
1Computer  Graphics 15-462

Physics of a Mass Point
&  Basics of Textures

Point mass simulation
Basics of texture mapping in OpenGL
Point mass simulation
Basics of texture mapping in OpenGL
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Roller coaster

• Next programming assignment involves 
creating a 3D roller coaster animation

• We must model the 3D curve describing 
the roller coaster, but how?

• How to make the simulation obey the laws 
of gravity?
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Back to the physics of the roller-coaster:
mass point moving on a spline

v

P

spline

frictionless model, 
with gravity

• Velocity vector  always points
in the tangential direction
of the curve
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Mass point on a spline (contd.)
frictionless model, with gravity

• Our assumption is : no fr iction among the point and the spline

• Use the conservation of energy law to get the current velocity

• Wkin + Wpot = const = m *  g *  hmax

• hmax reached when |v|=0

• Wkin = kinetic energy = 1/2 *  m *  |v|2

• Wpot = potential energy = m *  g *  h

• h = the current z-coordinate of the mass point

• g = acceleration of gravity = 9.81 ms-2

• m = mass of the mass point

chalkboard
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Mass point on a spline (contd.)
frictionless model, with gravity

• Given current h, we can always compute the corresponding |v|:

)(2|| max hhgv −=
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Simulating mass point on a spline

• Time step ∆∆∆∆t
• We have: ∆∆∆∆s = |v| *  ∆∆∆∆t   and s = s + ∆∆∆∆s .
• We want the new value of u, so that can compute new point 

location

• Therefore:
We know s, need to determine u
Here we use the bisection routine to compute u=u(s).

t t+∆∆∆∆t
u
s
v

u
s
v

?
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Mass point simulation

MassPoint(tmax) // tmax = final time
/* assume initially, we have t=0 and point is located at 
u=0 */

u = 0;  
s = 0;
t = 0;
While t < tmax
{

Assert u < 31;  // if not, end of spline reached
Determine current velocity |v| using physics;
s = s + |v| * ∆∆∆∆t; // compute new arclength
u = Bisection(u,u + delta,s); // solve for t
p = p(u); // p = new mass point location
Do some stuff with p, i.e. render point location, etc.
t = t + ∆∆∆∆t; // proceed to next time step

}

• Assume we have a 32-piece spline, with a general 
parameter ization of  u∈∈∈∈[0,31]

chalkboard
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Mass point simulation
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Arclength Parametrization

• There are an infinite number  of parameter izations of a given 
curve.  Slow, fast, speed continuous or  discontinuous, 
clockwise (CW) or  CCW…

• A special one: arc-length-parameter ization: u=s is arc 
length.  We care about these for  animation.
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• Assume a general parameter ization p=p(u)
• p(u) = [x(u), y(u), z(u)]T

• arclength parameter  s=s(u) is the distance from p(0) to p(u) 
along the curve

• Distance increases monotonically, hence s=s(u) is a 
monotonically increasing function

• I t follows from Pitagora’s law that

chalkboard

Arclength Parametrization
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Arclength Parametrization Summary

• Use bisection (next slide) to compute universe: u=u(s) 

•Arclength parameter  s=s(u) is the distance from p(0) to p(u) along the curve

•The integral for  s(u) usually cannot be evaluated analytically

•Has to evaluate the integral numer ically

•Simpson’s integration rule
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Computing inverse u=u(s)

Bisection(umin,umax,s)
/* umin = min value of u

umax = max value of u; umin <= u <= umax
s = target value */
Forever // but not really forever
{

u = (umin + umax) / 2; // u = candidate for solution
If |s(u)-s| < epsilon

Return u;
If s(u) > s  // u too big, jump into left interval

umax = u;
Else  // t too small, jump into right interval

umin = u;
}

• Must have initial guess for  the interval containing u


