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Announcements

« Programming assignment 3 is out. It is due
Tuesday, November 5th midnight.

 Midterm exam:
— Next week on Thursday in class
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The jello cube

Undeformed cube Deformed cube

 The jello cube is elastic,

 Can be bent, stretched, squeezed, ...,

 Without external forces, it eventually
restores to the original shape.
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Physical simulations

« Model nature by using the laws of physics
o Often, the only way to achieve realism

o Alternative: try various non-scientific tricks to
achieve realistic effects

 Math becomes too complicated very quickly

Isn’t it incredible that nature can compute everything (you, me, and
the whole universe) on the fly, it is the fastest computer ever.

e Important issues: simulation accuracy and
stability
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Simulation or real?
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Mass-Spring System

e Several mass points
« Connected to each other by springs

e Springs expand and stretch, exerting force on the
mass points

e Very often used to simulate cloth
« Examples:

A 2-particle spring system **
Another 2-particle example ' : :
Cloth animation example **
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Newton's Laws

e Newton’s 2nd law:

—

F =ma

 Tells you how to compute acceleration, given the
force and mass

 Newton’s 3rd law: If object A exerts a force F on
object B, then object B is at the same time exerting

force -F on A.
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Single spring

e Obeys the Hook’s law:
F=K (X -Xp)

* X, =rest length

 k =spring elasticity
(aka stiffness)

e For x<x,, spring
wants to extend

e For x>X,, spring
wants to contract
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Hook’s law Iin 3D

Assume A and B two mass points connected with
a spring.

Let L be the vector pointing from B to A
Let R be the spring rest length
Then, the elastic force exerted on A is:

—_

- . L
F:_k I_ _RT
Hook(‘ ‘ )“_‘
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Damping

Springs are not completely elastic

They absorb some of the energy and tend to
decrease the velocity of the mass points attached

to them
« Damping force depends on the velocity:
= R frtl.o.uls
F ==KV I; nﬁfﬂafﬁ‘w’ x, AVAY. -
* resst length
Dampmg

kqy = damping coefficient
kq different than ki, !
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Damping in 3D
« Assume A and B two mass points connected with
a spring.
 Let L be the vector pointing from B to A
 Then, the damping force exerted on A is:

 Here v, and vg are velocities of points A and B
« Damping force always OPPOSES the motion
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A network of springs

« Every mass point connected to
some other points by springs

e Springs exert forces
on mass points
— Hook’s force
— Damping force

 Other forces
— External force field
» Gravity
» Electrical or magnetic force field
— Collision force
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How to organize the network
(for jello cube)

To obtain stability, must organize the network of
springs in some clever way

Jello cube is a 8x8x8 mass point network
512 discrete points
Must somehow connect them with springs

Basic network Stable network Network out
of control
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Solution:
Structural, Shear and Bend Springs

e There will be three

types of springs: ' ' ‘ .,L'LE'.

— Structural

— Shear Structural

— Bend _ 1 - - Springs
own function p . Springs

l l P s
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Structural springs

« Connect every node to its 6 direct neighbours

 Node (i,],k) connected to
— (i+1,j,k), (i-1,j,k), (i,j-1,k), (i,i+1.k), (,j.k-1), (i,j,k+1)
(for surface nodes, some of these neighbors might not exists)
o Structural springs establish the basic structure
of the jello cube

 The picture shows structural
springs for the jello cube.
Only springs connecting
two surface vertices are
shown.
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Shear springs

* Disallow excessive shearing
 Prevent the cube from distorting

e Every node (i,},k)
connected to its diagonal
neighbors

o Structural springs = white
 Shear springs =red

Shear spring (red)
resists stretching
and thus prevents
shearing
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(if you can’t see it
iImmediately, keep trying)

/




Bend springs

 Prevent the cube from folding over

 Every node connected
to its second neighbor ®
In every direction
(6 connections per node,
unless surface node)

 white=structural springs

* yellow=bend springs PY
(shown for a single node

Only) o

‘\./‘<. Bend spring (yellow)
resists contracting

and thus prevents
bending
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External force field

o If there is an external force field, add that force to
the sum of all the forces on a mass point

— — —

I:total = Hook T |:dampi ng T |:force field

« There is one such equation
for every mass point and
for every moment in time
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Collision detection

« The movement of the jello cube is limited to a
bounding box
e Collision detection easy:
— Check all the vertices if any of them is outside the box

* Inclined plane:
— Equation:

F(X,y,z) =ax+by+cz+d =0

— Initially, all points on the same side of the plane

— F(X,y,z)>0 on one side of the plane and F(x,y,z)<0 on the other
— Can check all the vertices for this condition
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Collision response

When collision happens, must perform some action
to prevent the object penetrating even deeper

Object should bounce away from the colliding object
« Some energy is usually lost during the collision

e Several ways to handle collision response

We will use the penalty method
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The penalty method

« When collision happens, put an artificial collision
spring at the point of collision, which will push the

object backwards and away from the colliding
object

e Collision springs have elasticity and damping,
just like ordinary.springs

/V

Pollision
spring
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Integrators

 Network of mass points and springs

« Hook’s law, damping law and Newton’s 2nd law
give acceleration of every mass point at any given
time

e F=ma

— Hook’s law and damping provide F
— ‘m’ is point mass
— The value for a follows from F=ma

* Now, we know acceleration at any given time for
any point

 Want to compute the actual motion
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Integrators (contd.)

« The equations of motion:

d°x dv 1 = = =
= =a(t) = E (Frioo |:dam|oilﬂg * Florce fiaa)

e X = point position, v = point velocity, a = point acceleration
« They describe the movement of any single mass point

* F.ox=sum of all Hook forces on a mass point

* Fyamping = SUM of all damping forces on a mass point
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Integrators (contd.)

 When we put these equations together for all the
mass points, we obtain a system of ordinary
differential equations.

* In general, impossible to solve analytically
e Must solve numerically

* Methods to solve such systems numerically are
called integrators

 Most widely used:
— Euler

— Runge-Kutta 2nd order (aka the midpoint method) (RK2)
— Runge-Kutta 4th order (RK4)
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Integrator design issues

 Numerical stability
— If time step too big, method “explodes”
— 1t =0.001 is a good starting choice for the assignment
— Euler much more unstable than RK2 or RK4
» Requires smaller time-step, but is simple and hence fast
— Euler rarely used in practice

 Numerical accuracy
— Smaller time steps means more stability and accuracy
— But also means more computation

« Computational cost
— Tradeoff: accuracy vs computation time
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Integrators (contd.)

« RK4 is often the method of choice
« RK4 very popular for engineering applications

« The time step should be inversely proportional to the
square root of the elasticity k [Courant condition]

 For the assignment, we provide the integrator
routines (Euler, RK4)
— void Euler(struct world * jello);
— void RK4(struct world * jello);

— Calls to there routines make the simulation progress one time-step
further.

— State of the simulation stored in ‘jello’ and automatically updated
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Tips

 Use double precision for all calculations (double)

Do not overstretch the z-buffer
— It has finite precision
— Ok: gluPerspective(90.0,1.0,0.01,1000.0);
— Bad: gluPerspective(90.0,1.0,0.0001,100000.0);

 Choosing the right elasticity and damping
parameters IS an art
— Trial and error
— For a start, can set the ordinary and collision parameters the
same
 Read the webpage for updates and check the
bulletin board
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