Announcements : : . . Where do geometries come from?
Movie from Assignment 1 3D Vlerng & C“pp|ng
Grades out soon » Build them with 3D modelers

Where do geometries come from? + Digitize or scan them

Pin-hole camera + Results of simulation/physically based modeling
Perspective projection

Viewing transformation + Combinations:
—Edit a digitized model

—Simplify a scanned model
—“Evolve” a model
Watt 5.2 and 6.1 » Often, need multiple models at different complexity

Clipping lines & polygons

COMPUTER GRAPHICS
15-462

Computer Graphics 15-462 Computer Graphics 15-462

Getting Geometry on the Screen Viewing and Projection Pinhole Optics
Given geometry 0 i wwanils] canralinere system, . Our eyes Collapse 3-D world to 2-D retinal image + Stand at point P, and look through the hole - anything within the

cone is visible, and nothing else is
how do we get it to the display? (brain then has to reconstruct 3D) « Reduce the hole to a point - the cone becomes a ray

¢ In CG, this process occurs by projection « Pin hole is the focal point, eye point or center of projection.
« Transform to camera coordinate system !

« Transform (warp) into canonical view volume * Projection has two parts:
- Clip — Viewing transformations: camera position and direction
Project to display coordinates — Perspective/orthographic transformation: reduces 3-D
to 2-D
» Use homogeneous transformations
* As you learned in Assignment 1, camera can be
animated by changing these transformations—
the root of the hierarchy

(Rasterize)

Computer Graphics 15-46 Computer Graphics 15-462 5 Computer Graphics 15-462

Perspective Projection of a Point

* View plane or image plane - a plane behind the
pinhole on which the image is formed
—point / sees anything on the line (ray) through the
pinhole F
—a point W projects along the ray through F to appear at
I (intersection of WF with image plane)

Computer Graphics 15-462

Orthographic Projection
» when the focal point is at infinity the rays are parallel
and orthogonal to the image plane
« good model for telephoto lens. No perspective effects.
« when xy-plane is the image plane (x,y,z) -> (x,y,0)
front orthographic view
World

Computer Grap!

Problems with Pinholes

« Correct optics requires infinitely small pinhole
— No light gets through
— Diffraction

« Solution: Lens with finite aperture

image plane

focal point

Y

Lens Law:

Computer Graphics 15-462

A Simple Perspective Camera

« Canonical case:
—camera looks along the z-axis

—focal point is the origin
—image plane is parallel to the xy-plane at distance d
— (We call d the focal length, mainly for historical reasons)

y

F=[0,0,0]

Computer Graphics 15-462

Image Formation

World

« Projecting a shape
— project each point onto the image

plane

—lines are I)rojected by projecting end
y

points onl

Computer Graphics 15-462

Similar Triangles

[0, 0, d]

— vup: a vector that is pointing straight up
want world “up” direction

« Diagram shows y-coordinate, x-c

« Using similar triangles
— point [x,y,z] projects to [(d/z)x, (d/z)y, d]

Computer Graphics 15-462

Y
Y. 2]
[(d/z/)vA/
" z
0] [

in the image usually

rdinate is similar

A Perspective Projection Matrix

*Projection using homogeneous coordinates:
— transform [x, y, z] to [(d/z)x, (d/z)y, d]

[d 0f x

0 Olly|_
o OZ—[dx dy dz ¥l

0 01

Fdd‘
Bx ¥ ¢

Divide by 4" coordinate
(the “w” coordinate)
» 2-D image point:
— discard third coordinate
— apply viewport transformation to obtain physical pixel coordinates

Computer Graphics 15-462

But wait...

« What if we want the camera somewhere other
than the canonical location?

« Alternative #1: derive a general projection
matrix. (hard)

« Alternative #2: transform the world so that the
camera is in canonical position and orientation
(much simpler)

« These transformations are viewing
transformations

* They can be specified in many ways - some
more sensible than others (beware of Foley,

gel and Watt are ok)

Computer Grap!

Wait, there’s more!

Perspective transformation can also
* map rectangle in the image plane to the viewport
« specify near and far clipping planes

—instead of mapping z to d, transform z between znear
and zfar on to a fixed range

—used for z-buffer hidden surface removal
« specify field-of-view (fov) angle

Computer Graphics 15-462

Camera Control Values

* All we need is a single translation and angle-axis
rotation (orientation), but...

» Good animation requires good camera control--we need
better control knobs

* Translation knob - move to the lookfrom point

« Orientation can be specified in several ways:
— specify camera rotations
— specify a lookat point (solve for camera rotations)

Computer Graphics 15-462

The View Volume

Pyramid in space defined by focal point and window in
the image plane (assume window mapped to viewport)
Defines visible region of space
Pyramid edges are clipping planes
Frustum = truncated pyramid with near and far clipping
planes

— Why near plane? Prevent points behind the camera being seen

—Why far plane? Allows zto be scaled to a limited fixed-point
value (zbuffering)

Computer Graphics 15-462

A Popular View Specification Approach
« Focal length, image size/shape and clipping planes are in the
perspective transformation
« In addition:
— lookfrom: where the focal point (camera) is
— lookat: the world point to be centered in the image
« Also specify camera orientation about the lookat-lookfrom
axis
y
(at,,at,,at,)

E
(eve,, evey ere,)

Computer Graphics 15-462

Implementation

Implementing the /ookat/lookfrom/vup viewing scheme
(1) Translate by -lookfrom, bring focal point to origin

(2) Rotate /ookat-lookfrom to the z-axis with matrix R:

» v = (lookat-lookfrom) (normalized) and z = [0,0,1]
» rotation axis: a= (vxz)/|vxz|
» rotation angle: cos6 = vez and sin6 = |vxz|

glRotate(®, a,, a,, a,)

(3) Rotate about z-axis to get vup parallel to the y-axis

Computer Graphics 15-462

Virtual Trackballs

Imagine world contained in crystal ball, rotates about
center
Spin the ball (and the world) with the mouse
Given old and new mouse positions
— project screen points onto the sphere surface
— rotation axis is normal to plane of points and sphere center
—angle is the angle between the radii

There are other methods to map screen coordinates to
rotations

Computer Graphic:

The Whole Picture

(at,,at,,at,)

LOOKFROM: Where the camera is

LOOKAT: A point that should be centered
in the image

VUP: A vector that will be pointing
straight up in the image
Field-of-view angle.

d: focal length

WORLD COORDINATES

Computer Graphics 15-462

Clipping

* There is something missing between projection and
viewing...

* Before Projecting, we need to eliminate the portion of
scene that is outside the viewing frustum

y

| qcliped ne

*Need to clip objects to the frustum (truncated pyramid)

*Now in a canonical position but it still seems kind of tricky...

Computer Graphics 15-462

It's not so complicated...

Rotate the view vector
to the origin (lo okfrom) onto

Multiply by the projection matrix —
and everything will be in the

canonical camera position
Rotate about z to bring vt

Computer Graphics 15-462

Normalizing the Viewing Frustum

« Solution: transform frustum to a cube before clipping

« Converts perspective frustum to orthographic frustum
« This is yet another homogeneous transform!

Computer Graphics 15-462

The Normalized Frustum

¢ OpenGL uses -1<=x<=1, -1<=y<=1, -1<=z<=1
« But it doesn’t really matter... we can clip
against any such cube.

—Or, we can translate normalizing transformations by
applying the appropriate trans.

« Must clip in homogeneous coordinates:
W>0: -W<=X<=W, -W<ZY<=W, -W<=z<=W
W<0: -W>=X>=W, -W>SY>=W, -W>=Z>=W

Computer Graphics 15-462

Line Clipping
« Modify endpoints of lines to lie in rectangle
« How to define “interior” of rectangle?

« Convenient definition: intersection of 4 half-planes
—Nice way to decompose the problem
—Generalizes easily to 3D (intersection of 6 half-planes)

interior = ' I

ymin

Computer Graphics 15-46

But wait! Divide by zero?

» But doesn't projection require dividing by the z
coordinate? If -1<=z<=1, won't we get divide by 0?

* Ah, but it's really the w coordinate we divide by, and it's
positive definite!

—The original perspective transformation puts a vertex's
z value in w

—Since hither<=z<=yon for vertices that don't get
clipped, w is positive definite (modulo sign convention
for hither and yon)

* Hence, no worries on that front. All the z=0 vertices will
get clipped before we divide out the homogeneous
coordinate.

Computer Graphics 15-462

Line Clipping
* Modify end points of lines to lie in rectangle
» Method:
—Is end-point inside the clip region? - half-plane tests

—If outside, calculate intersection between the line and
the clipping rectangle and make this the new end
point

Both endpoints inside: trivial
accept

+ One inside: find intersection
& and clip

Both outside: either clip or
reject (tricky case)

Computer Graphics 15-462

Clipping to a Cube
 Determine which parts of the scene lie within
cube
* We will consider the 2D version: clip to
rectangle
* This has its own uses (viewport clipping)
* Two approaches:

—clip during scan conversion (rasterization) - check per
pixel or end-point
—clip before scan conversion

* We will cover
— clip to rectangular viewport before scan conversion

Computer Graphics 15-462

Cohen-Sutherland Algorithm
» Uses outcodes to encode the half-plane tests results

bit 1: y>ymax
bit 2: y<ymin
bit 3: x>xmax
bit 4: x<xmin

ymin -
0101 \ i 0100
xmin
* Rules:
— Trivial accept : outcode(endl) and outcode(end2) both zero

— Trivial reject : outcode(endl) & (bitwise and) outcode(end2)
nonzero

Computer Graphics 15-462

Cohen-Sutherland Algorithm
« Uses outcodes to encode the half-plane tests results

bit 1: y>ymax
bit 2: y<ymin
bit 3: x>xmax
bit 4: x<xmin

0110
xmin xmax

— Trivial accept : outcode(endl) and outcode(end2) both zero

— Trivial reject : outcode(endl) & (bitwise and) outcode(end2)
nonzero

Computer Graphics 15-462

Sutherland-Hodgman
Polygon Clipping Algorithm

« Subproblem:
—clip a polygon (vertex list) against a single clip plane

—output the vertex list(s) for the resulting clipped
polygon(s)

« Clip against all four planes

—generalizes to 3D (6 planes)
—generalizes to any convex clip polygon/polyhedron

Computer Graphics 15-46

Cohen-Sutherland Algorithm: Subdivision

« If neither trivial accept nor reject:
—Pick an outside endpoint (with nonzero outcode)
—Pick an edge that is crossed (nonzero bit of outcode)
—Find line's intersection with that edge
—Replace outside endpoint with intersection point
—Repeat until trivial accept or reject

1001 1000 1010
bit 1: y>ymax

y bit 2: y<ymin
bit 3: x>xmax

0001 0000 0010 i 3t e

yrinr————<

0101 0100 0110
xmax

Computer Graphics 15-462

Sutherland-Hodgman
Polygon Clipping Algorithm (Cont.)

To clip vertex list against one half-plane:

« if first vertex is inside - output it

« loop through list testing inside/outside transition - output
depends on transition:

> in-to-in: output vertex

> out-to-out: no output

> in-to-out: output intersection

> out-to-in: output intersection and vertex

Computer Graphics 15-462

Polygon Clipping

Convert a polygon into one or more polygons that
form the intersection of the original with the clip
window

]

Computer Graphics 15-462

Cleaning Up
« Post-processing is required when clipping creates
multiple polygons

« As external vertices are clipped away, one is left with
edges running along the boundary of the clip region.

» Sometimes those edges dead-end, hitting a vertex on
the boundary and doubling back

—Need to prune back those edges

» Sometimes the edges form infinitely-thin bridges
between polygons

—Need to cut those polygons apart

Computer Graphics 15-462

