2008.

17. L. Grady and C. Alvino. Reformulating and optimizing the mumford-shah functional on a
graph - a faster, lower energy solution. ECCV, 5302:248–261, 2008.

18. L. Grady and A. K. Sinop. Fast approximate random walker segmentation using eigenvector
precomputation. In CVPR, 2008.

19. K. Gremban. Combinatorial Preconditioners for Sparse, Symmetric, Diagonally Dominant
Linear Systems. PhD thesis, Carnegie Mellon University, Pittsburgh, October 1996. CMU
CS Tech Report CMU-CS-96-123.

20. B. Horn. Shape from shading: A method for obtaining the shape of a smooth opaque object
from one view. Technical Report 232, MIT AI Laboratory, November 1970.

21. B. Horn. Determining lightness from an image. Computer Graphics and Image Processing,
3(1):277–299, 1974.

22. B. Horn. Determining optical flow. MIT AI Laboratory, 17(1):185–203, 1981.
23. A. Joshi. Topics in Optimization and Sparse Linear Systems. PhD thesis, University of

Illinois at Urbana Champaing, 1997.
24. I. Koutis. Combinatorial and algebraic algorithms for optimal multilevel algorithms. PhD

thesis, Carnegie Mellon University, Pittsburgh, May 2007. CMU CS Tech Report CMU-CS-
07-131.

25. I. Koutis and G. L. Miller. A linear work,O(n1/6) time, parallel algorithm for solving planar
Laplacians. In SODA 2007.

26. I. Koutis and G. L. Miller. Graph partitioning into isolated, high conductance clusters: The-
ory, computation and applications to preconditioning. In SPAA, 2008.

27. A. Levin, A. Rav-Acha, and D. Lischinski. Spectral matting. In CVPR, 2007.
28. J. McCann and N. S. Pollard. Real-time gradient-domain painting. SIGGRAPH, 27(3), 2008.
29. A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In NIPS,

2002.
30. P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion. PAMI,

7(12):629–639, 1990.
31. L. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithm.

Physica D, (60):259–268, 1992.
32. J. W. Ruge and K. Stüben. Algebraic multigrid (AMG). In S. F. McCormick, editor,

Multigrid Methods, volume 3 of Frontiers in Applied Mathematics, pages 73–130. SIAM,
Philadelphia, PA, 1987.

33. E. Sharon, A. Brandt, and R. Basri. Segmentation and boundary detection using multiscale
intensity measurements. In CVPR, 2001.

34. J. Shi and J. Malik. Normalized cuts and image segmentation. In PAMI, 2000.
35. D. A. Spielman and S.-H. Teng. Nearly-linear time algorithms for preconditioning and solv-

ing symmetric, diagonally dominant linear systems, 2006.
36. R. Szeliski. Locally adapted hierarchical basis preconditioning. SIGGRAPH, 25(3):1135–

1143, August 2006.
37. U. Trottenberg, A. Schuller, and C. Oosterlee. Multigrid. Academic Press, 1st edition, 2000.
38. P. M. Vaidya. Solving linear equations with symmetric diagonally dominant matrices by

constructing good preconditioners. A talk based on this manuscript, October 1991.
39. A. Witkin. Scale-space filtering. IJCAI, pages 1019–1022, August 1983.
40. S. Yu and J. Shi. Segmentation given partial grouping constraints. PAMI, 26(2):173–183,

2004.
41. X. Zhu, Z. Ghahramani, and J. D. Lafferty. Semi-supervised learning using gaussian fields

and harmonic functions. ICML, 2003.


