
1

1Computer Graphics 15-462

Announcements

Movie from Assignment 1
Grades out soon

3D Viewing & Clipping

Where do geometries come from?
Pin-hole camera
Perspective projection
Viewing transformation

Clipping lines & polygons

Where do geometries come from?
Pin-hole camera
Perspective projection
Viewing transformation

Clipping lines & polygons

COMPUTER GRAPHICS

15-462
12 Sept 2001

Watt 5.2 and 6.1

3Computer Graphics 15-462

Where do geometries come from?

• Build them with 3D modelers
• Digitize or scan them
• Results of simulation/physically based modeling
• Combinations:

–Edit a digitized model

–Simplify a scanned model
–“Evolve” a model

• Often, need multiple models at different complexity

4Computer Graphics 15-462

Getting Geometry on the Screen

• Transform to camera coordinate system
• Transform (warp) into canonical view volume
• Clip
• Project to display coordinates
• (Rasterize)

Given geometry in the world coordinate system,
how do we get it to the display?

5Computer Graphics 15-462

Viewing and Projection
• Our eyes collapse 3-D world to 2-D retinal image

(brain then has to reconstruct 3D)
• In CG, this process occurs by projection
• Projection has two parts:

–Viewing transformations: camera position and direction
–Perspective/orthographic transformation: reduces 3-D

to 2-D

• Use homogeneous transformations
• As you learned in Assignment 1, camera can be

animated by changing these transformations—
the root of the hierarchy

6Computer Graphics 15-462

Pinhole Optics
• Stand at point P, and look through the hole - anything within the

cone is visible, and nothing else is

P

• Reduce the hole to a point - the cone becomes a ray
• Pin hole is the focal point, eye point or center of projection.

F

2

7Computer Graphics 15-462

Perspective Projection of a Point

• View plane or image plane - a plane behind the
pinhole on which the image is formed
–point I sees anything on the line (ray) through the

pinhole F
–a point W projects along the ray through F to appear at

I (intersection of WF with image plane)

F

Image

World
I

W

8Computer Graphics 15-462

Problems with Pinholes

• Correct optics requires infinitely small pinhole
– No light gets through
– Diffraction

• Solution: Lens with finite aperture

Wimage plane lens

scene point

I

focal point

f

v u

fvu

111 =+Lens Law:

9Computer Graphics 15-462

Image Formation

F

Image

World

• Projecting a shape
– project each point onto the image

plane
– lines are projected by projecting end

points only

F

Image

World

I

W

Note: Since we don't want the
image to be inverted, from now on
we'll put F behind the image plane.

Note: Since we don't want the
image to be inverted, from now on
we'll put F behind the image plane.

10Computer Graphics 15-462

Orthographic Projection
• when the focal point is at infinity the rays are parallel

and orthogonal to the image plane
• good model for telephoto lens. No perspective effects.

• when xy-plane is the image plane (x,y,z) -> (x,y,0)
front orthographic view

Image

World

F

11Computer Graphics 15-462

A Simple Perspective Camera
• Canonical case:

–camera looks along the z-axis
– focal point is the origin
– image plane is parallel to the xy-plane at distance d
– (We call d the focal length, mainly for historical reasons)

Image
Plane

y

x

z
[0,0,d]

F=[0,0,0]

12Computer Graphics 15-462

Similar Triangles
Y

Z
[0, d][0, 0]

[Y, Z]

[(d/Z)Y, d]

– vup: a vector that is pointing straight up in the image usually
want world “up” direction

• Diagram shows y-coordinate, x-coordinate is similar
• Using similar triangles

– point [x,y,z] projects to [(d/z)x, (d/z)y, d]

3

13Computer Graphics 15-462

A Perspective Projection Matrix

•Projection using homogeneous coordinates:

– transform [x, y, z] to [(d/z)x, (d/z)y, d]

• 2-D image point:
– discard third coordinate
– apply viewport transformation to obtain physical pixel coordinates

d 0 0 0

0 d 0 0

0 0 d 0

0 0 1 0

ÿ

�

�
�
�
�
�

�

�

�
�
�
�
�

x

y

z

1

ÿ

�

�
�
�
�
�

�

�

�
�
�
�
�

= dx dy dz z[] � d

z
x

d

z
y d

ÿ
� �

�
� �

Divide by 4th coordinate
(the “w” coordinate)

14Computer Graphics 15-462

Wait, there’s more!

Perspective transformation can also
• map rectangle in the image plane to the viewport
• specify near and far clipping planes

– instead of mapping z to d, transform z between znear
and zfar on to a fixed range

–used for z-buffer hidden surface removal
• specify field-of-view (fov) angle

15Computer Graphics 15-462

The View Volume

• Pyramid in space defined by focal point and window in
the image plane (assume window mapped to viewport)

• Defines visible region of space
• Pyramid edges are clipping planes
• Frustum = truncated pyramid with near and far clipping

planes
– Why near plane? Prevent points behind the camera being seen
– Why far plane? Allows z to be scaled to a limited fixed-point

value (z-buffering)

16Computer Graphics 15-462

But wait...

• What if we want the camera somewhere other
than the canonical location?

• Alternative #1: derive a general projection
matrix. (hard)

• Alternative #2: transform the world so that the
camera is in canonical position and orientation
(much simpler)

• These transformations are viewing
transformations

• They can be specified in many ways - some
more sensible than others (beware of Foley,
Angel and Watt are ok)

17Computer Graphics 15-462

Camera Control Values

• All we need is a single translation and angle-axis
rotation (orientation), but...

• Good animation requires good camera control--we need
better control knobs

• Translation knob - move to the lookfrom point

• Orientation can be specified in several ways:
– specify camera rotations
– specify a lookat point (solve for camera rotations)

18Computer Graphics 15-462

A Popular View Specification Approach

• Focal length, image size/shape and clipping planes are in the
perspective transformation

• In addition:
– lookfrom: where the focal point (camera) is
– lookat: the world point to be centered in the image

• Also specify camera orientation about the lookat-lookfrom
axis

4

19Computer Graphics 15-462

Implementation

Implementing the lookat/lookfrom/vup viewing scheme
(1) Translate by -lookfrom, bring focal point to origin
(2) Rotate lookat-lookfrom to the z-axis with matrix R:

» v = (lookat-lookfrom) (normalized) and z = [0,0,1]
» rotation axis: a = (vxz)/|vxz|
» rotation angle: cosθ = v•z and sinθ = |vxz|

glRotate(θ, ax, ay, az)
(3) Rotate about z-axis to get vup parallel to the y-axis

20Computer Graphics 15-462

The Whole Picture

LOOKFROM: Where the camera is
LOOKAT: A point that should be centered

in the image
VUP: A vector that will be pointing

straight up in the image
FOV: Field-of-view angle.
d: focal length
WORLD COORDINATES

21Computer Graphics 15-462

It's not so complicated…

Translate LOOKFROM
to the origin

Multiply by the projection matrix
and everything will be in the
canonical camera position

Rotate the view vector
(lookat -lookfrom) onto
the z-axis.

Rotate about z to bring vup to y-axis

START HERE
lookat

lookfrom

vup

x

y

z

y

x

x

x

y

y

z

z

z

22Computer Graphics 15-462

Virtual Trackballs

• Imagine world contained in crystal ball, rotates about
center

• Spin the ball (and the world) with the mouse
• Given old and new mouse positions

– project screen points onto the sphere surface
– rotation axis is normal to plane of points and sphere center
– angle is the angle between the radii

• There are other methods to map screen coordinates to
rotations

23Computer Graphics 15-462

Clipping

• There is something missing between projection and
viewing...

• Before projecting, we need to eliminate the portion of
scene that is outside the viewing frustum

x

y

z
image plane

near far

clipped line

•Need to clip objects to the frustum (truncated pyramid)
•Now in a canonical position but it still seems kind of tricky...

24Computer Graphics 15-462

Normalizing the Viewing Frustum

• Solution: transform frustum to a cube before clipping

x

y

z
near far

clipped line

1

1
1

0

x

y

z
image plane

near far

clipped line

• Converts perspective frustum to orthographic frustum
• This is yet another homogeneous transform!

5

25Computer Graphics 15-462

The Normalized Frustum

• OpenGL uses -1<=x<=1, -1<=y<=1, -1<=z<=1
• But it doesn’t really matter… we can clip

against any such cube.
–Or, we can translate normalizing transformations by

applying the appropriate trans.

• Must clip in homogeneous coordinates:
w>0: -w<=x<=w, -w<=y<=w, -w<=z<=w
w<0: -w>=x>=w, -w>=y>=w, -w>=z>=w

26Computer Graphics 15-462

But wait! Divide by zero?

• But doesn’t projection require dividing by the z
coordinate? If -1<=z<=1, won’t we get divide by 0?

• Ah, but it’s really the w coordinate we divide by, and it’s
positive definite!
–The original perspective transformation puts a vertex’s

z value in w
–Since hither<=z<=yon for vertices that don’t get

clipped, w is positive definite (modulo sign convention
for hither and yon)

• Hence, no worries on that front. All the z=0 vertices will
get clipped before we divide out the homogeneous
coordinate.

27Computer Graphics 15-462

Clipping to a Cube

• Determine which parts of the scene lie within
cube

• We will consider the 2D version: clip to
rectangle

• This has its own uses (viewport clipping)
• Two approaches:

–clip during scan conversion (rasterization) - check per
pixel or end-point

–clip before scan conversion

• We will cover
– clip to rectangular viewport before scan conversion

28Computer Graphics 15-462

Line Clipping

• Modify endpoints of lines to lie in rectangle
• How to define “interior” of rectangle?
• Convenient definition: intersection of 4 half-planes

–Nice way to decompose the problem
–Generalizes easily to 3D (intersection of 6 half-planes)

y < ymax y > ymin

x > xmin x < xmax

= ∩∩∩∩interior

xmin xmax

ymin

ymax

29Computer Graphics 15-462

Line Clipping
• Modify end points of lines to lie in rectangle
• Method:

–Is end-point inside the clip region? - half-plane tests
– If outside, calculate intersection between the line and

the clipping rectangle and make this the new end
point

• Both endpoints inside: trivial
accept

• One inside: find intersection
and clip

• Both outside: either clip or
reject (tricky case)

30Computer Graphics 15-462

– Else subdivide

Cohen-Sutherland Algorithm
• Uses outcodes to encode the half-plane tests results

1000

0000

0100

1001

0001

0101 0110

0010

1010
bit 1: y>ymax
bit 2: y<ymin
bit 3: x>xmax
bit 4: x<xmin

ymax

ymin

xmaxxmin

• Rules:
– Trivial accept : outcode(end1) and outcode(end2) both zero

– Trivial reject : outcode(end1) & (bitwise and) outcode(end2)
nonzero

6

31Computer Graphics 15-462

– Else subdivide

Cohen-Sutherland Algorithm
• Uses outcodes to encode the half-plane tests results

1000

0000

0100

1001

0001

0101 0110

0010

1010
bit 1: y>ymax
bit 2: y<ymin
bit 3: x>xmax
bit 4: x<xmin

ymax

ymin

xmaxxmin

• Rules:
– Trivial accept : outcode(end1) and outcode(end2) both zero

– Trivial reject : outcode(end1) & (bitwise and) outcode(end2)
nonzero

32Computer Graphics 15-462

Cohen-Sutherland Algorithm: Subdivision

• If neither trivial accept nor reject:
–Pick an outside endpoint (with nonzero outcode)
–Pick an edge that is crossed (nonzero bit of outcode)
–Find line's intersection with that edge
–Replace outside endpoint with intersection point
–Repeat until trivial accept or reject

1000

0000

0100

1001

0001

0101 0110

0010

1010
bit 1: y>ymax
bit 2: y<ymin
bit 3: x>xmax
bit 4: x<xmin

ymax

ymin

xmaxxmin

33Computer Graphics 15-462

Polygon Clipping

Convert a polygon into one or more polygons that
form the intersection of the original with the clip
window

34Computer Graphics 15-462

Sutherland-Hodgman
Polygon Clipping Algorithm

• Subproblem:
–clip a polygon (vertex list) against a single clip plane
–output the vertex list(s) for the resulting clipped

polygon(s)

• Clip against all four planes
–generalizes to 3D (6 planes)
–generalizes to any convex clip polygon/polyhedron

35Computer Graphics 15-462

Sutherland-Hodgman
Polygon Clipping Algorithm (Cont.)

To clip vertex list against one half-plane:
• if first vertex is inside - output it
• loop through list testing inside/outside transition - output

depends on transition:

> in-to-in: output vertex

> out-to-in: output intersection and vertex

> out-to-out: no output
> in-to-out: output intersection

36Computer Graphics 15-462

Cleaning Up

• Post-processing is required when clipping creates
multiple polygons

• As external vertices are clipped away, one is left with
edges running along the boundary of the clip region.

• Sometimes those edges dead-end, hitting a vertex on
the boundary and doubling back
–Need to prune back those edges

• Sometimes the edges form infinitely-thin bridges
between polygons
–Need to cut those polygons apart

