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B.4 Interpolating and Approximating Curves

This section covers many of the basic terms and concepts needed to interpolate
values in computer animation It is not a complete treatise of curves but an ovet-
view of the important ones. While many of the terms and concepts discussed are
applicable to functions in general, they ate presented as they relate to functions
having to do with the practical interpolation of points in Fuclidean space as typt-
cally used in computer animation applications For more complete discussions of
the topics contained here, see, for example, Mortenson [14], Rogers and Adams
[18], Farin [4], and Bartels, Beatty, and Barsky [1]

B.4.1 Equations: Some Basic Terms

For present puposes, there are three types of equations: explicir, tmplicit, and para-
menric. Explicit equations are of the form y= f{x) The explicit form is good for
generating points because it generates a value of y for any value of x put into the
function The drawback of the explicit form is that it is dependent on the chaice
of coordinate axes and it is ambiguous if there is more than one gy for a given x
(suchas y = J/x, in which an input value of 4 would generate values of either 2
ot =2) Implicit equations are of the form flx, 3) =0 The implicic form is good for
testing to sec if a point is on a cutve because the coordinates of the point can easily
be put into the equation for the curve and checked to see if the equation is satis-
fied The drawback of the implicit form is that generating a seties of points along a
curve is often desired, and implicit forms ate not generative Parumetric equations
are of the form x= f{9), y= £(9 For any given value of £, a point (x, ) is gener-
ated This form is good for generating a sequence of points as ordered values of 2
are given The parametric form is also useful because it can be used for multivalued
functions of x, which ate problematic for explicit equations

Equations can be classified according to the terms contained in them Equa-
tions that contain only variables raised to a power are polynomial equations. If the
highest powet is one, then the equation is Jinear If the highest powet is two, then
the equation is guadratic If the highest power is three, then it is cubic If the equa-
tion is not a simple polynomial but rather contains sines, cosines, log, or a variety
of other functions, then it is called mnscendental In computer graphics, the most
commonly encountered type of function is the cubic polynomial

Continuity refets to how well behaved the curve is in a2 mathematical sense For
a value aibirarily close to a xp if the function is arbitrarily close to Flxg), then it
has positional, ot zeroth-order, continuity (C°) at that point If the slope of the
curve {or the first detivative of the function) is continuous, then the function has
tangentinl, o1 first-order, continuity (C') This is extended to all of the function’s
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that correspond to the principal axes The rotated vectors are the columns of the
equivalent rotation matrix (Equation B 57)

1-2 y2—2 2 2« y=2 sz 2 x z+2 5y
2 x y+2 sz 1-2 x2—2‘ 22 2 9y z2-2 35 x {Eq B.57)
2 x2z-2 sy 2 yz+2 s x 1-2 x2—2-.y2

Given a rotation matrix, one can use the definitions for the terms of the marrix
in Equation B 57 to solve for the clements of the equivalent unit quaternion The
fact that the unit quaternion has a magnitude of one (52 + x% + y? + 22 = 1),
makes it easy to see that the diagonal elements sum w0 4 . 52 — 1 Sumining the
diagonal elements of the matrix in Equation B.58 results in Equation B 59. The
diagonal elements can also be used to solve for the remaining terms (Equation
B 60) The square roots of these last equatioris can be avoided if the off-diagonal
elements are used to solve for x, 3, and zat the expense of testing for a divide by an
s that is equal to zero (in which case Equation B 60 can be used)
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derivatives, although for purposes of computer animarion the concern is with first.
order continuity ot possibly, second-ordes, ot curvature, continuity (%) Polyno-
mials are infinitely continuous

If a curve is pieced together from individual Clive segments, one can speak of
piecewise properties—the properties of the individual pieces. For example,
sequence of straight line segments, sometimes called 2 Ppolyline ot a wire, is picce-
wise linear A majot concern regarding piecewise curves is the continuiity condi-
tions at the junctions of the curve segments If one cutve segment begins where
the previous segment ends, then there is zeroth-order, o1 positional continuity ac
the junction If the beginning tangent of one curve segment is the same as the end-
ing tangent of the previous cutve segment, then there is frss-order, or tangential,
continuity at the junction If the beginning curvature of one curve segment is the
same as the ending curvature of the previous curve segment, then there is secomd-
ordet, or curvature, continuity at the junction Typically, computer animarion js
hot concetned with continuity beyond second ordet

Sometimes in discussions of the continuity at segment junctions, a distinction
is made between parametric comtinuity and geornetyic continuity (e g., [14]) So far
the discussion has concerned parametric continuity. Geometric continuity is less
tesaictive First-order parametric continuity, for example, requires that the ending
tangent veetor of the fust segment be the same as the beginning tangent vector of
the second First-order geometric continuity; on the other hand, requires that only
the direction of the rangents be the same, and it allows the magnitudes of the tan-
gents to be different Similar definitions exist for higher-order geometric continu-
ity One distinction worch mentioning is that parametsic continuity is sensitive to
the rate at which the parameter varics relative to the length of the curve rraced out.
(zcomeuric continuity is not sensitive to this rare

When a curve is constructed from a set of points and the curve passes through
the points, it is said to initrpolate the points However, if the points ate used to
control the general shape of the curve, with the curve not necessarily passing
through them, then the curve is said to approximate the points Interpolation is also
used genetally to refer to all approaches for constructing a curve from a set of
points. For a given interpolation technique, if the resulting curve is guaranteed to
lie within the convex hull of the set of points, then it is said to have the convex hull

property

B.4.2 Simple Linear Interpolation:
Geometric and Algebraic Forms
Simple linear interpolation is given by Equation B 61 and shown in Figute B 23.

Notice that the interpolants, 1 - % and #, sum to one This property ensures that
the interpolating curve (in this case g straight line) falls within the convex hull of
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Figure B.23 Linear interpolation

the geometric entities being interpolated (in this simple case the convex hull is the
straight line itself)
Py =(1-w) PO+a Pi (Eq B.61)

Using more general notation, one can rewrite the equation above as in Equation
B 62 Here FO and F1 are called blending functions This is referred to as the geo-
metric form because the geometric information, in this case 20 and P1, is explicic
in the equation '

Plw) = Fi(n) PO+ F(w) P1 {Eq B&2)

The linear jnterpolation equation can also be rewritten as in Equation B 63,
This form is typical of polynomial equations in which the terms are collected
according to coefficients of the variable raised to a power It is more gencrally writ-
ten as Equation B 64 In this case there arc only linear terms This way of EexXpress-
ing the equation is referred to as the algebraic form

P(w) = (P1-PO) u+ PO (Eq B.63}

Plw) = al u+ 20 {Eq B64)

Alternatively, both of these forms can be put in a matrix representation The geo-
metric form becomes Equation’B.65 and the algebraic form becores Equation
B.66 The geomettic form is useful in situations in which the geometiic informa-
tion {the points defining the curve) needs to be frequently updated o1 replaced
The algebraic form is useful for repeated evaluation of a single curve for different
values of the parameter The fully expanded form is shown in Equation B 67 The
curves discussed below can all be written in this form Of course, depending on
the actual cutve type, the I/ {variable), M (coefficient), and B {(geomettic informa-
tion) mattices will contain different values

Fylw) 7
Py = |0 = FB B
() = L?l (#)J [PO Pl] (Eq B.65)
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P = [, {|% =04 (Eq B9
20
P@ =, 1 '""11 (1) *’; ;’ = UMB=FB = U'4 a7

B.4.3 Parameferization by Arc Length

It should be noted that in general there is not a linear relationship between
changes in the parameter # and the distance traveled along a curve (its arc lengzh)
It happens to be tue in the example above concerning a straight line and the
parameter . However, as Mortenson [14] points out, there'are other equations
that trace out a straight line in space that are faitly convoluted in their relationship
between changes in the parameter and distance traveled For example, consider
Equation B.68, which is linear in P0 and P1 That s, it traces out a straight line
in space between PO and P1 However, it is nonlinear in # As a result, the curve is
not traced out in a nice monotonic, constant-velocity manner The nonlinear rela.
tionship is evident in most patameterized curves unless special care is taken to
ensute constant velocity. (See Chapter 3, “Controlling the Motion Along a

Curve ™)
Plw) = PO+((1~u) u+n) (P1-P0O) [Eq. B.68)

B.4.4 Computing Derivatives

One of the matrix forms for parameic curves, as shown in Equation B 67 for lin-
eat interpolation, is /MB Paramettic curves of any polynomial order can be put
into this matrix form. Often, it is useful to compute the derivatives of a paramettic
curve. This can be done easily by taking the derivative of the I/ vector For exam-
ple, the fitst two derivatives of a cubic curve, shown in Equation B 69, are easily
evaluated for any value of «

u

. |
Pu)= U MB = [zf 2 IJMB

P = U MB=[3 2 5, o|MB

P”(V«) = U”IMB: [6 2 2 0 OJMB [Eq. B.69)
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B.4.5 Hermite Interpolation

Hermite interpolation generates a cubic polynomial from one point to another In
addition to specifying the beginning and ending points (P;, P; 1), the user needs
to supply beginning and ending tangent vectors (P{, P}, ) as well (Figure B 24)
The general marix form for a cutve is repeated in Equation B 70, and the He;-
mite mattices are given in Equation B 71

Plw) = U MB (Eq B70
U] = [u3 uz u 1]
2 21 1
M — "“3 3 ‘2 —]
6 0 1 o0
1 0 0 o0
| ]
P
B = | i+l {Eq B.7)
P!
_Pz';lJ

Continuity between beginning and ending tangent vectors of connected seg-
ments is ensured by merely using the ending tangent vectos of one segment as the
beginning tangent vector of the next A composite Hermite curve (piecewise cubic
with first-order continuity at the junctions) is shown in Figure B 25

Itying to put a Hermite curve through a large number of points, which requires
the uset to specify all of the needed tangent vectors, can be a burden There are
several techniques to get around this One is to enforce second-degree continuity.

Py =P

P = P'(?
;= P(0) \._

Pl

Piyy = (D)

Figure B 24 Hermite interpolation
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Figure B.25 Composite Hermite cutve

This requirement provides encugh constraints so that the user does not have to
provide interior tangent vectors; they can be calculated automatically. See Rogers
and Adams [18] or Mortenson [14] for alternative formulations A Iore Common
technique is the Catmull-Rom spline

B.4.6 Gatmull-Rom Spline

The Caunull-Rom curve can be viewed as a Hermite curve in which the tangents
at the intetior control points are automatically genetated according to a relatively
simple geometric procedure (as opposed to the more involved numerical tech-
niques referred to above) For each interior point, P, the tangent at that point, P,
is computed as one-half the vector from the previous control peint, £;_{, to the
following control point, P,,; (Equation B 72), as shown in Figwe B.26 ! The
matrices for the Catmull-Rom curve in general matrix form are given in Equation
B.73 A Catmull-Rom spline is a specific type of cardinal spline

Fi o
_'11.'-: - fﬁ:f _,!E_l_ - i
\ - "
® o
P:' P'

Figare B 26 Cacmull-Rom spline

Farin {4] describes the Carmull-Rom spling curve in terms of a cubic Bezier curve by defining interinr control points
Placement of the interior control points is determined by use of an auxiliary knat vector With a uniform distance
between knot values, the control points are displaced from the point to be interpolated by one-sixth of the vector from
the previous interpolared point to the following interpelated point Tangenit vectors are three times the vector from an
interior control point to the incerpolated point This results in the Cacmutl-Rom tangent vector described here
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-1 3 -3 1
210 1 o0
0 2 0 ¢
FPI‘—I
g=| b (Eq B73)
Py
_Pi+2

For the end conditions, the user can provide tangent vectors at the very begin-
ning and at the very end of the cubic cutve. Alternatively, various automatic tech-
niques can be used. For example, the beginning tangent vector can be defined as
follows The vector from the second point (P,) to the third point (Z,) is subtracted
from the second point and used as a virtual point to which the initial tangent is
directed This tangent is computed by Equation B 74 Figute B.27 shows the for-
mation of the initial tangent curve according to the equation, and Figure B 28
shows a curve that uses this technique.

PO.0) = 5 (P —(B,~P) =Py = 2@ n-p-By Fa 874

A drawback of the Catmull-Rom formulation is that an internal tangent vector
is not dependent on the position of the internal point relative to its two neighbors
In Figure B 29, all three positions (Q;, 7;, R)) for the ith point would have the
same tangent vector: ’

P}'
o —(P2-- P1} 1
“ _.‘ Py ,,f"'
1 -
3
H

by,

2
Pn
Figure B.27 Automatically forming the initial tangent of a Catmull-Rom spline
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Figure B 28 Cammull-Rom spline with end conditions using Equation B 74

Py

Figure B.29 Thirce curve segments, (Prits Py Pry)s (P Qi Py {(Pit> R, Py}, using
the standard Carmull-Rom form for computing the internal tangent

An advantage of Catmull-Rom s that the calculation to compute the internal
tangent vectors is extremely simple and fast However, fot each segment the tan-
gent computation is a one-time-only cost It is then used tepeatedly in the compu-
tation for each new poine in that segment Therefore, it often makes sense to
spend g little moe time computing more appropriate internal tangent vectors to
obrain a better set of points along the segment One alternative is 1o use 4 vector
perpendicular to the plane that bisects the angle made by 7;_; — P, and P,,; - P,
(Figure B 30). This can be computed easily by adding the normalized vector from
P;_1 to P;with the normalized vector fiom Pito P,

-1

Figure B.30 Three curve segments, (P,_, 2, Portd (Brys Qu Pryy)y (Pry, Ry, Py,y) using
the perpendicular to the angle bisector for computing the internal tangent
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Figure B 31 Interior tangents based on relative segment lengths

Another modification, which can be used with the original Catmull-Rom tan-
gent computation o1 with the bisector technique above, is to use the relative posi-
tion of the internal point (2,) to independently determine the length of the
tangent vector for each segment it is associated with Thus, a point 7; has an end-
ing tangent vector associared with it for the segment from P;_; to P, as well as a
beginning tangent vector associated with it for the segment P; to P;,;. These tan-
gents have the same direction but different lengths This relaxes the (2 continuity
of the Carmull-Rom spline and uses ' continuity instead For example, an initial
langent vector at an interior point is determined as the vector fiom Pyt Py,
The ending tangent vector for the segment P, ; to F; is computed by scaling this
initial tangent vector by the ratio of the distance between the points Pand P, | to
the distance between points 2,_{ and P, Referting to the segment between P,
and P;as P_;(#) tesults in Equation B 75. A similar calculation for the beginning
tangent vectot of the segment berween P;and P, ; results in Equation B 76, These
tangents can be scen in Figure B 31 The computational cost of this approach is
only 2 little more than the standard Catmull-Rom spline and seems to give mote
intuitive results

Pl (1) = _]_])it..P_mi“lL (P =P €aB7)
fPi--!-l - ‘Pi-— 1‘
7 . lpi+1 - Pi [
F00) = 1P =P (Pigr=2is1) (Eq B76)

B.4.7 Four-Point Form

Fitting a cubic segment to four points (B, Py, P, P3), assigned to user-specified
parametuic values (g, #, uy, #3), can be accomplished by setting up the linear
system of equations fot the points (Equation B 77) and solving for the unknown
coefficient matzix In the case of parametric values of 0, 1/3, 2/3, and I, the mattix
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is given by Equation B 78 However, with this form it is difficult to join segments
with C! continuity

myg ™y Mo sl | Py
:l Mho Mhy Mo W3 P
#l

Plu) = [ 3 2
B wm m m ) P
2,0 ") 2,2 2,3 2

M3 My Mya Mya) | Py
Py ug ug #y 1 [ Moo Moy Mya Mysl | By
Py wow owm A | my omyy omy, m| |P € BT
P, “g u; u 1 Maa Ty Mg sl [P
|7y _“g iy Yo [y myy myy mys| [Py
-9 27 =27 9
M= 1118 —45 36 -9 (€9, B.78

B.4.8 Blended Paraholas

Blending overlapping parabolas to define a cubic segment is another approach to
interpolating a curve through a set of points In addition, the end condirions are
handled by patabolic segments, which is consistent with how the interior segments
arc defined Blending parabolas results in a formulation that is very similar to
Catmull-Rom in that each segment is defined by four points, it is an interpolating
curve, and local control is provided Under the assumptions used here for
Catmull-Rom and the blended parabolas, the interpolating matrices are identical
For each overlapping niiple of points, a parabolic curve is defined by the three
points. A cubic cutve segment is created by lineatly interpolating between the two
overlapping parabolic segments More specifically, take the fitst three points, 7,
Py, Py, and fir a parabola, P(#), through them using the following constraints:
P(00) =Py, P(0 5) = Py, P(1 0) = P, Take the next group of three points, Py, P,
Py, which partially ovetlap the firse set of three points, and fit a parabola, R(),
through them using similar constraints: R(0 0) = P;, R(0.5) = P, R(10) = 7
Between points Py and P; the two parabolas ovetlap Reparameterize this region
into the range [0 0, 1 0] and linearly blend the two parabolic segments (Figure
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/ Blended parabolic segments

Parabolic ssgments

Figure B.32 Parabolic blend segment Figure B.33 Multiple parabolic blend
segments

as the geometric information together with the coefficient matrix shown in Equa-
tion B79 To interpolate a list of points, calculate interios segments using this
equation End conditions can be handled by constructing parabolic arcs at the
very beginning and very end (Figuze B 33)

-1 3 -3 1
M= 2 -5 4 - {Eq B.79)
21 0 1 ¢
0 2 0 o

This form assumes thar all points are equally spaced in paramettic space Often
it is the case that even spacing is not present In such cases, relative cord length can
be used to estimate parametsic values The detivation is a bit more involved [18],
but the final result can still be formed into a 4x4 matiix and used to produce a
cubic polynomial in the interior segments

B.4.9 Bezier Interpolation/Approximation

A cubic Bezier curve is defined by the beginning point and the ending point,
which are interpolated, and two interior points, which control the shape of the
cwve The cubic Bezier cutve is similar to the Hermite foim The Hermite form
uses beginning and ending rangent vectots to control the shape of the curve; the
Bezier form uses auxiliary control points to define tangent vectors. A cubic curve js
defined by four points: Po, Py, Py, P3 The beginning and ending points of the
curve ate Py and 73, respectively. The interior control points used to control the
shape of the curve and define the beginning and ending tangent vectors are Py and
P, Sec Figure B 34 The cocfficient matrix for 2 single cubic Bezier curve is shown
in Equation B 80. In the cubic case, P©0)=3 (P~ Py)and P'(1)=3 (P3— P)
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Figure B.34 Cubic Bezier curve segment

Figure B.35 Composite cubic Bezier cutve showing tangents and colinear control points

-1 3 3 1

M= 3 6 30 {Eq B.80)
-3 3 0 ¢
1 0 0 0

Continuity berween adjacent Bezier segments can be controlled by colincatity
of the control points on either side of the shared beginning/ending point of the
two cutve segments where they join (Figure B 35) In addition, the Bezier cutve
form allows one to define a curve of arbittary order If three interjor control points
are used, then the resulting cutve will be quartic; if four interior control points are
used, then the resulting carve will be quintic Sec Mortenson [14] for a mote com-

plete discussion

B.4.10 De Casteljau Construction of Bezier Curves

The de Casteljau method is a way to geometrically construct a Bezier curve. Figure
B 36 shows the construction of a point at #= 1/3 This method constructs a point
» along the way betwecn paired control points (identified by 2 “17 in Figute B 36)
Then points are constructed # along the way between points just previously con-
suucted These new points are matked “2” in Figure B 36. In the cubic case, in
which there wete fous initial points, there are two newly constructed points The
point on the cutve is constructed by going « along the way between these two
points This can be done for any values of % and for any order of curve Higher-
order Bezier cutves require more iterations to produce the final point on the curve
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1 1/3 of the way between
paired points

2 1/3 of the way between
points of step 1

3 1/3 of the way berween
points of step 2

Figure B.36 De Casteljan construction of a point on a cubic Bezier curve

B.4.11 Tension, Continuity, and Bias Control

Often an animator wants better control over the interpolation of key frames than
the standard interpolating splines provide For better control of the shape of an
intetpolating curve, Kochanek [11] suggests a parameterization of the internal tan-
gent vectors based on the three values rension, continuity, and bias The three
parametets are explained by decomposing each internal tangent vector into an
incoming part and an outgoing part These tangents are referred to as the left and
tight patts, respectively, and arc notated by 77 and I F for the rangents ac P,

Tension controls the sharpness of the bend of the curve ac 2; It does this by
means of a scale factor that changes the length of both the incoming and outgoing
tangents at the control point (Equation B.81) In the default case, = 0 and the
tangent vector is the average of the two adjacent chords ot; equivalently, half of the
cord berween the two adjacent points, as in the Catmull-Rom spline As the ten-
sion parameter, ¥, goes to one, the tangents become shotter until they reach zero
Shotter tangents at the control point mean that the curve is pulled closer to a
straight line in the neighborhood of the control point See Figure B.37

5= T{= (=9 3 (Pyy-P)+(P=P,_) e 521

The continuity patameter, ¢, gives the user control over the continuity of the
curve at the control point where the two cutve segments join The incoming (left)
and outgoing (right) tangents at a conurol point are defined symmictrically with
respect to the chords on either side of the control point Assuming default tension,
¢ blends the adjacent chords to form the two tangents, as shown in Equation B.82

B 1+¢
T = PP+ =55y = P)
R 1+ 1-
T, = \—-2-—‘(19,.-19;_1)4}7‘(1)2“--?,.) (Ea B32)
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Figure B 37 1he effect of varying the tension pararmneter

The default value for continuity is ¢ = 0, which produces equal left and right
tangent vectors, tesulting in continuity at the joint As ¢ approaches —1, the left
tangent approaches equality with the chord to the left of the contro] point and the
tight tangent approaches equality with the choid to the tight of the control point
As ¢ approaches +1, the definitions of the tangents reverse themselves, and the left
tangent approaches the right chord and the 1ight tangent approaches the left
chord. See Figure B 38

~ Bias, 4, defines a common tangent vector, which is a blend between the chord
left of the control point and the chord tight of the control point (Equation B 83)
At the default value (4= 0), the tangent is an even blend of these two, resulting in
a Catmull-Rom type of internal tangent vector Values of & approaching —1 bias
the tangent toward the chord to the left of the control point, while values of 4
approaching +1 bias the rangent toward the chord to the right See Figure B 39
R I _1+5 b

‘ ‘ 1 -
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Defanlt continuity, ¢e=0
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Figure B 38 The effect of varying the continuity patameter (with default tension)

The three parameters tension, continuity, and bias are combined in Equation B 84

Tl — ((1 - t)(]- "‘:)(1 + &))(P;'P-I)

i 2
+ (-0 ; (1~ b))(-PHl_ Pz')
T:R = ((1 - t)(l ; 5)(1 + b))(Pz _ Pj...l)
+ ((1 — t)(]. ;C)(l - 5))(10‘*- = Pz) (Eq B.84)

B.4.12 B-Splines

B-splines are the most flexible and useful type of curve, but they are also mote dif-
ficule to grasp intuitively The formulation includes Bezier curves as a special case
The formulation for B-spline curves decouples the number of conirol points from
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Figure B 39 The effect of varying the bias parameter (with default tension and continuity)

the degree of the resulting polynomial F accomplishes this with additional infor-
mation contained in the Auot vector. An exaraple of a uniform knot vector is 10, 1, 2,
3,4,5,6, , n+ k- 1), in which the knot values are uniformly spaced apart In
this knot vector, 7 is the number of control points and £ is the degrec of the B-
spline curve The paramettic value varies between the first and last values of the
knot vector The knot vector establishes 4 relationship between the paramerric
value and the control points With replication of values in the knot vector, the
curve can be drawn closer t0 a particular control point up to the point where the
curve actually passes through the control point

A particularly simple, yet useful, type of B-spline curve is a uniform cubic B-
spline curve It is defined using four control points over the interval zero to one
(Equation B 85) A compound curve is genetated from an arbittary number of
conttol points by constiucting a curve segment from each four-tuple of adjacent
contiol points: (P, P, (, P, Piglfori=1,2, | 23, whete n is the total
number of control points (Figure B 40) Fach section of the curve is generated by
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. Q-? ----- K- %fﬁ&?"} o

Segmients of the curve defined by different sets of four points

Figure B.40 Compound cubic B-spline curve

multiplying the same 4x4 maurix by four adjacent control points with an interpo-
lating parametet between zero and one In this case, none of the control points is
interpolated

-1 3 -3 1] p
Plw) = 113 -6 3 0[P, o B8
6-3 o 3 ol|P,,
1 L 0[Py

NURBS, Nonuniform rational B-splines, ate even more flexible than basic B-
splines: NURBS allow for exact representation of circular arcs, whereas Bezier and
nonrational B-splines do nof This is often important in modeling, but for pur-
poses of animation, the basic petiodic, uniform cubic B-spline is usually sufficient

B.4.13 Fitting Curves to a Given Set of Points

Sometirmes it is desirable to interpolate a set of points using 2 Bezier formulation
The points to be interpolated can be designated as the endpoints of the Bezier
curve segments, and the interior control points can be constructed by forming tan-
gent vectors at the vertices, as with the Catmull-Rom formulation. The intetior
control points can be constructed by displacing the control points along the tan-
gent lines just formed For example, for the segment between given points &; and
b;,1> the first control point for the segment, ¢}, can be positioned at £; + 1/3
{b;,1— b;_1). The second control point for the segment, ¢ can be positioned at
bi+1 -1/3. (bi+‘2 - bz) See Figure 541

Other methods exist. Farin [4] presents a mote general method of constructing
the Bezier curve and, from that, constructing the B-spline control points Both
Farin [4] and Rogers and Adams [18] present a method of constructing a compos-
ite Hermite curve through a set of points that automatically calculates internal
tangent vectors by assuming second-ordet continuity at the segment joints
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Figure B.41 Constructing a Bezjer segment that interpolates points

B.5 Randomness

Introducing controlled randomness in both modeling and animation can often
produce more interesting, realistic, natural-looking imagery. The use of noise and
turbulence funcions are often used in textures bur also cap be used in modeling
natural phenomena such as smoke and clouds The code for noise and turbulence
that follows is fiom Peachey’s chaprer in Ebert [3]. Random pertuibations ate also
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useful in human-figure animation to make the motion less “robotic” looking
Thete ate vartious algorithms proposed in the literature for generating random
numbers; Gasch’s [6] is presented at the end of this section

B.5.1 Noise

The noise function uses a table of pseudorandom numbess between -1 and +1 to
tepresent the integer fattice values The table is created by value Tublelnit the first
timne that noise is called Lattice coordinates are used to index into a table of pseu-
dorandom numbers A simple function of the coordinates, such as their sum, is
used to compute the index However, this can result in unwanted patterns. To help
avoid these artifacts, a table of random permutation values is used to modify the
index before it is used A four-point spline is used to interpolate among the lattice
pseudorandom numbers (FPipline)

#define TABSIZE 256

ffdefine TABMASK (TABSIZE-1)

#define PERM{x) nerml (x)&TABMASK]

f#define INDEX(ix,iy,iz) PERM{ (ix)+PERM{ (iy)+PERM(iz)}))
ftdefine FLOOR(x) (int)(x)

/* PERMUTATION TABLE */

static unsigned char perm[ TABSIZE] = {

225, 155, 210, 108, 175, 199, 221, 144, 203, 116, 70, 213, 69, 158, 33,
252, 5, 82, 173, 133, 222, 13%, 174, 27, 9, 71, 90, 746, 75, 130, 91,
191, 169, 138, 2, 151, 194, 235, 8%, 7, 25, 113, 228, 159, 205, 253,
134, 142, 248, 65, 224, 217, 22, 121, 229, 63, 89, 103, 96, 104, 156,
17, 2061, 129, 36, 8, 165, 110, 237, 117, 231, 56, 132, 2ii, 152, 20,
181, 111, 239, 218, 170, 163, 51, 172, 157, 47, 80, 212, 176, 250, 87,
49, 99, 242, 136, 189, 162, 115, 44, 43, 124, 94, 150, 16, 141, 247, 32,
10, 198, 223, 255, 72, 53, 131, 84, 57, 220, 197, 58, 50, 208, 11, 241,
28, 3, 192, 62, 202, 18, 215, 153, 24, 76, 41, 15, 179, 39, 46, 55, 6,
128, 167, 23, 188, 106, 34, 187, 140, 184, 73, 112, 182, 244, 195, 227,
13, 35, 77, 196, 185, 26, 200, 226, 118, 31, 123, 168, 125, 249, 68,
183, 230, 177, 135, 160, 180, 12, 1, 243, 148, 1062, 166, 38, 238, 251,
37, 240 126, 64, 74, 161, 40, 184, 149, 171, 178, 101, 66, 29, 59, 146,
61, 254, 107, 42, 86, 154, 4, 236, 232, 120, 21, 233, 209, 45, 98, 193,
114, 78, 19, 206, 14, 118, 127, 48, 79, 147, 85, 30, 207, 219, 54, 88,
234, 190, 122, 95, 67, 143, 109, 137, 214, 1456, 93, 92, 100, 245, 0,
216, 186, 60, 83, 105, 97, 204, 52

b




