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4.0 DENSE FLOW TRACKING AND EIGENFLOW COMPUTATION

Feature point tracking of eyebrows and mouth presented in Chapter 3 is sensitive to

subtle feature motions and is capable to track large displacements.  The forehead, cheek

and chin regions also contribute important facial expression information.  Since the actions

of individual facial muscles are interdependent, and the activation of fibers in one muscle

may influence movements of adjacent muscles.  Single facial expression may be the result

of movements and deformation of not only facial features but also facial skins which are

caused by facial muscle actions triggered by nerve impulses.  To enhance the realism of an

automatic recognition system, it is desirable to capture more detailed motion information.

This leads to the consideration dense flow which describes the motion of each pixel on the

entire face image.

4.1 Wavelet-Based Motion Estimation

Wu’s approach of dense flow estimation (101) is employed to estimate the entire facial

motion.  The flow window functions are based on scaling function and wavelet of Cai and

Wang (18) (Figure 22.a), which provide wavelet coefficients from the coarse-to-fine

resolution levels.  This approach estimates image motion in large regions with large

window support at the coarse resolution level and motions in small regions with small

window support at the fine resolution level.  It is different from the traditional coarse-to-

fine pyramid method by taking into account the detail information decomposing image

resolutions at various resolution levels.  Both coarser and finer level motions can be

simultaneously estimated to correct the error produced by the previous motion estimation

at the coarse level.  It will yield more accurate motion estimation.

Let us consider the one-dimensional case first.  The scaling function φ is the fourth-
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Figure 22.a 1- and 2-dimensional scaling functions and wavelets (101).

x x

1-dimensional scaling function and wavelet.

Wavelet
ψ(x)

Scaling
function
φ(x)

2-dimensional scaling function and wavelets: (a) φ(x,y) = φ(x) φ(y),
(b) ψH(x,y) = φ(x) ψ(y), (c) ψV(x,y) = ψ(x) φ(y), and (d) ψD(x,y) = ψ(x) ψ(y).
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Figure 22.b Dilation and translation of 1-dimensional basis (scaling and
wavelet) functions (101).

pixel
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order (L = 4) B-spline function acting as a low-pass filter for smoothing the signals, this is

represented by
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where I denotes a finite interval and H2(I) represents the Sobolev space containing all

continuous functions with the finite energy norm up to the second derivative.  The wavelet

ψ(x) acting as a high-pass filter is derived from the scaling function through a 2-scale

equation.
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The interval for ψ(x) is [0,3].  The dilation 2j and translation k of φ(x) and ψ(x) are given

by (Figure 22.a for j=0 and k=0)
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A finite energy continuous function d(x), which represents the motion at position x,

can be decomposed into a scaling component d-1(x) at the coarsest resolution level -1 and

many wavelet components dj(x)’s at resolution levels j ≥ 0,
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In the motion estimation problem, d(x) is unknown but satisfies the optical flow equation.

Its solution is to be computed by the above multi-resolution approximation (Figure 22.b).

By repeatedly estimating (101) the coefficients cj,k, each component dj(x) is constructed from

the linear combination of translated basis functions at level j.
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For the case of a two-dimensional images, the two-dimensional scaling functions and

wavelets may be constructed from the tensor products of two scaling function and wavelet

(Figure 22.a for j=0, k1=0 and k2=0).  Hence,
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where j, k1, and k2 denote the resolution level, horizontal translation, and vertical

translation, respectively.

Let u(x,y) and v(x,y) be the displacement of flow functions at the horizontal and

vertical directions, respectively.  They can be closely approximated by linear combinations

of the scaling functions and wavelets (window functions) given in equations (4-8) through

(4-11) from the coarsest motion-resolution level -1 to the fine motion-resolution level J.
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The four window functions are used for the following representations.  ),(
21,,0

yx
kk

φ  is

used initially to represent the flow at the coarsest level so as to achieve a fast convergence.

Wavelets ),(
21,, yxH

kkjψ , ),(
21,, yxV

kkjψ  and ),(
21,, yxD

kkjψ  are used to represent the high

gradient components of the optical flow at the jth resolution level in the vertical,

horizontal and diagonal directions, respectively.  Based on these four basis window

functions, we can estimate the Hessian matrix G and difference-gradient vector e by (101)
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where

window (weighted) function ),( yxw  is unity, (4-24)
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Since the feature of Cai and Wang’s basis functions is to use wavelet coefficients from

coarse-to-fine levels to represent any given function, the flow functions u(x,y) and v(x,y)

can be determined by estimating the wavelet coefficient vectors cT=(…,cj k k, ,1 2 ,…) and

dT=(…,dj k k, ,1 2 ,…) from the coarsest level –1 to current level j using iterations of both

coefficient vectors,
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4.2 Dense Flow Tracking

In this method, the wavelet-based dense flow is used to automatically track a large

region, for example, the entire 417 x 385-pixel face image (cropped from the original 490

x 640-pixel image) for each image sequence of a certain length (from the neutral to the

peak expression) so as to include the whole motion information of a facial expression

(Figure 23).  Since the movement of each pixel is estimated between two consecutive

frames, the ending position of each tracked pixel at the previous motion estimation

(between images It-1 and It) is the beginning position at the current motion estimation

(between images It and It+1).  The motion of subpixel accuracy is estimated, and the gray

value at the non-integer-valued ending position for each tracked pixel is bilinearly

interpolated for further processing.

Because using the wavelet-based dense flow method is very time consuming at the

present time, taking more than 2 hours for three-level (-1, 0 and 1) or 20 minutes for two-

level (-1 and 0) computation between two 417 x 385-pixel frames using a SGI-Irix

workstation, we use the two-level wavelet-based dense flow computation to save time.

When less levels are used, it will restrict how small the window size can be at the finest

level and, hence, may be less sensitive to subtle motions (less than 2 pixels).  It will also

miss tracking large displacements (more than 15 pixels).  In spite of these, our

experimental work has shown better overall recognition rate in comparison to the feature

point tracking in 5 levels.  Since facial expressions are produced by movements of

interdependent muscles over a region, the dense flow tracking has the advantage that it

can include the entire motion information and so may be more effective to capture the

facial motion.

The scaling function and wavelets at multi-resolution levels provide window functions

of multiple support sizes to capture both local and global characteristics in the

optimization process.  This makes the wavelet-based motion estimation stable and

accurate, especially for the low texture regions where the large window size at the coarse

level may include sufficient higher gradient information in the neighboring regions to
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Figure 23 Automatic dense flow tracking for an image sequence.  Out-
of-plane motion (pitch) occurs at the bottom image.  Dense
flows are shown once for every 13 pixels.
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give a consistent motion information (Figure 24).  It is also capable to track motions of

certain discontinuities such as furrows with only two coarse-to-fine levels (-1 and 0)

chosen in the current scheme, however, the resulting window functions are not localized

enough to accurately capture sharp changes in the motion field (large motion more than 15

pixels) in a highly textured region such as the large movement of brows raised or of mouth

opening together with the appearance of high gradient components, for example, teeth and

tongue (Figure 25), while the multi-level feature point tracking can track 100- pixel

movement with fast computation.  Nevertheless, the overall performance of the wavelet-

based dense flow is very good.  The main issue is how to significantly improve the

computation speed to enable more than 2-level estimation.

4.3 Eigenflow Computation

The motion captured in consecutive frames of an image sequence is strongly

correlated.  The information gathered by 417 x 385-pixel dense flows of many frames each

sequence need to be compressed to retain significant characteristics and inter-frame

correlations for yielding an efficient representation of facial expressions.  The principal

component analysis (PCA) has excellent properties and can be used to achieve this

purpose.  Although PCA has been widely applied to image gray values.  This is one of the

pioneering researches that it is being applied to motion fields.

Before applying the PCA, it is necessary to ensure that the dense flows of individual

frames have relative geometric correspondence.  An affine transformation described before

is used to automatically warp the dense flow of each frame to the two-dimensional face

model based on three points: the medial canthus of both eyes and the uppermost point on

the philtrum (Figure 26).

Based on FACS criteria, we can separate facial expressions into upper face motion

(forehead, brows and eyes) and lower face motion (eyes, cheek, nose, mouth and chin) for

facial expression analysis.  It is assumed that AU expressions at upper and lower facial
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(a) (b)

Figure 24 Good tracking performance of using the wavelet-based dense
flow for (a) furrow discontinuities at the forehead and chin
regions, and (b) textureless regions with reflections at the
forehead and cheek.
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Figure 25 Tracking errors of the 2-level wavelet-based dense flow
because of  (a) large movements of brows or mouth, and (b)
eye blinking also introduces motion error at brow regions.

(a) (b)
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(a) Before Normalization (b) After Normalization

Affine
Transformation

Affine
Transformation

Affine
Transformation

Figure 26 Dense flow normalization using affine transformation: (a)
includes both the rigid head motion in upward and leftward
direction and non-rigid facial expression, and (b) eliminates
the rigid head motion by using the affine transformation.

240 pixels

Upper face: 110
                pixels

Lower face: 220
                pixels
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regions are independent.  The size of the face model is 417 x 385 (row x column) pixels.

The upper face region is 110 x 240 pixels and the lower face region is 220 x 240 pixels

(Figure 26).  It should be noted that each flow unit contains both horizontal flow and

vertical flow components.  The PCA is applied to each dense flow region, the horizontal

dense-flow region and vertical dense-flow region, separately.

For PCA computation, initially let the normalized estimated dense flow, either

horizontal or vertical component, in a region (either upper or lower face) of frame i be

represented lexicographically by a normalized dense-flow vector fi,

,],...,,...,,[ ,,2,1,
T

Niniiii ppppf = ninini vorup ,,.     = (4-28)

where

1 ≤ i ≤ M and 1 ≤ n ≤ N

Here, pi,n is the normalized optical flow in either horizontal or vertical direction (ui,n or vi,n)

at pixel n of frame i, and N is the total number of pixels of frame i (or in upper or lower

face region).  There are X different facial expressions and a total of M training frames.

The number of frames for each facial expression sequence varies from 9 to 47 frames.  The

variance matrix F of all normalized dense-flow training frames is given by

],...,,...,,[ 21 Mi FFFFF =

    ],...,,...,,[ 21 cfcfcfcf Mi −−−−= 1 ≤ i ≤ M (4-29)
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c is the mean flow (Figure 27) and the size of F is N x M.  The N x N covariance matrix C

of all normalized dense flows is given by

C = F FT (4-31)

which will have N different N-dimensional eigenvectors Ei (called eigenflows because of

the flow-based eigenspace) corresponding to N eigenvalues λi of C ranked in the

descending order, Nλλλ ≥≥≥ ...21 ,
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Mean (Average) Flow c

Horizontal Flow ch Vertical Flow cv

Figure 27 The mean (average) flow c is divided into horizontal flow ch and
vertical flow cv for further processing by the principal component
analysis (PCA).
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C Ei = λi Ei, 1 ≤ i ≤ N (4-32)

Generally, N is much larger than the total of training frames M, i.e. N >> M, where N

is 110 x 240 pixels for the upper face region and 220 x 240 pixels for the lower face

region, and M is 932 and 1212 training frames in the respective region.  It will be

impractical to compute eigenvalue λi and eigenvectors Ei directly from the N x N

covariance matrix C.  We will flow a more feasible computation approach described

below.

When total number of dense-flow training frames M is far less than the number of

dense flows N in the measured region, there are only M meaningful eigenvectors

(eigenflows) associating with the non-zero eigenvalues of C.  The remaining N - M

eigenvectors correspond to zero eigenvalues.  We can use a much more efficient method

to obtain the M meaningful eigenvectors Ei by solving for the M-dimensional eigenvectors

ei and their corresponding eigenvalues iλ~  of an M x M covariance matrix 
~
C , where

   
~
C F FT= (4-33)

~ ~
Ce ei i i= λ 1 ≤ i ≤ M (4-34)

Multiplying both sides by F, gives

     FF Fe FeT
i i i=

~
λ 1 ≤ i ≤ M (4-35)

then

          CFe Fei i i=
~
λ 1 ≤ i ≤ M (4-36)

F x ei are the first M eigenvectors of the covariance matrix C, leading to
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This computation greatly reduces the order of time complexity from N-dimensional dense

flows of each measured region to M dense-flow training frames where M << N.

We can reconstruct exactly the original dense flows of each measured region by a liner

combination of all M eigenflows Ei.  But, in general, using a small number M’ (M’  < M) of

significant eigenflows that correspond to M’  largest eigenvalues is adequate to reconstruct

a good approximation of the original dense flow in each measured region without losing

significant feature characteristics.  The eigenflows (eigenvectors) with the largest

eigenvalues represent the most significant characteristics in their corresponding

dimensions of the eigenspace, where the variances of measured dense flows are bigger in

terms of correlation.  We rank the eigenflows according to the ranking of their

corresponding eigenvalues, which contain the most useful information about the

variational characteristics among the training dense flows.  Furthermore, if the motion

variation (deviation) among the training regions is large, we need a large number M' (M' <

M) of eigenflows to accurately approximate the original dense flows.  If the variation of

motion among training regions is small, then a very small number M' (M' << M) of

eigenflows is adequate to approximate the original dense flows.  To determine the number

M' of eigenflows needed to represent adequately the primary characteristics of the original

dense flows in the region, we may use an information criterion such that

TR
M

i
i

M

i
i

  
~

~

1

’

1 ≥=
∑

∑
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λ
where MM λλλλ ~

...
~

...
~~

’21 ≥≥≥≥≥ (4-38)

and

R ln R is the representative entropy (4-39)

where T is a threshold close to unity.  The linear combination (the weighted sum) of the

M' eigenflows is sufficient to reconstruct accurately the significant characteristics of each

original dense flows in the region.  The M' N-dimensional eigenflows Ei are computed by
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We project each variational dense-flow Fi (N dimensions) of facial expression

sequence into the eigenflow space by taking its inner product with each eigenflow Ej (N

dimensions) of the set E = [E1,E2,...,EM’] in the M'-dimensional subspace to produce the

M'-dimensional weight vector Wi.  Each element wi,j of the weight vector Wi is the

projected component of Fi at the eigenflow dimension Ej in the eigenspace.  Any N-

dimensional normalized dense-flow fi can be represented by its corresponding M’ -

dimensional weight vector Wi

T
Miiii wwwW ],...,,[ ’,2,1,= where 1 ≤ i ≤ M (4-41)

and

w E Fi j j i
T

, =

      = −E f cj i
T( ) where 1 ≤ i ≤ M  and  1 ≤ j ≤ M’ (4-42)

by projecting the N-dimensional variational region Fi to the M'-dimensional eigenspace

(M’<<N).

4.4 Data Quantization and Conversion for the Recognition System

Figure 28 shows the flow image which will project to the flow-based eigenspace for

PCA process.  PCA enables us to convert dense flows of each image (or region) to a low-

dimensional representative weight vector for input to the recognition system.  For the 110

x 240-pixel upper face region, 10 most significant eigenflows are chosen and for the 220 x

240-pixel lower face region, 15 most significant eigenflows are chosen.  The decision for

the choice of M’  is that R should be greater than or equal to T where T is set to be 0.9

(refer to equation (4-38)), which led us to select M’=10 for the upper facial expressions
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and M’=15 for the lower facial expressions as shown in Figure 29.  The same of

eigenflows should be used for both horizontal flow and vertical flow.  These eigenflows

are the eigenvectors corresponding to the 10 (and 15) largest eigenvalues of the 932 x

932- (and 1212 x 1212-) covariance matrix constructed by 932 (and 1212) dense-flow

training frames from 45 (and 60) training image sequences for the upper (and lower) face

regions (Figure 29).  The compression rate is 93:1 as shown in Figure 29.a (and 80:1 as

shown in Figure 29.b).  Because the variation (deviation) among the training data of the

upper facial “expression units” is smaller than that of the lower facial “expression units,” it

is expected that the number of eigenflows used for representing the upper facial

“expression units” (M’  = 10) is fewer than that used for representing the lower facial

“expression units” (M’  = 15).  As shown by the later experiments, this choice leads to

good performance on overall recognition rate of 92% (Figure 29).

The dense flow at each frame region of an expression sequence is projected onto the

flow-based eigenspace by taking its inner product with each element of the respective

eigenflow set, producing a 10- (and 15-) dimensional weight vector for the upper (and

lower) facial expressions as shown in Figure 30.  The 10- (and 15-) dimensional

horizontal-flow weight vector and 10- (and 15-) dimensional vertical-flow weigh vector

are concatenated to form a 20- (and 30-) dimensional weight vector for each dense-flow

region.  After vector quantization, the concatenated weight-vector sequence is converted

into a symbol sequence.  Table 6 shows sample symbol sequences for nine facial

expressions under consideration.  Such symbol sequences are used as inputs to the HMMs

of upper facial expressions and lower facial expressions, respectively, for automatic

recognition.
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Figure 28 Each dense flow image is divided into horizontal and vertical flow
images for the principal component analysis (PCA).

Flow Image f

Horizontal Flow Image fh Vertical Flow Image fv
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Figure 29.a Computation of eigenflow (eigenvector) number for the upper facial
expressions: (a.1) is for the horizontal flow and (a.2) is for the
vertical flow.  The compression rate is 93:1 (932:10) and from which
the recognition rate is 92% based on 45 training and 60 testing image
sequences.
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Figure 29.b Computation of eigenflow (eigenvector) number for the lower facial
expressions: (b.1) is for the horizontal flow and (b.2) is for the
vertical flow.  The compression rate is 80:1 (1212:15) and from
which the recognition rate is 92% based on 60 training and 90 testing
image sequences.

1.00
0.93

0.50

0.00
0    5    10  M’ =15 20     M=1212

Number of Eigenvalues

Recognition
Rate (%)

100
92

0

80

60

40

20

0       5       10   M’ =15  20

Dimension of Eigenspace

(b.1)

1.00
0.91

0.50

0.00

Number of Eigenvalues

Recognition
Rate (%)

100

Dimension of Eigenspace

(b.2)

92

0

80

60

40

20

0    5    10  M’ =15 20     M=1212 0       5       10   M’ =15  20

MM λλλλ ~
...

~
...

~~
’21 ≥≥≥≥≥

MM λλλλ ~
...

~
...

~~
’21 ≥≥≥≥≥

R

R



75

Figure 30 Principal component analysis (PCA) for (a) horizontal flow weight
vector and (b) vertical flow weight vector for the upper facial
expressions (M’  = 10).
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AUs Dense Flows with PCA: Upper Facial Expressions
(Symbol Sequence)

4 3    3    3    3    5    5    5    5    5    5    5    5

1+4 3    3    3    3    3    7    7    7    7    7    7

1+2 3    3    3    6    6    2    2    2    2    2    2    2    2

AUs Dense Flow with PCA: Lower Facial Expressions
(Symbol Sequence)

12 6    6    6    6    6    6    9    9    1    1    1

6+12+25 6    6    9    9    3    3    3    3    3    3    3

20+25 6    6    6   11  13  13  13  13  13  13

9+17 6    6    6    7    7    7    7    2    2    2    2

15+17 6    6    6    6    6   14  14  14  14  14  14  14

17+23+24 6    6    6   12  12    4    4    4    4

Table 6 Sample symbol sequences for three upper facial expressions and six

lower facial expressions under consideration.
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4.5 Correlation and Distance in Eigenspace

The sum of squared differences (SSD) between two dense-flow frame regions fi and fj

is given by

f f f f f fi j i j
T

i j− = − −
2

( ) ( )

    = + −( )f f f f f fi
T

i j
T

j i
T

j2 (4-43)

where fi
T fj represents the correlation between fi and fj.  The distance SSD becomes

smaller when the correlation between the two flows is stronger.  Each dense flow fi in

frame i can be represented by its representative weight vector Wi in the M’ -dimensional

eigenflow space.  It can be reconstructed by a linear combination of M’  eigenflows Ej.
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where wi,j is the jth element of the weight vector Wi flow fi.  Since
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This can also be expressed as

f f W Wi j i j− ≈ −
2 2

(4-46)

Thus, we can estimate the expression similarity between two dense flows fi and fj by

measuring the distance between their representative weight vectors Wi and Wj in the M'-

(since Ek ⊥ El)
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dimensional eigenspace.  Smaller distance indicates greater correlation or similarity

between two dense flows.  This can be used in expression intensity estimation as described

below.

4.6 Expression Intensity Estimation

The expression intensity of any frame in a sequence may be estimated by using the

correlation property of the PCA.  The expression intensity of individual frames in each

training image sequence is determined a priori by experts, beginning from the neutral

expression (expression intensity: 0.0) to the peak expression (expression intensity: 1.0).

The length of each image sequence varies from 9 to 47 frames.  Each frame in the training

sequence has its representative weight vector.  So, the relationship between weight vector

and expression intensity can be established.

After a test facial expression sequence is recognized, the expression intensity of any

frame fi in the sequence can be estimated as follows.  Consider the distances between its

representative weight vector Wi and all weight vectors 0
kW  in a training sequence whose

expression intensity values are known, the minimum distance between Wi and 0
kW

indicates the maximum correlation or expression similarity between the two.  Then, the

expression intensity of frame i in the testing sequence will be estimated to have the same

value as that of 0
kW  training data (Figure 31).
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Figure 31 Expression intensity matching by seeking the minimum distance
between the weight vector of the testing frame and the weight
vectors of all frames in a training sequence, whose expression
intensity values are known.  Each weight vector of the training
image corresponds to a given expression intensity value.
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