Physics of a Mass Point & Basics of Textures

Point mass simulation Basics of texture mapping in OpenGL

Roller coaster

- Next programming assignment involves creating a 3D roller coaster animation
- We must model the 3D curve describing the roller coaster, but how?
- How to make the simulation obey the laws of gravity?

Back to the physics of the roller-coaster: mass point moving on a spline

frictionless model, with gravity

• Velocity vector always points in the tangential direction of the curve

Mass point on a spline (contd.) frictionless model, with gravity

- Our assumption is: no friction among the point and the spline
- Use the conservation of energy law to get the current velocity

chalkboard

Mass point on a spline (contd.) frictionless model, with gravity

• Given current h, we can always compute the corresponding |v|:

$$|v| = \sqrt{2g(h_{\text{max}} - h)}$$

Simulating mass point on a spline

- Time step Δt
- We have: $\Delta s = |v| * \Delta t$ and $s = s + \Delta s$.
- We want the new value of u, so that can compute new point location
- Therefore:
 We know s, need to determine u
 Here we use the bisection routine to compute u=u(s).

Mass point simulation

 Assume we have a 32-piece spline, with a general parameterization of u∈ [0,31]

chalkboard

Mass point simulation

• Assume we have a 32-piece spline, with a general parameterization of $u \in [0,31]$

```
MassPoint(tmax) // tmax = final time
/* assume initially, we have t=0 and point is located at
u=0 */
u = 0;
s = 0;
t = 0;
While t < tmax
{
    Assert u < 31; // if not, end of spline reached
    Determine current velocity |v| using physics;
    s = s + |v| * Δt; // compute new arclength
    u = Bisection(u,u + delta,s); // solve for t
    p = p(u); // p = new mass point location
    Do some stuff with p, i.e. render point location, etc.
    t = t + Δt; // proceed to next time step
}</pre>
```

Arclength Parametrization

- There are an infinite number of parameterizations of a given curve. Slow, fast, speed continuous or discontinuous, clockwise (CW) or CCW...
- A special one: arc-length-parameterization: u=s is arc length. We care about these for animation.

Arclength Parametrization

chalkboard

Arclength Parametrization Summary

•Arclength parameter s=s(u) is the distance from p(0) to p(u) along the curve

$$s(u) = \int_{0}^{u} \sqrt{x'(v)^{2} + y'(v)^{2} + z'(v)^{2}} dv$$

- •The integral for s(u) usually cannot be evaluated analytically
- •Has to evaluate the integral numerically
- •Simpson's integration rule

$$\int_{a}^{b} f(x)dx = \sum_{k=1}^{(n-1)/2} \frac{h}{3} [f(x_{2k-1}) + 4f(x_{2k}) + f(x_{2k+1})] + O(h^{5})$$

• Use bisection (next slide) to compute universe: u=u(s)

Computing inverse u=u(s)

Must have initial guess for the interval containing u

```
Bisection(umin,umax,s)
/* umin = min value of u
  umax = max value of u; umin <= u <= umax
  s = target value */
  Forever // but not really forever
  {
      u = (umin + umax) / 2; // u = candidate for solution
      If |s(u)-s| < epsilon
            Return u;
      If s(u) > s // u too big, jump into left interval
            umax = u;
      Else // t too small, jump into right interval
            umin = u;
    }
```