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ABSTRACT
There has recently been impressive progress –after nearly
fifty years of stagnation– in algorithms that find exact so-
lutions for certain hard computational problems, including
the famous Hamiltonian path problem. This progress has
been due to a few core ideas that have found several ap-
plications. A unifying theme is algebra: we ‘transform’ the
given problem into a more general algebraic format, then
solve the corresponding algebraic problem that arises.

This article walks the reader through some of these exciting
developments and the underlying ideas. It also puts them in
context with the discovery process that led to them, high-
lighting the role of parameterization as a way of dealing with
intractability.

1. INTRODUCTION
It was a major surprise when, in 2010, Andreas Björklund

discovered what many previously thought impossible: a sig-
nificantly improved algorithm for the famous Hamiltonian
path problem, also known as Hamiltonicity [4]. Hamiltonic-
ity asks if a given graph contains a path that goes through
each vertex exactly once, as illustrated in Figure 1.

Figure 1: A Hamiltonian Path.

Hamiltonicity was one of the first problems shown to be
NP-complete by Karp [20]. The only known algorithms for
NP-complete problems require time scaling exponentially
with the size of the input. It is believed that they can’t
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be solved much faster in general, although the possibility
hasn’t been ruled out [17]. Given an undirected graph on n
vertices, Björklund’s algorithm can find a Hamiltonian path
or report that no such path exists in O∗(1.657n) time1. The
algorithm still runs in exponential time but it is much faster
than the O∗(2n) running time of the previously fastest al-
gorithm, known since the 1960’s [3, 19].

Hamiltonicity is a prominent algorithmic problem. Many
researchers before Björklund have tried their hand at it,
without success. But some of the tools that Björklund used,
didn’t become available until 2009, thanks to progress in the
k-path problem, a related problem in the context of param-
eterized algorithms.

1.1 A parameterized race and a conjecture
The k-path problem is a natural parameterized analogue

of Hamiltonicity. The goal now is to find in the given graph
a path of length k for some specified value of k, rather than
a path of length n. It could be argued that, from a practical
standpoint, the k-path problem is better motivated relative
to Hamiltonicity. Algorithms designed specifically for the
k-path problem have been actually used to detect signaling
pathways in large protein interaction networks [29].

Most NP-complete problems have similar parameteriza-
tions, where the parameter k measures the solution size
to the given instance. This is natural because in practice,
the solution length to an NP-hard problem is often short
relative to the length of the overall instance. Downey and
Fellows [12] observed that some parameterized problems ap-
pear to be ‘easier’ than others. To capture that, they defined
the class of Fixed Parameter Tractable (FPT) problems.
The definition of FPT is rather simple. The running time of
a parameterized algorithm should clearly depend on the in-
put size n, and the parameter k. But the dependence should
be somewhat special: a problem is defined to be FPT if it
can be solved by an algorithm in O∗(f(k)) time.

The FPT notion has proven to be extremely insightful and
has led to a more detailed understanding of problem hard-
ness. It is believed that not all NP-hard problems are FPT;
a prominent example is the k-clique problem, where the goal
is to detect a k-subset of the network nodes that are all pair-
wise connected (see Figure 2). The best known algorithm
for k-clique is not much better than exhaustive search, which
takes time O(nk). However, experience shows that when a
problem is shown to be FPT, algorithmic progress has just
begun as it is often the case that the function f(k) in the

1O∗(f(k)) means a function smaller than p(n)·f(k) for some
polynomial p(n).



Figure 2: A 3-path and a 3-clique. Finding a k-clique
appears to be much harder than finding a k-path.

running time can be improved.
The k-path problem is a prime example. The problem

was shown to be FPT by Monien [25] who described an
algorithm running in O∗(k!) time. This was later improved
to O∗((2e)k) by Alon et al. [2] and to O∗(4k) by Chen et
al. [10]. Each of these steps represents the introduction of
a significant new idea. Similarly, for many FPT problems
there are now races for faster parameterized algorithms [27],
which have enriched the field of algorithm design with new
techniques.

However with each improvement, one is faced with the
question: is further progress possible? Known algorithms for
the ‘parent’ NP-complete problem can be a valuable guide
to answering this question. This is because their running
time sets a clear target for the parameterized algorithm.
In the case of Hamiltonicity, we know of an algorithm that
runs in O∗(2n) time. It is then reasonable to conjecture
that there is an algorithm for k-path that runs in O∗(2k)
time, ‘matching’ the Hamiltonian path algorithms for the
extreme value of the parameter.

Roadmap. The development of the algorithmic techniques
we are about to discuss was largely driven by the k-path
conjecture. But for the sake of simplicity we will illus-
trate them in the context of another important NP-complete
problem known as the 3D-matching problem, which has also
played a central role. In fact, the Hamiltonicity algorithm
was preceded by another record-breaking algorithm for the
3D-matching problem, also due to Björklund [5].

In this article, our first step towards faster algorithms is
what we call an algebraization of the combinatorial prob-
lem, i.e. capturing the problem as a question about the ex-
istence of certain monomials in a polynomial. We discuss
one algebraization of the 3D-matching problem in Section 2.
Given the polynomial, the original combinatorial question
becomes now an issue of algebraic detection of monomi-
als; that is, extracting information from the polynomial by
assigning values into its variables. Looking for assignments
that fit our purpose will lead us to calculations modulo 2,
over an algebra in which sums of pairs cancel out. This in
turn will present us with a problem of unwanted cancelations
of monomials. We will solve it with the method of finger-
prints which augments the 3D-matching polynomial in or-
der to make sure that no unwanted cancelations occur. The
k-path conjecture was answered in the positive via a gener-
alization of algebraic detection with fingerprints, which also
yielded many other faster parameterized algorithms. These
ideas are reviewed in Section 3. In Section 4, we arrive at
Björklund’s key twist that helped unlock the faster Hamil-
tonicity algorithm. While still employing in a relaxed way
the method of fingerprints, Björklund treated computation
modulo 2 not just as a nuisance, but also as a resource, by
presenting algebraizations where many unwanted monomials

cancel out, because they come in pairs. In order to derive
these sharper algebraizations that exploit cancelations,
Björklund tapped into the power of algebraic combinatorics
that study graphs via linear algebra. Faster algorithms for
several other parameterized problems followed. We highlight
one of these advances in Section 5.

2. ALGEBRAIZATION
Consider the following fictional airline scheduling prob-

lem: on any given day there is a set X of designated cap-
tains, a set Y of designated second officers, and a set Z
of destinations. Each captain and second officer declare a
number of preferred destinations. The airline would like to
accommodate as many preferences as possible; but at the
same time, they would like to match on the same flight a pi-
lot and second officer who have flown together before. This
creates a number of triples: if captain x has previously flown
with second officer y and they would both like to fly to desti-
nation z, they define a triple {x, y, z}. Of course, any given
captain, second officer or destination can appear in many
triples. But to maximize utility, the airline would like to se-
lect a big matching, i.e. a subset of triples that are pairwise
disjoint; based on it they can then schedule the personnel.
The NP-complete problem asks for a matching of maximum
size, while the parameterized problem asks for a k-matching
with at least k triples, which we also call a k-3D matching.
An example of the problem is shown in Figure 3.

Figure 3: A set of triples and a matching

2.1 A polynomial for 3D-matching
It was probably understood by many before it was made

explicit in [21] that we can view the k-3D-matching problem
through an algebraic lens. Let us explain how, by means of
the example in Figure 3.

First, we view as a variable each element of the sets
X,Y, Z. That is we have the variables X = {x1, x2, x3},
Y = {y1, y2, y3} and Z = {z1, z2, z3, z4}. Then for each
triple we construct a monomial, by taking the product of
the corresponding variables. In our example of Figure 3, we
have the monomials

{x1y2z2, x2y1z1, x3y2z3, x3y3z4}.

We also define the instance polynomial P1 to be the sum
of these monomials. Finally, we set Pk = P k1 ; we will call Pk
the kth encoding polynomial. For instance, for the 2nd
encoding polynomial, we have

P2 = (x1y2z2 + x2y1z1 + x3y2z3 + x3y3z4)2.

To see the motivation behind these definitions, consider



the expansion of P2 into a sum-product form.

P2 = (x1y2z2)
2 + (x2y1z1)

2 (2.1)

+(x3y2z3)
2 + (x3y3z4)

2

+2x1x2y1y2z1z2 + 2x1x3y
2
2z2z3

+2x1x3y2y3z2z4 + 2x2x3y1y2z1z3

+2x2x3y1y3z1z4 + 2x2
3y2y3z3z4.

The monomials in the sum-product expansion fall into two
basic classes. In the solution part of the expansion, mono-
mials that correspond to solutions of the problem are lin-
ear, i.e. the product does not contain squares or other
high powers of variables. As an example, the monomial
x2x3y1y3z1z4 in equation 2.1 is linear, and corresponds to se-
lecting the second and fourth triples. In the complementary
non-solution part, each non-linear monomial corresponds
to a ‘non-solution’, i.e. a choice of non-disjoint triples.

This construction can be generalized to any instance of
the problem; the only difference would be that if we want to
check for a k-matching, we would have to look at the sum-
product expansion of the polynomial Pk. Summarizing, we
have the following:

Observation. An instance of the 3D-matching problem
contains a matching of size k if and only if the sum-product
expansion of the kth encoding polynomial Pk contains a lin-
ear monomial.

Therefore, to solve the 3D matching problem, it would
suffice to expand the polynomial Pk into a sum of products
and check if the sum contains a linear monomial. However
an O∗(2N ) dynamic programming algorithm is known, for
N = |X|+ |Y |+ |Z|. On the other hand, the number of pos-
sible monomials in N variables is much larger than O∗(2N ).
Thus, the simple idea of expanding Pk into a sum of prod-
ucts does not give a good algorithm.

2.2 The dynamic programming algebra
Dynamic programming often involves inductive definitions

that are tedious to state; the analogue in our algebraic setup
is perhaps more intuitive. It can be naturally viewed as
a ‘truncated’ expansion of the polynomial Pk into a sum-
product form. More concretely, imagine expanding Pk slowly,
one multiplication at a time. We observe that monomials
containing squared variables can be thrown away as soon as
they are formed, because they don’t affect the presence of
linear monomials in the full sum-product expansion of Pk.
There are 2N linear monomials in N variables. This implies
that the ‘truncated’ expansion can be carried out in O∗(2N )
time. If there is at least one monomial left in the final trun-
cated sum-product form of Pk, we can conclude that the
given instance contains a 3D matching of size k. Otherwise,
it doesn’t.

More formally, we are computing the sum-product expan-
sion of Pk in an extended dynamic programming algebra of
polynomials which has all the usual rules for multiplication
and addition of polynomials, plus the additional rule that
all squared variables evaluate to zero. Notice that this
implies that all non-linear monomials also evaluate to zero.
We can thus recast in algebraic terms our observation re-
garding linear monomials of Pk:

An instance of the 3D-matching problem contains a match-
ing of size k if and only if the kth encoding polynomial Pk is
not identical to zero in the dynamic programming algebra.

In general we can have N = 3k, since all elements of
X ∪ Y ∪ Z could participate in a 3D-matching. However,
if we are merely looking for a 3D matching containing only
k triples, then we might set as our target an O∗(23k) time
parameterized algorithm.

Testing Polynomials

Testing whether a given arithmetic expression equals
the unique polynomial whose coefficients are all ze-
roes, will be a recurring theme in the sequel.

2.3 Parameterizing via assignments
The goal of this subsection is to describe a first parame-

terized algorithm for the 3D-matching problem, which will
demonstrate the use of assignments the variables of the poly-
nomial in order to extract information from it.

The problem with ‘parameterizing’ the O∗(2N ) algorithm
lies clearly in the number of variables N . Trying to deal
with this problem Alon, Yuster and Zwick [2] came up with
a method known as color coding. Their solution can be un-
derstood as an assignment as follows. Going back to the
example from Section 2.1, suppose that we are interested in
finding a matching of size 2. Then, as discussed above, all
linear monomials in the sum-product expansion of P2 have
degree six, i.e. they are products of six distinct variables.
Alon et al. proposed the introduction of a new set W con-
taining exactly six variables (more generally 3k variables for
a k-matching). So, let

W = {w1, w2, w3, w4, w5, w6}.

We then perform a random assignment of the variables
in W into the variables in X,Y, Z. We can also think of this
assignment as a random coloring of the N variables with k
colors. Let us consider one such assignment:

x1 ← w1 x2 ← w4

x3 ← w1 y1 ← w3

y2 ← w2 y3 ← w5

z1 ← w6 z2 ← w6

z3 ← w1 z4 ← w2

By just substituting in equation 2.1, P2(X,Y, Z) becomes
now a polynomial in the variables W :

P2(W ) = (w1w2w6)
2 + (w4w3w6)

2

+(w1w2w1)
2 + (w1w5w2)

2

+2w1w2w3w4w
2
6 + 2w3

1w
2
2w6

+2w2
1w

2
2w5w6 + 2w2

1w2w3w4w6

+2w1w2w3w4w5 + 2w3
1w

2
2w5.

It can be seen that monomials in Pk(X,Y, Z) get mapped
to monomials in Pk(W ). If a monomial in Pk(X,Y, Z) is
not linear, the same holds for the corresponding monomial
in Pk(W ). In contrast, a linear monomial of Pk(X,Y, Z)
may or may not survive as a linear monomial Pk(W ). In
our example all but one linear monomials are mapped to a
linear monomial in P2(W ). So detecting a linear monomial
in Pk(W ) allows us to infer its presence in Pk(X,Y, Z) as
well, and consequently the existence of a k-matching in our
original problem. The inverse may be not true, as it may be
the case that no linear monomial survives the assignment.

We can evaluate Pk(W ) in the dynamic programming al-
gebra as we did with Pk(X,Y, Z). Because now W con-
tains only 3k variables, the evaluation takes O∗(23k) time.



However, the probability that any given linear monomial
survives through a random color coding assignment is very
small; it can be calculated to be around e−3k where e ' 2.72.
This means that one has to try O(e3k) random assignments
in order to have the monomial survive with an acceptable
constant probability, independent from k. So, the overall
running time is O∗((2e)3k). This is still a factor of e3k away
from our O∗(23k) target.

Color Coding

Color coding has proven to be an extremely useful
tool in the design of parameterized algorithms. It
has been applied on a diverse list of parameterized
problems, including the k-path problem for which it
yields an algorithm that runs in O∗((2e)k) time.

3. ALGEBRAIC DETECTION
The methods of the previous section for detecting a linear

monomial are essentially combinatorial, but we presented
them in algebraic guise. Can we find an even faster algo-
rithm if we use a genuinely algebraic method?

3.1 A matrix assignment
In Section 2.3 we considered the idea of an assignment

into the variables of the encoding polynomial P and its sub-
sequent evaluation in the dynamic programming algebra.
The dynamic programming algebra and the color-coding as-
signment are only one possibility. There are numerous pos-
sible algebras and assignments. Matrices in particular seem
to offer rich possibilities. An attractive feature of matrix
algebra is that the square of a matrix can be 0, offering a
genuinely algebraic way of ‘implementing’ the dynamic pro-
gramming algebra, and specifically its rule that squares of
variables should be zero. As a simple example, we have(

0 1
0 0

)2

=

(
0 0
0 0

)
.

This leads us to the following list of requirements for a set
of random matrices to be used for detecting linear mono-
mials of degree k, i.e. products of k distinct variables.

(i) To simplify reasoning about monomials, the matrices
must be pairwise commutative, i.e. the order in
which we multiply them should not affect the value
of the product.

(ii) The square of each matrix must be equal to zero.
Along with commutativity, this implies that non-linear
monomials will evaluate to zero as well.

(iii) Linear monomials of degree k must ‘survive’ the as-
signment, i.e. evaluate to a non-zero matrix, with
constant probability, say at least 1/4. It would be
convenient if this non-zero matrix contains only ones
in its diagonal.

(iv) Since we’re looking for speed, the matrices must be as
small as possible, in order to support fast evaluation.
Ideally, matrix operations should take time O∗(2k) or
less.

In [22] an efficient randomized construction of such matri-
ces was given, showing that it is possible to satisfy all these
requirements if we are willing to relax our notion of zero:

By ‘zero’, we now mean zero modulo 2

We will refer to this as the The Mod-2 Matrix Fact.

We won’t discuss the technical details of how to prove the
Mod-2 Matrix Fact, since all we need here is to understand
its algorithmic power and consequences.

Comparing with the color coding method, we see that
evaluation of the polynomial takes the same time, O∗(2k)
for detecting a linear monomial with k variables. The gain
is in the probability that a linear monomial survives the
assignment; from the exponentially small probability e−k,
we went to a constant probability of 1/4. This appears to
suggest that we got rid of the undesired ek factor and have
reached our target of detecting degree-k linear monomials in
O∗(2k) time and therefore a size k 3D-matching in O∗(23k)
time.

Unwanted Cancelations. However, a more careful look
reveals that we are not done yet due to our relaxed notion of
what is zero. It is clear that the polynomial P (X) evaluates
to zero if it doesn’t contain linear monomials. However, the
Mod-2 Matrix Fact does not guarantee that P (X) evaluates
to non-zero, even if some of its linear monomials evaluate
to non-zero. The most significant source of this problem is
not in the evaluation, but rather in the polynomial P itself:
by taking a look at the sum-product expansion in equation
2.1 we see that the solution part of P that consists of the
linear monomials is already equal to 0 mod 2, just because
the monomials are multiplied by 2.

3.2 The method of fingerprints
We tackle this problem of multiple copies of linear mono-

mials by making sure that each monomial is unique, through
the use of a set of ‘fingerprint’ variables A = {a1, a2, . . . , }.
We illustrate the idea on the k-3D-matching polynomial P2

which we will now define as follows:

P2 = (a1x1y2z2 + a2x2y1z1 + a3x3y2z3 + a4x3y3z4)

∗(a5x1y2z2 + a6x2y1z1 + a7x3y2z3 + a8x3y3z4).

All we are doing here is multiplying each occurrence of a
triple in P2 with a ”fresh” variable from the set A. Con-
sider then what happens to the two copies of the monomial
x2x3y1y3z1z4; they are now replaced by two separate linear
monomials: a2a8x2x3y1y3z1z4 and a6a4x2x3y1y3z1z4.

It appears though that the introduction of the auxiliary
variables comes at the cost of getting linear monomials of
higher degree, which would require larger matrices in or-
der to survive through an evaluation, resulting in a slower
algorithm.

However, an alternative idea is to use a different assign-
ment for the A variables. For example we can assign ran-
dom {0, 1} values in the variables of A. In essence we wish
to create an odd number of copies for the linear monomi-
als, so that the solution part of the encoding polynomial is
not trivially zero modulo 2. In [22] it was shown that this
idea is enough for linear monomial detection to go through
in the 3D-matching case. That is, by randomly assigning
matrices to the variables X,Y, Z, and {0, 1} values to the
fingerprint variables, the polynomial will evaluate to non-
zero with constant probability if its sum-product expansion
contains a linear monomial and always to zero otherwise.



Target reached: We have designed an O∗(23k) time algo-
rithm for the k-3D-matching problem.

3.3 A general algebraic framework
We have come awfully close to a fast parameterized al-

gorithm for a problem much more general than the k-
3D-matching problem: that is the detection of degree-k lin-
ear monomials in the sum-product expansion of arbitrary
polynomials P (X) that are given to us in some concise, ‘un-
expanded’ representation. The importance of this problem
was established in [22, 24] where it was observed that a fast
algorithm for it implies faster algorithms for several param-
eterized problems, including the k-path problem. So, what
do we need to do in order to generalize the method?

All steps described above carry over to arbitrary poly-
nomials, including generating unique linear monomials with
an appropriate pre-processing of the polynomial and a place-
ment of fingerprint variables in it. However, we’re still stuck
with the multiple copies problem because the random {0, 1}
assignment to the fingerprint variables is not guaranteed to
work for any polynomial. We will thus need to generalize to
some other type of assignment that works in arbitrary situ-
ations, while still being compact and easy to handle compu-
tationally.

Here is the solution proposed in [31]. Imagine evaluating
P (X,A) in two stages. First we assign random matrices X̄
from the Mod-2 Matrix Fact into the X variables and com-
pute P (X̄, A), leaving the A variables unevaluated. The re-
sult is a matrix whose diagonal is a polynomial Q(A). The
Mod-2 Matrix Fact implies that Q(A) is zero modulo 2 if
P (X) does not contain a linear monomial. If P (X) does
contain a linear monomial then Q(A) is non-zero with prob-
ability at least 1/4. This consideration crystallizes the prob-
lem: we wish to be able to test whether Q(A) is identical
to zero modulo 2, and we would like to do so by evaluating
Q(A) on some ‘compact’ assignment to its variables. This
problem however has been studied and solved earlier. It is
known as identity testing.

A solution to identity testing, known as Schwartz-Zippel
Lemma [26], is simple and intuitive. The reason we picked
the values {0, 1} in our assignment for the 3D-matching
polynomial is that with them we can perform multiplica-
tion and addition that respects modulo 2 arithmetic. But
there are other algebraic ‘fields’ that allow us the same kind
of operations, with the bonus fact that they are larger, in the
sense that they contain more values. If instead of {0, 1} we
pick a field consisting of O(k) values the number of possible
assignments to the fingerprint variables by far outnumbers
the number of possible roots of Q(A), i.e. the number of as-
signments that make it evaluate to zero. Hence a random
assignment from this larger field will result with high prob-
ability in Q(A) evaluating to a non-zero value in the field.
This allows us to claim the following result.

Fast linear monomial detection. The problem of detect-
ing a degree-k square-free monomial in an arbitrary polyno-
mial P (X) can be solved in O∗(2k) time.

Linear monomial detection

The parameterized linear monomial detection prob-
lem along with the algorithm for its solution provide
a general framework for the solution of parameter-
ized problems. Most parameterized algorithms that
rely on color coding can be accelerated by a factor
of O∗(ek), by simply applying linear monomial de-
tection, as we saw in the matching problem. In fact
the acceleration is precisely ek in most of these cases,
including the k-path problem. This yields an O∗(2k)
time algorithm for the k-path problem.

4. BREAKING BARRIERS
A faster parameterized algorithm for linear monomial de-

tection would have a tremendous impact, as it would imply
faster algorithms not only for many parameterized prob-
lems, but also for the corresponding non-parameterized NP-
hard problems. Thus, an intriguing and natural question
is whether the problem can be solved faster by evaluating
the input polynomial over a more exotic algebra support-
ing faster operations. Unfortunately, the question has been
answered in the negative; it is impossible to find a better
algebra [24].

This algebraic barrier suggests that new techniques are
required for further progress in the linear detection prob-
lem, if progress is possible at all. However, one can be more
optimistic about specific problems. Linear monomial detec-
tion is very general and completely agnostic to combinatorial
properties of the underlying problem, so taking advantage of
specific problem properties may sometimes get around the
algebraic barrier. On the other hand, attempting to make
progress on well-studied NP-complete problems, such as the
Hamiltonian path problem or the 3D-matching problem, one
faces a perhaps more significant psychological barrier: a
lack of progress in nearly 50 years.

In brilliant work, Andreas Björklund broke the psycholog-
ical barrier with an O∗(2N/3) time algorithm for the ‘exact’
X3D-matching problem [5] and an astonishing O∗(1.657n)
time algorithm for the Hamiltonicity [4]. These running
times were later almost matched by parameterized algo-
rithms [6]. The reader can find in [14] an excellent expo-
sition of the algorithm for the Hamiltonian path problem
for bipartite graphs.

Central to Björklund’s work are sharper algebraic tools
that draw from the large pool of algebraic combinatorics
(e.g.[28]) to produce lower degree polynomials. More cru-
cially, Björklund proposed the idea of relaxing the method
of fingerprints in order to exploit cancelations of pairs
of non-solution monomials. In the rest of this Section we
will see how these ideas got applied in the case of the X3D-
matching problem.

4.1 Counting weighted matchings mod 2
Consider a restriction of our 3D-matching problem to a

2D-matching problem in which we are given pairs consisting
of a captain and a second officer, rather than triples. We
will assume that the two sets X and Y are of equal size n.

The problem has a graph representation as shown in Fig-
ure 4. A solution of n edges/pairs that covers all vertices of
the graph is called a perfect matching.

The perfect matching problem can be solved in polyno-



Figure 4: A perfect bipartite matching

mial time. But counting the number of perfect matchings is
known to be a hard problem; it is as hard as counting the
number of solutions for any NP-complete problem [30]. In
fact, it is also hard to compute the number of perfect match-
ings modulo any prime p, except when p = 2. If p = 2 the
number of perfect matchings modulo 2 is equal to the deter-
minant of the incidence matrix of the bipartite graph [28].
This key fact is going to play significant role, because the
matrix determinant can be computed with a polynomial
number of arithmetic operations.

To define the incidence matrix A, we arbitrarily number
the nodes in X with numbers from 1 to n, and do the same
with the nodes in Y , as shown in Figure 4. The entry A(i, j)
is 1 if node i ∈ X is connected to node j ∈ Y , and 0 other-
wise.

Given this definition, if N2 denotes the number of per-
fect matchings, we have what we will call the Matching
Lemma:

N2 mod 2 = Determinant(A) mod 2.

We now consider an extension of the above lemma which
will be particularly useful. The perfect matching count-
ing problem has a natural generalization to edge-labeled
multi-graphs, where (i) we allow multiple ‘parallel’ edges be-
tween any two given nodes and (ii) each edge e is labeled
with a unique monomial le.

The signature of a matching µ is defined to be the mono-
mial formed by taking the product of the labels of the edges
in the matching µ. For example, the signature of the match-
ing in Figure 4 is l1,4l2,1l3,2l4,3. More generally,

sig(µ) ,
∏
e∈µ

le.

Given a labeling of the edges we can extend N2 to a so-
lution polynomial N2(L) which is simply the sum of the
signatures of all perfect matchings, i.e. if M is the set of
perfect matchings in the graph, then

N2(L) ,
∑
µ∈M

sig(µ)

Finally, we can extend the incidence matrix A to a matrix
AL over L in a natural way: if nodes i and j are connected by
one or more edges, we let AL(i, j) be the sum of their labels.
We have the following Generalized Matching Lemma:

N2(L) mod 2 = Determinant(AL) mod 2. (4.2)

4.2 Monomial detection for X3D-matching
We now return to the X3D-matching problem which is

3D-matching problem augmented with the constraint that
|X| = |Y | = |Z| = n. In this case we want to decide if there

is a solution that consists of exactly n = N/3 triples, i.e. a
solution that covers all elements of X,Y, Z.

The algorithm involves a transformation of the X3D
matching problem into a labeled matching instance. The
sets X and Y define the two parts of the bipartite graph. In
order to determine the labels, we use two sets of variables, Z
and U . Each destination corresponds to a distinct variable
in Z and each triple corresponds to a distinct variable in U .

To see now how we form the labeled bipartite graph we
give an example that illustrates the edges between two given
vertices of the graph, along with their labels. Suppose the
X3D-matching instance contains the triples

{W ,K, SJU}, {W ,K, SFO}, {W ,K, PIT}, (4.3)

and no other triples with {W,K} as a captain and second
officer. Also suppose that we have associated with these
triples the variables u1, u2, u3, respectively. Then, nodes W
and K will be connected by three edges, labeled respectively
with the monomials u1zSJU, u2zSFO, and u3zPIT.

Consider now the polynomial N2(Z,U) mod 2. Because
each edge of the bipartite graph corresponds to a triple, any
monomial of N2(Z,U) mod 2 corresponds to the selection of
n triples, because it is the signature of a matching. By def-
inition of N2(Z,U) mod 2 these n triples cover exactly and
without overlaps the sets X and Y . In the case there is an
overlap in destinations, the monomial contains a squared
variable, corresponding to that destination. On the other
hand if a set of triples forms a 3D matching, the monomial
is linear with respect to the variables in Z because no des-
tination appears twice. So, assigning the random matrices
from the Mod-2 Matrix Fact to the variables in Z we zero-
out the the non-linear monomials. In addition we observe
that the coefficient of each monomial in N2(L) mod 2 is 1,
because the U variables specify each set of n triples. Thus
the U variables are our fingerprint variables and we will as-
sign to them values from an appropriate algebraic field of
size O(n). With these assignments, the outcome of the eval-
uation will be non-zero with a good probability if and only
if N2(L) contains a monomial corresponding to a solution
of the instance. Hence we can detect an exact 3D-matching
if there exists one. The running time of the algorithm is
O∗(2n) because the degree of N2(Z,U) in terms of the Z
variables is n.
Determinants and Cycles. The monomials that are can-
celed when the determinant is computed modulo 2 as in
equation 4.2 correspond to cycle covers. A cycle is a path
plus one edge that closes the loop. A cycle cover is a set
of cycles in the graph such that each vertex participates in
exactly one cycle. In particular, a Hamiltonian cycle, i.e. a
cycle containing all the vertices, is a cycle cover. A perfect
matching is also a cycle cover albeit consisting only of ‘de-
generate’ cycles, that is edges. Cycle covers that contain at
least one non-degenerate cycle come in pairs basically be-
cause each such cycle can be traversed in two possible ways,
clockwise and counterclockwise. Björklund’s Hamiltonicity
algorithm, which actually targets Hamiltonian cycles rather
than paths, breaks this symmetry by introducing direction
to some edges in the graph. His algorithm still relies cru-
cially on the remaining symmetries and cancelations. It re-
mains open whether Hamiltonicity has a faster than O∗(2n)
time algorithm for general directed graphs.



Exploiting Cancelations

The algebraization for X3D-matching is relaxed by
design, as not all monomials in the determinant
polynomial have unique fingerprints. Instead, many
monomials that correspond to graph structures other
than matchings happen to come in pairs, and comput-
ing the determinant modulo 2 exploits that. The idea
of treating modulo 2 arithmetic as a resource rather
than as a nuisance was also used for Hamiltonicity
and later works.

5. MORE RECENT ADVANCES
Since its appearance, the general framework of algebraic

fingerprints with modulo computations has been used in the
design of faster algorithms for several parameterized prob-
lems. Examples include: (i) finding subgraphs that are more
complicated than paths [16, 32], (ii) finding functional mo-
tifs in biological networks [18, 23, 8], (iii) finding the short-
est cycle through specified nodes in a given graph [7], and
(iv) the repetition-free longest common subsequence prob-
lem for strings, with applications in computational biol-
ogy [9]. Among the many examples, we highlight remark-
able progress in algorithms for NP-complete problems on
graphs, parameterized by the so-called treewidth of the
input graph.

Several NP-complete problems on graphs are tractable if
the graph is a tree, i.e. if it contains no cycles. The NP-
completeness of graph problems is usually proved via the
construction of very intricate graphs that are arguably ar-
tificial comparing to graphs arising in practical situations.
In particular, real world graphs often have a more tree-like
structure.

Figure 5: A graph and its treewidth decomposition.
[Source:Wikipedia]

The notion of treewidth offers a way to quantify how much
a given graph ‘deviates’ from a being tree. An example is
given in Figure 5. The vertices of the graph are arranged in
a tree structure. Each tree node lists copies of some of the
graph vertices. Each edge of the graph connects two ver-
tices that are listed together at some tree node. In addition,
any given graph vertex can appear only in contiguous tree
nodes. The treewidth tw of a graph is defined as the maxi-
mum number of graph vertices hosted in a tree node; in our
example tw = 3. As a more general example, the natural
class of planar graphs, i.e. graphs that can be drawn on the
plane without crossings has treewidth O(

√
n), where n is

the number of vertices.
Cygan et.al. [11] gave faster algorithms for many graph

problems parameterized by treewidth. Previous algorithms
had running time of the form O∗(twtw), while the new al-

gorithms have dramatically improved running times of the
form O∗(ctw) for small constants c; for example the Hamil-
tonian path cycle can be now solved in O∗(4tw) time.

6. OPEN PROBLEMS
The algorithms in this article are all randomized; on any

given run they have a small probability of reporting that
an instance does not have a solution, when the opposite is
true. But running them O(log(1/p)) times will make the
overall probability of failure smaller than p, for any p>0.
The fastest known deterministic algorithm for the k-path
problem requires O∗(2.85k) time [15]. Finding a determin-
istic algorithm that solves the problem in O∗(2k) time re-
mains an open problem. The way things stand, it would
seem to require a deterministic version of the Schwartz-
Zippel Lemma: a deterministic polynomial-time algorithm
for testing whether a polynomial given as an arithmetic cir-
cuit is identically zero.

The method of algebraic fingerprints can be adapted to
solve the weighted k-path problem; here the goal is to
find a k-path of minimum total cost, assuming a cost is at-
tached to every edge of the graph. The running time is
O∗(2kW ) where W is the largest cost associated with an
edge in the graph. On the other hand, dynamic program-
ming can handle the problem in O∗(2n logW ) time, when
k = n. It is reasonable to conjecture that k-path has an
O∗(2k logW ) algorithm. It should be noted though that,
unlike the algebraic fingerprints method that can be imple-
mented in memory of size polynomial in n, color coding for
weighted k-path requires O∗(2k) memory which can be a
very limiting factor in practice.

Dynamic programming can also be used to count the
number of Hamiltonian paths. Counting the number of k-
paths exactly is probably not FPT [13], but color coding
can be used to count k-paths approximately, in O∗((2e)k)
time [1]. This stands as the fastest known algorithm for this
problem, but again it is reasonable to conjecture that there
is an O∗(2k) algorithm for approximate counting.

Solving any of these open questions may require fresh
ideas that will start a new cycle of discovery.
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