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6.0 FACIAL EXPRESSION RECOGNITION USING
HIDDEN MARKOV MODELS

If we try to build a signal model that can be used to explain and characterize the

occurrence of the observable symbol sequences, then we can use this model to identify or

recognize other sequences of observable symbols.  A Hidden Markov Model (HMM) can

be employed to represent the statistical behavior of an observable symbol sequence in

terms of a network of states.  For each observable symbol, the process being modeled

occupies one of the states of the HMM.  With each observable symbol, the HMM either

stays in the same state or moves to another state based on a set of state transition

probability associated with the state.  The variety of the observable symbols for which the

HMM uses a particular state is described in terms of the distribution of probability that

each observable symbol will occur from that state.  Thus, an HMM is a doubly (observable

and hidden) stochastic model where the observable symbol probability distribution for

each state captures the intra-state variability of the observable symbols, and the state

transition probability describe the underling dynamic structure of the observable symbols.

We use HMMs to recognize subtly different facial expressions because of their

simplicity and reliability.  The HMM uses only three parameters: the initial state

probability vector, the state-transition probability matrix, and the observable symbol

probability matrix.  The convergence of recognition computation may run in real time.

Analysis of dynamic images naturally will yield more accurate recognition than that of a

single static image, in our study, facial expressions are recognized in the context of entire

image sequences of arbitrary lengths.  Use of an HMM for facial expression recognition is

advantageous because it is analogous to human performance which is a doubly stochastic

process, involving a hidden immeasurable human mental state and measurable, observable

human action.  An HMM can produce satisfactory performance in the spatio-temporal

domain and deal with the time warping problem.  In addition, an HMM may allow for
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multiple input sequences.  This will result in a reliable recognition system as it will include

a variety of extracted information from the facial expressions.  It may also be used in

combination for both expression recognition and speech recognition.

6.1 Preprocessing of Hidden Markov Models: Vector Quantization

In order to model various “expression units” of individual AUs or AU combinations

for recognizing subtly different facial expressions, we train discrete HMMs (simply called

HMMs in our study) to model facial expressions.  We must first preprocess those training

multi-dimensional vector sequences to convert them to those one-dimensional (discrete)

symbol sequences.  The specific preprocessing algorithm we chose is the vector

quantization (VQ) (65).  VQ techniques have been used widely and successfully to solve

quantization and data compression problems.  In an HMM-based approach, we need to

quantize each multi-dimensional feature or motion vector sequence into a finite symbol

sequence before training HMMs.

The purpose of designing an M-level vector quantizer (called a codebook with size M)

is to partition all k-dimensional training feature vectors into M clusters and associate each

cluster Ci, whose centroid is the k-dimensional vector ci, with a quantized value named

codeword (symbol) oi.  While VQ will reduce data redundancy and get rid of small noise,

it will inevitably cause a quantization error between each training feature vector x and ci.

As the size of the codebook increases, the quantization error decreases, and required

storage for the codebook entries increases.  It is very difficult to find a trade-off among

these three factors.

In order to have a good recognition performance in using HMMs, it is critical to

design a codebook for vector quantizing each k-dimensional training feature vector x into

a symbol oi with minimum quantization error.  Therefore, two primary issues are

considerable for the design of the codebook: (1) codebook creation (the size of

codebook), and (2) distortion measurement.  Defining the size of codebook is still an open
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problem when we use the VQ technique.  According to our experimental result, the

recognition system has high performance when the size M of the codebook, which should

be power of 2, is at least 1/50 less than the number of all k-dimensional training feature

vectors.

For the distortion measurement, there are two main considerations for optimizing the

VQ:

1.  The quantizer must satisfy the nearest neighbor rule.

x Ci∈ if   x c x ci j− < − (6-1)
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This means that the k-dimensional feature vector x = [x1,x2,...,xk] is classified to cluster Ci,

whose centroid is the k-dimensional vector ci, and encoded to be the codeword oi because

the distance between x and ci is shorter than x and cj.  q(.) is the quantization operator.

2.  Each cluster center ci must minimize not only the distortion Di in cluster Ci but also

total quantization errors D.
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N k-dimensional feature vectors xn
i  are located at cluster Ci.  Because the total distortion

D is a linear combination of Di which is the distortion in cluster Ci, the k-dimensional

cluster center ci can be independently computed after classification of x.

Using the overall distortion measurement, it is hard to guarantee global minimization.

A similar technique used for cluster analysis with squared error cost functions is called the

K-means algorithm.  The K-means algorithm is an iterative algorithm which can guarantee

a local minimum, and works well in practice.
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The K-means Algorithm:

Step 1: Initialization - Define the codebook size to be M and choose M initial (1st

iteration) k-dimensional cluster centers c0(1), c1(1),..., cM-1(1) corresponding to

each cluster Ci where 0 ≤ i ≤ M-1.

Step 2: Classification - At the lth iteration, according to the nearest neighbor rule,

classify each k-dimensional sample x of training feature vectors into one of the

clusters Ci.

x Ci∈ (l) if   x c l x c li j− < −( ) ( ) where  i ≠ j, i, j = 0,1,...,M-1 (6-6)

Step 3: Codebook Updating - Update the codeword (symbol) oi of each cluster Ci by

computing new cluster centers ci(l+1) where i = 0,1,...,M-1 at the l+1th iteration.

ci(l+1) = 
1
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N is the number of feature vectors in cluster Ci(l+1) at the l+1th iteration, and

q(x) = oi where 0 1≤ ≤ −o Mi (6-8)

where q(.) is the quantization operator.

Step 4: Termination - If the decrease in the overall distortion at the current iteration

l+1 compared with that of the previous iteration l is below a selected threshold,

then stop; otherwise goes back to Step 2.

if D l D l threshold then Stop

if D l D l threshold then Goes to Step
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Note that the K-means algorithm can only converge to a local optimum.  The behavior

of the K-means algorithm is affected by the number of clusters specified and the choice of

initial cluster centers.  Instead of using K-means algorithm, our VQ approach is based on

Linde, Buzo and Gray’s algorithm (65) for vector quantizer design, which is an extended

algorithm of K-means, but unlike K-means which initializes each cluster center in the

beginning.  This VQ algorithm uses iterative method, splits the training vectors from
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assuming whole data to be one cluster to 2,4,8,...,M (M’s size is power of 2) clusters, and

determines the centroid for each cluster.  The centroid of each cluster is refined iteratively

by K-means clustering.

The Vector Quantization Algorithm:

Step 1: Initialization - Assume all N k-dimensional training vectors to be one cluster C0,

i.e., codebook size M = 1 and codeword o0 = 0, and find its k-dimensional cluster

centroid c0(1) where 1 is the initial iteration.

c0(1) = 
1 0
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xn

n

N

=
∑ (6-10)

where x is one sample of all N k-dimensional feature vectors at cluster C0.

Step 2: Splitting - Double the size M of the codebook by splitting each cluster into two.

The current codebook size M is split into 2M.  Set M = 2M by

c c

c c

i i

i i
+

−

= +
= −





( ) ( )

( ) ( )

1 1

1 1

ε
ε

where i M  0 1≤ ≤ − (6-11)

ci is the centroid of the ith cluster Ci, M is the size of current codebook, ε is a k-

dimensional splitting parameter vector and is value 0.0001 for each dimension in

our study.  1 is the initial iteration.

Step 3: Classification - At the lth iteration, according to the nearest neighbor rule,

classify each k-dimensional sample x of training feature vectors into one of the

clusters Ci.

x Ci∈ (l) if x c l x c li j− < −( ) ( ) where  i ≠ j, i, j = 0,1,...,M-1 (6-12)

Step 4: Codebook Updating - Update the codeword (symbol) oi of each cluster Ci by

computing new cluster centers ci(l+1) where i = 0,1,...,M-1 at the l+1th iteration.

ci(l+1) = 
1

1N
xn

i

n

N

=
∑ where x C li i∈ +( )1 (6-13)

N is the number of feature vectors in cluster Ci(l+1) at the l+1th iteration.  And

q(x) = oi where 0 1≤ ≤ −o Mi (6-14)
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where q(.) is the quantization operator.

Step 5: Termination 1 - If the difference between the current overall distortion D(l+1)

and that of the previous iteration D(l) is below a selected threshold, proceed to

Step 6; otherwise goes back to Step 3.

if D l D l threshold then Goes to Step

if D l D l threshold then Goes to Step
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(where threshold is 0.0001 in our study.)

Step 6: Termination 2 -

Is the codebook size M equal to the VQ codebook size required ?

if Yes then Stop

if No then Goes to Step
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
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(6-16)

Once the final codebook is obtained according to all training vectors by using this VQ

algorithm, it is used to vector quantize each training and testing feature (or motion) vector

into a symbol value (codeword) for the preprocessing of the HMM recognition process

(Figure 43).

6.2 Beginning from Markov Models

The first order Markov chain is a stochastic process which follows the rule

P(qt+1=j | q0=k,q1=l,...,qt=i) = P(qt+1=j | qt=i) (6-17)

where qt represents the state q at time t, and i, j, k, l represent the possible states of q at

different instant of time.  The first order Markov chain states that the probabilistic

dependence is truncated at the preceding state.  We consider only those processes in

which the right-hand side of above equation is independent of time.  We can then see that

a time independent Markov chain is characterized by its state-transition probability aij,
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which is the probability of moving from one state i to another state j.

aij = P(qt=j | qt-1=i), 1 ≤ i,j ≤ N (6-18)

where N is the total number of states.  The aij obeys standard stochastic constraints.

aij ≥ 0 1 ≤ i,j ≤ N (6-19)

aij

j

N

=
=

∑ 1
1

1 ≤ i ≤ N (6-20)

All Training
Vectors

Codebook Creation
(Size: 2n = M, n = 0,1,2,...)

HMM

Vector Sequence:
F=(f1,f2,...,ft,...,fT)

Symbol Sequence:
O = (o1,o2,...,ot,...,oT)

Symbol ot: 0 ≤ ot ≤ M-1

Vector Quantization

Figure 43 Vector quantization for encoding any vector sequence to
a symbol sequence based on the codebook.
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The Markov model could be called an observable Markov model because the output of

the stochastic process is the state sequence where each state corresponds to each instant

of time with a deterministically observable event (symbol).

6.3 Extension of Markov Models: Hidden Markov Models

In the Markov model, the state sequence is observable.  The output observable event

in any given state is deterministic, not random.  This will be too constraining when we use

it to model the stochastic nature of the human performance, which is related to doubly

stochastic processes, namely human mental states (hidden) and human actions

(observable).  It is necessary that the observable event is a probabilistic function of the

state.  That is why an HMM is employed.  HMM is a representation of a Markov process

and is a doubly embedded stochastic process with an underlying stochastic process that

cannot be directly observed, but can only be observed through another set of stochastic

processes that produce the sequence of observable symbols.

Before the description of HMMs, we define the elements of an HMM by specifying the

following parameters:

N: The number of states in the model.  The state of the model at time t is given by qt,

1 ≤ qt ≤ N and 1 ≤ t ≤ T (6-21)

where T is the length (number of frames) of the output observable symbol

sequence.

M: The size of the codebook or the number of distinct observable symbols per state.

Assume ot is one of all possible observable symbols for each state at time t, then

0 ≤ ot ≤ M-1 (6-22)

πN: An N-element vector indicates the initial state probability.

π = {πi}, where πi = P(q1=i), 1 ≤ i ≤ N (6-23)

ANxN: An N x N matrix specifies the state-transition probability that the state will transit

from state i to state j.
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A = {aij} where aij = P(qt=j | qt-1=i), 1 ≤ i,j ≤ N (6-24)

and

aij ≥ 0, aij

j

N

=
=

∑ 1
1

1 ≤ i ≤ N (6-25)

BMxN: An M x N matrix represents the probability that the system will generate the

observable symbol ot at state j and at time t.

B = {bj(ot)}  where  bj(ot) = P(Ot=ot | qt=j),  1 ≤ j ≤ N, 0 ≤ ot ≤ M-1,(6-26)

and

bj(ot) ≥ 0,   1 ≤ j ≤ N,  and b oj t
o

M

t

( ) =
=

−

∑ 1
0

1

,   1 ≤ j ≤ N (6-27)

The complete parameter set λ of the discrete HMM is represented by one vector π and

two matrices A and B

λ = (π,A,B) (6-28)

In order to accurately describe a real-world process such as facial expression with an

HMM, we need to appropriately select the HMM parameters.  The parameter selection

process is called the HMM "training."

This parameter set λ can be used to evaluate the probability P(O | λ), that is to

measure the maximum likelihood performance of an output observable symbol sequence

O.

O = (o1, o2, ..., oT) (6-29)

where T is the number of frames for each image sequence.  For evaluating each P(O | λ),

we need to select the number of states N, select the size of the codebook or the observable

symbols M, and compute the results of probability density vector π and matrices A and B

by training each HMM from a set of corresponding training data after VQ (Figure 44).
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Figure 44 The construction (topology) of the Hidden Markov Model.

t t+1

1 i j N
aijπ1

bj(ot+1)

Symbol sequence: O = (o1,o2,...,ot,...,oT)

State: q = (q1=1,…,qt=i,qt+1=j,…,qT=N)

Codebook size: M

HMM parameter set: λ = (π,A,B)

Initial state distribution: π1 = 1.0, πk = 0.0   if  2 ≤ k ≤ N

State-transition probability: ANxN = {aij} from state i to j

Observable symbol probability: BMxN = {bj(ot+1)}   at state j and time t+1

Output probability: P(O|λ)
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6.4 Three Basic Problems of Hidden Markov Models

There are three basic problems in HMM design:

1.  Problem of Probability Evaluation:  How do we efficiently evaluate P(O | λ), the

probability (or likelihood) of an output observable symbol sequence O = {o1,o2,...,oT}

given an HMM parameter set λ = (π,A,B) ?

2.  Problem of Optimal State Sequence:  How do we determine an optimal state

sequence q = {q1,q2,...,qT}, which is associated with the given output observable symbol

sequence O = {o1,o2,...,oT}, by given an HMM parameter set λ = (π,A,B) ?

3.  Problem of Parameter Estimation:  How do we regulate an HMM parameter set λ =

(π,A,B) in order to maximize the output probability P(O | λ) of generating the output

observable symbol sequence O = {o1,o2,...,oT} ?

Analyzing and solving the above three basic problems can help us to design and

understand the HMM for training and recognition processes.

6.4.1 Probability Evaluation Using the Forward-Backward Procedure

In order to use an HMM for facial expression recognition, we need to compute the

output probability P(O | λ) with which the HMM will generate an output observable

symbol sequence O = {o1,o2,...,oT} given the parameter set λ = (A,B,π).  The most

straightforward way to compute this is by enumerating every possible state sequence of

length T, so there will be NT possible combinations of state sequence where N is the total

number of states.  Suppose there is one state sequence

q = {q1, q2,..., qT} (6-30)

Assume statistical independence of observable symbol o, and given the above state

sequence q, the probability of the output observable symbol sequence will be
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P(O | q,λ) = 
t

T

=
∏

1

P(ot | qt,λ) = b o b o b oq q q TT1 21 2( ) ( ) ... ( )   (6-31)

Also, we can get the probability of such a state sequence q by given an HMM parameter

set λ.

P(q | λ) = 
TT qqqqqqq aaa

132211
 ...   

−
π (6-32)

The joint probability of O and q (or the probability that O and q occur at the same time) is

P(O,q | λ) = P(O | q,λ) P(q | λ) (6-33)

The probability of P(O | λ) is the summation of this joint probability over all NT possible

state sequences q.
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For the time complexity of the above computation, we can base the interpretation on

Figure 45.  Each state qt+1 at time t+1 has N possible paths with order O(1) calculations to

be reached from the previous N state qt at time t.  That is, each state q2 at time t = 2 can be

reached from N possible state q1 at time t = 1, and N possible state q2 at t = 2.  Each state

q3 at time t = 3 can have N2 possible paths to be reached from N possible states q1 at t = 1.

Overall there are NT-1 possible paths with the order O(T) calculations to reach each final

state qT at time T for each state sequence. (According to the above equation, 2T-1

multiplications are required for each state sequence.)  The time complexity is the order

O(NT-1 T) for each state sequence.  The totally N final state qT at time T can be reached.

The overall time complexity of computing the probability of P(O | λ) is the order O(NT-1 T)

x O(N) = O(NT T).  The value is very difficult to calculate.  Even if we have a small
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Figure 45 The tree structure of the computational complexity for
direct evaluation of the output probability P(O|λ) (105).
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number of states N and T frames of state sequence, e.g., N = 4 and T = 20, it still requires

on the order of 420 x 20 ≈ 2.2 x 1013 calculations.  Fortunately, we can use a more efficient

procedure called the Forward-Backward procedure (79) to overcome this limitation.

Figure 46 can help us to describe the Forward procedure easily and clearly.  We define

the forward variable

αt(i) = P(o1o2...ot, qt=i | λ) (6-35)

as the probability of the partial observable symbol sequence o1 o2 ... ot at state i and at time

t by given the HMM parameter set λ.  We can solve for αt(i) inductively as follows:

The Forward Procedure:

1.  Initialization: The initial forward variable is the joint probability of state i, time t = 1

and initial observable symbol o1 by given the HMM parameter set λ.

α1(i) = P(o1, q1=i | λ) = πibi(o1) where 1 ≤ i ≤ N (6-36)

2.  Induction (or Recursion): State j can be reached at time t+1 from the N possible

states i, 1≤ i ≤ N, at time t with the state-transition probability aij.

αt+1(j)  = P(o1o2...ot+1, qt+1=j | λ)

= αt

i

N

ij j ti a b o
=

+∑








1

1( ) ( ) , where 1 ≤ t ≤ T-1, 1 ≤ i, j ≤ N (6-37)

3.  Termination: The sum of all N final forward variables αT(i), 1≤ i ≤ N.

P(O | λ) = P o o o q iT T
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The second step of the Forward procedure reduces the computational complexity since

the calculation of the forward variable αt+1(j) at time t+1, state j and observable symbol

ot+1 depends only on the previous (at time t) N forward variables αt(i), 1 ≤ i ≤ N (Figure

46, 47).  This computation is performed for all states j, 1 ≤ j ≤ N, and then iterated from

the initial frame at t = 1 to t = T-1 for all possible state sequences.  In other words,

because there are only N states at each instant time, all the possible state sequences will

remerge into these N states, no matter how long the observable symbol sequence will be

(Figure 47).  The time complexity is the order O(N T) for each observable symbol

sequence.  This computation obviously reduces the computational complexity of each

state sequence from the order O(NT-1) to O(N).  There are N states for each instant time or

at the end time t = T.  The overall time complexity of computing the probability of P(O |

λ) is O(N T) x O(N) = O(N2 T) whose origin is O(NT T).  Compared to the original

example N = 4 and T = 20, it requires only the order of 42 x 20 = 3.2 x 102 which is much

less than 420 x 20 ≈ 2.2 x 1013 calculations.

Figure 46 describes the Backward procedure.  We define a backward variable

βt(i) = P(ot+1ot+2...oT | qt=i, λ) (6-39)

which means the probability of the partial observable symbol sequence from t+1 to the end

time T by given state i at time t and the HMM parameter set λ.  We can compute the βt(i)

using the following steps:

The Backward Procedure:

1.  Initialization: Arbitrarily defines the backward variable at the end time T and state i as

βT(i) = 1 where 1 ≤ i ≤ N (6-40)

2.  Induction (or Recursion): State i can reach N possible states j, 1 ≤ j ≤ N, at time t+1

as well as the observable symbol ot+1 by state-transition probability aij and observation

probability bj(ot+1).
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Figure 46 The Forward and Backward Procedures.
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βt(i) = P(ot+1ot+2...oT | qt=i,λ)

        = ∑
=

++

N

j
ttjij joba

1
11 )()( β where t = T-1, T-2,...,1, and 1 ≤ i ≤ N (6-41)

The backward procedure’s computational complexity is the same as the Forward

procedure, O(N2 T), using the similar but opposite approach direction of Figure 47.

6.4.2 Optimal State Sequence Using the Dynamic Programming Approach

We use a dynamic programming method called the Viterbi algorithm (37,79,98) to find the

single best state sequence q = (q1q2...qT) (or the most likely path) given the observable

symbol sequence O = (o1o2...oT) and the HMM parameter set λ in order to maximize P(q |

O,λ).  Since

P q O
P q O

P O
( | , )

( , | )

( |
  

  
  )

λ λ
λ

= (6-42)

Maximizing P(q | O,λ) is equivalent to maximizing P(q,O | λ) using the Viterbi algorithm.

The basic idea of the Viterbi algorithm (a dynamic programming method) is similar to the

Forward procedure (Figure 46) whose calculation at each time is considered only between

two consecutive times t and t+1, and starts at the initial time t = 1 and proceeds forward

to the end time t = T.  The major difference is during this calculation between two instant

times.  The control, which produces the maximum value corresponding to the single

shortest or best path (state sequence), is “saved” instead of the summation of overall

calculations (Figure 47).  At the end of the state sequence for the calculation, the

“remembered” best controls can be used to recover the state space trajectory based on

path backtracking.

We define the maximum probability along a single best path at time t, which accounts

for the first t observable symbols and ends in state i given the HMM parameter set λ, as
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We also define the “remembered” array ψt(j) for each state j at time t, which keeps track

of the argument that maximizes the value δt-1(i) x aij, in order to retrieve the optimal state

sequence during the path backtracking.  qt  is the single most likely state at time t.

The Viterbi Algorithm:

1.  Initialization:  The initial probability δ1(i) is at state i, time t = 1 and initial observable

symbol o1 by given the HMM parameter set λ.

)() | ,()( 1111 obiqoPi iiπλδ === where 1 ≤ i ≤ N (6-44)

0)(1 =iψ where 1 ≤ i ≤ N (6-45)

( )q i
i N

1
1

1=
≤ ≤

arg max ( )  δ (6-46)

2.  Recursion:  The single best path (state sequence) among N possible paths from N

possible states i at time t to state j at time t+1 with the state-transition probability aij is

) |  ,...(max)1( 1121
1

1 λδ jqoooPj tt
Ni

t ==+ ++≤≤+

      = ( )[ ]max ( ) ( )
1

1≤ ≤ +
i N

t ij j ti a b oδ where 1 ≤ t ≤ T-1, 1 ≤ j ≤ N (6-47)

( )[ ]ψ δt
i N

t ijj i a+ ≤ ≤
=1

1
( ) arg max ( ) where 1 ≤ t ≤ T-1, 1 ≤ j ≤ N (6-48)

( )q it
i N

t+ ≤ ≤ +=1
1

1arg max ( ) δ (6-49)

3.  Termination:  The single best path reaches the end time T for each state sequence.

P  = max ( ... , | )
1

1 2≤ ≤
=

i N
T TP o o o q i   λ

     = max ( , | )
1≤ ≤

=
i N T

P O q i   λ

     = ( )max ( )
1≤ ≤i N

T iδ (6-50)

( )q iT
i N

T=
≤ ≤

arg max ( ) 
1

δ (6-51)
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4.  Path (State Sequence) Backtracking:  Backtracking is retrieving the path which have

been saved as the most likely states.

q qt t t= + +ψ 1 1( ) where t = T-1, T-2, ..., 1 (6-52)

For computation simplicity, the Viterbi algorithm can be implemented by additional

preprocessing which takes the logarithms of the HMM parameters in order to convert

multiplication to addition.

0.  Preprocessing:

( )π πi i
# log= where 1 ≤ i ≤ N (6-53)

( )a aij ij
# log= where 1 ≤ i ≤ N and 1 ≤ t ≤ T (6-54)

( )b o b oi t i t
# ( ) log ( )= where 1 ≤ i ≤ N and 1 ≤ t ≤ T (6-55)

1.  Initialization:

( )δ δ π1 1 1
# # #( ) log ( ) ( )i i b oi i= = + where 1 ≤ i ≤ N (6-56)

ψ 1 0# ( )i = where 1 ≤ i ≤ N (6-57)

( )q i
i N

1
1

1
# #arg max ( )=

≤ ≤
 δ (6-58)

2.  Recursion:

( )δ δt tj j+ +=1 1
# ( ) log ( )

= ( )[ ]max ( ) ( )# # #

1
1≤ ≤ ++ +

i N
t ij j ti a b oδ where 1 ≤ t ≤ T-1, 1 ≤ j ≤ N (6-59)

( )[ ]ψ δt
i N

t ijj i a+ ≤ ≤
= +1

1

# # #( ) arg max ( ) where 1 ≤ t ≤ T-1, 1 ≤ j ≤ N (6-60)

( )q it
i N

t+ ≤ ≤ +=1
1

1
# #arg max ( ) δ (6-61)

3.  Termination:

( )P i
i N

T
# #max ( )=

≤ ≤1
δ (6-62)



124

( )q iT
i N

T
# #arg max ( )=

≤ ≤
 

1
δ (6-63)

4.  Path (State Sequence) Backtracking:

)( #
1

#
1

#
++= ttt qq ψ where t = T-1, T-2, ..., 1 (6-64)

6.4.3 Parameter Estimation Using the Baum-Welch Method

We can use a set of training observable symbol sequences to adjust the model

parameters in order to build a signal model that can be used to identify or recognize other

sequences of observable symbols.  There is, however, no efficient way to optimize the

model parameter set that globally maximizes the probability of the symbol sequence.

Therefore, the Baum-Welch method (6) is used for choosing the maximum likelihood

model parameter set λ = (π,A,B) such that its likelihood function P(O | λ) is locally

maximized using an iterative procedure.

To easily describe the procedure for reestimation (iterative computation) of the HMM

parameter set  λ = (π,A,B), we define a posterior probability variable γt(i), shown in Figure

48, as the probability of being in state i at time t by given the HMM parameter set λ and

the entire observable symbol sequence O.
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where

P(O,qt=i | λ) = αt(i) βt(i) (6-66)

αt(i) = P(o1o2...ot, qt=i | λ) (6-67)

βt(i) = P(ot+1ot+2...oT | qt=i,λ) (6-68)
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We define the other probability variable ξt(i,j) (illustrated in Figure 49), which represents

the probability of being in state i at time t, and state j at time t+1 given the observable

symbol sequence O and the HMM parameter set λ.

ξ λ
t t ti j P q i q j O( , ) ( , |= = =+1   , )

=
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Then the relationship between γt(i) and ξt(i,j) is

γ ξt t
j

N

i i j( ) ( , )=
=

∑
1

(6-70)

If we sum γt(i) and ξt(i,j) from the initial time t = 1 to the time t = T-1, we can find

γ t
t

T

i
=

−

∑
1

1

( )  = expected number of transitions or times, i.e., frequency, from

      state i given observable symbol sequence O (6-71)

ξ t
t

T

i j
=

−

∑
1

1

( , )  = expected number of transitions from state i to state j given O (6-72)

A set of reasonable reestimation formulas for HMM parameters π, A, and B is given
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Figure 48 A posterior probability variable γt(i) which is the probability of being
in state i at time t by given the HMM parameter set λ and the entire
observable symbol sequence O.

Figure 49 The probability variable ξt(i,j) which represents the probability of
being in state i at time t, and state j at time t+1 given the observable
symbol sequence O and the HMM parameter set λ.
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aij = 
expected number of transitions from state  to state 

exptected number of transitions in state 

i j

i

    = 
ξ

γ

t
t

T

t
t

T

i j

i

=

−

=

−

∑

∑
1

1

1

1

( , )

( )
 = 

P q i q j O

P q i O

t t
t

T

t
t

T

( , , | )

( , | )

= =

=

+
=

−

=

−

∑

∑

1
1

1

1

1

  

  

λ

λ

    = 
α β

α β

t ij j t t
t

T

t t
t

T

i a b o j

i i

( ) ( ) ( )

( ) ( )

+ +
=

−

=

−

∑

∑

1 1
1

1

1

1 (6-74)

         bj(ot) = 
expected number of transitions in state  and observable symbol  at time 

expected number of transitions in state 
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where

P(qt=i,O | λ) = αt(i) βt(i) (6-76)

P(O | λ) = α βt t
i

N

i i( ) ( )
=
∑

1

 = α T
i

N

i( )
=
∑

1

(6-77)

P(qt=i,qt+1=j,O | λ) = αt(i)aijbj(ot+1)βt+1(j) (6-78)

Note that these updated parameters should satisfy stochastic constraints for computation

normalization.

π i
i
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=
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1

1 (6-79)

t
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aij
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1 where 1 ≤ i ≤ N (6-80)
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1

where 1 ≤ j ≤ N and 1 ≤ t ≤ T (6-81)

6.5 Computation Considerations

To be able to enhance the effectiveness of HMM performance in the practical

applications, such as facial expression recognition, it is necessary to have accurate

computation and guarantee the local maximum of the likelihood function using an iterative

procedure (reestimation procedure), i.e. the Forward-Backward procedure, convergence.

6.5.1 Choice of Hidden Markov Model

There are several types of HMMs (79) such as the ergodic model (Figure 50.a) in which

every state of the model can be reached in a single step from any state of the model.  Its

state-transition probability matrix A is a full matrix.

A = {aij} = 

a a a

a a a

a a a

N

N

N N NN

11 12 1

21 22 2

1 2

. . .

. . .

. . . . . . . . .

. . .

...



















(6-82)

where

aij ≥ 0, aij
j

N

=
∑ =

1

1 and 1 ≤ i ≤ N (6-83)

The left-right model (the Bakis model) which is used for facial expression recognition in

various lengths of image sequences because they perform well in the spatio-temporal

domain and are able to deal with the time warping problem.  The left-right type of HMM
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Figuer 50 (a) 4 state ergodic HMM (b) 1st-order 4-state left-right
(Bakis) HMM (c) 2nd-order 4-state left-right HMM.
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has the desirable properties that the initial state probability has the characteristic

π i

i

i
=

≠
=





0 1

1 1

  if  

  if  
where 1 ≤ i ≤ N (6-84)

The state sequence must begin at the first state 1 with left to right order and end at the

final state N.  As the time increases, the observable symbols in each sequence either stay at

the same state or increase in a successive manner.  The state-transition coefficients of the

left-right model have the property

aij = 0 if  j < i (6-85)

No transitions can occur from the current state to a state with a lower index.  An

additional constraint for the state-transition coefficients of the left-right HMM is

aij = 0 if  j > i + ∆i (6-86)

for some value ∆i which means the order of the left-right HMM.  No jumps of more than

∆i number of states are allowed.  For example, ∆i = 1 and N = 4 means the 1st-order 4-

state left-right HMM (Figure 50.b) whose state-transition probability matrix A is

A={aij}=

a a
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a a
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(6-87)

where

aij ≥ 0, aij
j =
∑ =

1

4

1 and 1 ≤ i ≤ 4 (6-88)

∆i = 2 and N = 4 indicates the 2nd-order 4-state left-right HMM (Figure 50.c) whose

state-transition probability matrix A is

A={aij}=

a a a

a a a

a a

a

11 12 13
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
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(6-89)

where
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aij ≥ 0, aij
j =
∑ =

1

4

1 and 1 ≤ i ≤ 4 (6-90)

6.5.2 Initialization of Hidden Markov Model Parameter Estimation

For the training process, accurate initial estimations of the HMM parameters  π, A and

B will help the local maximum approach using an iteration procedure as close as possible

to the global maximum of the likelihood function.  If the elements of the parameters are

set to zero initially, they will remain at zero during the entire process.  In practice, it is not

important to reach the global maximum of the likelihood function.  Instead, finding a set of

HMM parameters which promote a highly accurate recognition result is more important.

Our experiment shows that very small random initial values of the HMM parameters

(smaller than 10-6) are adequate and useful and recognition accuracy is high.  Remember

that for the left-right HMM, the initial state probability for the first state is 1 (π1 = 1) and

other states are 0.

6.5.3 Computation of Scaling

The forward and backward variables αt(i) and βt(i) are computed recursively, so they

are composed of a large number of accumulated {aij} and {bj(ot)} multiplications.  Since

each aij and bj(ot) is less (or extensively less) than 1, each term of αt(i) or βt(i) will start to

head exponentially to zero when the length (or number of frames) T in each image

sequence increases.  The dynamic range of the αt(i) or βt(i) computation will then be

beyond the precision range of any computer capability.  To keep αt(i) and βt(i) within the

dynamic range of the computer, the most straightforward method is to multiply αt(i) and

βt(i) by scaling coefficients which can be canceled out completely at the end of the

computation.  The scaling coefficient for αt(i) is defined as ct 
(79)
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The scaling coefficient ct is the inverse of the sum overall states N of αt(i) at time t, is

dependent only on time t and independent of state i, and effectively rebuilds the magnitude

of the αt(i) to 1. To keep the βt(i) computation within reasonable bounds as αt(i), we can

apply the same scaling coefficient ct to βt(i) because the magnitudes of the αt(i) and βt(i)

are comparable.  For efficient computation within rational bounds, the αt(i) and βt(i)

should be replaced by
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where )(~ itα  and 
~

( )β t j+1  are the scaling results of αt(i) and βt+1(j), respectively.

In addition, when )(~ itα  and 
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( )β t j+1  are applied at the scaling intermediate probability
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The numerator and denominator terms are both deleted because the scaling coefficient ct is

independent of states i and j.  The scaling intermediate probability tγ~ (i) and tξ~ (i,j) has the

same values as the intermediate probability without scaling tγ (i) and tξ (i,j).

Furthermore, the HMM parameters π, A, and B will also keep the same probability values

when both αt(i) and βt+1(j) are scaled, because those parameters are constructed from

either or both intermediate probability tγ (i) and tξ (i,j).

~π πi i= , ~a aij ij= , and
~

( ) ( )b o b oj t j t= (6-97)

The only real affected event of the HMM procedure by scaling coefficient is

computing the maximum likelihood function P(O | λ).  Since (79)
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where scaling coefficient ct is independent of state i.  So
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The computation for the denominator term of the maximum likelihood function P(O | λ)

will be extremely small, which is out of the dynamic range of the computer’s ability.  It can

be solved by taking logarithms.

log ( | ) log log ( )    P O c it
t

T

t
i

N

t

T

λ α= − =
= ==
∑ ∑∑

1 11

         (6-100)

This can be used for evaluating the most likely performance of any input data

corresponding to a set of HMMs.  The Viterbi algorithm for finding the maximum

likelihood state sequence also uses the logarithms, which will be within the dynamic

bounds of the computer, so no scaling process is needed.



134

6.5.4 Computation of Smoothing for Insufficient Training Data

The amount of data (observable symbol sequences) used to train an HMM is always

limited because of considerations of the computational cost of HMM training or the

availability of training data.  Thus, there is always an inadequate number of occurrences of

low-probability state transitions between states and observable symbols within states to

give reasonable estimates of the model parameters.  If the training number of the

observable symbol sequences are so small that they do not have any occurrences

simultaneously to satisfy the conditional probability of HMM parameters, then ~π i  = 0, ~aij

= 0, and 
~

( )b oj t  = 0 will occur and will stay at 0 after each reestimation.  When this

resultant model is employed to evaluate any other observable symbol sequence which

possibly contains the state transitions or the observable symbol that do not occur in the

training sequences, this model will produce a zero probability result for this evaluated

observable symbol sequence.  Such a singular outcome is certainly a consequence of the

unreliable estimation that ~π i  = 0, ~aij  = 0, and 
~

( )b oj t  = 0 due to the insufficiency of the

training data to cover all possible varieties.

There are many possible solutions for handling the effects of insufficient training data
(59,79), such as production of the codebook size (reduction of the number of observable

symbols at each state) or the number of states.  The simplest and most practical way for

combating the insufficient training data problem is to add the numeric floor ε for

smoothing the probability distributions of HMM parameters in order to ensure that no

model parameter estimation falls below a specified threshold ε for each iterative

estimation.
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In our study, ε ε επ~ ~ ~= =a b
= 0.0001.

6.5.5 Computation of Normalization

Each probability distribution of HMM parameters, which consist of conditional

probability, should satisfy the stochastic constraints at each iteration estimation.
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where 1 ≤ j ≤ N            (6-106)

Since the probability of each parameter is reestimated at each iteration, the conflict with

the stochastic constraints always occurs.  The sum of the above equation is not equal to 1,

particularly if the probability distribution of each parameter are smoothed by a numeric

floor at each iterative estimation.  Therefore, it is necessary to normalize the probability

distributions of the HMM parameters so that the densities obey the required stochastic

constraints after each iteration of parameter reestimation and smoothing.
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6.5.6 Computation of Convergence

Since the Forward-Backward procedure is based on local maxima estimation by

iterative computation to achieve global maximum, it is important to guarantee that the

reestimated parameter set 
~
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,
~

)λ π= A B  is convergent.  It is necessary to prove that model

~
(~ ,

~
,
~

)λ πi i i iA B+ + + +=1 1 1 1  following the i+1th iterative reestimation is either equal or more

likely than model 
~

(~ ,
~

,
~

)λ πi i i iA B=  at current ith reestimation in the sense that

P O P Oi i( |
~

) ( |
~

)      λ λ+ ≥1 .  In other words, if the model 
~
λi  is replaced by 

~
λi+1  and this

reestimation is repeated, then the probability of symbol sequence O being observed from

the given update model 
~
λi+1  is improved until some limiting point is reached.  The final

result of this reestimation procedure is a maximum likelihood estimation of the HMM.

Because

P O P O q
q qT

(
~

) ( , |
~

)
...

 |    λ λ= ∑
1

           (6-110)

Then an auxiliary function (6,79) is defined as

Q P O q P O qi i i i

q qT

(
~

,
~

) ( , |
~

) log ( , |
~

)
...

λ λ λ λ= ∑       
1

           (6-111)
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λ λ λ λ+ += ∑1 1

1

                 (6-112)

over 
~
λi+1 .  Since

Q Q P O P Oi i i i i i(
~

,
~

) (
~

,
~

) ( |
~

) ( |
~

)λ λ λ λ λ λ+ +≥ ⇒ ≥1 1               (6-113)
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we can maximize the auxiliary function Q i i(
~

,
~

)λ λ +1  over 
~
λi+1  to the better 

~
λi  in order to

optimize the likelihood function P O( |
~

)  λ .  By iterating the procedure, the likelihood

function eventually converges to a critical point.

6.5.7 Computation of Confidence

Unlike the artificial neural networks, even though there is no learnable mapping

between input and output from the training process, HMM still can generate a satisfactory

input-output confidence (mapping) for the recognition process (because of the

computation consideration in section 6.5.4).  The output of the HMM, P O( |
~

)  λ , is a

probability instead of one taking all.  If the output probability is close to 1, it indicates that

the input symbol sequence has high confidence (similarity) with the training model.  If the

output probability is close to 0, it implies the input symbol sequence has low confidence

with the training model.  The highest output probability among all training models is

always chosen to be the recognition result and the recognition confidence is evaluated as

well.


