15-462: Computer Graphics

Jessica Hodgins and Alla Safonova

Introduction

- Administrivia
- Who are we?
- What is computer graphics?
- A few case studies

Administration

Web page

- www.cs.cmu.edu/~jkh/462_S07
- Linked from my home page
- TA's: Michael de Rosa and Joel Micah Donovan
 - Office hours and contact info on the web
- Textbook:
 - Shirley, 2nd edition
 - Open GL (on the web) or order the Red Book

Administration

• Prerequisites (talk to us if you're missing these!)

15-213: Introduction to Computer Systems
21-241: Matrix Algebra (matrix & vector algebra)
21-259: Calculus in Three Dimensions (i.e. planes, quadratic surfaces, basic 3-D geometry, partial derivatives) or equivalent

- Midterm and Final (13% and 22%)
- Four programming assignments (8-13% each)
- Three written assignments (20% total)

We'll do fun things in this class!

Height Fields (starter project in OpenGL) Spline roller coaster Ray tracer Procedural modeling of plants

Warning: mathematical programming may be different than what you've done in the past (and harder to debug)

Administration

Late Policy: 3 late days that you can use for any assignment (programming or written). More than three requires a verifiable good excuse.Cheating: Please don't! The detailed definition is in the syllabus. Using code from the web is ok as long as it is a SMALL percentage of the code for written the assignment. We will pursue the case if the rules are violated...

Other Graphics Courses

15-463: Computational Photography, Efros (Fall)
15-464: Technical Animation, Pollard (Spring)
15-465: Animation Art and Technology, Hodgins, Duesing (Spring)
15-466: Computer Game Programming, Kuffner (Spring)

Various grad classes in CSD

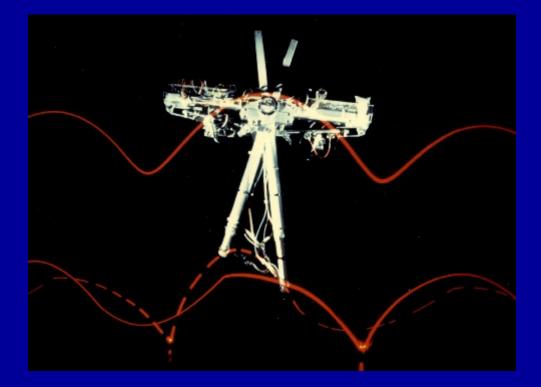
15-385: Computer Vision05-331: Building Virtual Worlds, Schell (Fall)24-384A: Computational Geometry, Shimada60-415: 3-D Animation, Duesing (Fall)

Introduction

- Administrivia
- Who are we?
- What is Computer Graphics?
- A few case studies

Announcements will be added to the web page throughout the semester.

Any questions?


Who am I?

PhD CS, CMU

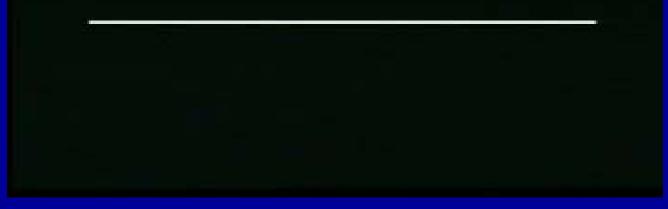
Legged Locomotion For Rough Terrain Locomotion

On the faculty at Georgia Tech from 1992-2000

Joined CMU in fall 2000

Legged Locomotion

From physical robots to animations



And on to humans

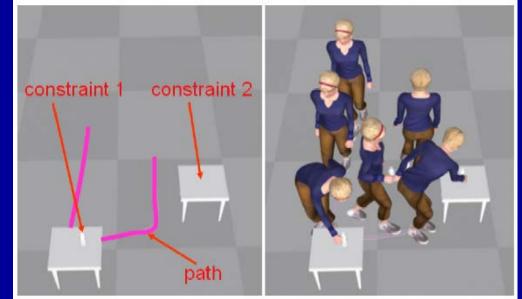
And on to humans

All motion in this animation was generated using dynamic simulation.

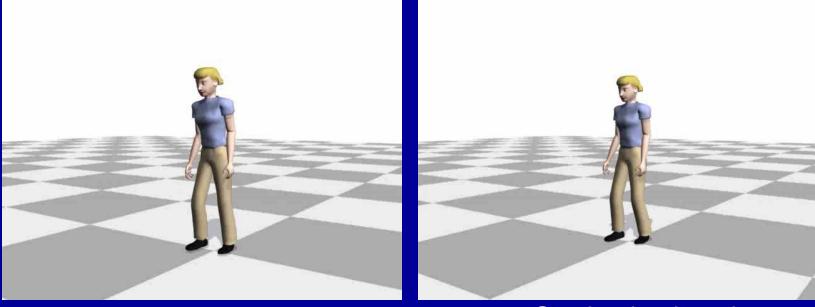
Now—Capturing data of humans

Animating Muscle and Skin

Experimental Results


And back to robots

Who is Alla?


PhD CS, CMU

Reducing the search space for physically realistic human motion synthesis

Motion from a few constraints

Physically correct motion for complex character User only provides a rough sketch

Rough sketch

Synthesized motion

What is Computer Graphics?

One agenda: Faking Reality

Make synthetic images that are *indistinguishable* from the real thing Do it in a way that's both practical and scientifically sound.

Another Agenda: Create a new Reality

 Modeling, animation, rendering of things that don't exist.

Pirates of the Caribbean

Non-photorealistic Rendering

 Image Analogies A. Hertzmann, C. Jacobs, N. Oliver, B. Curless, D. Salesin. SIGGRAPH 2001 Conference Proceedings.

The three big topics:

- Modeling: how to represent objects; how to build those representations
- Animation: representing/controlling the way things move
- Rendering: how to create images

Modeling

How to represent real environments

geometry: modeling surfaces, volumes
photometry: light, color, reflectance

How to *build* these representations

declaratively: write it down
interactively: sculpt it

- programmatically: let it grow
- via 3D sensing: scan it in

Modeling by Sculpting

Freeform from Sensable Technologies

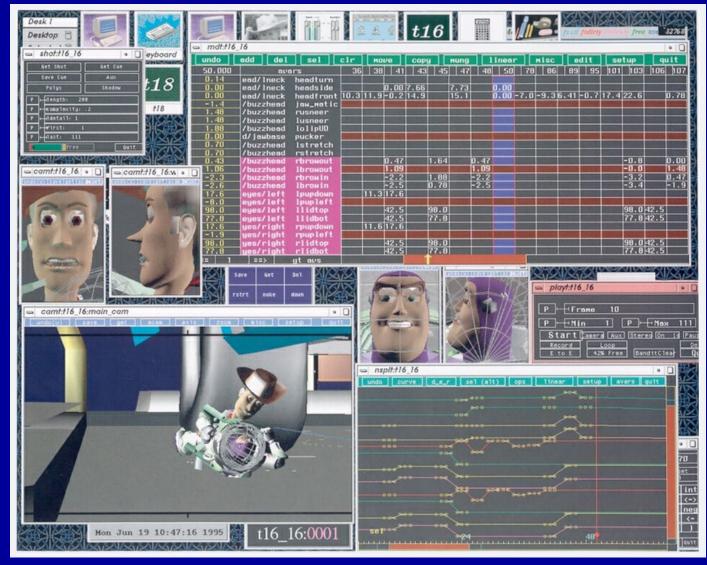
Modeling by Growing

Reproduction of the topiary garden at Levens, England. R. Mech, P. Prusinkiewicz, SIGGRAPH 1994

Modeling by Scanning

Cyberware

Animation

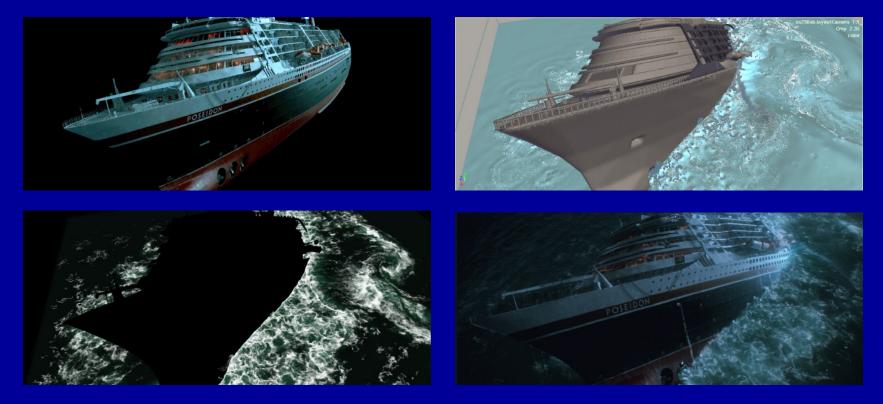

- How things move

 Joint angles
 Vertices
 Deformations

 How to specify motion

 by hand (keyframing)
 rule-based behaviors
 - physics
 - motion capture

Hand Animation


Making of Toy Story

Rule-based Behaviors

Massive Movie Craig Reynold's Movie

Physics for Natural Phenomena

Poseidon water simulation


http://www.fxguide.com/article350.html

Physics for Natural Phenomena

O'Brien, J. F., Hodgins, J. K., (1999) Graphical Modeling and Animation of Brittle Fracture. The proceedings of ACM SIGGRAPH 99,

Physics for Characters

Motion Capture

Polar Express

Motion Capture

Titanic, House of Moves

Motion Analysis

Titanic, House of Moves

Rendering

- What's an image?
 - distribution of light energy on 2D "film": $E(x,y,\lambda,t)$ (λ is wavelength.)
- How to generate images from scenes
 - input: 3D description of scene, camera
 - solve light transport through environment
 - ray tracing
 - radiosity
 - project to camera's viewpoint

Raytracing

May-June 2001 First Place Winner Internet Ray Tracing Competition: warm_up by Norbert Kern

Radiosity

Lightscape, Autodesk

Image-based Rendering

UNC Image-based Rendering Project

Case Studies

Realism: Panic Room Forrest Gump Imagination: Polar Express Pirates: http://www.ilm.com/theshow/