Announcements
e Assignment 3 due today
Questions???

« Remember that you have late days (if you
naven't used them yet...)

* Problem set 3 out at the end of the day
* Movie for Assignment 2 at the end of class

Computer Graphics 15-462 1

Ray Casting

Ray Casting

Barycentric Coordinates

Watt 1.4 and 12

—orward & Backward Ray Tracing

Ray-Surface Intersection Testing

11/5/02

Global vs. Local Rendering Models

 We've been talking about local rendering models. The
color of one object is independent of its neighbors
(except for shadows)

« Missing scattering of light between objects, real
shadowing

* Global Rendering Models
— Raytracing—specular highlights
— Radiosity—diffuse surfaces, closed environments

000 000
—~00® 000

Computer Graphics 15-462 3

Light is Bouncing Photons

 Light sources send off photons in all directions
— Model these as particles that bounce off objects in the scene
— Each photon has a wavelength and energy (color and intensity)

—When photons bounce, some energy is absorbed, some reflected,
some transmitted

 |If we can model photon bounces we can generate images

 Technique: follow each photon from the light source until:
— All of its energy is absorbed (after too many bounces)
— It departs the known universe
— It strikes the image and its contribution is added to appropriate pixel

Computer Graphics 15-462 4

Forward Ray Tracing

Rays are the paths of these photons

This method of rendering by following photon paths is
called ray tracing

Forward ray tracing follows the photon in direction that
light travels (from the source)
BIG problem with this approach:
— Only a tiny fraction of rays reach the image
— Extremely slow

ldeal Scenario:

—We'd like to magically know which rays will
eventually contribute to the image, and trace
only those

Computer Graphics 15-462 5

Backward Ray Tracing

* The solution is to start from the image and trace
backwards - backward ray tracing

— Start from the image and follow the ray until the ray finds (or fails
to find) a light source

“. Reflected ray

Shadow ray

Eye ray™, - Refracted ray
~

"
bl

Computer Graphics 15-462 6

Backward Ray Tracing

e Basic ideas:

— Each pixel gets light from just one direction - the line through the
Image point and focal point

— Any photon contributing to that pixel’'s color has to come from this
direction

— So head in that direction and find out what is sending light this way
— If we hit a light source - we’re done

— If we find nothing - we’re done

— If we hit a surface - see where that surface is lit from

o At the end we've done forward ray tracing, but ONLY for
the rays that contribute to the image

Computer Graphics 15-462 7

Ray Casting

This version of ray tracing is often called ray casting
The algorithm is

loop y
loop x

shoot ray from eye point through pixel (x,y) into scene
intersect with all surfaces, find first one the ray hits
shade that point to compute pixel (x,y)’s color

(perhaps simulating shadows as we discussed earlier)

Aray is p+td: pis ray origin, d the 3D direction
— t=0 at origin of ray, 0 in positive direction of ray
— typically assume ||d||=1
— p and d are typically computed in world space

This is easily generalized to give recursive ray tracing...

Computer Graphics 15-462 3

Recursive Ray Tracing

o ~. Reflected ray
L L -
\\.

Shadow ray |
\\

- atidy, ~
"y ~ i-Refracted ray
3 N

o We’'ll distinguish four ray types:
— Eye rays: originate at the eye
— Shadow rays: from surface point toward light source
— Reflection rays: from surface point in mirror direction
— Transmission rays: from surface point in refracted direction

« Trace all of these recursively. More on this later.

Computer Graphics 15-462 9

Writing a Simple Ray Caster (no bounces)

Raycast() /I generate a picture

for each pixel x,y
color(pixel) = Trace(ray_through_pixel(x,y))

Trace(ray) /I fire a ray, return RGB radiance
/[of light traveling backward along it
object_point = Closest_intersection(ray)
if object_point return Shade(object_point, ray)
else return Background_ Color

Closest_intersection(ray)
for each surface in scene
calc_intersection(ray, surface)
return the closest point of intersection to viewer
(also return other info about that point, e.g., surface
normal, material properties, etc.)

Shade(point, ray) /I return radiance of light leaving
/[point in opposite of ray direction
calculate surface normal vector
use Phong illumination formula (or something similar)
to calculate contributions of each light source

Computer Graphics 15-462 10

Ray-Surface Intersections

e Ray equation: (given origin p and direction d)
x(f) = p+

« Surfaces can be represented by:
— Implicit functions: f(x) =0
— Parametric functions: X = g(u,Vv)

« Compute Intersections:
— Substitute ray equation for x
— Find roots
— Implicit: f(p+td) =0
» one equation in one unknown — univariate root finding
— Parametric: p+t-g(uv)=0
» three equations in three unknowns (t,u,v) — multivariate root finding

— For univariate polynomials, use closed form solution otherwise use
numerical root finder

Computer Graphics 15-462 11

The Devil’s In the Detalls

« Solving these intersection equations can be tough...
— General case: non-linear root finding problem
— Simple surfaces can yield a closed-form solution
— But generally a numerical root-finding method is required
» Expensive to calculate

» Won't always converge
» When repeated millions of times, special cases WILL occur

 The good news:

— Ray tracing is simplified using object-oriented techniques
» Implement one intersection method for each type of surface primitive
» Each surface handles its own intersection

— Some surfaces yield closed form solutions:
» quadrics: spheres, cylinders, cones, ellipsoids, etc...
» polygons
» tori, superquadrics, low-order spline surface patches

Computer Graphics 15-462 12

Ray-Sphere Intersection

Ray-sphere intersection is an easy case
A sphere’s implicit function is X2+y?+22-r°=0f sphere at origin
The ray equationis: x =p, +td,

y = p,td,

Z = p,tid,
Substitution gives: (p,+td,)? + (p,+td)* + (p,+td,)* - r* = 0
A quadratic equation in .
Solve the standard way: A= d+d *+d,?= 1 (unit vec.)

At2+Bt+C=0 B =2(pd,+p,d, +p,d,)
C = p2+p2+p2 - I?

Computer Graphics 15-462 13

Ray-Sphere Intersection continued
Quadratic formula has two roots: t=(-Bxsqrt(B*-4C))/2

— Real roots correspond to the two intersection points
— Negative determinant means ray misses sphere (BZ —4C <0)
— Determinant = 0 means ray grazes sphere

We also need the normal, for sphere centered at (I, m, n)

_(Xi_l yi_mzi_n(
N_? rr o)

Computer Graphics 15-462 14

Ray-Polygon Intersection
Assuming we have a planar polygon

—first, find intersection point of ray with plane that contains polygon
—then check if that point is inside the polygon

 |ntersection of ray with polygon the easy way (faster way in
a minute):

ax+by+cy+d =0

X=X +it
y=y, +]t
Z=12z +kt
t:_ax_l.-l_byl-l-czl-l_d
al+bj +ck
ai +bhj+ck=0/(ray/plane parallel

Computer Graphics 15-462 15

Ray-Polygon Intersection

Assuming we have a planar polygon
— first, find intersection point of ray with plane that contains polygon
— then check if that point is inside the polygon

o Latter step is a point-in-polygon test in 3-D:
— inputs: a point x in 3-D and the vertices of a polygon in 3-D
— output: INSIDE or OUTSIDE
— problem can be reduced to point-in-polygon test in 2-D
* Point-in-polygon test in 2-D:
— easiest for triangles
— easy for convex n-gons
— harder for concave polygons
— most common approach: subdivide all polygons into triangles
— for optimization tips, see article by Haines in the book Graphics Gems IV

Computer Graphics 15-462 16

Ray-Plane Intersection—again
* Ray: x=p+td
— where P IS ray origin, dis ray direction. we'll assume [|d]|=1 (this simplifies the algebra later)
— X(H=(x,y,z) is point on ray if 0
* Plane: (x-q)sn=0
— where q is reference point on plane, nis plane normal. (some assume ||n||=1; we won't)
— X Is point on plane
— if what you’re given is vertices of a polygon
» compute n with cross product of two (non-parallel) edges
» use one of the vertices for g
— rewrite plane equation as xen+D=0
» equivalent to the familiar formula Ax+By+Cz+D=0, where (A,B,C)=n, D=-gen
» fewer values to store
o Steps:
— substitute ray formula into plane equation, yielding 1 equation in 1 unknown ().
— solution: t = -(pen+D)/(d*n)
» note: if den=0 then ray and plane are parallel - REJECT
» note: if <0 then intersection with plane is behind ray origin - REJECT
— compute t, plug it into ray equation to compute point x on plane

Computer Graphics 15-462 17

Projecting A Polygon from 3-D to 2-D

* Point-in-polygon testing is simpler and faster if we do it in

— The simplest projections to compute are to the xy, yz, or zx planes

— If the polygon has plane equation Ax+By+Cz+D=0, then
» |A| is proportional to projection of polygon in yz plane
» |B| is proportional to projection of polygon in zx plane
» |C| is proportional to projection of polygon in xy plane

» Example: the plane z=3 has (A,B,C,D)=(0,0,1,-3), so |C] is the largest
and xy projection is best. We should do point-in-polygon testing using
x and y coords.

— In other words, project into the plane for which the perpendicular
component of the normal vector n is largest to maintain accuracy
e Optimization:
— We should optimize the inner loop (ray-triangle intersection testing) as
much as possible

— We can determine which plane to project to, for each triangle, as a
Inrplnmr‘pqc

Computer Graphics 15-462 18

Digression before we get to point-in-polygon testing:
Interpolated Shading for Ray Tracing

e Suppose we know colors or normals at vertices
— How do we compute the color/normal of a specified point inside?

« Color depends on distance to each vertex

— Want this to be linear (so we get same answer as scanline
algorithm such as Gouraud or Phong shading)

— But how to do linear interpolation between 3 points?
— Answer: barycentric coordinates

« Useful for ray-triangle intersection testing too!

Computer Graphics 15-462 19

Barycentric Coordinates in 1-D

Linear interpolation between colors C, and C,; by ¢
C=(1-1)C,+tC,

We can rewrite this as
C =aC,+4C, wherea+f=1
C isbetweerC,andC, - a,0[0]]

« Geometric intuition:
— We are weighting each vertex by ratio of distances (or areas in the 2d

case)

C, E C,

m— >
,3 a

a and S are called barycentric coordinates

Computer Graphics 15-462 20

Barycentric Coordinates in 2-D

 Now suppose we have 3 points instead of 2

e Define three barycentric coordinates: a, S, y
C=aC,+4C,+yC, wherea+f+y=1
CisinsideC,C.C, = a,s,yU[0]]

 How to define a, G, and y?

Computer Graphics 15-462 21

Barycentric Coordinates for a Triangle

» Define barycentric coordinates to be ratios of triangle areas

c, . Ared(CC,C,)
AredC.C,C,)

_ AredC,CC,)

a P= aredC,C.C,)

g C, _ AredC,C,C)

= :1_ —_
4 AredC,C,C,) a-F

Computer Graphics 15-462 22

Computing Area of a Triangle
 in3-D

A B

— Area(ABC) = parallelogram area / 2 = ||(B-A) x (C-A)||/2
— faster: project to xy, yz, or zx, use 2D formula

e iIn2-D
— Area(xy-projection(ABC)) = [(b,-a,)(c,-a,) — (c,-a,)(b,-a,)]/2
project A,B,C to xy plane, take z component of cross product
— positive if ABC is CCW (counterclockwise)
— Explained on next slide...

Computer Graphics 15-462 23

Computing Area of a Triangle - Algebra

That short formula,
Area(ABC) = [(b,-a,)(c,-a,) — (c,-a,)(b,-a)]/2
Where did it come from?

1 ax bx Cx
Area(ABC) = ? a, b, c,
1 1 1
b b
:?X CX+CX ax+ax X(/Z
(by Gl 1& & | by

= (bey - bey + Cxay B aXCy + axby B bxay) / 2

The short & long formulas above agree.
Short formula better because fewer multiplies. Speed is important!
Can we explain the formulas geometrically?

Computer Graphics 15-462 24

Computing Area of a Triangle - Geometry
Area(ABC) =[(b,-a,)(c,~a) — (c,-a,)(b,-a,)J/2

IS a sum of rectangle areas, divided by 2.

(bx_ax) (Cy'ay) (Cx-ax) (ay'b y)

-

since triangle area = base*height/2

It works!

Computer Graphics 15-462 25

Uses for Barycentric Coordinates

 Point-in-triangle testing!
—pointisin triangleiff @, G, y >0
—note similarity to standard
point-in-polygon methods that

use tests of form ax+by+c;<0
for each edge i

e Can use barycentric coordinates to interpolate any quantity
—Gouraud Shading (color interpolation)

—Phong Shading (normal interpolation)
—Texture mapping ((s,1) texture coordinate interpolation)

Computer Graphics 15-462 26

Radiosity

We’'ll return to ray tracing in the next lecture but for the
moment, here’s a digression on another global rendering
method.

Simple scene with diffuse surfaces

White wall should show effect of being near red
wall

Compute light reflected between each pair of
patches

Computer Graphics 15-462 27

Radiosity Examples

http://www.autodesk.com/us/lightscape/examples/html/index.htm

Computer Graphics 15-462 28

Radiosity

*Closed environment (office, factory)
Compute interaction between all
patches (over which intensity is
assumed to be constant)

*View independent

Difficult to do specular highlights
*Most impressive images to date

Computer Graphics 15-462 29

Raytracing Examples

http://www.med.osaka-u.ac.jp/pub/cl-comp/saito/raytr/saturn-img.htmi

Computer Graphics 15-462 30

Raytracing Examples

http://www.povray.org/

Computer Graphics 15-462 31

Raytracing Examples

http://www.povray.org/

Computer Graphics 15-462 32

Raytracing Examples

(C) 1994 — MICHAEL MITTELSTADT

http://www.povray.org/

Computer Graphics 15-462 33

Radiosity Examples

http://www.autodesk.com/us/lightscape/examples/html/index.htm

Computer Graphics 15-462 34

Radiosity Examples

http://www.autodesk.com/us/lightscape/examples/html/index.htm

Computer Graphics 15-462 35

Radiosity Examples

http://www.autodesk.com/us/lightscape/examples/html/index.htm

Computer Graphics 15-462 36

Announcements
e Assignment 3 due today
Questions???

« Remember that you have late days (if you
naven't used them yet...)

* Problem set 3 out at the end of the day
* Movie for Assignment 2 at the end of class

Computer Graphics 15-462 37

Alkas Baybas

Computer Graphics 15-462 38

