
1Computer Graphics 15-462

Announcements

• Midterms graded back at the end of class

• Help session on Assignment 3 for last ~20
minutes of class

Scan Conversion

Overview of Rendering
Scan Conversion

Drawing Lines
Drawing Polygons

11/1/02

Watt 6.4 (Rasterization)

3Computer Graphics 15-462

Rendering: creating images of our 3d models

Why is this hard?
• Must determine what’s visible
• Must simulate how light flows through the environment
• Different approaches

– Painter’s Algorithm and Z-Buffer Algorithm (OpenGL): draw objects
one by one (scan conversion to determine which pixels to write)

– Ray Tracing: shoot rays out from light source/viewer
– Radiosity: subdivide surfaces with mesh, solve linear system

• We will start with low-level, scan conversion, then move to
raytracing and radiosity

4Computer Graphics 15-462

Scan Conversion or Rasterization

Ideal Picture Raster Representation

Scan Conversion: Process of converting ideal to raster

5Computer Graphics 15-462

Scan Conversion Algorithms

• A discrete set of pixels can only approximate a
continuous geometric object

• This means that scan conversion usually introduces
error

• Properties of good scan conversion algorithms:
– They should be as accurate as possible
– They should be as fast

• Challenges
– Modify all the right pixels
– Modify only the right pixels
– Calculate their values correctly
– Do it quickly

• So, start with a correct algorithm and optimize it

6Computer Graphics 15-462

Line Drawing, Cases by Octant

• Lines come with different slopes, algorithm varies according to
which octant (45 degree sector) it lies in.

• We will talk about one octant only; the algorithms generalize to the
other octants easily.

• The algorithms for drawing lines need to step along one pixel at a
time in the “fast” direction, but which direction this is depends on the
slope of the line

• We also have to worry about reversed end point order (drawing
from large to small X, for example).

We’ll assume slope is
between 0 and 1

7Computer Graphics 15-462

A Really Simple Line Algorithm

• Equation for a line: y(x) = mx + b
• Fill in one pixel per column
• So, just evaluate for each x

– This requires a choice of quadrant, so x steps evenly

• Certainly correct, but slow:
– integer add, cast to float, floating multiply and add, plus round every

step.
void line (int x0, int y0, int x1, int y1){

float m = whatever;

float b = whatever;

int x;

for(x=x0;x<=x1;x++) {

float y= m*x + b;

draw_pixel(x,Round(y));

}

}

8Computer Graphics 15-462

Lines: DDA Algorithm

void line (int x0, int y0, int x1, int y1){
float y = y0;

float m = (y1 - y0)/ (float) (x1 - x0);

int x;

for(x=x0;x<=x1;x++) {

draw_pixel(x,Round(y));

y += m;

}

}

• Optimize the previous to remove multiply from
inner loop.

• If we know y(x), we can calculate y(x+1):
–y(x+1) = mx + m + b = y(x) + m

• This is called Differential Digital Analyzer (DDA) because it is
solving the very simple differential equation dy/dx = m

• Problem: Floating-point add and rounds are expensive

9Computer Graphics 15-462

What do we get from this algorithm?

Why did we limit the slope of the line?
So we can have this rather than that…

10Computer Graphics 15-462

Bresenham’s Algorithm

void draw_line(int x0, int y0, int x1, int y1) {
int x, y = y0;
int dx = 2*(x1-x0), dy = 2*(y1-y0);
int dydx = dy-dx, F = (dy-dx)/2;

for (x=x0 ; x<=x1 ; x++) {
draw_pixel(x, y);
if (F<0) F += dy;
else {y++; F += dydx;}

}
}

This does the right thing (same as DDA) at
a cost of only 2 or 3 integer adds per point.
(assumes sorted endpoints, 0<slope<1)

Why does this work?

F is a decision variable—do you
increment y on this iteration or not?

11Computer Graphics 15-462

Implicit Function for a Line
Line L from[x0, y0] to [x1, y1].

P0 = [x0, y0],

P1 = [x1, y1].

dx = x1 − x0 , dy= y1 − y0

N = [dy, −dx]

implicit function: F(P) = 2N ⋅ (P − P0)

F = 0 → P is on L

P0
P1 F > 0
F < 0P

N

Why the factor of 2?
Because we’re going
to divide by 2 later.

12Computer Graphics 15-462

Line Drawing: Which Pixel is Next?
• Assume:

– 0 < slope < 1
– sorted endpoints, x0<x1

• At each step:
– Current point is (x,y)
– Next point is pixel (x+1,?)

that’s closest to the actual
line

– Do we increment x and y or
only x?

• Use the implicit function to
decide!

(x,y)
(x + 1,y)

(x + 1,y+ 1)

Go here next?

Or here next?

13Computer Graphics 15-462

Use the Implicit Function

xincrementno

yandxincrementyes

yxF

:

:

?0))21,1((>++(x,y)
(x + 1,y)

(x + 1,y+ 1)

• Idea: Test the half-way point (x+1, y+1/2)

14Computer Graphics 15-462

Trick: Incrementally Update F

• Computing F(P) requires a dot product:
– 2 multiplications and 1 add

• But computing F(P+∆) requires only 1 add
– The 2N• ∆ term is constant - it only needs to be calculated once

• ∆ is [1,0] or [1,1]—x is incremented, y might or might not be

F(P) = 2N ⋅ (P − P0)

F(P+ ∆) = 2N ⋅ (P + ∆ − P0)

= F(P) + 2N ⋅ ∆

15Computer Graphics 15-462

Decision Variable F

• Initialize x, y, F

• Loop until end of line:
– draw pixel (x,y)
– increment x
– if F>0, increment y
– increment F according to

whether ∆ is [1,0] or [1,1]

dxdyFF

or

dyFF

dxdyPFF

so

dxdy

or

where

FF

F

FF

22

2

2)(

],[

]1,1[]0,1[

2

]1,2[)(

])2/1,1[(

00

0

00

−+=′

+=′
−+=

−=
=∆

∆⋅+=′
⋅+=

+=

N

N

NP

P

(x,y)
(x + 1,y)

(x + 1,y + 1)

16Computer Graphics 15-462

Bresenham Line Algorithm—Code Snippet Again

void draw_line(int x0, int y0, int x1, int y1) {
int x, y = y0;
int dx = 2*(x1-x0), dy = 2*(y1-y0);
int dydx = dy-dx, F = (dy-dx)/2;

for (x=x0; x<=x1; x++) {
draw_pixel(x, y);
if (F<0) F += dy;
else {y++; F += dydx;}

}
}

this does the right thing (same as DDA) at
a cost of only 2 or 3 integer adds per point.
(assumes sorted endpoints, 0<slope<1)

17Computer Graphics 15-462

Bresenham Algorithm for Circles
• Same approach as line algorithm

– use a decision variable formula derived for a circle (F = x² + y² - r²)

• Eightfold symmetry
– only compute the points for one octant - use sign flips to give the rest

• Extends to general conics (ellipses...)

18Computer Graphics 15-462

Bresenham Circle Algorithm

/* this draws a circle by calculating in one octant */
/* and re-using the resulting point 8 times */
void draw_circle(int radius) {

int x = 0, y = radius;
int d = 1-radius;
while (y>x) {

if (d<0) /* select East point next */
d += 2*x + 3;

else { /* select South-East point next */
d += 2*(x-y) + 5;
y--;

}
x++;
draw_8_pts(x,y); /* draws point in each octant */

}
}

19Computer Graphics 15-462

Scan Converting Filled, Convex Polygons:
Basic Approach

• Find top and bottom vertices
• Make list of edges along left and right sides
• For each scanline from top to bottom

– There’s a single span to fill
– Find left & right endpoints of span, xl & xr
– Fill pixels inbetween xl & xr
– Can use Bresenham’s algorithm to update xl & xr as you step

from line to line

xl xr

If you don’t do all of the
above carefully, cracks or
overlaps between abutting
polygons result!

20Computer Graphics 15-462

Scan Converting Filled, Concave Polygons:
Basic Approach

• For each scanline
–Find all the scanline/polygon intersections
–Sort them left to right
–Fill the interior spans between intersections
–Parity Rule: odd ones are interior, even are exterior

21Computer Graphics 15-462

Inside/Outside Rules
• This even-odd rule is not the only option.
• An alternative would be the winding rule:

– Pick a line to infinity (like the preceding part of the scan line)
– Add up right-handed minus left-handed crossings

– non-zero result means it’s interior

• Only matters for self-intersecting primitives

21

1
1

1 1

Even-odd rule Winding rule

22Computer Graphics 15-462

Span Filling

Given a sorted list of scanline intersections (X1,X2,...,Xn)
– Initialize: start at ceiling(X1), set parity = 1 (inside)
– While x < Xn

» if (parity == 1), pixel = fillcolor
» x = x + 1
» if you've passed an intersection, parity = (1 - parity)

X2X3 X4X1

Span

23Computer Graphics 15-462

Special Cases
• For an integer intersection - exactly on a pixel

– set the pixel if it's the beginning of a span, not if it's the end

• Shared vertices (possible grazing contact)
– count ymin for parity, not ymax

• Horizontal edges
– don’t change parity

set pixel don’t
set pixel

parity
change

no parity
change

no parity
change

why be so careful?

24Computer Graphics 15-462

Special Cases 2

• Q: Where did these inside/outside rules come from?

• A: Somebody made them up.

• You can resolve the special cases any way you want, as
long as it’s consistent:

– Avoid drawing a pixel twice if the same edge is used for two adjacent
polygons. (It’s slightly slower, and leads to errors in XOR mode)

– Degenerate or horizontal edges should not leave seams.
– Make sure inside regions stay inside (and vice versa) for small shifts of

the polygon

25Computer Graphics 15-462

Computing Edge/Scanline Intersections

• How to compute intersection points (X1, ..., Xn)?
• Brute force method

– Calculate intersection of each scanline with each edge

• Better method
– Exploit coherence between scanlines

» intersections do not change much between scanlines

• Cache the intersection information in a table
– Edge Table with all edges sorted by ymin
– Active Edge Table containing the edges that intersect the current

scanline, sorted by x-intersection, left to right

• Process the image from the smallest ymin up
• When you run out of edges you’re done

26Computer Graphics 15-462

Caching Edge/Scanline Intersections

• Cache the intersection information in a table
– Edge Table (ET) with all edges sorted by ymin
– Active Edge Table (AET) containing

» the edges that intersect the current scanline
» their points of intersection
» sorted by x-intersection, left to right

A

B

C

D

E

BA, BC

DC, DE

AE

Edge Table (ET) Active Edge Table (AET)

BA, AE, DE
BA, DE
BA, DE
BA, DE
BA, DE
BA, BC, DC, DE
BA, BC, DC, DE
BA, BC, DC, DE
BA, BC, DC, DE
BA, BC, DC, DE
DC, DE
DC, DE

ymax x 1/m

BA

