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3.0 FACIAL FEATURE POINT TRACKING

The face is an interface of nonverbal communication, which can represent a subject’s
social feeling or reveal his brain function through the use of expressions. People activates
facial action mainly by controlling the individual or combined motions of four facial
features: brows, eyes, nose and mouth. These are the most attractive features on the facial
surface because they have high textures, and symbolize the underlying muscle activations.
An observer may recognize easily and directly the messages transmitted from the
movement of facial features. Optical flow in an image sequence has been used to track
highly textured regions reliably for extracting the motion information of facial features to
be used in further recognition process. Optical flow provides an estimate of the movement
of facial feature points. Since our goal is to discriminate subtly different facial expressions
and to estimate the expression intensity, the tracking algorithm must have high accuracy,

be sensitive to subpixel motion, and be able to deal with relatively large facial movements.

3.1 Dot Tracking and Reliability of Feature Point Selection

Since FACS specifies that each AU corresponds to the movement of a single muscle,
we design an automatic feature point tracking to extract motion information of facial
feature actions based on the movement of facial feature points (which represents the
underlying muscle activations) across an image sequence. This will allow realization of
the AU actions of facial expressions for encoding “expression units” constructed by
individual AUs or AU combinations.

It is important to make sure that the locations and movement of feature points can
exactly reflect the AU activation. The following method is used to track the facial

features. We attach black dots to specific points on faces of the subjects; a black dots



26

have the same radius equivalent to 15 pixels on a face image of the size of 490 x 640. We
use the template matching (the correlation coefficient p) method to track dot movements
during the facial action by considering the highest value of the correlation coefficient
between the dot template F and the gray values in a target region 1(x) centered at position

X,

‘ S [F() = FIL (x+1) - T(x)] ‘

rtR

\/Z[F(r)—f]z\/Z[I(x+r)—T(x)]2

rirR rtR

ox) = 0.0<p<10 (3-1)

where r denotes a position within the circular region of the dot template whose areais R
(radius = 15 pixels), |(x+r) denotes the gray value of the image at position x+r, F and
1(x) are the average gray values in circle regions of the dot template and the image,
respectively, and x isin a search region m of 60 x 60 pixels, which is large enough to reach
the maximum dot movement but not too large to reach any neighboring dot template. If
the correlation coefficient pis closer to 1.0, there is very strong similarity between the dot

template and the target region; otherwise, they are less correlated. Utilizing the relations
; F(r)=RF (3-2)

and ; I (x+r1)=RI(X) (3-3)
the above equation is smplified to achieve the efficient computation,
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The first term in the denominator and the average gray value of dot template F can be

calculated first and assigned as constant values for quick processing.
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For the first frame of each image sequence, we used the computer user interface which
we designed to initially locate the center of each dot marked by a cross (+) on the screen.
By observing or automatically tracking the motion of the dots in the remaining frames, we
realized the AU actions of facia expressions and understood the underlying muscle
activations (Figure 6). This alowed us to correctly locate controlled positions of facial
feature points and measure the reliability of the selection of feature points based on which
the automatic tracking using the optical flow will begin.

Using the template matching method to track dots is inaccurate for two reasons. the
dots on screen may become deformed and are sometimes affected by the reflections due to
lighting (especially if red or white dot templates are used) on subjects with dark skin color.
The method is also much slower when compared to selected optical flow tracking
discussed before, especially when the number of dots and search regions are increased.

For the optical flow tracking, a set of feature points will be initially selected on the first
frame of each image sequence (from the neutral expression to the peak expression in an
arbitrary length of time). We suggest to select 4 facial feature points around the contour
of each brow, 4 points around each eye, 14 points around the nose contour, 10 points
surround the lip contour, and 3 points aong each cheek bone (below each lower eyelid) as
shown in Figure 7. This can be done by an operator using a computer, mouse, and user
interface as shown in Figure 2. The manually selected feature points are then
automatically tracked using optical flow in the remainder of the sequence. The motion of
these facial feature points simulates the facial muscular actions corresponding to AUSs.
The displacements of these feature points are directly proportional to the AU expression
intensities.

The reliability of the feature point selection has been confirmed in experiments by two
experienced operators. The first frames of 80 image sequences are independently selected
by two different operators. The optical flow method was used to automatically track
those selected feature points and inter-observer reliability was evaluated. Our
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Neutral Expression
(first frame)

Peak Expression
(last frame)

Figure6 Dot tracking: each dot is marked by a cross (+) at its center, lines
trailing from the dots represent changes in the location of dots due to
facial expression.
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Figure7 Locations of selected facial feature points (marked by a cross ‘+)
which reflect the muscle motion of facial features.

results showed a very high correlation and the identical recognition performance between
two operators ®®. This selection process can be easily taught to new operators. An
operator can learn this after a training of about 5 minutes session, which is substantially

shorter than learning the FACS (which may require 100 hours).
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\

Framet nx nwindow Frame t+1

Figure8 Feature point tracking based on tracking the movement of
an n x n feature window between two consecutive frames
(here, nis 13 pixels).

3.2 M otion Estimation and Flow Window

The motion estimation method used here is based on the optical flow agorithm
developed by Lucas and Kanade ©®, and implemented by including the pyramid approach
used by Poelman and Kanade " to track large motion. This method assumes that the
gray vaues in any image feature region (n x n feature window) do not change between
two consecutive frames, but only shift from one position to another (Figure 8). We can
track the motion of high gradient points, such as facial feature points, with subpixel
accuracy by iterative computation. Its convergence is very fast.

Let us consider an n x n region R in the reference image at time t, where I(x) denotes
the gray value of the pixel position x in R. Let us find the best matching (registration)
position of this region in the following frame at time t+1, where 1..1(X) denotes the gray
value in the region, by minimizing a cost function E of the sum of sguared differences
(SSD) defined as
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E(d(x) = ;[ 1 (X = d(X) = 1y (9] W) (3-5)

where d(x) is the displacement of x of region R between two consecutive frames and W(X)
Is a window function for weighting the squared differences in E. This minimization for

finding the motion vector d(x) can be done initerations. Let
d(x) =d'(x) + Ad(X) (3-6)
a theith iteration and Ad(x) is the incremental displacement at the ith iteration. We want

to robustly estimate the incremental displacement Ad(x) with a subpixel accuracy. Let us
expand the term

I (x=d)=1,(x-(d" +Ad)) (3-7)
by the first order Taylor’ expansion:

I, (x-d' -Ad) =1 (x-d')-1,(x-d")"Ad (3-8)
wherel’ (x) denotes the gradient of the gray value 1,(x). The incremental change in the
SSD cost function is given by
E(Ad) = E(d' +Ad) - E(d')

;[lt(x—di)— I (x=d")"Ad - |t+1(X)]2W(X)—;[|t(X—di) =L (0T W(X)

I

D [ (= d)Tad] w(x) = 25 1 (x = d) =1, (4] (x = d) " Adwix)

= Ad"GAd - 2e" Ad (3-9
where

G=Y I, (x=d")l (x=d") w(x) (3-10)

Is the Hessian matrix of the gradients of I; with awindow function w(x), and

e =S [l (x=d) =1, (N, (x=d") WX (3-11)

is a difference-gradient row vector which is the product of the difference (or error)

between the regions in the two consecutive images and the gradient of the gray-value I,
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together with a window function w(x). The maximum decrement E(Ad) occurs when its
gradient with respect to Ad is zero,

9E(Ad)
a(Ad)

=GAd +(AdTG)T -2e=2(GAd -€) =0 (3-12)

Hence,

Ad(x) =G'e (3-13)
Initidizing d(x) = [0,0]" and following equations (3-8), (3-10), (3-11) and (3-13), the
optical flow d(x) can be robustly estimated through iterations yielding the subpixel
accuracy.

The motion estimate d(x) is more accurate when the gradients of both 1:(x) and I:+1(X)
are large and nearly equal asillustrated in Figure 9 ©°.

L O = 1a (%) = T (x+d) =1, (%)

=[1a () +1.,09d] = 1, (%)

=1,,,(0"d (3-14)
and 1,,,(x) denotes the second derivatives. The first order Taylor’s linear approximation
is more likely to give an accurate estimdteshen both the difference of the gradiemfs
and |,,,, and the second derivativeslgf are smalf®®. Otherwise, it is prove to have a

large error. Thus the window functiawix) should be small when the difference of the

and |,,, is large, and large when the difference is small (Figur€®9) If the window

function is unity,wm(x) = 1, over then x n regionR such as used in Lucas and Kanade’s
flow estimation®, the local minimum of SSD is considered which maintains the high
frequency information in the region but may yield a noisy result. This optical flow can
accurately track the highly textured local region and the computation converges very fast.
It is good for use in the facial feature point tracking and for real time processing. But it
will be lessaccurate when used to track a less textured region or a region with high

reflection where there is no high gradient pixels for trackimg,the region is not
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Less accurate
tracking estimation
Accurate tracking Accurate tracking
A estimation estimation
Gray Vaue |
1(X)

|
Position x
Weight
W(x) v
| I |
X x+d Position x

Figure9 Window (weight) function w(x) can be used to control the
accuracy of motion estimation based on the gradient
varying from point to point ©°.

trackable. In such a case, more global information instead of local minimization may be
needed, such as using the regularization-based or global smoothness approach “**” to
estimate the optical flow in textureless region, but it is more time consuming since a large
window is involved and it may also smooth out high frequency components and thus
reduce the tracking accuracy. Two methods have been recently developed to overcome
these local noise and global smoothness problems: the spline base method ®© and the
wavelet base method ), both use the pyramid approach and multiple flow windows
(Figure 10).
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3.3 M otion Confidence Estimation

Tomasi and Kanade ©?; and Poelman and Kanade " have shown that the eigenvalues
of the Hessian matrix G can be used to estimate the confidence of whether the n x n
feature region R is trackable or not. We illustrate it by four features regions shown in

Figure 11 with window function w(x) = 1 in each region, thus

[l
D O
o oo D 2. B
TeeTgapey gmi o 7
5 x—di E
;%E 1, (x=d) ~ s (10
DalD tr x—di t - Tl D
CRE ; A0 o D (519
%Hw[h(x 4= I

In Figure 11.a, the feature region R is textureless or very smooth. This region will be
difficult to track since it has zero gradient in all directions and, hence, both eigenvalues of
the Hessian matrix G are equal to zero. If afeatureregion R contains a line or edge which
has high spatial gradient valuesin at least one direction as shown in Figure 11.b or 11.c, or
which has highly correlated spatial gradients in both horizontal and vertical directions asin
Figure 11.c (the Hessian matrix G has one large eigenvalue and one small eigenvalue),
then this region will be difficult to track. Only when the feature region R has high spatial
gradients in two orthogonal directions (horizontal- and vertical-gradients are weakly
correlated), and hence both eigenvalues of G are large, can this feature region be localized
and easily tracked as shown in Figure 11.d. From the mathematical point of view, if the
Hessian matrix G has one or more small eigenvalues, then computation of its inverse is an
ill-conditioned problem because it is close to be singular.

To estimate the confidence of whether a selected n x n feature region R is trackable or

not, we use the confidence value defined below.
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Figure 1l Trackahility of various feature regionsin abinary image: (a) contains no

image texture so it would make a poor feature; (b) and (c) have high
gradients localy either in one direction, or the horizontal- (1_-) and

vertical- (1, -) gradients are highly correlated with each other asiin (c),

they also are not trackable; only feature (d) can be used as a trackable
feature 7.
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A min* (n* n)

T 3 1,6 d) =197 (310

Here, Amin IS the minimum eigenvalue of the Hessian matrix G. The constant 1 is used to
avoid a zero value in the denominator in case of a perfect matching. The trackability is
proportional to the confidence value, (or is proportional to Amn), and inversely
proportional to the difference (or residue) between two matching regions. A feature
region with high Am, contains high-frequency textured patterns and can be localized
accurately even though there is noise in the image. A feature region with a very low value
of Amin cOntains smooth areas, so image noise is more likely to cause shifts along the lower

gradient direction, such as along the line or edge in Figure 11.b and 11.c.

3.4  Tracking Subpixel and Large Motion

Since we want to discriminate subtly different facial expressions by extracting the
movement of feature points, it is necessary to use optical flow to accurately track motions
of feature points in subpixel accuracy. Initially a5 x 5 Gaussian filter is used to smooth
out the noise in order to enhance the flow computation convergence. Selecting the size of
the feature region is an important trade-off. 1t should be large enough to include sufficient
texture in it, while small enough so that the computation of the inverse Hessian matrix G
will not become ill-conditional. Also, a larger region will require more computation in
order to perform feature tracking. We choose 13 x 13 pixels to be the feature region.
That is, each selected feature point in the first frame of each image sequence (image size
490 x 640 pixels but cropped to 417 x 385 pixels) is the center of a 13 x 13 flow region.
A window function w(x) = 1 over the feature region is chosen because the area
surrounding each feature point is full of texture. The movement of facial feature points is
then automatically tracked with subpixel accuracy in translation % via optical flow in

the remaining frames of the image sequence.
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The selected feature point location x is integer-valued, but x+d is generaly not integer-
valued in order to accommodate for subpixel flows. We estimate the image gray value at
an non-integer-valued pixel by using the bilinear interpolation,

L (x+d) =1(x,%;)
= 1(ig, i) * (i, +1= X0, +1=X,) +1(i,,i, +)* (i, +1- X, X, —i,) +
L3, +20,)* (X =iy, 0, +1=X,) + 1 (1,40, +D* (X, =1y, X, —1,) (3-18)
where i, = [X,[Jand i, = [X,[] and [x[Jrepresents the largest integer smaller than or

equal to x. Since the movement of feature points will be tracked for an entire sequence in
subpixel accuracy, the ending position of each tracked feature point in the first pair of
frames (I4,1:+1) will be used as the starting position of the tracked point for the next pair of
frames (li.1,11+2), and so on. The hilinear interpolation method is applied to interpolate
gray values of the non-integer-valued pixels of both the starting and ending positions for
each tracked feature point in each consecutive pair of frames in the sequence.

Consecutive frames of an image sequence may contain large feature-point motion
caused by gross movement of the subject between frames, such as sudden head
movements, brow raised or mouth opening of the surprise expression, which may cause
missing or lost tracking (Figure 12). In Figure 12, lines traling along feature points
denote their movements across image frames in the sequence. In order to recover these
large motions without losing subpixel accuracy, we use a pyramid method with reduced

resolution (spatial smoothing)

. Each image is decomposed into 5 levels from level O
(the original finest resolution image) to level 4 (the coarsest resolution image). The image
sizes are 490 x 640 (row x column), 125 x 160, 62 x 80, 31 x 40, and 15 x 20 pixels,
respectively (Figure 13). We use 13 x 13-pixel window regions for each level. From level
4 to level 1 (from coarse to fine levels), we consider window-wise 1, 4, 16 and 64 flow
regions for the whole image at each level, respectively. Each window center in the first
frame is used as the starting position for motion estimation at that level. From level 1 to
level O, we only consider those 13 x 13 feature regions whose centroids are the locations

of the previoudly tracked feature points. Flow computation proceeds from the
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Figure12 Festure point tracking excluding the pyramid method: it is sensitive
to subtle motion such as eye blinking, but it loses tracking for large
motion such as mouth opening and suddenly raising eye brows.
Lines trailing along feature points (marked by a cross ‘+’) denote
their movements across image frames in the sequence.



Level 4.
15 x 20 pixels

Level 3:
31 x 40 pixels

Level 2:
62 x 80 pixels

Level 1:
125 x 160 pixels

Level O:
490 x 640 pixels
cropped to be
417 x 385 pixels

frame 7 frame 8

Figure13 A 5-level pyramid for feature point tracking.
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lowest resolution level (level 4) to the highest level (level 0) of the pyramid.

For the iterative computation at level |, we use the estimated motion vector d.; and
confidence value C;;; obtained at the coarser level 1+1. At the coarsest resolution level 4,
the motion vector is initialized at (0,0)" and iterated to obtain a solution d,; confidence
value C, is then computed. There are four feature regions at level 3, 2*d, is taken as the

initial motion vector of each region center and iteration proceeds to obtain a motion
vector d 5 in each region with confidence value Cs dsand d, are weighted as described

below to give a new estimate ds; so is a new estimate of C; obtained by weighting C s and

Cs. Ingenerdl,
4 <Gt (27d)* K +C *d,* (1-K) (319
| C. *K+C*(@1-K)
CI - CI+1* CI+1* K +E:I * C| * (1_ K) (3_20)
C. *K+C*(1-K)
where 0.0<K<1.0 and 1<I<3

where K is a constant weighting factor that determines how much confidence is given to

that obtained from the coarser level in the pyramid. 2*d, will be used as the initial motion

vector and C; as new confidence value for iterative estimation at the next finer resolution

level 1-1. If K = 1.0, al flow estimates at the current level (I) are derived from the
previous level (I+1) without regard to the flow estimate computed at the current level. If

K = 0.0, it provokes each level's computation to use the previous level's flow estimate
only as an initial value. This inter-level confidence base is used for combining the effect of
spatial smoothing. In order to have a reliable flow estimation when the tracking region
contains insufficient texture, the flow at the high-resolution level is mainly inherited from
the flow in the previous coarse level of the pyramid, th& is, close to but not equal to

1.0. If the tracking region has high texture, then it can be reliably tracked so as to be less
involved with the flow estimated at the previous level, thaKig close to but not equal

to 0.0. We choos&=0.5 for confidence estimation. From level 1 to level O, we first

identify the locations at level 1 corresponding to the feature points at level 0, which in
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general will not coincide with the region centers at level 1. At each of these locations, its
motion vector will be estimated by the hilinear transformation from its four neighboring
centers. This estimated vector multiplied by 4 will be used as the initial motion vector at
the corresponding feature point for iterative estimation at level O to obtain the estimate do
in the feature point tracking. Then the process repeats for the next consecutive point of
frames.

Using this pyramid method for optical flow computation, we initially enable the
gradient descent method at low resolution levels to avoid local minima in the search for
the optimal solution of feature point displacement. This alows us to recover any large
motion (up to 100-pixel displacement) of the feature point while maintaining its sensitivity
to subtle (subpixel) facia motion (as shown in Figure 14), and the flow computation
converges quickly (less than 20 seconds for tracking 70 feature points between two
consecutive frames using the interface under SUN Sparc 5). Point tracking method deals

very well with large feature point movement between two 490 x 640-pixel frames.

3.5 Analysisof Feature Point Tracking Problems

It has been noted in our experiments that an error may occurred when some facial
feature points located at the edge of the brows or mouth had large movements between
two consecutive frames. Those selected feature points were tracked along the edge
direction of the brows or mouth (Figure 15). Thisis due to the fact that the tracking was
sengitive along the low gradient direction when this region contains a high gradient line.

There are three ways to correct these errors. One way is to locate those feature points
away from edges instead of along the edges. The error is reduced for brows raised but
still occurs along edges when mouth opens larger (Figure 16), because the mouth motion
causes more facial deformation than that by brow motion. Another solution is to have a
larger n x n feature region R to include more motion information (Figure 17), but it

requires more computation time for tracking. Still another method, which we usg, is to
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increase the value of the weighting factor K of the inter-level confidence base so as to
include more global information from the previous low-resolution level processing in the
pyramid method (Figure 18).

3.6  Data Quantization and Conversion for the Recognition System

Three upper facial expressions are to be recognized based on displacements of 6
feature points at the upper boundaries of both brows, and six lower face expressions are to
be recognized based on displacements of 10 feature points around the mouth. Feature
points are numbered from left to right for brows region, and from the left corner point of
lip clockwise around the mouth. The displacement of each feature point is calculated by
subtracting its normalized position in the first frame from its current normalized position.
Each feature point has the horizontal displacement component and vertical displacement
component. The displacement vector is 12-dimensional in the upper face and 20-
dimensional in the lower face (Figure 19). Facial expressions are characterized by these
two vector sequences. These displacement vectors in upper and lower facial regions are
vector-quantized separately into 16 and 32 symbols, respectively, as discussed in section
6.1 and section 8.3.1. Table 4 shows sample symbol sequences for nine facial expressions
under consideration. Such symbol sequences are used as inputs to the HMMs of upper

facial expressions and lower facial expressions, respectively, for automatic recognition.



Figure 14 Feature point tracking including the pyramid method: it is sensitive
to subtle motion such as eye blinking and also tracks accurately for
large motion such as mouth opening and suddenly raising eye
brows.



Figure15 The feature point tracking error due to violation of the feature
region’s trackability condition: tracking along the edge direction at
both brows and mouth regions with deformed shapes.

Figure16 Reducing the tracking error by locating feature points away from edges
of facial features: the tracking for brow region is improved, but is still
erroneous in mouth region with large mouth opening.
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Figure17 Reducing the tracking error by using a large window size which
requires more processing time.

Figure 18 Reducing the tracking error by increasing the value of the weighting
factor K (K=0.5) of the inter-level confidence base in order to include
more global information from the previous low-resolution level
processing in the pyramid method.
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d

Displacement vector d; = (d;1,d:2,..., Gj,...,0k;)
whered:; = (0 norizontal, Okjvericar) IS the pair of horizontal and vertical
displacements for featurg poinamet,
I = 6 for brow region (upper facial expression)
I = 10 for mouth region (lower facial expression)

and feature points are numbered from left to right for brow region, and from the
left corner point of lip clockwise around the mouth.

Displacement vector sequenbe= (d,d,...,d,...,dr) for each of the upper and
lower facial expressions whefes the length of an image sequence.

Figure19 Displacement vector of the facia feature point tracking to be
encoded for input to a Hidden Markov Model.



Table4

Sample symbol sequences for three upper facial expressions and six
lower facia expressions under consideration.

AUs Feature Point Tracking: Upper Facial Expressions
(Symbol Sequence)
4 3 33355555555
1+4 3 3333331111111 111
1+2 3 33 3 36 6 6 6 6 6 6
AUs Feature Point Tracking: Lower Facial Expressons
(Symbol Sequence)
12 2 22 2 2 2 2 9111
6+12+25 |2 2 2 2 105 5 5 111111111111 11
20+25 |2 10 10 10 13 13 13 13 13 13 13
9+17 2 2 3 3 31414141414
15+417 |2 2 2 2 6 6 6 6 6 6 6 6 6
17+23+24 |2 2 2 2 4 4 4 4 4
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Figure20 An example illustrating the expression intensity estimation by
following the non-linear mapping (k = 7) of the constrained
feature point displacement for the case of AU2.

3.7  Expression Intensity Estimation

Since displacements of feature points correspond to AU intensities of facid
expressions and indicate the underlying muscle motion, we can quantify the expression
intensity based on the displacements of feature points. Figure 20 and Table 5 show the
logic of expression intensity estimation and the specified constraints for displacement
measurement of each feature point which corresponds to the expression intensity of
individual AU. We propose to estimate the expression intensity 77 by using following non-

linear mapping of the feature point displacement

n= 4 where0<7<1.0 (3-21)

Vo2 +k?
where d is the measured normalized displacement of a feature point under constraint for a
AU as specified in Table 5. Since the motion of a feature point during a facial expression
Is described, in genera, initial as gradual motion (starting from the neutral expression)
followed by quick motion then gradually slowing down until the peak expression is

reached, the value of constant k is determined empirically according to individual AU



Table5 Thedictionary for expression intensity estimation (image: 417 x 385 pixels).

Action Constraint: direction M easured Displacement Kk
Unit 180° ¥ N d (Pixel
180° )
Brows
1 Inner point of brow moves vertical up Vertical displacement 7
2 Outer point of brow moves vertical up Vertical displacement 7
4 1. Inner point of brow moves vertically | 1.Vertical displacement 4
down
2. Inner points of both brows move 2.Horizontal distance
horizontally toward one another between both points
Eyes
5 Middle point of upper eyelid movesup | Vertical displacement 2
7 Middle point of lower eyelid moves up Vertical displacement 2
41~46 | Middle points of eyelids move vertically | Vertical displacement 4
together (narrow eyes or blinking) between both points
Nose
9 | Side point at nostril moves up | Vertical displacement 5
Mouth
12 | 1. Left corner point of lip moves up 1. Euclidean distance 6
between 100 and 170 degrees
2. Right corner point of lip moves up 2. Euclidean distance
between 10 and 80 degrees
20 | 1. Left corner point of lip moves 1. Euclidean distance 6
horizontally between 170~180 and -
170~-180 degrees
2. Right corner point of lip moves 2. Euclidean distance
horizontally between 0~10 and 0~-10
degrees
15 | 1. Left corner point of lip movesdown | 1. Euclidean distance 3
between -90 and -170 degrees
2. Right corner point of lip movesdown | 2. Euclidean distance
between -10 and -90 degrees
18 | Both corner points of lip move Horizonta distance 8
horizontally toward one another between both lip corners
23 | Two points on upper lip move Horizontal distance 2
horizontally together between both points
24 | Both center points on lips move Vertical distance between 5
vertically together both points
25~27 | Both center points on lips move Vertical distance between | 20

vertically away from baseline

both points
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Table5 (Continued)
The dictionary for expression intensity estimation (image: 417 x 385 pixels).

Action Constraint: direction M easured Displacement Kk
Unit 180 ¥y~ N\ 0 d (Pixel
180 —" )
Mouth
17 Existence of furrow or wrinkle on the Not measured -
chin

(listed in Table 5) to give a genuine expression intensity time course fit to the velocity of
the facia motion (like the oscillation of a spring between compression and release) as
shown in Figure 21.

The expression intensity estimation given above is one first attempt to quantify AU
expression measurement. In redlity, it is difficult to measure the expression of an
individual AU by tracking a single feature point which indicates a single muscle
movement. For example, both AU15 and AU20 involve downward motions of feature
points at lip corners. Although the FACS system assumes that there is a one-to-one
mapping between an AU and a single muscle motion, the expression intensity of an
individual AU may be composed of the coordinated movements of multiple muscles or
movements of multiple feature points. It would be desirable to consider a set of feature
points corresponding to an “expression unit,” and measure their simultaneous motion for

guantifying the expression intensity. This will be a challenging aspect for future research.
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Figure21 Expression intensity time course of AUL, 2 and 5 fit to the
displacement changes of facial feature points based on the
non-linear mapping "



