Announcements

Assignment 3 due today

Questions???

- Remember that you have late days (if you haven't used them yet...)
- Problem set 3 out at the end of the day
- Movie for Assignment 2 at the end of class

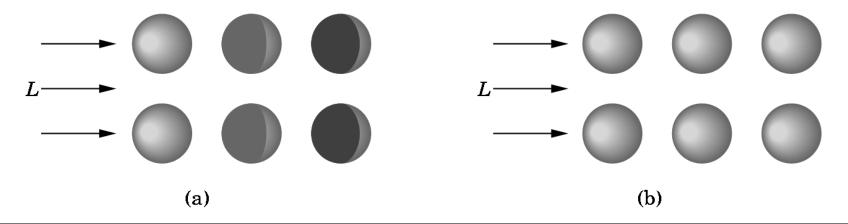
Ray Casting

Forward & Backward Ray Tracing Ray Casting Ray-Surface Intersection Testing Barycentric Coordinates

Watt 1.4 and 12

Global vs. Local Rendering Models

- We've been talking about local rendering models. The color of one object is independent of its neighbors (except for shadows)
- Missing scattering of light between objects, real shadowing
- Global Rendering Models
 - Raytracing—specular highlights
 - Radiosity—diffuse surfaces, closed environments

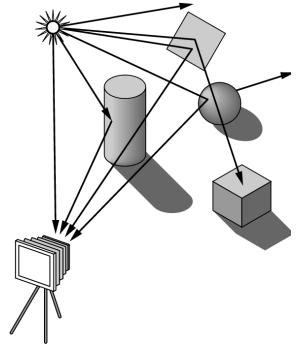


Light is Bouncing Photons

- Light sources send off photons in all directions
 - Model these as particles that bounce off objects in the scene
 - Each photon has a wavelength and energy (color and intensity)
 - When photons bounce, some energy is absorbed, some reflected, some transmitted
- If we can model photon bounces we can generate images
- Technique: follow each photon from the light source until:
 - All of its energy is absorbed (after too many bounces)
 - It departs the known universe
 - It strikes the image and its contribution is added to appropriate pixel

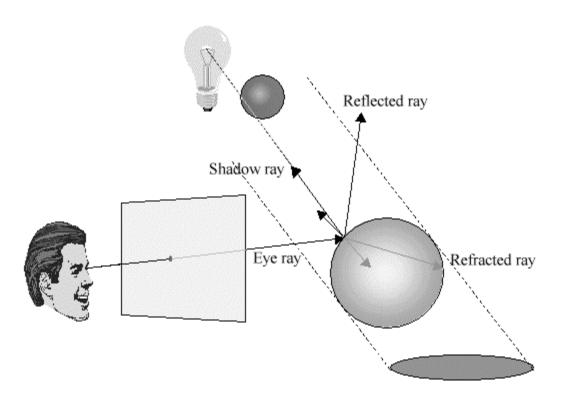
Forward Ray Tracing

- Rays are the paths of these photons
- This method of rendering by following photon paths is called ray tracing
- Forward ray tracing follows the photon in direction that light travels (from the source)
- BIG problem with this approach:
 - Only a tiny fraction of rays reach the image
 - Extremely slow
- Ideal Scenario:
 - We'd like to magically know which rays will eventually contribute to the image, and trace only those



Backward Ray Tracing

- The solution is to start from the image and trace backwards - backward ray tracing
 - Start from the image and follow the ray until the ray finds (or fails to find) a light source



Backward Ray Tracing

Basic ideas:

- Each pixel gets light from just one direction the line through the image point and focal point
- Any photon contributing to that pixel's color has to come from this direction
- So head in that direction and find out what is sending light this way
- If we hit a light source we're done
- If we find nothing we're done
- If we hit a surface see where that surface is lit from
- At the end we've done forward ray tracing, but ONLY for the rays that contribute to the image

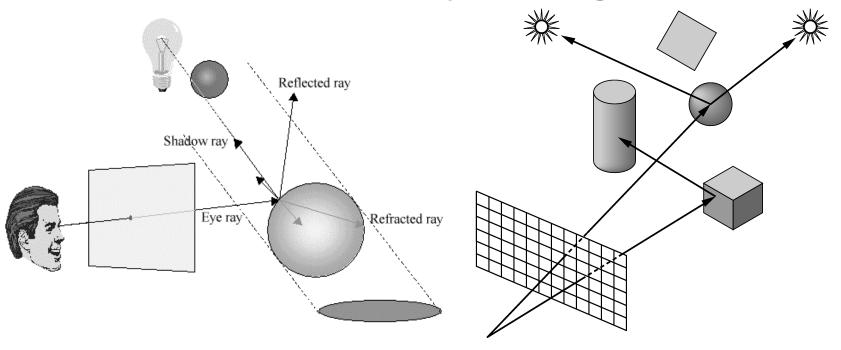
Ray Casting

- This version of ray tracing is often called ray casting
- The algorithm is

```
loop x
shoot ray from eye point through pixel (x,y) into scene
intersect with all surfaces, find first one the ray hits
shade that point to compute pixel (x,y)'s color
(perhaps simulating shadows as we discussed earlier)
```

- A ray is p+td: p is ray origin, d the 3D direction
 - t=0 at origin of ray, t>0 in positive direction of ray
 - typically assume ||d||=1
 - p and d are typically computed in world space
- This is easily generalized to give recursive ray tracing...

Recursive Ray Tracing



- We'll distinguish four ray types:
 - Eye rays: originate at the eye
 - Shadow rays: from surface point toward light source
 - Reflection rays: from surface point in mirror direction
 - Transmission rays: from surface point in refracted direction
- Trace all of these recursively. More on this later.

Writing a Simple Ray Caster (no bounces)

```
Raycast()
                      // generate a picture
  for each pixel x,y
     color(pixel) = Trace(ray through pixel(x,y))
Trace(ray)
                      // fire a ray, return RGB radiance
                       // of light traveling backward along it
  object point = Closest intersection(ray)
  if object point return Shade(object_point, ray)
  else return Background Color
Closest intersection(ray)
  for each surface in scene
       calc intersection(ray, surface)
  return the closest point of intersection to viewer
   (also return other info about that point, e.g., surface
    normal, material properties, etc.)
Shade(point, ray) // return radiance of light leaving
                       // point in opposite of ray direction
  calculate surface normal vector
  use Phong illumination formula (or something similar)
  to calculate contributions of each light source
```

Ray-Surface Intersections

- Ray equation: (given origin p and direction d)
 x(t) = p+td
- Surfaces can be represented by:
 - Implicit functions: f(x) = 0
 - Parametric functions: X = g(u, v)
- Compute Intersections:
 - Substitute ray equation for x
 - Find roots
 - Implicit: f(p + td) = 0
 - » one equation in one unknown univariate root finding
 - Parametric: p + td g(u,v) = 0
 - » three equations in three unknowns (t,u,v) multivariate root finding
 - For univariate polynomials, use closed form solution otherwise use numerical root finder

The Devil's in the Details

- Solving these intersection equations can be tough...
 - General case: non-linear root finding problem
 - Simple surfaces can yield a closed-form solution
 - But generally a numerical root-finding method is required
 - » Expensive to calculate
 - » Won't always converge
 - » When repeated millions of times, special cases WILL occur
- The good news:
 - Ray tracing is simplified using object-oriented techniques
 - » Implement one intersection method for each type of surface primitive
 - » Each surface handles its own intersection
 - Some surfaces yield closed form solutions:
 - » quadrics: spheres, cylinders, cones, ellipsoids, etc...
 - » polygons
 - » tori, superquadrics, low-order spline surface patches

Ray-Sphere Intersection

- Ray-sphere intersection is an easy case
- A sphere's implicit function is $x^2+y^2+z^2-r^2=0$ if sphere at origin
- The ray equation is: $x = p_x + td_x$ $y = p_y + td_y$ $z = p_z + td_z$
- Substitution gives: $(p_x+td_x)^2 + (p_y+td_y)^2 + (p_z+td_z)^2 r^2 = 0$
- A quadratic equation in t.
- Solve the standard way: $A = d_x^2 + d_y^2 + d_z^2 = 1$ (unit vec.) $At^2 + Bt + C = 0$ $B = 2(p_x d_x + p_y d_y + p_z d_z)$ $C = p_x^2 + p_y^2 + p_z^2 r^2$

Ray-Sphere Intersection continued

Quadratic formula has two roots: $t=(-B\pm sqrt(B^2-4C))/2$

- Real roots correspond to the two intersection points
- Negative determinant means ray misses sphere $(B^2 4C < 0)$
- Determinant = 0 means ray grazes sphere

We also need the normal, for sphere centered at (l, m, n)

$$N = \left(\frac{x_i - l}{r}, \frac{y_i - m}{r}, \frac{z_i - n}{r}\right)$$

Ray-Polygon Intersection

Assuming we have a planar polygon

- first, find intersection point of ray with plane that contains polygon
- then check if that point is inside the polygon
- Intersection of ray with polygon the easy way (faster way in a minute):

$$ax + by + cy + d = 0$$

$$x = x_1 + it$$

$$y = y_1 + jt$$

$$z = z_1 + kt$$

$$t = -\frac{ax_1 + by_1 + cz_1 + d}{ai + bj + ck}$$

$$ai + bj + ck = 0$$
ray/plane parallel

Ray-Polygon Intersection

Assuming we have a planar polygon

- first, find intersection point of ray with plane that contains polygon
- then check if that point is inside the polygon
- Latter step is a point-in-polygon test in 3-D:
 - inputs: a point x in 3-D and the vertices of a polygon in 3-D
 - output: INSIDE or OUTSIDE
 - problem can be reduced to point-in-polygon test in 2-D
- Point-in-polygon test in 2-D:
 - easiest for triangles
 - easy for convex n-gons
 - harder for concave polygons
 - most common approach: subdivide all polygons into triangles
 - for optimization tips, see article by Haines in the book *Graphics Gems IV*

Ray-Plane Intersection—again

- Ray: x=p+td
 - where p is ray origin, d is ray direction. we'll assume ||d||=1 (this simplifies the algebra later)
 - -x(t)=(x,y,z) is point on ray if t>0
- Plane: (x-q)•n=0
 - where q is reference point on plane, n is plane normal. (some assume ||n||=1; we won't)
 - x is point on plane
 - if what you're given is vertices of a polygon
 - » compute n with cross product of two (non-parallel) edges
 - » use one of the vertices for q
 - rewrite plane equation as x•n+D=0
 - » equivalent to the familiar formula Ax+By+Cz+D=0, where (A,B,C)=n, $D=-q\bullet n$
 - » fewer values to store

• Steps:

- substitute ray formula into plane equation, yielding 1 equation in 1 unknown (t).
- solution: $t = -(p \cdot n + D)/(d \cdot n)$
 - » note: if d•n=0 then ray and plane are parallel REJECT
 - » note: if *t*<0 then intersection with plane is behind ray origin REJECT
- compute t, plug it into ray equation to compute point x on plane

Projecting A Polygon from 3-D to 2-D

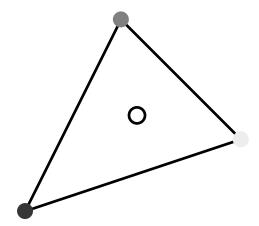
- Point-in-polygon testing is simpler and faster if we do it in 2-D
 - The simplest projections to compute are to the xy, yz, or zx planes
 - If the polygon has plane equation Ax+By+Cz+D=0, then
 - » |A| is proportional to projection of polygon in yz plane
 - » |B| is proportional to projection of polygon in zx plane
 - » |C| is proportional to projection of polygon in xy plane
 - » Example: the plane z=3 has (A,B,C,D)=(0,0,1,-3), so |C| is the largest and xy projection is best. We should do point-in-polygon testing using x and y coords.
 - In other words, project into the plane for which the perpendicular component of the normal vector n is largest to maintain accuracy

Optimization:

- We should optimize the inner loop (ray-triangle intersection testing) as much as possible
- We can determine which plane to project to, for each triangle, as a preprocess

Digression before we get to point-in-polygon testing: Interpolated Shading for Ray Tracing

- Suppose we know colors or normals at vertices
 - How do we compute the color/normal of a specified point inside?



- Color depends on distance to each vertex
 - Want this to be linear (so we get same answer as scanline algorithm such as Gouraud or Phong shading)
 - But how to do linear interpolation between 3 points?
 - Answer: barycentric coordinates
- Useful for ray-triangle intersection testing too!

Barycentric Coordinates in 1-D

Linear interpolation between colors C₀ and C₁ by t

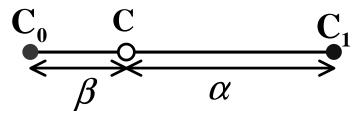
$$\mathbf{C} = (\mathbf{1} - t)\mathbf{C}_0 + t\mathbf{C}_1$$

We can rewrite this as

$$\mathbf{C} = \alpha \mathbf{C_0} + \beta \mathbf{C_1}$$
 where $\alpha + \beta = 1$

C is between C_0 and $C_1 \Leftrightarrow \alpha, \beta \in [0,1]$

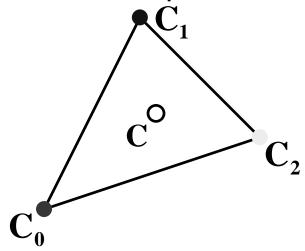
- Geometric intuition:
 - We are weighting each vertex by ratio of distances (or areas in the 2d case)



• α and β are called *barycentric* coordinates

Barycentric Coordinates in 2-D

Now suppose we have 3 points instead of 2



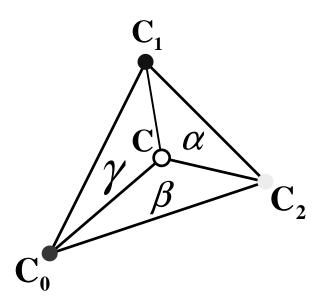
• Define three barycentric coordinates: α , β , γ

$$\mathbf{C} = \alpha \mathbf{C}_0 + \beta \mathbf{C}_1 + \gamma \mathbf{C}_2$$
 where $\alpha + \beta + \gamma = 1$
 \mathbf{C} is inside $\mathbf{C}_0 \mathbf{C}_1 \mathbf{C}_2 \Leftrightarrow \alpha, \beta, \gamma \in [0,1]$

• How to define α , β , and γ ?

Barycentric Coordinates for a Triangle

Define barycentric coordinates to be ratios of triangle areas



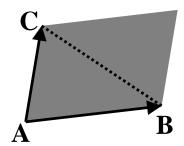
$$\alpha = \frac{Area(\mathbf{CC_1C_2})}{Area(\mathbf{C_0C_1C_2})}$$

$$\beta = \frac{Area(\mathbf{C_0CC_2})}{Area(\mathbf{C_0C_1C_2})}$$

$$\gamma = \frac{Area(\mathbf{C_0C_1C_2})}{Area(\mathbf{C_0C_1C_2})} = 1 - \alpha - \beta$$

Computing Area of a Triangle

• in 3-D



- -Area(ABC) = parallelogram area / 2 = ||(B-A) x (C-A)||/2
- faster: project to xy, yz, or zx, use 2D formula
- in 2-D
 - $-Area(xy-projection(ABC)) = [(b_x-a_x)(c_y-a_y) (c_x-a_x)(b_y-a_y)]/2$ project A,B,C to xy plane, take z component of cross product
 - positive if ABC is CCW (counterclockwise)
 - Explained on next slide...

Computing Area of a Triangle - Algebra

That short formula,

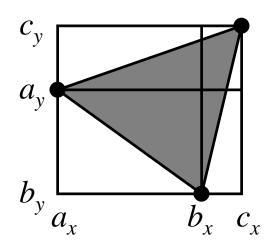
$$Area(ABC) = [(b_x-a_x)(c_y-a_y) - (c_x-a_x)(b_y-a_y)]/2$$

Where did it come from?

$$Area(ABC) = \frac{1}{2} \begin{vmatrix} a_{x} & b_{x} & c_{x} \\ a_{y} & b_{y} & c_{y} \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \left\{ \begin{vmatrix} b_{x} & c_{x} \\ b_{y} & c_{y} \end{vmatrix} + \begin{vmatrix} c_{x} & a_{x} \\ c_{y} & a_{y} \end{vmatrix} + \begin{vmatrix} a_{x} & b_{x} \\ a_{y} & b_{y} \end{vmatrix} \right\} / 2$$

$$= (b_{x}c_{y} - c_{x}b_{y} + c_{x}a_{y} - a_{x}c_{y} + a_{x}b_{y} - b_{x}a_{y}) / 2$$



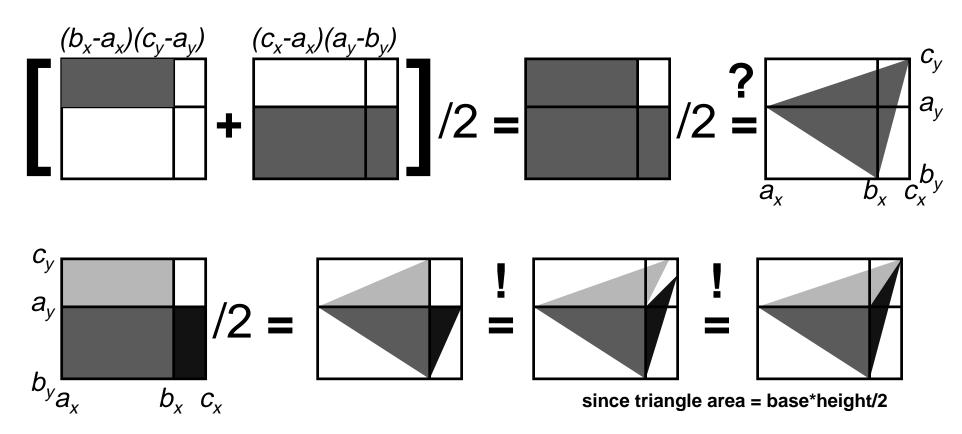
The short & long formulas above agree.

Short formula better because fewer multiplies. Speed is important!

Can we explain the formulas geometrically?

Computing Area of a Triangle - Geometry

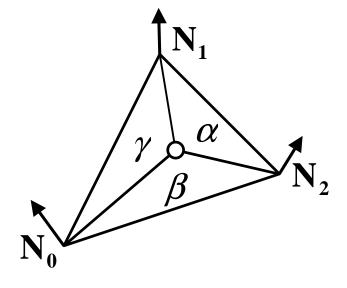
Area(ABC) = $[(b_x-a_x)(c_y-a_y) - (c_x-a_x)(b_y-a_y)]/2$ is a sum of rectangle areas, divided by 2.



it works!

Uses for Barycentric Coordinates

- Point-in-triangle testing!
 - point is in triangle iff α , β , $\gamma > 0$
 - -note similarity to standard point-in-polygon methods that use tests of form a_ix+b_iy+c_i<0 for each edge i</p>

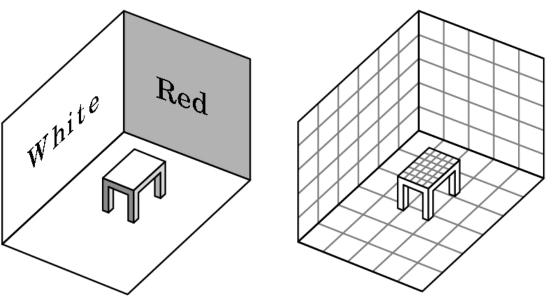


- Can use barycentric coordinates to interpolate any quantity
 - Gouraud Shading (color interpolation)
 - Phong Shading (normal interpolation)
 - -Texture mapping ((s,t) texture coordinate interpolation)

Radiosity

We'll return to ray tracing in the next lecture but for the moment, here's a digression on another global rendering

method.



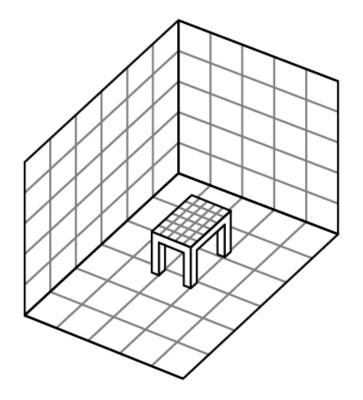
Simple scene with diffuse surfaces
White wall should show effect of being near red
wall

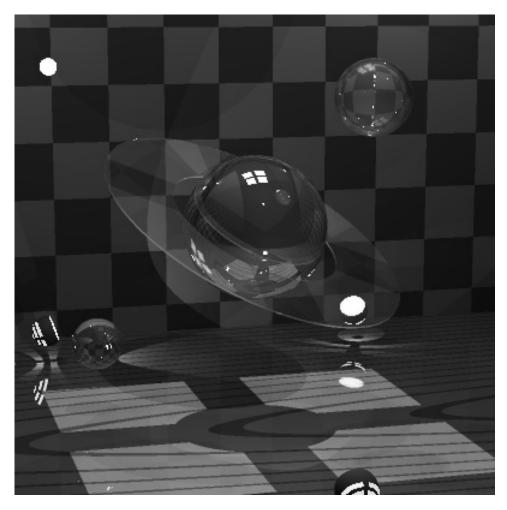
Compute light reflected between each pair of patches

http://www.autodesk.com/us/lightscape/examples/html/index.htm

Radiosity

- Closed environment (office, factory)
- •Compute interaction between all patches (over which intensity is assumed to be constant)
- View independent
- Difficult to do specular highlights
- Most impressive images to date



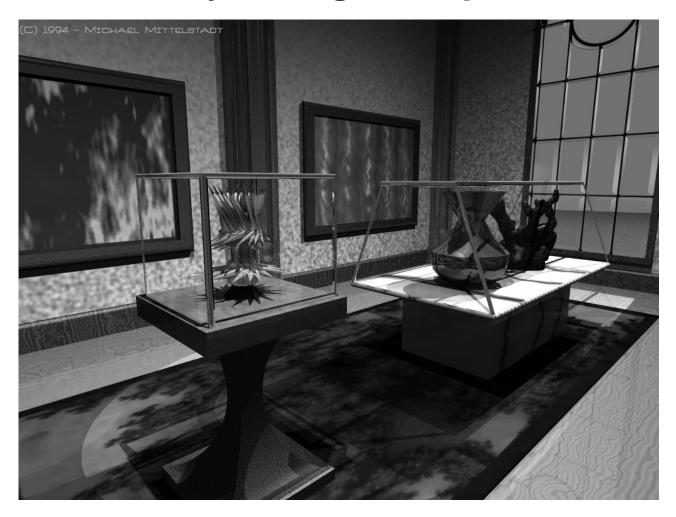


http://www.med.osaka-u.ac.jp/pub/cl-comp/saito/raytr/saturn-img.html



http://www.povray.org/

http://www.povray.org/



http://www.povray.org/

http://www.autodesk.com/us/lightscape/examples/html/index.htm

http://www.autodesk.com/us/lightscape/examples/html/index.htm

http://www.autodesk.com/us/lightscape/examples/html/index.htm

Announcements

Assignment 3 due today

Questions???

- Remember that you have late days (if you haven't used them yet...)
- Problem set 3 out at the end of the day
- Movie for Assignment 2 at the end of class

