Announcements

 Midterms graded back at the end of class

e Help session on Assignment 3 for last ~20
minutes of class

Computer Graphics 15-462 1

Scan Conversion

Overview of Rendering

Scan Conversion
Drawing Lines
Drawing Polygons

Watt 6.4 (Rasterization)

11/1/02

Rendering: creating images of our 3d models

Why is this hard?
e Must determine what’s visible
e Must simulate how light flows through the environment

» Different approaches

— Painter’s Algorithm and Z-Buffer Algorithm (OpenGL): draw objects
one by one (scan conversion to determine which pixels to write)

— Ray Tracing: shoot rays out from light source/viewer
— Radiosity: subdivide surfaces with mesh, solve linear system

 We will start with low-level, scan conversion, then move to
raytracing and radiosity

Computer Graphics 15-462 3

Scan Conversion or Rasterization

Ideal Picture Raster Representation

Scan Conversion: Process of converting ideal to raster

Computer Graphics 15-462 4

Scan Conversion Algorithms

A discrete set of pixels can only approximate a
continuous geometric object

This means that scan conversion usually introduces
error
Properties of good scan conversion algorithms:

— They should be as accurate as possible

— They should be as fast

Challenges
— Modify all the right pixels
— Modify only the right pixels
— Calculate their values correctly
— Do it quickly

So, start with a correct algorithm and optimize it

Computer Graphics 15-462 5

Line Drawing, Cases by Octant

* Lines come with different slopes, algorithm varies according to
which octant (45 degree sector) it lies in.

 We will talk about one octant only; the algorithms generalize to the
other octants easily.

* The algorithms for drawing lines need to step along one pixel at a
time in the “fast” direction, but which direction this is depends on the
slope of the line

 We also have to worry about reversed end point order (drawing
from large to small X, for example).

We’ll assume slope is
between O and 1

Computer Graphics 15-462 6

A Really Simple Line Algorithm

Equation for a line: y(x) =mx + b
Fill in one pixel per column

So, just evaluate for each x
— This requires a choice of quadrant, so x steps evenly

Certainly correct, but slow:

— integer add, cast to float, floating multiply and add, plus round every
step.
void line (int x0, int yO, int x1, int y1){
float m = whatever;
float b = whatever;
int x;
for(x=x0;x<=x1;x++) {
float y= m*x + b;
draw_pixel(x,Round(y));

}

Computer Graphics 15-462 7

Lines: DDA Algorithm

e Optimize the previous to remove multiply from
Inner loop.

* |If we know y(Xx), we can calculate y(x+1):
—y(x+1l) =mx+m+b=y(x)+m
void line (int x0, int yO, int x1, int y1){

float y = yO0;
float m = (yl1 - y0)/ (float) (x1 - x0);
int X;

for(x=x0;x<=x1;x++) {
draw_pixel(x,Round(y));
y += m;

}

}

* This is called Differential Digital Analyzer (DDA) because it is
solving the very simple differential equation dy/dx = m

 Problem: Floating-point add and rounds are expensive

Computer Graphics 15-462 3

What do we get from this algorithm?

am—

Why did we limit the slope of the line?
So we can have this rather than that...

I /

/ /

/
r

-.+__-‘

'I"
— —

Computer Graphics 15-462 9

Bresenham’s Algorithm

This does the right thing (same as DDA) at
a cost of only 2 or 3 integer adds per point.
(assumes sorted endpoints, O<slope<1)

void draw_line(int x0, int yO, int x1, int yl) {
int X, y = yo;
int dx = 2*x1-x0), dy = 2*(yl-y0);
int dydx = dy-dx, F = (dy-dx)/2;

for (x=x0 ; x<=x1 ; x++) {
draw_pixel(x, V);
if (F<O) F += dy;
else {y++; F += dydx;}

) F is a decision variable—do you
Increment y on this iteration or not?

Why does this work?

Computer Graphics 15-462 10

Implicit Function for a Line
LineL from[X,,Y,]to[X, Y]
Po = [Xos Yol
P, =[x, Wl
dX=% =X, dy=Y ~ ¥
N =[dy, —dx]
implicit function: F(P) =2N[L{P - P,)
F=0- PisonL

Why the factor of 27?
Because we’re going
to divide by 2 later.

Computer Graphics 15-462 11

Line Drawing: Which Pixel is Next?

Go here next? ¢ Assume:
N —0<slope<1
: | — sorted endpoints, x,<x;
- - =-=-==-== _—— gl - - - - . .
F1y+1) At each step:

— Current point is (x,y)

— Next point is pixel (x+1,?)
that's closest to the actual

line
+
- '()-(= -:L'Y)- = — Do we increment x and y or
\ only x?
e Use the implicit function to
Or here next? decide!

Computer Graphics 15-462 12

Use the Implicit Function

e |dea: Test the half-way point (x+1, y+1/2)

F((x+1,y+1/2)>0?
yes. incrementxandy

no: Incrementx

Computer Graphics 15-462

13

Trick: Incrementally Update F

F(P) =2N P -Pp)
F(P+A)=2N{P+A-Pp)
=F(P)+2N A
 Computing FP) requires a dot product:
— 2 multiplications and 1 add
e But computing F(P+A) requires only 1 add

— The 2N+ A term is constant - it only needs to be calculated once
 Ais[1,0] or [1,1]—xX is incremented, y might or might not be

Computer Graphics 15-462 14

Decision Variable F
F, = F(P, +[11/2)])

= F(P,)+N 2] * Initialize x, y, F
E'=E + 2N A Loop until end of line:
—draw pixel (x,y)
where —increment x
A =[10] or [1]] —if F>0, increment y
— — —increment F according to
N =[dy,~dXx] whether A is [1,0] or [1,1]
SO
F, = F(P,) +2dy—dx
F'=F +2dy
or

F'=F +2dy—2dx

Computer Graphics 15-462 15

Bresenham Line Algorithm—Code Snippet Again

this does the right thing (same as DDA) at
a cost of only 2 or 3 integer adds per point.
(assumes sorted endpoints, O<slope<1)

void draw_line(int x0, int yO, int x1, int yl1) {
int X, y = yo0;
int dx = 2*x1-x0), dy = 2*(yl1l-y0);
int dydx = dy-dx, F = (dy-dx)/2;

for (x=x0; x<=x1; x++) {
draw_pixel(x, Y);
If (F<O) F += dy;
else {y++; F += dydx;}

Computer Graphics 15-462 16

Bresenham Algorithm for Circles

« Same approach as line algorithm
— use a decision variable formula derived for a circle (F = x2 + y2 - r2)

e Eightfold symmetry

— only compute the points for one octant - use sign flips to give the rest
« Extends to general conics (ellipses...)

Computer Graphics 15-462 17

Bresenham Circle Algorithm

[* this draws a circle by calculating in one octant */

[* and re-using the resulting point 8 times */

void draw_circle(int radius) {
Int x

= 0, y = radius;
int d = 1-radius;
while (y>Xx) {
if (d<0) /* select East point next */
d += 2*x + 3;
else { /* select South-East point next */
d += 2*(x-y) + 5;
y--,
}
X++,

draw_8 pts(x,y); /* draws point in each octant */
}

Computer Graphics 15-462 18

Scan Converting Filled, Convex Polygons:
Basic Approach

* Find top and bottom vertices
* Make list of edges along left and right sides

e For each scanline from top to bottom
— There’s a single span to fill
— Find left & right endpoints of span, x| & xr
— Fill pixels inbetween x| & xr

— Can use Bresenham'’s algorithm to update x| & xr as you step
from line to line

If you don’t do all of the
above carefully, cracks or
overlaps between abutting Xl
polygons result!

Computer Graphics 15-462 19

Scan Converting Filled, Concave Polygons:
Basic Approach

e For each scanline
—Find all the scanline/polygon intersections
—Sort them left to right
—Fill the interior spans between intersections
— Parity Rule: odd ones are interior, even are exterior

Computer Graphics 15-462 20

Inside/Outside Rules

e This even-odd rule is not the only option.

« An alternative would be the winding rule:
— Pick a line to infinity (like the preceding part of the scan line)
— Add up right-handed minus left-handed crossings
— non-zero result means it’s interior

* Only matters for self-intersecting primitives

A A\

Even-odd rule Winding rule

Computer Graphics 15-462 21

Span Filling

Given a sorted list of scanline intersections (X1,X2,...,Xn)
— Initialize: start at ceiling(X1), set parity = 1 (inside)
—While x < Xn
» If (parity == 1), pixel = fillcolor
»X=X+1
» If you've passed an intersection, parity = (1 - patrity)

/
Span Dt e o S TELPRE
\i /. /
V. /.
h 4
X, XXy X

Computer Graphics 15-462 22

Special Cases

* For an integer intersection - exactly on a pixel
— set the pixel if it's the beginning of a span, not if it's the end

e Shared vertices (possible grazing contact)
— count ymin for parity, not ymax

e Horizontal edges
—don’t change parity

no parity no parity
change change

R

why be so careful?

set pixel don’t
set pixel

Computer Graphics 15-462 23

Special Cases 2

e Q: Where did these inside/outside rules come from?

e A: Somebody made them up.

* You can resolve the special cases any way you want, as
long as it's consistent:

— Avoid drawing a pixel twice if the same edge is used for two adjacent
polygons. (It's slightly slower, and leads to errors in XOR mode)

— Degenerate or horizontal edges should not leave seams.

— Make sure inside regions stay inside (and vice versa) for small shifts of
the polygon

Computer Graphics 15-462 24

Computing Edge/Scanline Intersections

How to compute intersection points (X1, ..., Xn)?
Brute force method
— Calculate intersection of each scanline with each edge

Better method

— Exploit coherence between scanlines
» intersections do not change much between scanlines

Cache the intersection information in a table
— Edge Table with all edges sorted by ymin

— Active Edge Table containing the edges that intersect the current
scanline, sorted by x-intersection, left to right

Process the image from the smallest ymin up
When you run out of edges you'’re done

Computer Graphics 15-462 25

Caching Edge/Scanline Intersections

e Cache the intersection information in a table
— Edge Table (ET) with all edges sorted by ymin
— Active Edge Table (AET) containing
» the edges that intersect the current scanline
» their points of intersection BA
» sorted by x-intersection, left to right Yimac | X | 1/m

AE BA, AE, DE

\ BA DE
\ BA DE
\

, BA, BC BA, BC, DC, DE
V DC, DE DC, DE

Edge Table (ET) Active Edge Table (AET)

GO <L

)

Computer Graphics 15-462 26

