
1Computer Graphics 15-462

Physics of a Mass Point
& Basics of Textures

Point mass simulation
Basics of texture mapping in OpenGL
Point mass simulation
Basics of texture mapping in OpenGL

2Computer Graphics 15-462

Roller coaster

• Next programming assignment involves
creating a 3D roller coaster animation

• We must model the 3D curve describing
the roller coaster, but how?

• How to make the simulation obey the laws
of gravity?

3Computer Graphics 15-462

Back to the physics of the roller-coaster:
mass point moving on a spline

v

P

spline

frictionless model,
with gravity

• Velocity vector always points
in the tangential direction
of the curve

4Computer Graphics 15-462

Mass point on a spline (contd.)
frictionless model, with gravity

• Our assumption is : no fr iction among the point and the spline

• Use the conservation of energy law to get the current velocity

• Wkin + Wpot = const = m * g * hmax

• hmax reached when |v|=0

• Wkin = kinetic energy = 1/2 * m * |v|2

• Wpot = potential energy = m * g * h

• h = the current z-coordinate of the mass point

• g = acceleration of gravity = 9.81 ms-2

• m = mass of the mass point

chalkboard

5Computer Graphics 15-462

Mass point on a spline (contd.)
frictionless model, with gravity

• Given current h, we can always compute the corresponding |v|:

)(2|| max hhgv −=

6Computer Graphics 15-462

Simulating mass point on a spline

• Time step ∆∆∆∆t
• We have: ∆∆∆∆s = |v| * ∆∆∆∆t and s = s + ∆∆∆∆s .
• We want the new value of u, so that can compute new point

location

• Therefore:
We know s, need to determine u
Here we use the bisection routine to compute u=u(s).

t t+∆∆∆∆t
u
s
v

u
s
v

?

7Computer Graphics 15-462

Mass point simulation

MassPoint(tmax) // tmax = final time
/* assume initially, we have t=0 and point is located at
u=0 */

u = 0;
s = 0;
t = 0;
While t < tmax
{

Assert u < 31; // if not, end of spline reached
Determine current velocity |v| using physics;
s = s + |v| * ∆∆∆∆t; // compute new arclength
u = Bisection(u,u + delta,s); // solve for t
p = p(u); // p = new mass point location
Do some stuff with p, i.e. render point location, etc.
t = t + ∆∆∆∆t; // proceed to next time step

}

• Assume we have a 32-piece spline, with a general
parameter ization of u∈∈∈∈[0,31]

chalkboard

8Computer Graphics 15-462

Mass point simulation

MassPoint(tmax) // tmax = final time
/* assume initially, we have t=0 and point is located at
u=0 */

u = 0;
s = 0;
t = 0;
While t < tmax
{

Assert u < 31; // if not, end of spline reached
Determine current velocity |v| using physics;
s = s + |v| * ∆∆∆∆t; // compute new arclength
u = Bisection(u,u + delta,s); // solve for t
p = p(u); // p = new mass point location
Do some stuff with p, i.e. render point location, etc.
t = t + ∆∆∆∆t; // proceed to next time step

}

• Assume we have a 32-piece spline, with a general
parameter ization of u∈∈∈∈[0,31]

9Computer Graphics 15-462

Arclength Parametrization

• There are an infinite number of parameter izations of a given
curve. Slow, fast, speed continuous or discontinuous,
clockwise (CW) or CCW…

• A special one: arc-length-parameter ization: u=s is arc
length. We care about these for animation.

10Computer Graphics 15-462

• Assume a general parameter ization p=p(u)
• p(u) = [x(u), y(u), z(u)]T

• arclength parameter s=s(u) is the distance from p(0) to p(u)
along the curve

• Distance increases monotonically, hence s=s(u) is a
monotonically increasing function

• I t follows from Pitagora’s law that

chalkboard

Arclength Parametrization

11Computer Graphics 15-462

)()]()(4)([
3

)(5
12212

2/)1(

1

hOxfxfxf
h

dxxf kkk

b

a

n

k

+++= +−

−

=
� �

� ++=
u

dvvzvyvxus
0

222)(')(')(')(

Arclength Parametrization Summary

• Use bisection (next slide) to compute universe: u=u(s)

•Arclength parameter s=s(u) is the distance from p(0) to p(u) along the curve

•The integral for s(u) usually cannot be evaluated analytically

•Has to evaluate the integral numer ically

•Simpson’s integration rule

12Computer Graphics 15-462

Computing inverse u=u(s)

Bisection(umin,umax,s)
/* umin = min value of u

umax = max value of u; umin <= u <= umax
s = target value */
Forever // but not really forever
{

u = (umin + umax) / 2; // u = candidate for solution
If |s(u)-s| < epsilon

Return u;
If s(u) > s // u too big, jump into left interval

umax = u;
Else // t too small, jump into right interval

umin = u;
}

• Must have initial guess for the interval containing u

