
1Computer Graphics 15-462

Announcements

• Assignment 3 due today

Questions???

• Remember that you have late days (if you
haven’t used them yet…)

• Problem set 3 out at the end of the day
• Movie for Assignment 2 at the end of class

Ray Casting

Forward & Backward Ray Tracing
Ray Casting
Ray-Surface Intersection Testing
Barycentric Coordinates

11/5/02

Watt 1.4 and 12

3Computer Graphics 15-462

Global vs. Local Rendering Models
• We’ve been talking about local rendering models. The

color of one object is independent of its neighbors
(except for shadows)

• Missing scattering of light between objects, real
shadowing

• Global Rendering Models
– Raytracing—specular highlights

– Radiosity—diffuse surfaces, closed environments

4Computer Graphics 15-462

Light is Bouncing Photons

• Light sources send off photons in all directions
– Model these as particles that bounce off objects in the scene
– Each photon has a wavelength and energy (color and intensity)
– When photons bounce, some energy is absorbed, some reflected,

some transmitted

• If we can model photon bounces we can generate images
• Technique: follow each photon from the light source until:

– All of its energy is absorbed (after too many bounces)
– It departs the known universe
– It strikes the image and its contribution is added to appropriate pixel

5Computer Graphics 15-462

Forward Ray Tracing

• Rays are the paths of these photons
• This method of rendering by following photon paths is

called ray tracing
• Forward ray tracing follows the photon in direction that

light travels (from the source)
• BIG problem with this approach:

– Only a tiny fraction of rays reach the image
– Extremely slow

• Ideal Scenario:
– We'd like to magically know which rays will

eventually contribute to the image, and trace
only those

6Computer Graphics 15-462

Backward Ray Tracing
• The solution is to start from the image and trace

backwards - backward ray tracing
– Start from the image and follow the ray until the ray finds (or fails

to find) a light source

7Computer Graphics 15-462

Backward Ray Tracing
• Basic ideas:

– Each pixel gets light from just one direction - the line through the
image point and focal point

– Any photon contributing to that pixel’s color has to come from this
direction

– So head in that direction and find out what is sending light this way
– If we hit a light source - we’re done
– If we find nothing - we’re done
– If we hit a surface - see where that surface is lit from

• At the end we’ve done forward ray tracing, but ONLY for
the rays that contribute to the image

8Computer Graphics 15-462

Ray Casting
• This version of ray tracing is often called ray casting
• The algorithm is

loop y
loop x

shoot ray from eye point through pixel (x,y) into scene
intersect with all surfaces, find first one the ray hits
shade that point to compute pixel (x,y)’s color

(perhaps simulating shadows as we discussed earlier)

• A ray is p+td: p is ray origin, d the 3D direction
– t=0 at origin of ray, t>0 in positive direction of ray
– typically assume ||d||=1
– p and d are typically computed in world space

• This is easily generalized to give recursive ray tracing...

9Computer Graphics 15-462

Recursive Ray Tracing

• We’ll distinguish four ray types:
– Eye rays: originate at the eye
– Shadow rays: from surface point toward light source

– Reflection rays: from surface point in mirror direction

– Transmission rays: from surface point in refracted direction

• Trace all of these recursively. More on this later.

10Computer Graphics 15-462

Writing a Simple Ray Caster (no bounces)

Raycast() // generate a picture
for each pixel x,y

color(pixel) = Trace(ray_through_pixel(x,y))

Trace(ray) // fire a ray, return RGB radiance
// of light traveling backward along it

object_point = Closest_intersection(ray)
if object_point return Shade(object_point, ray)
else return Background_Color

Closest_intersection(ray)
for each surface in scene

calc_intersection(ray, surface)
return the closest point of intersection to viewer
(also return other info about that point, e.g., surface

normal, material properties, etc.)

Shade(point, ray) // return radiance of light leaving
// point in opposite of ray direction

calculate surface normal vector
use Phong illumination formula (or something similar)
to calculate contributions of each light source

11Computer Graphics 15-462

Ray-Surface Intersections

• Ray equation: (given origin p and direction d)

x(t) = p+td

• Compute Intersections:
– Substitute ray equation for x
– Find roots
– Implicit: f(p + td) = 0

» one equation in one unknown – univariate root finding

– Parametric: p + td - g(u,v) = 0
» three equations in three unknowns (t,u,v) – multivariate root finding

– For univariate polynomials, use closed form solution otherwise use
numerical root finder

• Surfaces can be represented by:
– Implicit functions: f(x) = 0
– Parametric functions: x = g(u,v)

12Computer Graphics 15-462

The Devil’s in the Details
• Solving these intersection equations can be tough...

– General case: non-linear root finding problem

– Simple surfaces can yield a closed-form solution
– But generally a numerical root-finding method is required

» Expensive to calculate

» Won’t always converge
» When repeated millions of times, special cases WILL occur

• The good news:
– Ray tracing is simplified using object-oriented techniques

» Implement one intersection method for each type of surface primitive

» Each surface handles its own intersection

– Some surfaces yield closed form solutions:
» quadrics: spheres, cylinders, cones, ellipsoids, etc…

» polygons

» tori, superquadrics, low-order spline surface patches

13Computer Graphics 15-462

Ray-Sphere Intersection

• Ray-sphere intersection is an easy case
• A sphere’s implicit function is x2+y2+z2-r2=0 if sphere at origin

• The ray equation is: x = px+tdx

y = py+tdy

z = pz+tdz

• Substitution gives: (px+tdx)2 + (py+tdy)2 + (pz+tdz)2 - r2 = 0
• A quadratic equation in t.
• Solve the standard way: A = dx

2+dy
2+dz

2 = 1 (unit vec.)

B = 2(pxdx+pydy+pzdz)
C = px

2+py
2+pz

2 - r2

At2+Bt+C=0

14Computer Graphics 15-462

Ray-Sphere Intersection continued

Quadratic formula has two roots: t=(-B±sqrt(B2-4C))/2
– Real roots correspond to the two intersection points

– Negative determinant means ray misses sphere
– Determinant = 0 means ray grazes sphere

We also need the normal, for sphere centered at

)04(2 <− CB

ÿ
�
�

�
�
� −−−=

r

nz

r

my

r

lx
N iii ,,

),,(nml

15Computer Graphics 15-462

Ray-Polygon Intersection
Assuming we have a planar polygon

– first, find intersection point of ray with plane that contains polygon
– then check if that point is inside the polygon

• Intersection of ray with polygon the easy way (faster way in
a minute):

ray/plane parallel

ckbjai

dczbyax
t

ktzz

jtyy

itxx

dcybyax

++
+++−=

+=
+=
+=

=+++

111

1

1

1

0

�=++ 0ckbjai

16Computer Graphics 15-462

Ray-Polygon Intersection
Assuming we have a planar polygon

– first, find intersection point of ray with plane that contains polygon
– then check if that point is inside the polygon

• Latter step is a point-in-polygon test in 3-D:
– inputs: a point x in 3-D and the vertices of a polygon in 3-D
– output: INSIDE or OUTSIDE
– problem can be reduced to point-in-polygon test in 2-D

• Point-in-polygon test in 2-D:
– easiest for triangles
– easy for convex n-gons
– harder for concave polygons
– most common approach: subdivide all polygons into triangles
– for optimization tips, see article by Haines in the book Graphics Gems IV

17Computer Graphics 15-462

Ray-Plane Intersection—again
• Ray: x=p+td

– where p is ray origin, d is ray direction. we’ll assume ||d||=1 (this simplifies the algebra later)

– x(t)=(x,y,z) is point on ray if t>0

• Plane: (x-q)•n=0
– where q is reference point on plane, n is plane normal. (some assume ||n||=1; we won’t)

– x is point on plane

– if what you’re given is vertices of a polygon
» compute n with cross product of two (non-parallel) edges

» use one of the vertices for q

– rewrite plane equation as x•n+D=0
» equivalent to the familiar formula Ax+By+Cz+D=0, where (A,B,C)=n, D=-q•n
» fewer values to store

• Steps:
– substitute ray formula into plane equation, yielding 1 equation in 1 unknown (t).
– solution: t = -(p•n+D)/(d•n)

» note: if d•n=0 then ray and plane are parallel - REJECT

» note: if t<0 then intersection with plane is behind ray origin - REJECT

– compute t, plug it into ray equation to compute point x on plane

18Computer Graphics 15-462

Projecting A Polygon from 3-D to 2-D

• Point-in-polygon testing is simpler and faster if we do it in
2-D

– The simplest projections to compute are to the xy, yz, or zx planes

– If the polygon has plane equation Ax+By+Cz+D=0, then
» |A| is proportional to projection of polygon in yz plane
» |B| is proportional to projection of polygon in zx plane
» |C| is proportional to projection of polygon in xy plane
» Example: the plane z=3 has (A,B,C,D)=(0,0,1,-3), so |C| is the largest

and xy projection is best. We should do point-in-polygon testing using
x and y coords.

– In other words, project into the plane for which the perpendicular
component of the normal vector n is largest to maintain accuracy

• Optimization:
– We should optimize the inner loop (ray-triangle intersection testing) as

much as possible
– We can determine which plane to project to, for each triangle, as a

preprocess

19Computer Graphics 15-462

Digression before we get to point-in-polygon testing:
Interpolated Shading for Ray Tracing

• Suppose we know colors or normals at vertices
– How do we compute the color/normal of a specified point inside?

• Color depends on distance to each vertex
– Want this to be linear (so we get same answer as scanline

algorithm such as Gouraud or Phong shading)
– But how to do linear interpolation between 3 points?
– Answer: barycentric coordinates

• Useful for ray-triangle intersection testing too!

20Computer Graphics 15-462

Barycentric Coordinates in 1-D
• Linear interpolation between colors C0 and C1 by t

10 C)C(1C tt +−=

]1,0[,andbetweenis ∈⇔ βα10 CCC

αβ

0C
1CC

• Geometric intuition:
– We are weighting each vertex by ratio of distances (or areas in the 2d

case)

1=++= βαβα where10 CCC
• We can rewrite this as

• α and β are called barycentric coordinates

21Computer Graphics 15-462

Barycentric Coordinates in 2-D
• Now suppose we have 3 points instead of 2

]1,0[,,insideis ∈⇔ γβα210 CCCC

1where =++++= γβαγβα 210 CCCC

• Define three barycentric coordinates: α, β, γ
0C

1C

2C

• How to define α, β, and γ ?

C

22Computer Graphics 15-462

Barycentric Coordinates for a Triangle

• Define barycentric coordinates to be ratios of triangle areas

1C

0C

2C

α
βγ

()
()
()
()
()
() βαγ

β

α

−−==

=

=

1
210

10

210

20

210

21

CCC
CCC

CCC
CCC

CCC
CCC

Area

Area

Area

Area

Area

Area

C

23Computer Graphics 15-462

• in 3-D

– Area(ABC) = parallelogram area / 2 = ||(B-A) x (C-A)||/2
– faster: project to xy, yz, or zx, use 2D formula

• in 2-D
– Area(xy-projection(ABC)) = [(bx-ax)(cy-ay) – (cx-ax)(by-ay)]/2

project A,B,C to xy plane, take z component of cross product
– positive if ABC is CCW (counterclockwise)
– Explained on next slide…

Computing Area of a Triangle

A B

C

24Computer Graphics 15-462

Computing Area of a Triangle - Algebra

That short formula,
Area(ABC) = [(bx-ax)(cy-ay) – (cx-ax)(by-ay)]/2

Where did it come from?

2/)(

2/

111

)(
2
1

yxyxyxyxyxyx

yy

xx

yy

xx

yy

xx

yyy

xxx

abbacaacbccb

ba

ba

ac

ac

cb

cb

cba

cba

ABCArea

−+−+−=

ÿ
ÿ
�

�
�
�
�

�
++=

=

ax bx cx

cy

ay

by

The short & long formulas above agree.
Short formula better because fewer multiplies. Speed is important!
Can we explain the formulas geometrically?

25Computer Graphics 15-462

Computing Area of a Triangle - Geometry

Area(ABC) =[(bx-ax)(cy-ay) – (cx-ax)(by-ay)]/2
is a sum of rectangle areas, divided by 2.

cy

/2 =
ax bx cx

by

ay

it works!

=
!

=
!

since triangle area = base*height/2

[]+ /2 = /2 =
?

(bx-ax)(cy-ay) (cx-ax)(ay-by)

ax bx cx

cy

by

ay

26Computer Graphics 15-462

Uses for Barycentric Coordinates

• Point-in-triangle testing!
– point is in triangle iff α, β, γ > 0
–note similarity to standard

point-in-polygon methods that
use tests of form aix+biy+ci<0
for each edge i

• Can use barycentric coordinates to interpolate any quantity
–Gouraud Shading (color interpolation)

–Phong Shading (normal interpolation)
–Texture mapping ((s,t) texture coordinate interpolation)

0N

1N

2N
α

β
γ

27Computer Graphics 15-462

Radiosity

Simple scene with diffuse surfaces
White wall should show effect of being near red
wall
Compute light reflected between each pair of
patches

We’ll return to ray tracing in the next lecture but for the
moment, here’s a digression on another global rendering
method.

28Computer Graphics 15-462

Radiosity Examples

http://www.autodesk.com/us/lightscape/examples/html/index.htm

29Computer Graphics 15-462

Radiosity

•Closed environment (office, factory)
•Compute interaction between all
patches (over which intensity is
assumed to be constant)
•View independent
•Difficult to do specular highlights
•Most impressive images to date

30Computer Graphics 15-462

Raytracing Examples

http://www.med.osaka-u.ac.jp/pub/cl-comp/saito/raytr/saturn-img.html

31Computer Graphics 15-462

Raytracing Examples

http://www.povray.org/

32Computer Graphics 15-462

Raytracing Examples

http://www.povray.org/

33Computer Graphics 15-462

Raytracing Examples

http://www.povray.org/

34Computer Graphics 15-462

Radiosity Examples

http://www.autodesk.com/us/lightscape/examples/html/index.htm

35Computer Graphics 15-462

Radiosity Examples

http://www.autodesk.com/us/lightscape/examples/html/index.htm

36Computer Graphics 15-462

Radiosity Examples

http://www.autodesk.com/us/lightscape/examples/html/index.htm

37Computer Graphics 15-462

Announcements

• Assignment 3 due today

Questions???

• Remember that you have late days (if you
haven’t used them yet…)

• Problem set 3 out at the end of the day
• Movie for Assignment 2 at the end of class

38Computer Graphics 15-462

