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Announcements

• Programming assignment 3 is out. It is due 
Tuesday, November 5th midnight.

• Midterm exam:
– Next week on Thursday in class
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Undeformed cube

The jello cube

Deformed cube

• The jello cube is elastic,
• Can be bent, stretched, squeezed, …,
• Without external forces, it eventually 

restores to the original shape.
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Physical simulations

• Model nature by using the laws of physics
• Often, the only way to achieve realism
• Alternative: try various non-scientific tricks to 

achieve realistic effects
• Math becomes too complicated very quickly

Isn’t it incredible that nature can compute everything (you, me, and 
the whole universe) on the fly, it is the fastest computer ever.

• Important issues: simulation accuracy and 
stability
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Simulation or real?
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Mass-Spring System

• Several mass points
• Connected to each other by springs
• Springs expand and stretch, exerting force on the 

mass points
• Very often used to simulate cloth
• Examples:

A 2-particle spring system
Another 2-particle example
Cloth animation example
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Newton’s Laws
• Newton’s 2nd law:

amF rr
=

• Newton’s 3rd law: If object A exerts a force F on 
object B, then object B is at the same time exerting 
force -F on A.

• Tells you how to compute acceleration, given the 
force and mass

F
rF

r
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Single spring

• Obeys the Hook’s law:
F = k (x - x0)

• x0 = rest length
• k = spring elasticity

(aka stiffness)
• For x<x0, spring

wants to extend
• For x>x0, spring 

wants to contract
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Hook’s law in 3D

• Assume A and B two mass points connected with 
a spring.

• Let L be the vector pointing from B to A
• Let R be the spring rest length
• Then, the elastic force exerted on A is:
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Damping
• Springs are not completely elastic
• They absorb some of the energy and tend to 

decrease the velocity of the mass points attached 
to them

• Damping force depends on the velocity:

• kd = damping coefficient 
• kd different than kHook !!

vkF d
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Damping in 3D
• Assume A and B two mass points connected with 

a spring.
• Let L be the vector pointing from B to A
• Then, the damping force exerted on A is:

• Here vA and vB are velocities of points A and B
• Damping force always OPPOSES the motion
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A network of springs
• Every mass point connected to

some other points by springs
• Springs exert forces 

on mass points
– Hook’s force
– Damping force

• Other forces
– External force field

» Gravity
» Electrical or magnetic force field

– Collision force
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How to organize the network
(for jello cube)

• To obtain stability, must organize the network of 
springs in some clever way

• Jello cube is a 8x8x8 mass point network
• 512 discrete points
• Must somehow connect them with springs

Basic network Stable network Network out 
of control
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Solution:
Structural, Shear and Bend Springs

• There will be three
types of springs:

– Structural
– Shear
– Bend

• Each has its 
own function
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Structural springs
• Connect every node to its 6 direct neighbours
• Node (i,j,k) connected to

– (i+1,j,k), (i-1,j,k), (i,j-1,k), (i,j+1,k), (i,j,k-1), (i,j,k+1)
(for surface nodes, some of these neighbors might not exists)

• Structural springs establish the basic structure
of the jello cube

• The picture shows structural
springs for the jello cube.
Only springs connecting
two surface vertices are
shown.
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Shear springs
• Disallow excessive shearing
• Prevent the cube from distorting
• Every node (i,j,k) 

connected to its diagonal 
neighbors

• Structural springs = white
• Shear springs = red

A 3D cube
(if you can’t see it 
immediately, keep trying)

Shear spring (red) 
resists stretching
and thus prevents
shearing
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Bend springs
• Prevent the cube from folding over
• Every node connected

to its second neighbor
in every direction
(6 connections per node,
unless surface node)

• white=structural springs
• yellow=bend springs

(shown for a single node
only)

Bend spring (yellow) 
resists contracting
and thus prevents
bending
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External force field

• If there is an external force field, add that force to 
the sum of all the forces on a mass point

• There is one such equation
for every mass point and
for every moment in time

fieldforcedampingHooktotal FFFF ++=
rrr
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Collision detection
• The movement of the jello cube is limited to a 

bounding box
• Collision detection easy:

– Check all the vertices if any of them is outside the box

• Inclined plane:
– Equation:

– Initially, all points on the same side of the plane
– F(x,y,z)>0 on one side of the plane and F(x,y,z)<0 on the other
– Can check all the vertices for this condition

0),,( =+++= dczbyaxzyxF
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Collision response

• When collision happens, must perform some action 
to prevent the object penetrating even deeper

• Object should bounce away from the colliding object
• Some energy is usually lost during the collision
• Several ways to handle collision response
• We will use the penalty method
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The penalty method
• When collision happens, put an artificial collision 

spring at the point of collision, which will push the 
object backwards and away from the colliding 
object

• Collision springs have elasticity and damping,
just like ordinary springs

v
F

Collision
spring

Boundary of 
colliding object
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Integrators
• Network of mass points and springs
• Hook’s law, damping law and Newton’s 2nd law 

give acceleration of every mass point at any given 
time

• F=ma
– Hook’s law and damping provide F
– ‘m’ is point mass
– The value for a follows from F=ma

• Now, we know acceleration at any given time for 
any point

• Want to compute the actual motion
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Integrators (contd.)
• The equations of motion:

• x = point position, v = point velocity, a = point acceleration
• They describe the movement of any single mass point
• Fhook=sum of all Hook forces on a mass point
• Fdamping = sum of all damping forces on a mass point

v
dt
xd r
r
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Integrators (contd.)

• When we put these equations together for all the 
mass points, we obtain a system of ordinary 
differential equations.

• In general, impossible to solve analytically
• Must solve numerically
• Methods to solve such systems numerically are 

called integrators
• Most widely used:

– Euler
– Runge-Kutta 2nd order (aka the midpoint method) (RK2)
– Runge-Kutta 4th order (RK4)
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Integrator design issues

• Numerical stability
– If time step too big, method “explodes”
– t = 0.001 is a good starting choice for the assignment
– Euler much more unstable than RK2 or RK4

» Requires smaller time-step, but is simple and hence fast
– Euler rarely used in practice

• Numerical accuracy
– Smaller time steps means more stability and accuracy
– But also means more computation

• Computational cost
– Tradeoff: accuracy vs computation time
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Integrators (contd.)

• RK4 is often the method of choice
• RK4 very  popular for engineering applications
• The time step should be inversely proportional to the 

square root of the elasticity k [Courant condition]
• For the assignment, we provide the integrator 

routines (Euler, RK4) 
– void Euler(struct world * jello);
– void RK4(struct world * jello);
– Calls to there routines make the simulation progress one time-step 

further. 
– State of the simulation stored in ‘jello’ and automatically updated
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Tips
• Use double precision for all calculations (double)
• Do not overstretch the z-buffer

– It has finite precision
– Ok: gluPerspective(90.0,1.0,0.01,1000.0);
– Bad: gluPerspective(90.0,1.0,0.0001,100000.0);

• Choosing the right elasticity and damping 
parameters is an art

– Trial and error
– For a start, can set the ordinary and collision parameters the 

same
• Read the webpage for updates and check the 

bulletin board


