104

6.0 FACIAL EXPRESSION RECOGNITION USING
HIDDEN MARKOV MODELS

If we try to build a signal model that can be used to explain and characterize the
occurrence of the observable symbol sequences, then we can use this model to identify or
recognize other sequences of observable symbols. A Hidden Markov Model (HMM) can
be employed to represent the statistical behavior of an observable symbol sequence in
terms of a network of states. For each observable symbol, the process being modeled
occupies one of the states of the HMM. With each observable symbol, the HMM either
stays in the same state or moves to another state based on a set of state transition
probability associated with the state. The variety of the observable symbols for which the
HMM uses a particular state is described in terms of the distribution of probability that
each observable symbol will occur from that state. Thus, an HMM is a doubly (observable
and hidden) stochastic model where the observable symbol probability distribution for
each state captures the intra-state variability of the observable symbols, and the state
transition probability describe the underling dynamic structure of the observable symbols.

We use HMMs to recognize subtly different facial expressions because of their
smplicity and reliability. The HMM uses only three parameters. the initial state
probability vector, the state-transition probability matrix, and the observable symbol
probability matrix. The convergence of recognition computation may run in real time.
Analysis of dynamic images naturally will yield more accurate recognition than that of a
single static image, in our study, facial expressions are recognized in the context of entire
Image sequences of arbitrary lengths. Use of an HMM for facial expression recognition is
advantageous because it is analogous to human performance which is a doubly stochastic
process, involving a hidden immeasurable human mental state and measurable, observable
human action. An HMM can produce satisfactory performance in the spatio-temporal
domain and deal with the time warping problem. In addition, an HMM may allow for



105

multiple input sequences. Thiswill result in areliable recognition system as it will include
a variety of extracted information from the facial expressions. It may also be used in

combination for both expression recognition and speech recognition.

6.1  Preprocessing of Hidden Markov Models: Vector Quantization

In order to model various “expression units” of individual AUs or AU combinations
for recognizing subtly different facial expressions, we train discrete HMMs (simply called
HMMs in our study) to model facial expressions. We must first preprocess those training
multi-dimensional vector sequences to convert them to those one-dimensional (discrete)
symbol sequences. The specific preprocessing algorithm we chose is the vector
quantization (VQ)Y®. VQ techniques have been used widely and successfully to solve
guantization and data compression problems. In an HMM-based approach, we need to
guantize each multi-dimensional feature or motion vector sequence into a finite symbol
sequence before training HMMs.

The purpose of designing dftlevel vector quantizer (called a codebook with $)e
is to partition allk-dimensional training feature vectors itbclusters and associate each
clusterC', whose centroid is thie-dimensional vectoc', with a quantized value named
codeword (symbolp'. While VQ will reduce data redundancy and get rid of small noise,
it will inevitably cause a quantization error betwesh training feature vectarandc'.

As the size of the codebook increases, the quantization error decreases, and required
storage for the codebook entries increases. It is very difficult to find a trade-off among
these three factors.

In order to have a good recognition performance in using HMMs, it is critical to
design a codebook for vector quantizing ekalimensional training feature vectriinto
a symbold with minimum quantization error. Therefore, two primary issues are
considerable for the design of the codebook: (1) codebook creation (the size of

codebook), and (2) distortion measurement. Defining the size of codebook is still an open



106

problem when we use the VQ technique. According to our experimental result, the
recognition system has high performance when the size M of the codebook, which should
be power of 2, is at least 1/50 less than the number of all k-dimensional training feature
vectors.

For the distortion measurement, there are two main considerations for optimizing the
VQ:
1. The quantizer must satisfy the nearest neighbor rule.

x OC' it [x-c'|<|x-c!| (6-1)
where [x-c'|= i(xh ~cl)? and i#j, i,j=01,..,M-1 (6-2)
and

q(x) = 0 where 0<o0 <M-1 (6-3)

This means that the k-dimensional feature vector x = [Xy,Xa,...,xJ is classified to cluster C,
whose centroid is the k-dimensional vector ¢, and encoded to be the codeword o' because
the distance between x and c' is shorter than x and ¢. q(.) is the quantization operator.

2. Each cluster center ¢ must minimize not only the distortion D' in cluster C' but also

total quantization errors D.

D= Mz_lDi (6-4)
where D' :i x —c' H :ig(xgyh -c)? (6-5)

N k-dimensional feature vectors x! are located at cluster C'. Because the total distortion

D is a linear combination of D' which is the distortion in cluster C', the k-dimensional
cluster center ¢' can be independently computed after classification of x.

Using the overall distortion measurement, it is hard to guarantee global minimization.
A similar technique used for cluster analysis with squared error cost functionsis called the
K-means algorithm. The K-means algorithm is an iterative algorithm which can guarantee

alocal minimum, and works well in practice.



107

The K-means Algorithm:

Step 1:

Step 2:

Step 3:

Step 4:

Initialization - Define the codebook size to be M and choose M initial (1st
iteration) k-dimensiona cluster centers (1), ¢'(1),..., (1) corresponding to
each cluster C' where0<i < M-1.

Classification - At the Ith iteration, according to the nearest neighbor rule,
classify each k-dimensional sample x of training feature vectors into one of the
clusters C'.

xOc () if |x-c'@)<[x-c'@)| where i#j,i,j=0.1,...M-1(6-6)

Codebook Updating - Update the codeword (symbol) o' of each cluster C' by

computing new cluster centers ¢'(I+1) wherei = 0,1,...,M-1 at the |+1th iteration.
_ 1N . .
c(l+1) = N z X, where x' OC'(1 +1) (6-7)
n=1

N is the number of feature vectorsin cluster C'(I+1) at the |+1th iteration, and
qx)=0  where 0<o' sM-1 (6-8)
where q(.) is the quantization operator.

Termination - If the decrease in the overal distortion at the current iteration
|+1 compared with that of the previous iteration | is below a selected threshold,
then stop; otherwise goes back to Step 2.

Gf [D(1 +2) - D(l)| < threshold, then Stop

6-9
Af |[D(1+1) - D(l)| = threshold, then Goesto Step 2 (69

Note that the K-means algorithm can only converge to alocal optimum. The behavior

of the K-means algorithm is affected by the number of clusters specified and the choice of

initial cluster centers. Instead of using K-means agorithm, our VQ approach is based on

Linde, Buzo and Gray’s algorithifi® for vector quantizer design, which is an extended

algorithm of K-means, but unlike K-means which initializes each cluster center in the

beginning. This VQ algorithm uses iterative method, splits the training vectors from



108

assuming whole data to be one cluster to 2,4,8,...,M (M’s size is power of 2) clusters, and

determines the centroid for each cluster. The centroid of each cluster is refined iteratively

by K-means clustering.

The Vector Quantization Algorithm:

Step 1:

Step 2:

Step 3:

Step 4:

Initialization - Assume all N k-dimensional training vectors to be one cluster C°,
i.e., codebook size M = 1 and codeword o° = 0, and find its k-dimensional cluster

centroid c°(1) where 1 is the initia iteration.
= Ly (6-10)
N2

where x is one sample of al N k-dimensional feature vectors at cluster C°.
Splitting - Double the size M of the codebook by splitting each cluster into two.
The current codebook size M is split into 2M. Set M = 2M by

Tl =c@)+e
T W=cw-e

¢ isthe centroid of theith cluster C', M is the size of current codebook, € is a k-

where 0<isM-1 (6-11)

dimensional splitting parameter vector and is value 0.0001 for each dimension in
our study. 1istheinitial iteration.

Classification - At the Ith iteration, according to the nearest neighbor rule,
classify each k-dimensional sample x of training feature vectors into one of the
clusters C'.

xOC'(l) if [x=c'()|<[x-c')|]  where i#j,i,j=01...M-1(6-12)

Codebook Updating - Update the codeword (symbol) o' of each cluster C' by

computing new cluster centers ¢'(I+1) wherei = 0,1,...,M-1 at the |+1th iteration.
c(l+1) = % z X, where x' OC'(1 +1) (6-13)
n=1

N is the number of feature vectorsin cluster C'(1+1) at the |+1th iteration. And
qx)=0  where 0<o' sM-1 (6-14)



109

where q(.) is the quantization operator.

Step 5: Termination 1 - If the difference between the current overall distortion D(I+1)
and that of the previous iteration D(I) is below a selected threshold, proceed to
Step 6; otherwise goes back to Step 3.

Gf |D(1+1) - D(l)| < threshold, then Goesto Sep 6

Hf [D( +1)-D(1)| = threshold, then Goesto Step 3 (615
(where threshold is 0.0001 in our study.)
Step 6: Termination 2 -
|'s the codebook size M equal to the VQ codebook size required ?
Of Yes, then Sop (6-16)

Ef No, then Goesto Sep 2

Once the final codebook is obtained according to all training vectors by using this VQ
algorithm, it is used to vector quantize each training and testing feature (or motion) vector
into a symbol value (codeword) for the preprocessing of the HMM recognition process
(Figure 43).

6.2  Beginning from Markov Models

Thefirst order Markov chain is a stochastic process which follows the rule
P(0k+ 1= | Go=K,Qu=l,...,.Q=1) = P(Qua=] | :=1) (6-17)
where ¢ represents the state q at time t, and i, |, k, | represent the possible states of q at
different instant of time. The first order Markov chain states that the probabilistic
dependence is truncated at the preceding state. We consider only those processes in
which the right-hand side of above equation is independent of time. We can then see that
atime independent Markov chain is characterized by its state-transition probability a;,



110

All Training Vector Sequence:
Vectors F=(fy,f2,....f,...,f1)
Codebook Creztion Vector Quantization
(Sizee 2"=M,n=0,1,2,...)

l

Symbol Sequence:
O = (011021"'1011"'101—)
Symbol o: 0< o< M-1

HMM

Figure43 Vector quantization for encoding any vector sequence to
a symbol sequence based on the codebook.

which is the probability of moving from one state i to another statej.
a; =P(Q=] | qu=i), 1<ij<N (6-18)
where N is the total number of states. The a; obeys standard stochastic constraints.
a;=0 1<ij<N (6-19)

ai=1 1<is<N (6-20)



111

The Markov model could be called an observable Markov model because the output of
the stochastic process is the state sequence where each state corresponds to each instant

of time with a deterministically observable event (symbol).

6.3 Extension of Markov Models; Hidden M arkov M odels

In the Markov model, the state sequence is observable. The output observable event
in any given state is deterministic, not random. This will be too constraining when we use
it to model the stochastic nature of the human performance, which is related to doubly
stochastic processes, namely human mental states (hidden) and human actions
(observable). It is necessary that the observable event is a probabilistic function of the
state. That iswhy an HMM is employed. HMM is a representation of a Markov process
and is a doubly embedded stochastic process with an underlying stochastic process that
cannot be directly observed, but can only be observed through another set of stochastic
processes that produce the sequence of observable symbols.

Before the description of HMMs, we define the elements of an HMM by specifying the
following parameters:

N: The number of statesin the model. The state of the model at timet is given by q;,
1<g<N and 1<t<T (6-21)
where T is the length (number of frames) of the output observable symbol
seguence.
M: The size of the codebook or the number of distinct observable symbols per state.
Assume o is one of all possible observable symbols for each state at timet, then
0<o <M-1 (6-22)
7&:  AnN-element vector indicates the initial state probability.
m={n}, where 7=P(qu=i),1<i<N (6-23)
Ansn: An N x N matrix specifies the state-transition probability that the state will transit
from state i to statej.



112

A={aj} where a; =P(q=) | g1=1), 1<ij<N (6-24)

and

a; 20, aj=1 1<i<N (6-25)

Buxn: An M x N matrix represents the probability that the system will generate the
observable symbol o at statej and at timet.
B ={bj(o)} where bj(o) = P(O=0;|q=j), 1<] <N, 0< 0 < M-1,(6-26)

and

M-1

b(o) 20, 1<j<N, and ij(ot):l, 1<j<N (6-27)
0,=0

The complete parameter set A of the discrete HMM is represented by one vector /rand
two matrices A and B
A= (mAB) (6-28)
In order to accurately describe a real-world process such as facial expression with an
HMM, we need to appropriately select the HMM parameters. The parameter selection
processis caled the HMM "training.”
This parameter set A can be used to evaluate the probability P(O | A), that is to

measure the maximum likelihood performance of an output observable symbol sequence
O.

O=(04, 0y ..., O7) (6-29)
where T is the number of frames for each image sequence. For evaluating each P(O | A),
we need to select the number of states N, select the size of the codebook or the observable
symbols M, and compute the results of probability density vector /rand matrices A and B

by training each HMM from a set of corresponding training data after VQ (Figure 44).



Symbol sequence: O = (04,0z,...,0t,...,07)

State: g =(h=1,...,0=1,0+17],...,ar=N)
Codebook size: M

HMM parameter set: A = (11A,B)

Initial state distribution: 7m=1.0, 7%=0.0 if 2<k<N
State-transition probability: Awn = {a;} from statei to]

Observable symbol probability: ~ Bww = {bj(0+1)} at statg and timet+1
Output probability: P(O|A)

Figure44 The construction (topology) of the Hidden Markov Model.

113



114

6.4 Three Basic Problems of Hidden M arkov M odels

There are three basic problemsin HMM design:
1. Problem of Probability Evaluation: How do we efficiently evaluate P(O | A), the
probability (or likelihood) of an output observable symbol sequence O = {0,,0,,...,01}
given an HMM parameter set A = (77A,B) ?
2. Problem of Optimal State Sequence: How do we determine an optimal state
sequence q = {qu,0g,-.-,0r}, Which is associated with the given output observable symbol
sequence O = {04,0,,...,01}, by given an HMM parameter set A = (77A,B) ?
3. Problem of Parameter Estimation: How do we regulate an HMM parameter set A =
(7zA,B) in order to maximize the output probability P(O | A) of generating the output
observable symbol sequence O = {0,,0,,...,07} ?

Analyzing and solving the above three basic problems can help us to design and

understand the HMM for training and recognition processes.

6.4.1 Probability Evaluation Using the Forward-Backward Procedure

In order to use an HMM for facial expression recognition, we need to compute the
output probability P(O | A) with which the HMM will generate an output observable
symbol sequence O = {0;,0,,...,0r} given the parameter set A = (AB,7). The most
straightforward way to compute this is by enumerating every possible state sequence of
length T, so there will be N' possible combinations of state sequence where N is the total
number of states. Suppose there is one state sequence

q={0u Gz.-... Or} (6-30)
Assume statistical independence of observable symbol o, and given the above state
sequence q, the probability of the output observable symbol sequence will be



115

P(OlqgA) = |_| P(o | a.4) = b, (0,) by, (0;) ... by (o) (6-31)

Also, we can get the probability of such a state sequence q by given an HMM parameter
st A

P(|A) = T, A4 Q40 3 q (6-32)

The joint probability of O and q (or the probability that O and g occur at the sametime) is
P(O,q[A) =P(O[q.4) P(q|A) (6-33)
The probability of P(O | A) is the summation of this joint probability over all N' possible
state sequences q.

N

P(O|A) = z P(0,0,...0;, Oy =i | A)

1=1

= S PO, d; =i )

1=1

> P(Olar; =i,4) P(ar =i] A)

1=1

z m, b, (0,)a,, b, (0,)..a, , b, (0r) (6-34)
or

G-

For the time complexity of the above computation, we can base the interpretation on
Figure 45. Each state g+, at time t+1 has N possible paths with order O(1) calculations to
be reached from the previous N state ; at timet. That is, each state g, at timet = 2 can be
reached from N possible state g, at timet = 1, and N possible state g, at t = 2. Each state
s at time't = 3 can have N possible paths to be reached from N possible states g, at t = 1.
Overall there are N™ possible paths with the order O(T) calculations to reach each final
state gr at time T for each state sequence. (According to the above equation, 2T-1
multiplications are required for each state sequence.) The time complexity is the order
O(N™ T) for each state sequence. The totally N final state gr at time T can be reached.
The overall time complexity of computing the probability of P(O | A) isthe order O(N™ T)
x O(N) = O(N" T). The valueis very difficult to calculate. Even if we have a small



NZ-N+1

/e' N*-N+2
>

N 3F— N-N+3
|
|
|

(L= N°-N+1
N 3 N3-N+3
|
|
State: O N
»———>
Time: t=1 t=2 t=3 t=4 --——- t=T
Computational complexity (for each state):
O(1) O(N) O(N?) O(N°) ----O(N™)

Computational complexity for total N states: O(N™) * O(N) = O(N")

Figure45 The tree structure of the computational complexity for
direct evaluation of the output probability P(O]A) %,

116



117

number of states N and T frames of state sequence, e.g., N=4and T = 20, it still requires
on the order of 4%° x 20 = 2.2 x 10" calculations. Fortunately, we can use a more efficient
procedure called the Forward-Backward procedure " to overcome this limitation.

Figure 46 can help us to describe the Forward procedure easily and clearly. We define
the forward variable

ay(i) = P(010,...01, =i | A) (6-35)

as the probability of the partial observable symbol sequence 0, 0; ... 0; a statei and at time
t by given the HMM parameter set A. We can solve for ai(i) inductively as follows:

The Forward Procedure:
1. Initialization: The initial forward variable is the joint probability of state i, timet =1
and initial observable symbol 0, by given the HMM parameter set A.

ay(i) = P(oy, gi=i | A) = ribi(oy) where 1<i<N (6-36)
2. Induction (or Recursion): State j can be reached at time t+1 from the N possible

statesi, 1<i < N, at timet with the state-transition probability &;.

a+1(j) = P(0102...0+1, Q+1=] | A)
N
= §M(i)ajﬁ)j(0t+l), where 1<t<T-1,1<i,j<N (6-37)
=1

3. Termination: The sum of al N final forward variables a+(i), 1<i < N.

P(O|A) = %P(OlOZ...OT, gr=i| A)

1=1

:ZP(O, gr=i|A)

1=1

-3 ar(i) (6-38)



118

The second step of the Forward procedure reduces the computational complexity since
the calculation of the forward variable aw.4(j) a time t+1, state j and observable symbol
Ow+1 depends only on the previous (at time t) N forward variables ai(i), 1 < i < N (Figure
46, 47). This computation is performed for all statesj, 1 <j < N, and then iterated from
the initial frame at t = 1 to t = T-1 for al possible state sequences. In other words,
because there are only N states at each instant time, all the possible state sequences will
remerge into these N states, no matter how long the observable symbol sequence will be
(Figure 47). The time complexity is the order O(N T) for each observable symbol
sequence. This computation obviously reduces the computational complexity of each
state sequence from the order O(N™) to O(N). There are N states for each instant time or
at theend timet = T. The overal time complexity of computing the probability of P(O |
A) is O(N T) x O(N) = O(N* T) whose origin is O(N" T). Compared to the original
example N = 4 and T = 20, it requires only the order of 4% x 20 = 3.2 x 10? which is much
less than 4° x 20 = 2.2 x 10" calculations.

Figure 46 describes the Backward procedure. We define a backward variable

B(i) = P(0102...07 | =i, A) (6-39)
which means the probability of the partial observable symbol sequence from t+1 to the end
time T by given state i at timet and the HMM parameter set A. We can compute the (i)

using the following steps:

The Backward Procedure:

1. Initialization: Arbitrarily defines the backward variable at the end time T and state i as
Gi(i)=1 where 1<i<N (6-40)

2. Induction (or Recursion): Statei can reach N possible statesj, 1 <j < N, at time t+1

as well as the observable symbol o1 by state-transition probability a; and observation

probability b;(01).



The Forward Procedure

! | >

Symbol

sequence: 01 T O Ot

Time: 1 ——- t t4] ————————————
Symbol o Ol ——
sequence:

The Backward Procedure

b1(0t+1)
b2(01+1)

a1

j ) Bi(0t)

bN!(0t+1)

10 Ba())

Figure46 The Forward and Backward Procedures.

119



>
Time: 1 2 - t tH1 e - T
Symbol
sequence:  Og Oy ———mmmm--- o) Og  —mmmmmmmmm or
Computational complexity
for each state: 0(1) O(N)

Computational complexity for total N states: O(N) * O(N) = O(N?)

The single shortest (best) path (state sequence): O—O

Figure47 Thetree structure of the computational complexity for the forward
and backward procedures 2.

120



121

B(i) = P(01:101+2...07 | G:=i,A)

N

= Za..b.(om)ﬁm(j) where t=T-1,T-2,...,1,and 1<i <N (6-41)
£

U

The backward procedure’s computational complexity is the same as the Forward

procedure, O¥* T), using the similar but opposite approach direction of Figure 47.

6.4.2 Optimal State Sequence Using the Dynamic Programming Approach

We use a dynamic programming method called the Viterbi algofititi® to find the
single best state sequenge= (0:0z...0r) (or the most likely path) given the observable

symbol sequenc® = (0,0,...0r) and the HMM parameter satin order to maximizé>(q |
0O,A). Since

P(.0] 1)

P(q] O,1) = PO 1)

(6-42)

Maximizing P(q | O,A) is equivalent to maximizing(qg,O | A) using the Viterbi algorithm.
The basic idea of the Viterbi algorithm (a dynamic programming method) is similar to the
Forward procedure (Figure 46) whose calculation at each time is considered only between
two consecutive timesandt+1, and starts at the initial tinte= 1 and proceeds forward
to the end time = T. The major difference is during this calculation between two instant
times. The control, which produces the maximum value corresponding to the single
shortest or best path (state sequence), is “saved” instead of the summation of overall
calculations (Figure 47). At the end of the state sequence for the calculation, the
“remembered” best controls can be used to recover the state space trajectory based on
path backtracking.

We define the maximum probability along a single best path atttimbich accounts

for the firstt observable symbols and ends in stagwen the HMM parameter sdf as



122

¢ (i)=_max P(Gd,.-01,0 =1.0,0,.-0,|4) (6-43)

We also define the “remembered” arrggj) for each statg at timet, which keeps track
of the argument that maximizes the vafiigi) X a;, in order to retrieve the optimal state

sequence during the path backtrackirg.is the single most likely state at tie

The Viterbi Algorithm:
1. Initialization: The initial probabilityd (i) is at state, timet = 1 and initial observable

symbolo, by given the HMM parameter sét

¢,()=P(o,q,=i|A)=7b(0) where 1<i<N (6-44)
$,i)=0 where 1<i<N (6-45)
q, =arg max(d, (i)) (6-46)

I<i<N
2. Recursion: The single best path (state sequence) andbmpgssible paths fron\
possible stateisat timet to statg at timet+1 with the state-transition probabiliy is

Ca(J 1) =maxP(0,0,..0,,1, Gy = j[4)
I<i<N

= [Ec;:vN((Jt(i)a.j )]bj (0,,,) Where 1<t<T-1,1<j<N (6-47)
Yul) =ag [Q%(ét(i)qj )] where 1<t<T-1,1<j<N (6-48)
Gy =ag max(3,.,() (6-49)

I<isN
3. Termination: The single best path reaches the end Tirfex each state sequence.

P = TaxP(oloz...oT, g, =i|A)

<i<N

= max P(O, qT =i|A)

I<i<N

= max(J; (i) (6-50)

I<i<N

Gr =ag maX(JT (l)) (6'51)

1<i<N



123

4. Path (State Sequence) Backtracking: Backtracking isretrieving the path which have
been saved as the most likely states.
0, =¢..0.y) where t=T-1,T-2, ..., 1 (6-52)
For computation simplicity, the Viterbi agorithm can be implemented by additional
preprocessing which takes the logarithms of the HMM parameters in order to convert

multiplication to addition.

0. Preprocessing:

' =log(rr,) where 1<i<N (6-53)

a,f:Iog(a,.j) where 1<i<Nand1<t<T (6-54)

b*(0,) = log(b, (0,)) where 1<i<Nand1<t<T (6-55)
1. Initialization:

37 (i) =log(d, (1)) = ¥ + b*(0,) where 1<i<N (6-56)

Wh(i)=0 where 1<i<N (6-57)

o =ag max(s7 () (6-58)
2. Recursion:

3ta(i) =109(0.. (1))

= [max(s7 () + af)] +b(0,,,) where 1<t<T-1,1<j<N (6-59)

1<i<N

Wiali) = arg [max(s() +ay where 1<t<T-1,1<j<N (6-60)
a5, =ag mex(d7., () (6-61)

3. Termination:

P* = max(d% (i) (6-62)

1<i<N



124

O =arg max(J%(i)) (6-63)

I<i<N
4. Path (State Sequence) Backtracking:
a’ =¢l, @, where t=T-1,T-2, ..., 1 (6-64)

6.4.3 Parameter Estimation Using the Baum-Welch M ethod

We can use a set of training observable symbol sequences to adjust the model
parameters in order to build a signal model that can be used to identify or recognize other
sequences of observable symbols. There is, however, no efficient way to optimize the
model parameter set that globally maximizes the probability of the symbol sequence.
Therefore, the Baum-Welch method © is used for choosing the maximum likelihood
model parameter set A = (77A,B) such that its likelihood function P(O | A) is locally
maximized using an iterative procedure.

To easily describe the procedure for reestimation (iterative computation) of the HMM
parameter set A = (77A,B), we define a posterior probability variable (i), shown in Figure
48, as the probability of being in state i at time t by given the HMM parameter set A and
the entire observable symbol sequence O.

P(O.q =i|4) PO.q =i|A)
y ()=P(@ =i]0A)=—" = f

POID S P =114
_ M (6-65)
> a,0)6,0)
where
P06 | ) = ai) &) (6-66)
ai) = P(0105...0, G=i | ) (6-67)

B(i) = P(01+10t+2...07 | G=i,A) (6-68)



125

We define the other probability variable &(i,j) (illustrated in Figure 49), which represents
the probability of being in state i at time t, and state j at time t+1 given the observable
symbol sequence O and the HMM parameter set A.

¢ (,))=P(q =1,0,,,= | | O, A)

_P(G =1,Gs, =1.00 1)
PO 1)

_P(g, =i,6,, = 1,01 A)
N
S PO.q, =i 4)
i=1

a,(1)3;b; (0u4) £1a (1)

NN (6-69)
Z Zat (ha;b; (0.1) 5.1 (1)
Then the relationship between (i) and &(i,)) is
y. (i) = ZEt(i,J) (6-70)

If we sum k(i) and &(i,j) from theinitial timet = 1 to thetimet = T-1, we can find

—

-1
y. (i) = expected number of trangitions or times, i.e., frequency, from
t

1l
it

state i given observable symbol sequence O (6-71)

—

-1
¢, (i, ) = expected number of trangitions from state i to statej given O (6-72)

t

1l
it

A set of reasonable reestimation formulas for HMM parameters 7z A, and B is given
77 = expected number of transitionsin statei at timet (= 1)

P(O,q, =i]1)
P(O] A)

_ a,()A.(0)

X0

n(i) =

(6-73)



bi(oy)

a) | AG) OLICEY
............ ’ >| >>
Time: t-1 t t+1
Symbol
sequence:  Ow1 o Ot

Figure48 A posterior probability variable y(i) which is the probability of being
in state i at time t by given the HMM parameter set A and the entire
observable symbol sequence O.

126

ai(i) | | Ba(i)
......... >— 7 F‘ | _SIIEEIEE =
Time: t-1 t t+1 t+2
Symbol
sequence;  Or1 O Ot+1 Ots2

Figure49 The probability variable &(i,j) which represents the probability of
being in state i at time t, and state | at time t+1 given the observable
symbol sequence O and the HMM parameter set A.



127

_expected number of transitions from state i to state |

% exptected number of transitionsin state i
T-1 o T-1 ) )
> &(.)) > P =i0,=]0]A)
= t'_I'l—l ] = = T-1 )
40 P(q, =i,0] 4)
t=1 t=
T-1 ) )
at (I)aij bj (Ot+1):8t+1(J)
=8 (6-74)
a . (1)B,()
t=
b(0) = expected number of transitions in state j and observable symbol o, at timet
: expected number of transitionsin state
.
yi(i) .
2" S P, =j,0] 1)(0,,0)
— st. O;=q — =
> v(i) > P(a,=].0]4)
t=1 t=1
>
a.())B.(1)a(C,0,) A =
f =
> a.()B.()
t=1
where
P(q=i,0 [ ) = ai(i) A(i) (6-76)
N N
PO[A) =% a()B() = a-() (6-77)
1=1 1=1
P(qt:i’qt’fl:jio | /\) = at(i)aijbj(ot+1),a+l(j) (6-78)

Note that these updated parameters should satisfy stochastic constraints for computation

normalization.

3 7 =1 (6-79)

1=1



128

N
Zaﬂ. =1 where 1<i<N (6-80)
=1
M-1
ij(ot):l where 1<j<N and 1<t<T (6-81)
0,=0

6.5 Computation Considerations

To be able to enhance the effectiveness of HMM performance in the practical
applications, such as facial expression recognition, it iS necessary to have accurate
computation and guarantee the local maximum of the likelihood function using an iterative

procedure (reestimation procedure), i.e. the Forward-Backward procedure, convergence.

6.5.1 Choice of Hidden M arkov M odel

There are several types of HMMs  such as the ergodic model (Figure 50.a) in which
every state of the model can be reached in a single step from any state of the model. Its
state-transition probability matrix A is afull matrix.

By @p o Gy [

Ul

Ay . Ay
A={a =%ﬂ 0 6-82
{a”} ... U I ( )

[l

%Nl Ay, Ay [

where

2,20, Ya =1 and 1<isN (6-83)

The left-right model (the Bakis model) which is used for facial expression recognition in
various lengths of image sequences because they perform well in the spatio-temporal

domain and are able to deal with the time warping problem. The left-right type of HMM



129

(b)

(©)

Figuer 50 (@) 4 state ergodic HMM (b) 1st-order 4-state left-right
(Bakis) HMM (c) 2nd-order 4-state left-right HMM.



130

has the desirable properties that the initial state probability has the characteristic
M ifizl _

n‘:%iifizl where 1<i<N (6-84)
The state sequence must begin at the first state 1 with left to right order and end at the
final state N. Asthe time increases, the observable symbols in each sequence either stay at
the same state or increase in a successive manner. The state-transition coefficients of the
left-right model have the property

a;=0 if j<i (6-85)
No transitions can occur from the current state to a state with a lower index. An
additional constraint for the state-transition coefficients of the left-right HMM is

a;=0 if j>i+Ai (6-86)
for some value Ai which means the order of the left-right HMM. No jumps of more than
Ai number of states are allowed. For example, Ai = 1 and N = 4 means the 1st-order 4-
state left-right HMM (Figure 50.b) whose state-transition probability matrix A is

@, a 0 0Q

0 0
0 a 0
As(ap=0 %2 %= O (6:87)
00 0 a, a,0
Ho 0 0 a,f
where
a;20, Z a, =1 and 1s<is4 (6-88)

=

Ai = 2 and N = 4 indicates the 2nd-order 4-state left-right HMM (Figure 50.c) whose
state-transition probability matrix A is

By & 8 0 g
A={a;}= DO Ay 8x Ay 0
00 0 a; ayd
Ho 0o 0 a.f

(6-89)

where



131

a;20, iaijzl and 1<i<4 (6-90)

6.5.2 Initialization of Hidden Markov M odel Parameter Estimation

For the training process, accurate initial estimations of the HMM parameters 77 A and

B will help the local maximum approach using an iteration procedure as close as possible
to the global maximum of the likelihood function. If the elements of the parameters are
set to zero initialy, they will remain at zero during the entire process. In practice, it is not
important to reach the global maximum of the likelihood function. Instead, finding a set of
HMM parameters which promote a highly accurate recognition result is more important.
Our experiment shows that very small random initial values of the HMM parameters
(smaller than 10°°) are adequate and useful and recognition accuracy is high. Remember
that for the left-right HMM, the initial state probability for the first stateis 1 (72 = 1) and

other statesare 0.

6.5.3 Computation of Scaling

The forward and backward variables ai(i) and (i) are computed recursively, so they
are composed of a large number of accumulated {&;} and {bj(0;)} multiplications. Since
each a;; and by(oy) is less (or extensively less) than 1, each term of ax(i) or A(i) will start to
head exponentially to zero when the length (or number of frames) T in each image
sequence increases. The dynamic range of the ai(i) or A(i) computation will then be
beyond the precision range of any computer capability. To keep ai(i) and A(i) within the
dynamic range of the computer, the most straightforward method is to multiply a(i) and
G(i) by scaling coefficients which can be canceled out completely at the end of the
computation. The scaling coefficient for ay(i) is defined as ¢, "



132

%ctat(i):ct%at(i):l where 1<t<T (6-91)
. (6-92)
> a.0)

The scaling coefficient ¢, is the inverse of the sum overall states N of ai(i) at time t, is
dependent only on time t and independent of state i, and effectively rebuilds the magnitude
of the a(i) to 1. To keep the Z(i) computation within reasonable bounds as ai(i), we can
apply the same scaling coefficient ¢; to A(i) because the magnitudes of the ay(i) and A(i)
are comparable. For efficient computation within rational bounds, the ai(i) and A(i)

should be replaced by

a.() = ¢, (i) = -2 (6:93)
> ()
Bon(i) = o) = Pl (6-94)

Zam(i)

where @, (i) and B,,,(j) arethe scaling results of ay(i) and B.1(j), respectively.
In addition, when @, (i) and f,.,(j) are applied at the scaling intermediate probability
. (i) and & (i j).
7 )= Nﬁt(i)ﬁt(i) _ N(ctat(i))(ctﬂt(i)) I AOAU)
;ﬁt(i)ﬁtm ;(ctat(i))(ctﬂt(i)) > .80

=y.() (6-95)

a@,()a,b;(0)Ba(i)  _  (a®)ab (0..)€ L)

ABIEE =
XAOLLACHZMORPACCAOLLACHICEND)

1=1 ]

a,()a,b,(0,,)6:..(i)
S a,()ayb;(0..1)B..(])

1=1

N =&, 1) (6-96)



133

The numerator and denominator terms are both deleted because the scaling coefficient ¢, is
independent of statesi and j. The scaling intermediate probability j, (i) and ﬁ(i,j) has the
same vaues as the intermediate probability without scaling ), (i) and &,(i,)).
Furthermore, the HMM parameters 77 A, and B will also keep the same probability values
when both ai(i) and 3.1(j) are scaled, because those parameters are constructed from
either or both intermediate probability ), (i) and &, (i.j).

=T g =3, ad b(o)=b(0) (6-97)

M)

The only rea affected event of the HMM procedure by scaling coefficient is

computing the maximum likelihood function P(O | A). Since "

T

Me S a-()=1 (6-98)
where scaling coefficient ¢ is independent of statei. So

PO A=Y ay()=— :

= Ct:TNl
L [J;am)

The computation for the denominator term of the maximum likelihood function P(O | A)

(6-99)

will be extremely small, which is out of the dynamic range of the computer’s ability. It can

be solved by taking logarithms.

N

log P(O] A) = —i log c, = ilogZat(i) (6-100)

This can be used for evaluating the most likely performance of any input data
corresponding to a set of HMMs. The Viterbi algorithm for finding the maximum
likelihood state sequence also uses the logarithms, which will be within the dynamic

bounds of the computer, so no scaling process is needed.



134

6.5.4 Computation of Smoothing for Insufficient Training Data

The amount of data (observable symbol sequences) used to train an HMM is aways
limited because of considerations of the computational cost of HMM training or the
availability of training data. Thus, there is always an inadequate number of occurrences of
low-probability state transitions between states and observable symbols within states to
give reasonable estimates of the model parameters. If the training number of the
observable symbol sequences are so smal that they do not have any occurrences

smultaneously to satisfy the conditional probability of HMM parameters, then 7, =0, a,

= 0, and b, (0,) = O will occur and will stay at O after each reestimation. When this

resultant model is employed to evaluate any other observable symbol sequence which
possibly contains the state transitions or the observable symbol that do not occur in the
training sequences, this model will produce a zero probability result for this evaluated
observable symbol sequence. Such a singular outcome is certainly a consegquence of the

unreliable estimation that 7, = 0, a; =0, and Ej(ot) = 0 due to the insufficiency of the

training datato cover all possible varieties.

There are many possible solutions for handling the effects of insufficient training data
979 "quch as production of the codebook size (reduction of the number of observable
symbols at each state) or the number of states. The simplest and most practical way for
combating the insufficient training data problem is to add the numeric floor & for
smoothing the probability distributions of HMM parameters in order to ensure that no

model parameter estimation falls below a specified threshold ¢ for each iterative

estimation.
- Om  if m2>e,
T =0 o~ where ¢-. >0.0 (6-101)
£, It m<e,
. [Oa if & >¢.
a =0 . % where & >0.0 (6-102)
DEE If aij < 85



135

_Ba(0) if B(o)2e;

b (@) . if b(o)<e;

where ¢->00 (6-103)

Inour study, ¢, = &5 = ¢-=0.0001.

6.5.5 Computation of Normalization

Each probability distribution of HMM parameters, which consist of conditional
probability, should satisfy the stochastic constraints at each iteration estimation.

N

=1 (6-104)
1=1
N

a; =1 where 1<i<N (6-105)
=1
M-1_

b(0) =1 where 1<j<N (6-106)

o
I}

=0

Since the probability of each parameter is reestimated at each iteration, the conflict with
the stochastic constraints always occurs. The sum of the above equation is not equal to 1,
particularly if the probability distribution of each parameter are smoothed by a numeric
floor at each iterative estimation. Therefore, it is necessary to normalize the probability
distributions of the HMM parameters so that the densities obey the required stochastic

constraints after each iteration of parameter reestimation and smoothing.

~

=-""_ \where 1<i<N (6-107)

l

where 1<ij<N (6-108)



136

where 1<j<N and 0o s M-1 (6-109)

6.5.6 Computation of Convergence

Since the Forward-Backward procedure is based on local maxima estimation by

iterative computation to achieve global maximum, it is important to guarantee that the
reestimated parameter set A= (7, A, I§) Is convergent. It is necessary to prove that model
AL = (771, At B*1) following the i+1th iterative reestimation is either equal or more
likely than modd A =(7,A',B') a current ith reestimation in the sense that
P(O| A*) > P(O| A). In other words, if the model A' is replaced by A** and this
reestimation is repeated, then the probability of symbol sequence O being observed from

the given update model A s improved until some limiting point is reached. The final
result of this reestimation procedure is a maximum likelihood estimation of the HMM.

Because

PO|A)= Y P(O,qA) (6-110)

Then an auxiliary function® is defined as

Q' A)= ¥ POq| X) log P(O,q| A) (6-111)

gi..gr

QA" = ¥ PO,q| X) log P(O,q| A™) (6-112)

qi.qr
over A", Since

QU A" = Q(A',A) 0 PO| )= P(O]| A) (6-113)



137

we can maximize the auxiliary function Q(A', A1) over X! to the better A' in order to

optimize the likelihood function P(O | E). By iterating the procedure, the likelihood

function eventually converges to a critical point.

6.5.7 Computation of Confidence

Unlike the artificial neural networks, even though there is no learnable mapping
between input and output from the training process, HMM still can generate a satisfactory

input-output confidence (mapping) for the recognition process (because of the
computation consideration in section 6.5.4). The output of the HMM, P(O | E), Is a

probability instead of one taking all. If the output probability is close to 1, it indicates that
the input symbol sequence has high confidence (similarity) with the training model. If the
output probability is close to O, it implies the input symbol sequence has low confidence
with the training model. The highest output probability among al training models is
always chosen to be the recognition result and the recognition confidence is evaluated as
well.



