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2.0 FACIAL EXPRESSION RECOGNITION SYSTEM OVERVIEW

Humans are capable of producing thousands of facial actions during communication

that vary in complexity, intensity, and meaning.  Emotion or intention is often

communicated by subtle changes in one or several discrete features.  The addition or

absence of one or more facial actions may alter its interpretation.  In addition, some facial

expressions may have a similar gross morphology but indicate varied meaning for different

expression intensities.  In order to capture the subtlety of facial expression in nonverbal

communication, we propose to develop a computer vision system with a user interface

(Figure 2) that automatically extract features and their motion information, discriminate

subtly different facial expressions, and estimate expression intensity.  The system contains

two components: extraction and recognition as shown in Figure 3.  Three methods are

developed for feature and motion extraction yielding symbol sequences to represent

observed expressions.  These symbol sequences are input to the recognition process,

which is an HMM computation to give the maximum likelihood decision.

2.1 Three Methods of Feature Motion Extraction

Facial expression is produced by the activation of facial muscles, which are triggered

by the nerve impulses.  Facial muscle actions cause the movement and deformations of

facial skin and facial features.  In the interpretation of facial expression, it is these

deformations which we observe, and from which we must deduce the underlying emotion.

Three convergent approaches are used to extract expression information (Figure 3):  (1)

facial feature point tracking using the pyramid method, (2) dense flow tracking with

principal component analysis (PCA), and (3) high gradient component analysis in the

spatio-temporal domain.  In order to allow recognition, this extracted expression
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information must be converted into motion vectors so they may be passed to the

recognition process (Figure 3).

Figure 2 The user interface created by programming in C, Motif, X Toolkit
and Xlib.
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Figure 3 Block diagram of a facial expression recognition system.
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Feature point tracking and dense flow tracking are used to track facial motion for

recognition of expressions varying in intensity in the spatio-temporal domain.  Frontal

views of subjects (none wears eyeglasses) are videotaped under constant illumination,

although lighting may vary across subjects particularly when we videotape on different

days.  These constraints are imposed to prevent significant degradation in optical flow

calculation.

Facial feature point tracking using the pyramid method is especially sensitive to subtle

feature motion and is also able to track a large displacement of feature motion in subpixel

accuracy.  Facial feature point is based on facial features in regions of brows, eyes, nose,

and mouth.  However, the forehead, cheek and chin regions also have important

expression information.  Dense flow tracking is used to include motion information from

the entire face.  The use of optical flow to track motion is advantageous because facial

features and skin naturally have a great deal of texture.  Using the principal component

analysis, a low-dimensional weight vector in eigenspace can be obtained to represent the

high-dimensional dense flows of each frame.  Based on the displacement and weight

vectors, the motion information is converted to symbol sequences from which we can

recognize facial expressions, and is applied to estimate the expression intensity.

High gradient component analysis is also used to recognize expressions by the

presence of furrows.  Facial motion produces transient wrinkles and furrows perpendicular

to the motion direction of the activated muscles.  The facial motion associated with a

furrow produces gray value change in the face image, which can be extracted by the use of

high gradient component (motion line or edge) detectors in the spatio-temporal domain.

2.2 Recognition Using Hidden Markov Models

Modeling facial expression needs to take into account the stochastic nature of human

facial expression involving both the human mental state, which is hidden or immeasurable,

and the human action, which is observable or measurable.  For example, different people
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with the same emotion may exhibit very different facial actions, expression intensities and

durations.  Individual variations notwithstanding, a human observer can still recognize

what emotion is being expressed, indicating that some common element underlies each

motion.  Therefore, the purpose of facial expression modeling is to uncover the hidden

patterns associated with specific expressions from the measured (observable) data.  Facial

expression modeling requires a criterion for measuring a specific expression.  It is

desirable to analyze a sequence of images to capture the dynamics (5).  Expressions are

recognized in the context of an entire image sequence of arbitrary length.  We will develop

a recognition system based on the stochastic modeling of the encoded time series

describing facial expressions, which should perform well in the spatio-temporal domain,

analogous to the human performance.

In order to model subtly different facial expressions having different durations

(arbitrary length of image sequence), the Hidden Markov Model (HMM) is developed to

recognize expressions based on the maximum likelihood decision criterion.  A key problem

is to determine the HMM topology for the facial expressions under consideration.  Some

other advantages of using HMMs are: HMM computations converge quickly making it

practical for real time processing, it may evaluate an input sequence of uncertain category

to present a low output probability, and a multi-dimensional HMM may be developed to

integrate individual HMMs to give a robust and reliable recognition.  The correspondence

between facial expressions and elements of the HMM is shown in Table 1.

Facial expression and speech represent human visual and audio actions, respectively
(88).  The HMM technique has been successfully applied to model all known phonemes (the

basic units of speech).  Elementary HMMs of phonemes have then combined to represent

words, and then sentences (59,76,79).  Speech may be considered as two- or three-

dimensional signals: frequency and amplitude change with time.  Facial expressions may be

considered as three (or four)-dimensional signals: a time sequence of images.  So a set of

elementary HMMs will be developed to model various “expression units” of individual
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Facial Expression Hidden Markov Model

Hidden Process Mental State Model State

Observable Expression (Facial Action) Symbol Sequence

Temporal Domain Dynamic Behavior A Network of State
Transition

Characteristics Expression State Transition
Probability and Symbol
Probability

Recognition Expression Similarity The Confidence of Output
Probability

AUs or AU combinations, such as illustrated in Figure 4.  Based on combinations of

elementary HMMs, we will be able to recognize continuously varying facial expressions.

A comparison of modeling facial expressions with modeling speech using HMMs is listed

in Table 2.

2.3 Facial Action Coding System and “Expression Units”

The proposed automatic of facial expression analysis follows the anatomically based

Facial Action Coding System (FACS) (34), which is the most comprehensive method for

coding facial expressions by psychologists.  With FACS, observers can manually code

discrete deformations of the face (movements of the facial muscle and skin) which are

referred to as action units (AUs).  Basically, FACS divides the face into upper and lower

facial expressions and subdivides motion AUs.  FACS consists of 44 basic AUs, with 14

additional AUs for head and eye positions as shown in Table 3.  AUs are the smallest

visibly discriminable muscle actions that individuate or combine to produce characteristic

facial expressions which can be recognized from the image.  More than 7000

Table 1 Correspondence between facial expressions and elements of
the Hidden Markov Model.
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Upper Facial Expressions

AU4:
Brows are lowered and
drawn together.

AU1+4:
Medial portion of the
eyebrows is raised (AU1)
and pulled together
(AU4).

AU1+2:
Inner (AU1) and outer
(AU2) portions of the
brows are raised.

Lower Facial Expressions

AU12:
Lip corners are pulled up
and backward.

AU6+12+25:
Cheek raised (the lower-
eye and infra-orbital
furrows are raised and
deepened, and the eye
opening is narrowed)
(AU6), and AU12 with
mouth opening (AU25).

AU20+25:
Lips are parted (AU25),
pulled back laterally, and
may be slightly raised or
pulled down (AU20).

AU9+17:
The infra-orbital triangle
and center of the upper
lip are pulled upwards
(AU9), and the chin boss
and lower lip are pulled
upwards (AU17).

AU17+23+24:
The chin boss is raised,
which pushes up the
lower lip (AU17); the lips
are tightened, narrowed
(AU23), and pressed
together (AU24).

AU15+17:
Lip corners are pulled
down and stretched
laterally (AU15), and
chin boss is raised which
pushes up the lower lip
(AU17).

Figure 4 “Expression units” of subtly different facial expressions in our study
(taken from (34)).
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Speech Facial Expressions
Human Action Audio Action Visual Action
Dimension (Including
Time Series)

2-dimensional Signals 3 or 4-dimensional Signals

Action Unit Phoneme Expression Unit: Individual
AUs or AU Combinations

HMM Unit 1st-order 3-state HMM 2nd-order 3-state HMM for
Upper Facial Expression and
3rd-order 4-state HMM for
Lower Facial Expression *.

HMM Unit
Combinations

One Word One Basic Facial Expression
(e.g., joy)

Concatenated HMM
Unit Combinations

Sentences Continuously Varying Basic
Facial Expressions

have been observed.  According to FACS, each AU corresponds to an activity in a distinct

muscle, with the exception of AU4 (34,107).  Even though the one-to-one mapping of

individual AUs to distinct muscle activities is a basic assumption of the FACS, AUs enable

discrimination between closely related expressions.  By discriminating “expression units

(individual AUs or AU combinations)”, we can simulate and understand individual

mechanics of the facial muscles.  In the present study we consider, three upper facial

“expression units” and six lower facial “expression units” which are shown in Figure 4.

They are frequently occurring facial expressions containing subtle differences.  They will

be studied for automatic recognition and estimation of their intensities.

Table 2 Comparison of modeling facial expressions with modeling speech
using HMMs.

* Obtained in this research.
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Upper Face Lower Face Miscellaneous

AU       Label AU       Label AU       Label
1 Inner Brow Raise 9 Nose Wrinkle 8 Lips Toward
2 Outer Brow Raise 10 Upper Lip Raise 19 Tongue Show
4 Brow Lower 11 Nasolabial Deepen 21 Neck Tighten
5 Upper Lid Raise 12 Lip Corner Pull 29 Jaw Thrust
6 Cheek Raise 13 Sharp Lip Pull 30 Jaw Sideways
7 Lids Tight 14 Dimple 31 Jaw Clench
41 Lids Droop 15 Lip Corner Depress 32 Bite (Lip)
42 Lids Slit 16 Lower Lip Depress 33 Blow
43 Lids Closed 17 Chin Raise 34 Puff
44 Squint 18 Lip Pucker 35 Cheek Suck
45 Blink 20 Lip Stretch 36 Tongue Bulge
46 Wink 22 Lip Funnel 37 Lip Wipe

23 Lip Tight 38 Nostril Dilate
24 Lip Press 39 Nostril Compress
25 Lips Part
26 Jaw Drop
27 Mouth Stretch
28 Lip Suck

Head Position Eye Position

AU       Label AU       Label
51 Turn Left 61 Left
52 Turn Right 62 Right
53 Head Up 63 Up
54 Head Down 64 Down
55 Tilt Left 65 Walleye
56 Tilt Right 66 Cross-eye
57 Forward
58 Back

Table 3 Action Units (AUs) in the Facial Action Coding System (FACS) (34).
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2.4 Rigid and Non-Rigid Motion Separation and Geometric Normalization

For facial expression recognition, two main issues in image processing will affect the

recognition results: separation of non-rigid facial expression from rigid head motion, and

facial geometric correspondence to keep face size constant across subjects.  Both

processes are necessary in order to ensure that these variables do not interfere with

expression recognition.  Though all subjects are viewed frontally in our current research,

some out-of-plane head motion (e.g., yaw rotations or less than ±10 degree pitch

rotations) may occur with facial expressions.  Furthermore, face size varies among

individuals.  For elimination of the above-mentioned rigid head motion from non-rigid

facial expression, an affine transformation (which includes translation, scaling and rotation

factors) is adequate to normalize the face geometric position and maintain face

magnification invariance.  Face images are automatically normalized with the affine

transformation to ensure that optical flows or gray values of individual frames have close

geometric correspondence in order to achieve consistent recognition performance.

In the first frame of each image sequence, we manually select three facial feature

points for image normalization: medial canthus of both eyes and the uppermost point on

the philtrum as shown in Figure 5.  These three points will carry only rigid motion

components accompanied with the head motion.  Each of these points forms the center of

a 13 x 13 pixel flow window, and they are automatically tracked in the remaining frames

of each image sequence.  Based on these three facial feature points, the original 490 x 640

(row x column) pixel display is cropped to 417 x 385 pixels for each frame to keep the

foreground face and remove the unnecessary background.  The positions of all tracking

facial feature points, dense flows, or image gray values for each frame are then normalized

by warping them onto a standard two-dimensional face model based on the affine

transformation ℑ (Figure 5) given as follows:
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Figure 5 Normalization of each face image to a standard 2-dimensional face model.
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Here, u and v are the horizontal and vertical positions of the two-dimensional face model

coordinates, and u’ and v’ are the horizontal and vertical positions of the original image

coordinates.  The upper-left corner of each frame, including the face model image is

denoted as (0,0).  In the standard face model, the top point of the philtrum is the rotation

center whose position is (du,dv) = (192,230), and the position of the medial canthus of the

right eye is (167,155) and that of the left eye is (217,155); the width w between the medial

canthi of both eyes is 50 pixels and the height h from the level of the medial canthi to the

top point of the philtrum is 75 pixels.  The horizontal scaling is given by the parameter Su

which is computed as the ratio of the distance w at the face model to that distance w’ at

the original face image.  The vertical scaling given by Sv is computed as the ratio of the

distance h at the face model to that distance h’ at the original face image.  The horizontal

and vertical displacements (translations) are represented by Du and Dv, respectively, and

are measured from the top point of the philtrum in the original face image (d'u,d'v) to that

in the face model (du,dv).  The angle of rotation of the line connecting the medial canthi of

both eyes in the original face image from the corresponding horizontal line in the face

model is represented by θ, where the clockwise rotation is negative and the

counterclockwise rotation is positive.  The pixel positions of each image are integer-

valued, but the warped positions after the affine transformation are, in general, not

integer-valued.  So the gray value at each integer-valued pixel of the warped image needs

to be estimated by bilinear interpolation based on the gray values of its four nearest

neighbor pixels in the original image as shown in Figure 5.


