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AUTOMATIC RECOGNITION OF FACIAL EXPRESSIONS USING HIDDEN
MARKOV MODELSAND ESTIMATION OF EXPRSSION INTENSITY

Jenn-Jier James Lien, Ph.D.

Facial expressions provide sensitive cues about emotional responses and play a major
role in the study of psychologica phenomena and the development of nonverbal
communication. Facial expressions regulate social behavior, signa communicative intent,

and are related to speech production. Most facial expression recognition systems focus on



only six basic expressions. In everyday life, however, these six basic expressions occur
relatively infrequently, and emotion or intent is more often communicated by subtle
changes in one or two discrete features, such as tightening of the lips which may
communicate anger. Humans are capable of producing thousands of expressions that vary
in complexity, intensity, and meaning. The objective of this dissertation is to develop a
computer vision system, including both facia feature extraction and recognition, that
automatically discriminates among subtly different facial expressions based on Facia
Action Coding System (FACS) action units (AUs) using Hidden Markov Models
(HMMs).

Three methods are developed to extract facia expression information for automeatic
recognition. The first method is facia feature point tracking using the coarse-to-fine
pyramid method, which can be sensitive to subtle feature motion and is capable to handle
large displacements with subpixel accuracy. The second is dense flow tracking together
with principal component analysis, where the entire facial motion information per frame is
compressed to a low-dimensional weight vector for discrimination. And the third is high
gradient component (i.e., furrow) analysis in the spatio-temporal domain, which exploits
the transient variance associated with the facial expression.

Upon extraction of the facial information, non-rigid facial expressions are separated
from the rigid head motion components, and the face images are automatically aligned and
normalized using an affine transformation. The resulting motion vector sequence is vector
guantized to provide input to an HMM-based classifier, which addresses the time warping
problem. A method is developed for determining the HMM topology optimal for our
recognition system. The system also provides expression intensity estimation, which has
significant effect on the actual meaning of the expression.

We have studied more than 400 image sequences obtained from 90 subjects. The
experimental results of our trained system showed an overall recognition accuracy of 87%,
and also 87% in distinguishing among sets of three and six subtly different facial

expressions for upper and lower facial regions, respectively.
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1.0 INTRODUCTION

Human face is a rich and powerful source of communicative information about human
behavior. Facial expression provides sensitive cues about emotional response and plays a
major role in human interaction and nonverbal communication. It can complement verbal
communication, or can convey complete thoughts by itself. It displays emotion ©",
regulates social behavior @, signals communicative intent ©, is computationally related
to speech production ?, and may reveal brain function and pathology ®V. Thus, to make
use of the information afforded by facial expressions, automated reliable, valid, and
efficient methods of measurement are critical.

Computer-vision based approaches to facial expression analysis discriminate among a
small set of emotions 213360882103) - This focus follows from the work of Darwin ©? and
more recently Ekman ®®, who proposed “six basic emotions’e(, joy, surprise, anger,
sadness, fear, and disgust), each of which has a prototypic facial expression involving
changes in facial features in multiple regions of the face. These basic expressions,
however, occur relatively infrequently in everyday life and emotion expression is far more
varied. Facial action (detailed facial motion) more often is communicated by subtle
changes in one or several discrete features, such as tightening the lips which may
communicate anger. In reality, humans are capable of producing thousands of expressions
that vary in complexity, intensity, and meaning.

There is a standard anatomically based Facial Action Coding System (FACS)
developed by psychologists for use in coding facial expressions. With FACS, observers
can manually code all possible discrete movements of the face, which are referred to as
action units (AUs). AUs individually or in combination can represent all visibly

discriminable expressions. Considering the complication of the movements involved and

* Parenthetical references placed superior to the line of text refer to the bibliography.



discrimination of the subtle changes, there is a need to develop an automated system for
efficient and quantitative measurement of facial expressions based on FACS, which will
make the standardized facial expression measurements more accessible for research in
various fields including cognitive and behavior science, psychology, biomedical
engineering, teleconferencing and human-computer interface or interaction (HCI).

At the present time, most active communication between human and computer is still
in one direction: from human to computer, even though computers may hear human
speeches through the use of special audio and speech recognition equipments. Allowing
computers to understand human operators through vison will bridge the gap of active
communication from the direction of computer to human, which will make computers
more active, smart, and friendly. Human face is the richest source of nonverbal
communication and the most accessible interface displaying human emotion. To
automatically analyze and recognize facial expressions using computers will revolutionize
fields which rely on human-computer interaction so that computers will be able to
understand whether users feel excited or bored, agrees or disagrees. It will be a great
challenge and of practical significance to develop a computer vision system which can

automatically recognize a variety of facial expressions and estimate expression intensity.

11 Related Works

An increasing number of researchers in computer vision have developed various
techniques in providing capabilities for automatic facia expression recognition. We will
briefly review the strengths and weaknesses of some major paradigms.

Three-dimensional geometric wireframe (or mesh) face models have been used by
Aizawa, Harashima and Saito ®; Choi, Harashima and Takebe “; Essa and Pentland ©?;
and Terzopoulos and Waters ®V for facial expression analysis, synthesis and recognition.
Essa and Pentland ©® developed two methods to recognize expressions. The first method

IS to recognize 5 expressions: smile, surprise, raised brow, anger, and disgust by scoring



the dot-product similarity based on 36 peak muscle actuations in comparison to the
standard training expression templates but the tempora affect is ignored. The overall
recognition rate was 97.8% on 6 subjects with 23 and 48 image sequences for training and
testing, respectively. The second method uses the temporal-template matching for two-
dimensional gray value images. The time warping is an important consideration which
improves the recognition accuracy since the temporal-template matching measures the
correlation between testing and standard template image sequences.

In contrast to the use of the complex three-dimensiona geometric models, Himer,
Schneider, Kost, and Heimann “®; and Kaiser and Wherle “® proposed a method for
automated detection of facial actions by tracking the positions of attached dots on the face
as appeared in an image sequence. Since the shape of dots will deform due to muscle
movement during facial expression, it is difficult to locate accurately the corresponding
central positions for the deformed dots, and thus affects the tracking accuracy.

Optical flow in two dimensions has been used to track motion and classify basic
emotion expression (Black, Yacoob, Jepson and Fleet ***¥; Mase and Pentland ©"%®:
Rosenblum, Yacoob and Davis ®?; and Yacoob and Davis “®). In work by Mase ©®,
motions of facial muscles were computed rather than those of facial features. Muscle
regions were manually selected by referring to major feature points in the face. Optical
flow was computed to extract 12 of the 44 facial muscle movements, which in
combination with feature positions were interpreted as appropriate AUs. Mase's approach
relies heavily on accurate tracking of the manually selected muscle regions; flow directions
within each individual region is averaged to represent the flow direction of that region.
However, when the selected area corresponds to a smooth, featureless surface in the face,
the optical flow estimation will be unreliable, leading to tracking error. Some selected
muscle regions may be difficult to locate manually since they are small and highly mobile.
In essence, Mase built a model that is appropriate for synthesizing facial expressions but
remains uncertain in analyzing facial expressions. He computed mean and covariance of

the optical flow in each local region, and then, based on the highest ratio of between-class



to within-class variahility to classify various expressions; the k-nearest-neighbor rule was
applied for recognition. His experiments indicated an accuracy of approximately 86% in
recognizing five expressions (happiness, anger, surprise, disgust, and unknown) on 1
subject with 20 and 30 training and testing image sequences, respectively.

The work of Yacoob and Davis “®; and Rosenblum, Yacoob and Davi€? are
related closely to Mase’s in that they used optical flow to track the motion of the surface
regions of facial features: brows, eyes, nose and mouth, but not that of the underlying
muscle groups. In each facial feature region, the flow magnitude was thresholded to
reduce the effect of small computed motions which may be either produced from
textureless parts or affected by illumination. The overall flow directiogaoh region is
to conform with the plurality in the neighborhood. The direction of any flow in this region
IS quantized to one of eight main directions to give a mid-level representation (to match
with the dictionary or lookup table of the motion direction for each region of the basic
facial action) so as to permit the high-level classification of facial expressions. Yacoob
and Davis™™ used this mid-level representation to classify the six basic facial expressions
as well as eye blinking. The recognition rate was 88% (except eye blinking for which it
was 65%) among 32 subjects with 46 image sequences. Rosenblum, Yacoob and Davis
®2 extended Yacoob and Davi$'®” work, based on the similar mid-level representation
to recognition of facial expressions of smiling and surprise, using an artificial neural
networks with radial basis function (RBF). The recognition rate achieved was 88% for 32
subjects.

Black and YacooB' used a local parameterized model of the image motion to
separate and recognize the non-rigid facial expression from the rigid head motion. Their
high-level recognition approach was similar to that of Yacoob and Davis’s tecHfiitjue
which is based on the mid-level index of the motion direction of each facial feature region
(brows, eyes and mouth). The mid-level representation was predicted, however, by taking
the difference of the motion parameter estimation and a threshold value. Thresholding

motion parameters would filter out some subtle motion. Furthermore, different threshold



were used for different motion parametersin the experiment ?: some were between 0.5 ~
-0.5, and others were between 0.00005 ~ -0.00005. This thresholding method for motion
parameters, in effect, reduced reliability and accuracy of the recognition. In their studies
of recognition of six basic facial expressions, the average recognition rate was 92% in 40
subjects with 70 image sequences.

Principal component analysis (PCA) has been used previously in gray-value base for
recognition expressions of on the forehead and brows (Bartlett, Viola, Sgnowski,
Golomb, Larsen, Hager, and Ekman “), for face recognition (Kirby and Sirovich ®¥; and
Turk and Pentland ©), and for object recognition with varying poses (rigid motion) and
illumination (Murase and Nayar ). It has also been used in optical flow base for
recognition of smile and mouth motion (Black, Y acoob, Jepson, and Fleet **), and of lip-
reading (Mase and Pentland ©®”). Black, et. a. ™ assigned thresholds for motion
parameters of linear combination in PCA for their classification paradigm. Mase, et. al. ©"
considered the averaged flow direction at each of four rectangular feature regions around
the mouth for lip-reading recognition. Both of these constraints introduced some degree
of insengitivity to the extracted motion information and thus limited the recognition ability
and accuracy

Mase and Pentland’s lip-reading approach ©” uses a template matching that minimizes
the sum of sguared differences (SSD) between the projected flow curve of the testing
word and that of the word templates in the two-dimensional eigenspace. The work of
Black, Y acoob, Jepson, and Fleet on smile and mouth motion recognition ¥ uses a similar
approach by comparing similarities of the parameters of linear combination in PCA
between the training and testing image sequences. In both cases, time warping is an
essential preprocessing for comparison purpose. This becomes impractical when the
lengths of image sequences are arbitrary (say, from 9 to 47 frames) and the projected flow
curves are in a higher dimensional eigenspace.

Kobayashi and Hara ©®>***" used three sets of artificial neural networks to recognize

six basic facial expressions, mixed facial expressions (combinations of 2 or 3 basic



components), and the intensity of each facial expression, respectively. Inputs to these
neural networks are the movements of sixty facial characteristic points which are manually
selected. The recognition rate for six basic facial expressions was 88.7% from 15
subjects, and 70% for recognizing mixed facial expressions from 10 subjects.

Other studies in Japan 2448858999 have used approaches similar to that of Kobayashi
and Hara based on the displacement of manually selected facial characteristic points.
Ding, Shimamura, Kobayashi, and Nakamura ®¥ used three sets of artificial neural
networks to recognize brows, eyes and mouth expressions. They assumed symmetrical
facial expressions, so they performed recognition only on the left half of the face. Others
used fuzzy logic (Hashiyama, Furuhashi, Uchikawa and Kato ¥, Ralescu and Hartani ©°,
and Ushida, Takagi and Yamaguchi ©¥) or chaos (Sato and Yamaguchi ®) combined
with artificial neural networks to recognize six basic facial expressions.

Bartlett, Viola, Sejnowski, Golomb, Larsen, Hager, and Ekman “ used three methods
(PCA of difference images, optical flow with correlation coefficients, and high gradient
component, i.e., wrinkle, detection) to extract information on upper facial expressions (six
upper face FACS AUs: AU1, 2, 4, 5, 6 and 7), and employed artificial neural networks for
recognition. To deal with the time warping problem, they proposed to manually pick up
six frames from each image sequence to form a new sequence for further processing:
neutral expression for the first frame, low magnitude expressions for the second frame,
medium magnitude expressions for the third and forth frames, and high magnitude
expressions for the last two frames. Considering the relative geometric correspondence of
face images, they took care of only rotation and horizontal scaling based on the location of
both eyes, which was insufficient for aligning face images accurately because the vertical
scaling was missing and the sizes of faces could be very different among subjects. The
information they used for the PCA is the differences in images obtained by subtracting the
gray values of the neutral expression (first frame) from those of the subsequent images for
each image sequence. Such a simple subtraction process is not adequate to take care of

the differences among individual faces. For high gradient component detection, they did



not discriminate that some wrinkles may be produced by facial expressions while others

may be a permanent characteristic of the individual's face. Also, they proposed to
wrinkles along several lines where some subjects may and other subjects may not appear
wrinkled with the same expression. The best recognition rate was 91% from 20 expert
subjects with 80 image sequences and 400 images.

Other methods of recognition have been applied to face or facial expression analysis.
Beymer © proposed a method to normalize face images across different subjects, he
analyzed and synthesized face images by interleaving shape and texture computations
using optical flow and PCA in gray-value b&$t Bregler and Koni¢™ employed PCA
and Hidden Markov Model (HMM) for speech recognition (eigenlips) and other
applications. Kanad&€®, one of the pioneers in face identification, used geometrical
features of the face, such as the length of facial features, distance between features, and
chin shape, to identify a face. Samaria and Yoffhgonverted each two-dimensional
static and mono-shot face image into a concatenated one-dimensional gray-value vector
for use in a continuous HMM to identify a face. These are indirectly related to our study

but provide valuable references to this research.

1.2 Problem Statement

As reviewed in the previous section, most research in facial expression recognition is
limited to six basic expressions and several combinattdhs®®%21%)  These stylized
expressions are classified into emotion categories rather than facial actions. It is
insufficient to describe all facial expressions because, in everyday life, six basic expressions
occur relatively infrequently. Emotion is often communicated by small changes in one or
two discrete features; on the other hand, the same facial expression may be involved in
more than one emotion. The presence or absence of one or more facial actions may
change its interpretation. For example, as shown in Figure 1, different smile expressions

have an action unit AU12 (lip corners pulled obliquely) and emotional simile which may
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Figurel Comparison of different smile expressions with different expression
intensities. The presence or absence of one or more facial actions can
change their interpretations.



indicate an anxious or concealed emotion, a grin or a genuine (AU6+12+25: lip corners
pulled obliquely for AU12, cheek raised for AU6, and subtly exposed for AU25, with or
without crow-feet wrinkles near corners of the eyes). The degree of smiling is
communicated by the intensity of raising the cheek and lip corners, and having the
wrinkles. So it isimportant to be able not only to recognize basic expressions but aso to
discriminate subtly different expressions and estimate their expression intensities, which
have a similar gross morphology but indicate varied meanings.

The Facia Action Coding System (FACS) ®¥ is so far the most comprehensive
method of coding facial expressions, and provides a guideline for discrimination among
closely related expressions. Manually encoding al action units (AUs) for various facial
expressions is a laborious process. It takes approximately 100 hours to train a technician
to have acceptable levels of coding experiences and up to 10 hours to code one-minute

“29 Thus, it is desirable to automate the extraction and

video tape of facial behavior
coding process, capable of delineating the temporal dynamics and intensity of facial
expressions. Feature points are to be tracked in pixel base instead of averaging flow
directions in a feature region. Optical flow in a larger region is to be efficiently
represented for discriminating expressions. Image sequences ought to be preprocessed to
separate the non-rigid motion of facial expression from any rigid head motion as much as
possible and to geometrically normalize (align) corresponding face images in a sequence to
ensure the assessment of correct motion information.

As the facial motion information are encoded into symbol sequences, it is natura to
consider an HMM for automatic recognition of facial expressions where the maximum
likelihood decision is assigned to an observable expression symbol sequence. HMM is
capable of taking care the problem of variable expression length. HMM topology is
referred to a particular network of states and state transitions. The best model is one with
as few parameters as possible that can capture the behavior of the training data set. There

exists no unified method to determine the optimum topology for an HMM. It will be a
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great challenge to develop a strategy to do so for the underlying facial expression

recognition problem.

1.3  Objective of the Research

The objective of this dissertation research is to develop a computer vision system,
including both facial feature extraction and facial expression recognition based on FACS
AUs, that is capable of automatically discriminating among subtly different facia
expressions.

For facia feature extraction, we will consider three approaches in parallel. We will
apply a pixel-based feature point tracking method, based on the coarse-to-fine pyramid
approach, so as to make it sensitive to subtle feature motion as well as to handle large
displacements; it will produce facia expression descriptions corresponding to each
individual AU or AU combinations. We will also develop a method by using the dense
flow to track motion vectors over a large facia region and applying the principle
component analysis for data compression yet yielding the entire facial motion information.
In addition, we will extract and analyze the motion of high gradient components (furrows)
in the spatio-temporal domain to exploit their transient variances associated with facial
expression.

Upon extraction of the facial expression information, each motion vector sequence will
be vector quantized to a symbol sequence to provide an input to the facial expression
classfier. An HMM-based classifier will be designed to deal with varies of facia
expressions which are to be recognized in the context of motion sequences of variable
length.  Furthermore, different methods based on different types of the extracted
expression information will be developed for expression intensity estimation which will be
useful to segment facial expression sequences, measure the meaning of the expression, and

analyze and synthesize facia expression for MPEG-4 applications in teleconferencing.
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1.4  Organization of the Dissertation

The dissertation is organized into nine chapters. Chapter 1 gives the motivation of this
research and reviews briefly the related works on facial expression recognition systems.
The objectives of this dissertation are discussed. Chapter 2 introduces the framework of
our computer vision system for facial expression recognition where FACS is used as a
basis and where feature tracking is contemplated. Under certain limitations, the rigid head
motion is removed from non-rigid facial expressions, and a geometric normalization is
prescribed to ensure that optical flows or gray values of face images have the close
geometric correspondence.

Chapters 3 through 5 present three methods to extract detail information of facia
expressions and to give expression intensity estimation. Chapter 3 describes the pixel-
based facial feature point tracking method using the pyramid approach for extracting
subtle as well as large movements of facial features in subpixel accuracy. The critical role
of the window function in motion estimation is analyzed. The motion is vector quantized
into a symbol sequence representing the facial expression. Chapter 4 employs the
wavelet-based motion estimation technique for dense flow tracking in order to include
information of the entire range of facial motion. Flow-based principa component analysis
Is presented to compress the high-dimensional dense flows to a low-dimensional weight
vector for each frame in a video sequence, which is encoded for recognition processes and
expression intensity estimation. Chapter 5 presents a technique for high gradient
component (i.e., furrows) analysis. Motion line and edge detectors are designed to extract
high gradient components in the spatio-temporal domain and to distinguish furrows from
the noise. The high gradient components are encoded to mean and variance vectors as
inputs to the recognition process.

Chapters 6 and 7 present the HMM for facial expression recognition. Chapter 6
analyzes the HMM technique and its associated computational issues. Chapter 7 presents
a method of determining a special HMM topology for applications to facial expression

recognition.

11
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Chapter 8 describes our experimental results. A large database has been tested,
subjects ranged in gender, age and ethnicity. We analyzed the performances of the
recognition system using three feature tracking methods and demonstrated its high
accuracy in comparison to the ground truth by human observation.

Chapter 9 discusses our major contributions and suggestions for further research.

12
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20 FACIAL EXPRESSION RECOGNITION SYSTEM OVERVIEW

Humans are capable of producing thousands of facia actions during communication
that vary in complexity, intensity, and meaning. @ Emotion or intention is often
communicated by subtle changes in one or several discrete features. The addition or
absence of one or more facial actions may alter its interpretation. In addition, some facial
expressions may have a similar gross morphology but indicate varied meaning for different
expression intensities. In order to capture the subtlety of facial expression in nonverbal
communication, we propose to develop a computer vision system with a user interface
(Figure 2) that automatically extract features and their motion information, discriminate
subtly different facial expressions, and estimate expression intensity. The system contains
two components. extraction and recognition as shown in Figure 3. Three methods are
developed for feature and motion extraction yielding symbol sequences to represent
observed expressions. These symbol sequences are input to the recognition process,

whichisan HMM computation to give the maximum likelihood decision.

2.1 Three Methods of Feature M otion Extraction

Facial expression is produced by the activation of facial muscles, which are triggered
by the nerve impulses. Facial muscle actions cause the movement and deformations of
facial skin and facia features. In the interpretation of facial expression, it is these
deformations which we observe, and from which we must deduce the underlying emotion.
Three convergent approaches are used to extract expression information (Figure 3): (1)
facial feature point tracking using the pyramid method, (2) dense flow tracking with
principa component analysis (PCA), and (3) high gradient component analysis in the

spatio-temporal domain. In order to allow recognition, this extracted expression
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Figure2 The user interface created by programming in C, Motif, X Toolkit
and Xlib.

information must be converted into motion vectors so they may be passed to the

recognition process (Figure 3).
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Figure3 Block diagram of afacial expression recognition system.
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Feature point tracking and dense flow tracking are used to track facial motion for
recognition of expressions varying in intensity in the spatio-temporal domain. Frontal
views of subjects (none wears eyeglasses) are videotaped under constant illumination,
although lighting may vary across subjects particularly when we videotape on different
days. These congtraints are imposed to prevent significant degradation in optical flow
calculation.

Facial feature point tracking using the pyramid method is especialy sensitive to subtle
feature motion and is also able to track a large displacement of feature motion in subpixel
accuracy. Facial feature point is based on facial features in regions of brows, eyes, nose,
and mouth. However, the forehead, cheek and chin regions aso have important
expression information. Dense flow tracking is used to include motion information from
the entire face. The use of optica flow to track motion is advantageous because facial
features and skin naturally have a great deal of texture. Using the principal component
analysis, a low-dimensional weight vector in eigenspace can be obtained to represent the
high-dimensional dense flows of each frame. Based on the displacement and weight
vectors, the motion information is converted to symbol sequences from which we can
recognize facial expressions, and is applied to estimate the expression intensity.

High gradient component analysis is also used to recognize expressions by the
presence of furrows. Facia motion produces transient wrinkles and furrows perpendicular
to the motion direction of the activated muscles. The facial motion associated with a
furrow produces gray value change in the face image, which can be extracted by the use of

high gradient component (motion line or edge) detectors in the spatio-temporal domain.

2.2 Recognition Using Hidden Markov M odels
Modeling facial expression needs to take into account the stochastic nature of human

facial expression involving both the human mental state, which is hidden or immeasurable,

and the human action, which is observable or measurable. For example, different people

16



17

with the same emotion may exhibit very different facial actions, expression intensities and
durations. Individual variations notwithstanding, a human observer can still recognize
what emotion is being expressed, indicating that some common element underlies each
motion. Therefore, the purpose of facia expression modeling is to uncover the hidden
patterns associated with specific expressions from the measured (observable) data. Facial
expression modeling requires a criterion for measuring a specific expression. It is
desirable to analyze a sequence of images to capture the dynamics ®. Expressions are
recognized in the context of an entire image sequence of arbitrary length. We will develop
a recognition system based on the stochastic modeling of the encoded time series
describing facial expressions, which should perform well in the spatio-tempora domain,
analogous to the human performance.

In order to model subtly different facial expressions having different durations
(arbitrary length of image sequence), the Hidden Markov Model (HMM) is developed to
recognize expressions based on the maximum likelihood decision criterion. A key problem
Is to determine the HMM topology for the facia expressions under consideration. Some
other advantages of using HMMs are: HMM computations converge quickly making it
practical for real time processing, it may evaluate an input sequence of uncertain category
to present a low output probability, and a multi-dimensional HMM may be developed to
integrate individual HMMs to give arobust and reliable recognition. The correspondence
between facial expressions and elements of the HMM is shown in Table 1.

Facial expression and speech represent human visual and audio actions, respectively
®8)  The HMM technique has been successfully applied to model all known phonemes (the
basic units of speech). Elementary HMMs of phonemes have then combined to represent

words, and then sentences ®°76™)

Speech may be considered as two- or three-
dimensional signals: frequency and amplitude change with time. Facia expressions may be
considered as three (or four)-dimensional signals: a time sequence of images. So a set of

elementary HMMs vll be developed to model various “expression units” of individual
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Table 1 Correspondence between facial expressions and elements of
the Hidden Markov Model.

Facial Expression Hidden Markov M odel
Hidden Process Mental State Model State
Observable Expression (Facial Action) Symbol Sequence
Temporal Domain Dynamic Behavior A Network of State
Trangtion
Characteristics Expression State Transition
Probability and Symbol
Probability
Recognition Expression Similarity The Confidence of Output
Probability

AUs or AU combinations, such as illustrated in Figure 4. Based on combinations of
elementary HMMs, we will be able to recognize continuously varying facial expressions.
A comparison of modeling facial expressions with modeling speech using HMMs is listed
in Table 2.

2.3  Facial Action Coding System and “Expression Units”

The proposed automatic of facial expression analysis follows the anatomically based
Facial Action Coding System (FACS) ©*, which is the most comprehensive method for
coding facial expressions by psychologists. With FACS, observers can manually code
discrete deformations of the face (movements of the facial muscle and skin) which are
referred to as action units (AUs). Basicaly, FACS divides the face into upper and lower
facial expressions and subdivides motion AUs. FACS consists of 44 basic AUs, with 14
additional AUs for head and eye positions as shown in Table 3. AUs are the smallest
visibly discriminable muscle actions that individuate or combine to produce characteristic

facial expressions which can be recognized from the image. More than 7000
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Upper Facial Expressions

AU4: AU1+4. AU1+2:
Brows are lowered and : : Inner (AUL1) and outer
drawn together. Medial p_ortlo_n of the (AU2) portions of the
eyebrows is raised (AU1) brows are raised
and pulled together '
(AU4).
Lower Facial Expressions
AU12: AUG+12+25: AU20+25:
Lip cornersare pulled up | Cheek raised (the lower- | Lips are parted (AU25),
and backward. eye and infraorbita | pulled back laterally, and

AU9S+17:
The infra-orbital triangle
and center of the upper
lip are pulled upwards
(AU9), and the chin boss
and lower lip are pulled
upwards (AU17).

Figure4 “Expression units” of subtly different facial expressions in our study

(taken from®?).

furrows are raised and
deepened, and the eye
opening is narrowed)
(AU6), and AU12 with
mouth opening (AU25).

AU17+23+24:
The chin boss is raised,

which pushes up the
lower lip (AUL7); the lips
are tightened, narrowed
(AU23), and pressed

together (AU24).

19

may be dightly raised or
pulled down (AUZ20).

AU15+17:
Lip corners are pulled

down and sretched
laterally (AU15), and
chin boss is raised which
pushes up the lower lip
(AU17).
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Table2 Comparison of modeling facial expressions with modeling speech

20

using HMMs.
Speech Facial Expressions
Human Action Audio Action Visual Action
Dimension (Including | 2-dimensional Signals | 3 or 4-dimensional Signals
Time Series)
Action Unit Phoneme Expresson Unit: Individua
AUs or AU Combinations
HMM Unit 1st-order 3-state HMM | 2nd-order 3-state HMM for
Upper Facial Expression and
3rd-order 4-state HMM for
Lower Facial Expression *.
HMM Unit One Word One Basic Facia Expression
Combinations (e.g., joy)
Concatenated HMM Sentences Continuously Varying Basic
Unit Combinations Facial Expressions

* Obtained in this research.

have been observed. According to FACS, each AU corresponds to an activity in a distinct

muscle, with the exception of AU4 @417,

Even though the one-to-one mapping of
individual AUs to distinct muscle activities is a basic assumption of the FACS, AUs enable
discrimination between closely related expressions. By discriminating “expression units
(individual AUs or AU combinations)”, we can simulate and understand individual
mechanics of the facial muscles. In the present study we consider, three upper facial
“expression units” and six lower facial “expression units” which are shown in Figure 4.
They are frequently occurring facial expressions containing subtle differences. They will

be studied for automatic recognition and estimation of their intensities.
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Table3 Action Units (AUs) in the Facial Action Coding System (FACS) ©?.

Upper Face L ower Face M iscellaneous
AU  Labd AU  Labd AU  Labd
1 Inner Brow Raise 9 Nose Wrinkle 8 Lips Toward
2 Outer Brow Raise 10 Upper Lip Raise 19 Tongue Show
4 Brow Lower 11 Nasolabial Deepen 21 Neck Tighten
5 Upper Lid Raise 12 Lip Corner Pull 29 Jaw Thrust
6 Cheek Raise 13 Sharp Lip Pull 30 Jaw Sideways
7 Lids Tight 14 Dimple 31 Jaw Clench
41 Lids Droop 15 Lip Corner Depress 32 Bite (Lip)
42 Lids Slit 16 Lower Lip Depress 33 Blow
43 Lids Closed 17 Chin Raise 34 Puff
44 Squint 18 Lip Pucker 35 Cheek Suck
45 Blink 20 Lip Stretch 36 Tongue Bulge
46 Wink 22 Lip Funnel 37 Lip Wipe
23 Lip Tight 38 Nostril Dilate
24 Lip Press 39 Nostril Compress
25 Lips Part
26 Jaw Drop
27 Mouth Stretch
28 Lip Suck
Head Position Eye Position
AU  Labd AU  Labd
51 Turn Left 61 Left
52 Turn Right 62 Right
53 Head Up 63 Up
54 Head Down 64 Down
55 Tilt Left 65 Walleye
56 Tilt Right 66 Cross-eye
57 Forward

58 Back
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2.4  Rigid and Non-Rigid Motion Separation and Geometric Normalization

For facial expression recognition, two main issues in image processing will affect the
recognition results: separation of non-rigid facial expression from rigid head motion, and
facial geometric correspondence to keep face size constant across subjects. Both
processes are necessary in order to ensure that these variables do not interfere with
expression recognition. Though all subjects are viewed frontally in our current research,
some out-of-plane head motion (e.g., yaw rotations or less than +10 degree pitch
rotations) may occur with facial expressions. Furthermore, face size varies among
individuals. For elimination of the above-mentioned rigid head motion from non-rigid
facial expression, an affine transformation (which includes trandation, scaling and rotation
factors) is adeguate to normalize the face geometric position and maintain face
magnification invariance. Face images are automatically normalized with the affine
transformation to ensure that optical flows or gray values of individual frames have close
geometric correspondence in order to achieve consistent recognition performance.

In the first frame of each image sequence, we manually select three facial feature
points for image normalization: medial canthus of both eyes and the uppermost point on
the philtrum as shown in Figure 5. These three points will carry only rigid motion
components accompanied with the head motion. Each of these points forms the center of
a 13 x 13 pixel flow window, and they are automatically tracked in the remaining frames
of each image sequence. Based on these three facial feature points, the original 490 x 640
(row x column) pixel display is cropped to 417 x 385 pixels for each frame to keep the
foreground face and remove the unnecessary background. The positions of al tracking
facial feature points, dense flows, or image gray values for each frame are then normalized
by warping them onto a standard two-dimensional face model based on the affine

transformation //(Figure 5) given as follows:
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Figure5 Normalization of each face image to a standard 2-dimensional face model.
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Here, u and v are the horizontal and vertical positions of the two-dimensional face model
coordinates, and U’ and v’ are the horizontal and vertical positions of the original image
coordinates. The upper-left corner of each frame, including the face model image is
denoted as (0,0). In the standard face model, the top point of the philtrum is the rotation
center whose position is (d,,d,) = (192,230), and the position of the medial canthus of the
right eye is (167,155) and that of the left eye is (217,155); the width w between the medial
canthi of both eyes is 50 pixels and the height h from the level of the medial canthi to the
top point of the philtrum is 75 pixels. The horizontal scaling is given by the parameter S,
which is computed as the ratio of the distance w at the face model to that distance w' at
the origina face image. The vertical scaling given by S, is computed as the ratio of the
distance h at the face model to that distance h’ at the original face image. The horizontal
and vertical displacements (trandations) are represented by D, and D,, respectively, and
are measured from the top point of the philtrum in the original face image (d',,d',) to that
in the face model (d,,d,). The angle of rotation of the line connecting the medial canthi of
both eyes in the original face image from the corresponding horizontal line in the face
model is represented by 6, where the clockwise rotation is negative and the
counterclockwise rotation is positive. The pixel positions of each image are integer-
valued, but the warped positions after the affine transformation are, in general, not
integer-valued. So the gray value at each integer-valued pixel of the warped image needs
to be estimated by bilinear interpolation based on the gray values of its four nearest
neighbor pixelsin the original image as shown in Figure 5.
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3.0 FACIAL FEATURE POINT TRACKING

The face is an interface of nonverbal communication, which can represent a subject’s
social feeling or reveal his brain function through the use of expressions. People activates
facial action mainly by controlling the individual or combined motions of four facial
features: brows, eyes, nose and mouth. These are the most attractive features on the facial
surface because they have high textures, and symbolize the underlying muscle activations.
An observer may recognize easily and directly the messages transmitted from the
movement of facial features. Optical flow in an image sequence has been used to track
highly textured regions reliably for extracting the motion information of facial features to
be used in further recognition process. Optical flow provides an estimate of the movement
of facial feature points. Since our goal is to discriminate subtly different facial expressions
and to estimate the expression intensity, the tracking algorithm must have high accuracy,

be sensitive to subpixel motion, and be able to deal with relatively large facial movements.

3.1 Dot Tracking and Reliability of Feature Point Selection

Since FACS specifies that each AU corresponds to the movement of a single muscle,
we design an automatic feature point tracking to extract motion information of facial
feature actions based on the movement of facial feature points (which represents the
underlying muscle activations) across an image sequence. This will allow realization of
the AU actions of facial expressions for encoding “expression units” constructed by
individual AUs or AU combinations.

It is important to make sure that the locations and movement of feature points can
exactly reflect the AU activation. The following method is used to track the facial

features. We attach black dots to specific points on faces of the subjects; a black dots
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have the same radius equivalent to 15 pixels on a face image of the size of 490 x 640. We
use the template matching (the correlation coefficient p) method to track dot movements
during the facial action by considering the highest value of the correlation coefficient
between the dot template F and the gray values in a target region 1(x) centered at position

X,

‘ S [F() = FIL (x+1) - T(x)] ‘

rtR

\/Z[F(r)—f]z\/Z[I(x+r)—T(x)]2

rirR rtR

ox) = 0.0<p<10 (3-1)

where r denotes a position within the circular region of the dot template whose areais R
(radius = 15 pixels), |(x+r) denotes the gray value of the image at position x+r, F and
1(x) are the average gray values in circle regions of the dot template and the image,
respectively, and x isin a search region m of 60 x 60 pixels, which is large enough to reach
the maximum dot movement but not too large to reach any neighboring dot template. If
the correlation coefficient pis closer to 1.0, there is very strong similarity between the dot

template and the target region; otherwise, they are less correlated. Utilizing the relations
; F(r)=RF (3-2)

and ;I (x+1) = RI(X) (3-3)

the above equation is smplified to achieve the efficient computation,

> F()I(x+r) —T(x)z F(r) —Ez I(x+r)+ ZfT(x) ‘

rtrR rtR rtrR rtrR

NGG) —ﬁ]z\/z 12(x+1) =219 Y 1(x+1)+3 T°(x)

‘ S F(n)1(x+1) = RFT(x) ‘

rtrR

S [F()-FP° \/z 12(x+r) - RI(X)T(X)

rtR rtR

px) =

(3-9

The first term in the denominator and the average gray value of dot template F can be

calculated first and assigned as constant values for quick processing.
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For the first frame of each image sequence, we used the computer user interface which
we designed to initially locate the center of each dot marked by a cross (+) on the screen.
By observing or automatically tracking the motion of the dots in the remaining frames, we
realized the AU actions of facia expressions and understood the underlying muscle
activations (Figure 6). This alowed us to correctly locate controlled positions of facial
feature points and measure the reliability of the selection of feature points based on which
the automatic tracking using the optical flow will begin.

Using the template matching method to track dots is inaccurate for two reasons. the
dots on screen may become deformed and are sometimes affected by the reflections due to
lighting (especially if red or white dot templates are used) on subjects with dark skin color.
The method is also much slower when compared to selected optical flow tracking
discussed before, especially when the number of dots and search regions are increased.

For the optical flow tracking, a set of feature points will be initially selected on the first
frame of each image sequence (from the neutral expression to the peak expression in an
arbitrary length of time). We suggest to select 4 facial feature points around the contour
of each brow, 4 points around each eye, 14 points around the nose contour, 10 points
surround the lip contour, and 3 points aong each cheek bone (below each lower eyelid) as
shown in Figure 7. This can be done by an operator using a computer, mouse, and user
interface as shown in Figure 2. The manually selected feature points are then
automatically tracked using optical flow in the remainder of the sequence. The motion of
these facial feature points simulates the facial muscular actions corresponding to AUSs.
The displacements of these feature points are directly proportional to the AU expression
intensities.

The reliability of the feature point selection has been confirmed in experiments by two
experienced operators. The first frames of 80 image sequences are independently selected
by two different operators. The optical flow method was used to automatically track
those selected feature points and inter-observer reliability was evaluated. Our
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Neutral Expression
(first frame)

Peak Expression
(last frame)

Figure6 Dot tracking: each dot is marked by a cross (+) a its center, lines
trailing from the dots represent changes in the location of dots due to
facial expression.
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Figure7 Locations of selected facial feature points (marked by a cross ‘+)
which reflect the muscle motion of facial features.

results showed a very high correlation and the identical recognition performance between
two operators ®®. This selection process can be easily taught to new operators. An
operator can learn this after a training of about 5 minutes session, which is substantially

shorter than learning the FACS (which may require 100 hours).
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\

Framet NX N Window Frame t+1

Figure8 Feature point tracking based on tracking the movement of
an n x n feature window between two consecutive frames
(here, nis 13 pixels).

3.2 M otion Estimation and Flow Window

The motion estimation method used here is based on the optical flow agorithm
developed by Lucas and Kanade ©®, and implemented by including the pyramid approach
used by Poelman and Kanade " to track large motion. This method assumes that the
gray vaues in any image feature region (n x n feature window) do not change between
two consecutive frames, but only shift from one position to another (Figure 8). We can
track the motion of high gradient points, such as facial feature points, with subpixel
accuracy by iterative computation. Its convergence is very fast.

Let us consider an n x n region R in the reference image at time t, where I(x) denotes
the gray value of the pixel position x in R. Let us find the best matching (registration)
position of this region in the following frame at time t+1, where 1..1(X) denotes the gray
value in the region, by minimizing a cost function E of the sum of sguared differences
(SSD) defined as

E(d(x) = ;[ 1 (x=d(9) =12 (] WO (3-5)
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where d(x) is the displacement of x of region R between two consecutive frames and W(X)
Is a window function for weighting the squared differences in E. This minimization for

finding the motion vector d(x) can be done initerations. Let

d(x) =d' (X) + Ad(x) (3-6)

a theith iteration and Ad(X) is the incremental displacement at the ith iteration. We want
to robustly estimate the incremental displacement Ad(x) with a subpixel accuracy. Let us
expand the term

I (x=d)=1,(x-(d" +Ad)) (3-7)
by the first order Taylor’ expansion:

I, (x-d' -Ad) =1, (x-d')-1,(x-d")"Ad (3-8)
wherel’ (x) denotes the gradient of the gray value 1,(x). The incremental change in the
SSD cost function is given by
E(Ad) = E(d' +Ad) - E(d')

;[lt(x—di)— I (x=d")"Ad - |t+1(X)]2W(X)—;[|t(X—di) =L (TP W(X)

I

;[I;(x—d‘)TAdlzw(x)—2;[|t(x—di) ~ 1, (I, (x—d")T Adw(x)

=Ad"GAd -2e"Ad (39
where

G:ZI;(x—di)I;(x—di)Tw(x) (3-10)
Is the Hessian matrix of the gradients of I; with awindow function w(x), and

e =S 1 (x=d) =1, (N, (x=d") WX (3-11)

is a difference-gradient row vector which is the product of the difference (or error)
between the regions in the two consecutive images and the gradient of the gray-value I,
together with a window function w(x). The maximum decrement E(Ad) occurs when its

gradient with respect to Ad is zero,
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dE(Ad) _ TEVT oo o = ]
) =GAd +(AdTG)T -2e=2(GAd -€) =0 (3-12)
Hence,
Ad(x) =Ge (3-13)

Initializing d®(x) = [0,0]" and following equations (3-8), (3-10), (3-11) and (3-13), the
optical flow d(x) can be robustly estimated through iterations yielding the subpixel
accuracy.

The motion estimate d(x) is more accurate when the gradients of both 1:(x) and I:.1(X)
are large and nearly equal asillustrated in Figure 9 ©°.

109 =1 () = 1y (x+d) = 1, ()
=[1a () + 11 ()d] = 1, (%)
=1,,(x)"d (3-14)
and 1,,,(x) denotes the second derivatives. The first order Taylor’s linear approximation
is more likely to give an accurate estimdteshen both the difference of the gradiemfs

and |,

t+17

and the second derivativeslgf are small®. Otherwise, it is prove to have a
large error. Thus the window functiawix) should be small when the difference of the

and |,,, is large, and large when the difference is small (Figur€®9) If the window

function is unity,wm(x) = 1, over then x n regionR such as used in Lucas and Kanade’s
flow estimation®, the local minimum of SSD is considered which maintains the high
frequency information in the region but may yield a noisy result. This optical flow can
accurately track the highly textured local region and the computation converges very fast.
It is good for use in the facial feature point tracking and for real time processing. But it
will be lessaccurate when used to track a less textured region or a region with high
reflection where there is no high gradient pixels for tracking, the region is not
trackable. In such a case, more global information instead of local minimization may be
needed, such as using the regularization-based or global smoothness afptdach

estimate the optical flow in textureless region, but it is more time consuming since a large
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Less accurate
tracking estimation
Accurate tracking Accurate tracking
N estimation estimation
Gray Vaue | | |
109 i ! i
| | | >
| i i Position x
Weight i i i
wW(X) v
>
X x+d Position x

Figure9 Window (weight) function w(x) can be used to control the
accuracy of motion estimation based on the gradient

varying from point to point ©°.

window is involved and it may also smooth out high frequency components and thus
reduce the tracking accuracy. Two methods have been recently developed to overcome
these local noise and global smoothness problems: the spline base method ®© and the
wavelet base method ), both use the pyramid approach and multiple flow windows
(Figure 10).
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3.3 M otion Confidence Estimation

Tomasi and Kanade ©?; and Poelman and Kanade " have shown that the eigenvalues
of the Hessian matrix G can be used to estimate the confidence of whether the n x n
feature region R is trackable or not. We illustrate it by four features regions shown in

Figure 11 with window function w(x) = 1 in each region, thus

[l
D O
o oo D 2. B
TeeTgapey gmi o 7
5 x—di E
;%E 1, (x=d) ~ s (10
DalD tr x—di t - Tl D
CRE ; A0 o D (519
%Hw[h(x 4= I

In Figure 11.a, the feature region R is textureless or very smooth. This region will be
difficult to track since it has zero gradient in all directions and, hence, both eigenvalues of
the Hessian matrix G are equal to zero. If afeatureregion R contains a line or edge which
has high spatial gradient valuesin at least one direction as shown in Figure 11.b or 11.c, or
which has highly correlated spatial gradients in both horizontal and vertical directions asin
Figure 11.c (the Hessian matrix G has one large eigenvalue and one small eigenvalue),
then this region will be difficult to track. Only when the feature region R has high spatial
gradients in two orthogonal directions (horizontal- and vertical-gradients are weakly
correlated), and hence both eigenvalues of G are large, can this feature region be localized
and easily tracked as shown in Figure 11.d. From the mathematical point of view, if the
Hessian matrix G has one or more small eigenvalues, then computation of its inverse is an
ill-conditioned problem because it is close to be singular.

To estimate the confidence of whether a selected n x n feature region R is trackable or

not, we use the confidence value defined below.

35



(@) ! I, l, G (A1)

=

ololo]o]ollo]lo]o]o]o (A1)
o[ofofofol[ofofofolo|, .
ololo]o]o ooooo[ } (0,0)
ololo|olo]||o]olo|o]o]| L9 O
ololo]olo]|{o]olo]o]0

(b)
ol1]o]-1]lo||olo]o]0 o
ol1]o-1]o||olo|o]o [0

10 0

o|1|0]|-1]0 ooooo[ } (10,0)
ol1]o|-1/0||o]olo]o]o]| L9 O
ol1]ol-1]o||olo|o]o |0

©
ololo|1]ol||lololo]1]o0
ofof1fo[-af[ofofafola|p, .
ol1]ol-1]0 010-10[ J (16,0)
1/o|-1/oo||[1]0]-1]/o|o| L8 8
ol-t]oloo||ol-1]0]0 [0

(d)
ol1]o]-1]o||lololo]o o
o[1]of-1]o|[o]z]ofslo|f, ,
1]olofol1|{1]o]-1]0 1[ :|(9.41,6.59)
ol-1/1]oo|lo]-1lo]o]o| LY 7
olo|1loo|[-1[o]o]0 [0

Figure 1l Trackahility of various feature regionsin abinary image: (a) contains no
image texture so it would make a poor feature; (b) and (c) have high
gradients localy either in one direction, or the horizontal- (1_-) and

vertical- (1, -) gradients are highly correlated with each other asiin (c),

they also are not trackable; only feature (d) can be used as a trackable
feature 7.
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A min* (n* n)

T 5 1, d) =197 (310

Here, Amin IS the minimum eigenvalue of the Hessian matrix G. The constant 1 is used to
avoid a zero value in the denominator in case of a perfect matching. The trackability is
proportional to the confidence value, (or is proportional to Amn), and inversely
proportional to the difference (or residue) between two matching regions. A feature
region with high Am, contains high-frequency textured patterns and can be localized
accurately even though there is noise in the image. A feature region with a very low value
of Amin cOntains smooth areas, so image noise is more likely to cause shifts along the lower

gradient direction, such as along the line or edge in Figure 11.b and 11.c.

3.4  Tracking Subpixel and Large Motion

Since we want to discriminate subtly different facial expressions by extracting the
movement of feature points, it is necessary to use optical flow to accurately track motions
of feature points in subpixel accuracy. Initially a5 x 5 Gaussian filter is used to smooth
out the noise in order to enhance the flow computation convergence. Selecting the size of
the feature region is an important trade-off. 1t should be large enough to include sufficient
texture in it, while small enough so that the computation of the inverse Hessian matrix G
will not become ill-conditional. Also, a larger region will require more computation in
order to perform feature tracking. We choose 13 x 13 pixels to be the feature region.
That is, each selected feature point in the first frame of each image sequence (image size
490 x 640 pixels but cropped to 417 x 385 pixels) is the center of a 13 x 13 flow region.
A window function w(x) = 1 over the feature region is chosen because the area
surrounding each feature point is full of texture. The movement of facial feature points is
then automatically tracked with subpixel accuracy in translation % via optical flow in

the remaining frames of the image sequence.
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The selected feature point location x is integer-valued, but x+d is generaly not integer-
valued in order to accommodate for subpixel flows. We estimate the image gray value at
an non-integer-valued pixel by using the bilinear interpolation,

L (x+d) =1(x,%;)
= 1(ig, i) * (i, +1= X0, +1=X,) +1(i,,i, +)* (i, +1- X, X, —i,) +
L3, +20,)* (X =iy, 0, +1=X,) + 1 (1,40, +D* (X, =1y, X, —1,) (3-18)
where i, = [X,[Jand i, = [X,[] and [x[Jrepresents the largest integer smaller than or

equal to x. Since the movement of feature points will be tracked for an entire sequence in
subpixel accuracy, the ending position of each tracked feature point in the first pair of
frames (I4,1:+1) will be used as the starting position of the tracked point for the next pair of
frames (li.1,11+2), and so on. The hilinear interpolation method is applied to interpolate
gray values of the non-integer-valued pixels of both the starting and ending positions for
each tracked feature point in each consecutive pair of frames in the sequence.

Consecutive frames of an image sequence may contain large feature-point motion
caused by gross movement of the subject between frames, such as sudden head
movements, brow raised or mouth opening of the surprise expression, which may cause
missing or lost tracking (Figure 12). In Figure 12, lines traling along feature points
denote their movements across image frames in the sequence. In order to recover these
large motions without losing subpixel accuracy, we use a pyramid method with reduced

resolution (spatial smoothing)

. Each image is decomposed into 5 levels from level O
(the original finest resolution image) to level 4 (the coarsest resolution image). The image
sizes are 490 x 640 (row x column), 125 x 160, 62 x 80, 31 x 40, and 15 x 20 pixels,
respectively (Figure 13). We use 13 x 13-pixel window regions for each level. From level
4 to level 1 (from coarse to fine levels), we consider window-wise 1, 4, 16 and 64 flow
regions for the whole image at each level, respectively. Each window center in the first
frame is used as the starting position for motion estimation at that level. From level 1 to
level O, we only consider those 13 x 13 feature regions whose centroids are the locations

of the previoudly tracked feature points. Flow computation proceeds from the
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Figure12 Festure point tracking excluding the pyramid method: it is sensitive
to subtle motion such as eye blinking, but it loses tracking for large
motion such as mouth opening and suddenly raising eye brows.
Lines trailing along feature points (marked by a cross ‘+’) denote
their movements across image frames in the sequence.
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Leve 3:
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Leve 2:
62 x 80 pixels

Level 1:
125 x 160 pixels

Level O:

490 x 640 pixels
cropped to be
417 x 385 pixels

frame 7 frame 8

Figure13 A 5-level pyramid for feature point tracking.
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lowest resolution level (level 4) to the highest level (level 0) of the pyramid.

For the iterative computation at level |, we use the estimated motion vector d.; and
confidence value C;;; obtained at the coarser level 1+1. At the coarsest resolution level 4,
the motion vector is initialized at (0,0)" and iterated to obtain a solution d,; confidence
value C, is then computed. There are four feature regions at level 3, 2*d, is taken as the

initial motion vector of each region center and iteration proceeds to obtain a motion
vector d 5 in each region with confidence value Cs dsand d, are weighted as described

below to give a new estimate ds; so is a new estimate of C; obtained by weighting C s and

Cs. Ingenerdl,
4 <Gt (27d)* K +C *d,* (1-K) (319
| C. *K+C*(@1-K)
CI - CI+1* CI+1* K +E:I * C| * (1_ K) (3_20)
C. *K+C*(1-K)
where 0.0<K<1.0 and 1<I<3

where K is a constant weighting factor that determines how much confidence is given to

that obtained from the coarser level in the pyramid. 2*d, will be used as the initial motion

vector and C; as new confidence value for iterative estimation at the next finer resolution

level 1-1. If K = 1.0, al flow estimates at the current level (I) are derived from the
previous level (I+1) without regard to the flow estimate computed at the current level. If

K = 0.0, it provokes each level's computation to use the previous level's flow estimate
only as an initial value. This inter-level confidence base is used for combining the effect of
spatial smoothing. In order to have a reliable flow estimation when the tracking region
contains insufficient texture, the flow at the high-resolution level is mainly inherited from
the flow in the previous coarse level of the pyramid, th& is, close to but not equal to

1.0. If the tracking region has high texture, then it can be reliably tracked so as to be less
involved with the flow estimated at the previous level, thaKig close to but not equal

to 0.0. We choos&=0.5 for confidence estimation. From level 1 to level O, we first

identify the locations at level 1 corresponding to the feature points at level 0, which in
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general will not coincide with the region centers at level 1. At each of these locations, its
motion vector will be estimated by the hilinear transformation from its four neighboring
centers. This estimated vector multiplied by 4 will be used as the initial motion vector at
the corresponding feature point for iterative estimation at level O to obtain the estimate do
in the feature point tracking. Then the process repeats for the next consecutive point of
frames.

Using this pyramid method for optical flow computation, we initially enable the
gradient descent method at low resolution levels to avoid local minima in the search for
the optimal solution of feature point displacement. This alows us to recover any large
motion (up to 100-pixel displacement) of the feature point while maintaining its sensitivity
to subtle (subpixel) facia motion (as shown in Figure 14), and the flow computation
converges quickly (less than 20 seconds for tracking 70 feature points between two
consecutive frames using the interface under SUN Sparc 5). Point tracking method deals

very well with large feature point movement between two 490 x 640-pixel frames.

3.5 Analysisof Feature Point Tracking Problems

It has been noted in our experiments that an error may occurred when some facial
feature points located at the edge of the brows or mouth had large movements between
two consecutive frames. Those selected feature points were tracked along the edge
direction of the brows or mouth (Figure 15). Thisis due to the fact that the tracking was
sengitive along the low gradient direction when this region contains a high gradient line.

There are three ways to correct these errors. One way is to locate those feature points
away from edges instead of along the edges. The error is reduced for brows raised but
still occurs along edges when mouth opens larger (Figure 16), because the mouth motion
causes more facial deformation than that by brow motion. Another solution is to have a
larger n x n feature region R to include more motion information (Figure 17), but it

requires more computation time for tracking. Still another method, which we usg, is to
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increase the value of the weighting factor K of the inter-level confidence base so as to
include more global information from the previous low-resolution level processing in the
pyramid method (Figure 18).

3.6  Data Quantization and Conversion for the Recognition System

Three upper facial expressions are to be recognized based on displacements of 6
feature points at the upper boundaries of both brows, and six lower face expressions are to
be recognized based on displacements of 10 feature points around the mouth. Feature
points are numbered from left to right for brows region, and from the left corner point of
lip clockwise around the mouth. The displacement of each feature point is calculated by
subtracting its normalized position in the first frame from its current normalized position.
Each feature point has the horizontal displacement component and vertical displacement
component. The displacement vector is 12-dimensional in the upper face and 20-
dimensional in the lower face (Figure 19). Facial expressions are characterized by these
two vector sequences. These displacement vectors in upper and lower facial regions are
vector-quantized separately into 16 and 32 symbols, respectively, as discussed in section
6.1 and section 8.3.1. Table 4 shows sample symbol sequences for nine facial expressions
under consideration. Such symbol sequences are used as inputs to the HMMs of upper

facial expressions and lower facial expressions, respectively, for automatic recognition.



Figure 14 Feature point tracking including the pyramid method: it is sensitive
to subtle motion such as eye blinking and also tracks accurately for
large motion such as mouth opening and suddenly raising eye
brows.



Figure15 The feature point tracking error due to violation of the feature
region’s trackability condition: tracking along the edge direction at
both brows and mouth regions with deformed shapes.

Figure16 Reducing the tracking error by locating feature points away from edges
of facial features: the tracking for brow region is improved, but is still
erroneous in mouth region with large mouth opening.



Figure17 Reducing the tracking error by using a large window size which
requires more processing time.

Figure 18 Reducing the tracking error by increasing the value of the weighting
factor K (K=0.5) of the inter-level confidence base in order to include
more globa information from the previous low-resolution level
processing in the pyramid method.
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d

Displacement vector d; = (d;1,d:2,..., Gj,...,0k;)
whered:; = (0 norizontal, Okjvericar) IS the pair of horizontal and vertical
displacements for featurg poinamet,
I = 6 for brow region (upper facial expression)
I = 10 for mouth region (lower facial expression)

and feature points are numbered from left to right for brow region, and from the
left corner point of lip clockwise around the mouth.

Displacement vector sequenbe= (d,d,...,d,...,dr) for each of the upper and
lower facial expressions whefes the length of an image sequence.

Figure19 Displacement vector of the facia feature point tracking to be
encoded for input to a Hidden Markov Model.
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Table4

Sample symbol sequences for three upper facial expressions and six
lower facia expressions under consideration.

AUs Feature Point Tracking: Upper Facial Expressions
(Symbol Sequence)
4 3 33355555555
1+4 3 3333331111111 111
1+2 3 33 3 36 6 6 6 6 6 6
AUs Feature Point Tracking: Lower Facial Expressons
(Symbol Sequence)
12 2 22 2 2 2 2 9111
6+12+25 |2 2 2 2 105 5 5 111111111111 11
20+25 |2 10 10 10 13 13 13 13 13 13 13
9+17 2 2 3 3 31414141414
15+417 |2 2 2 2 6 6 6 6 6 6 6 6 6
17+23+24 |2 2 2 2 4 4 4 4 4
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Expression
Intensity 77
d |0 1 3 5 7 10 14 20 1.0

n 000 014 039 058 071 082 089 094
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Figure20 An example illustrating the expression intensity estimation by
following the non-linear mapping (k = 7) of the constrained
feature point displacement for the case of AU2.

3.7  Expression Intensity Estimation

Since displacements of feature points correspond to AU intensities of facid
expressions and indicate the underlying muscle motion, we can quantify the expression
intensity based on the displacements of feature points. Figure 20 and Table 5 show the
logic of expression intensity estimation and the specified constraints for displacement
measurement of each feature point which corresponds to the expression intensity of
individual AU. We propose to estimate the expression intensity 77 by using following non-

linear mapping of the feature point displacement

n= 4 where0<7<1.0 (3-21)

Vo2 +k?
where d is the measured normalized displacement of a feature point under constraint for a
AU as specified in Table 5. Since the motion of a feature point during a facial expression
Is described, in genera, initial as gradual motion (starting from the neutral expression)
followed by quick motion then gradually slowing down until the peak expression is

reached, the value of constant k is determined empirically according to individual AU
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Table5 Thedictionary for expression intensity estimation (image: 417 x 385 pixels).

Action Constraint: direction M easured Displacement Kk
Unit 180° ¥ N d (Pixel
180° )
Brows
1 Inner point of brow moves vertical up Vertical displacement 7
2 Outer point of brow moves vertical up Vertical displacement 7
4 1. Inner point of brow moves vertically | 1.Vertical displacement 4
down
2. Inner points of both brows move 2.Horizontal distance
horizontally toward one another between both points
Eyes
5 Middle point of upper eyelid movesup | Vertical displacement 2
7 Middle point of lower eyelid moves up Vertical displacement 2
41~46 | Middle points of eyelids move vertically | Vertical displacement 4
together (narrow eyes or blinking) between both points
Nose
9 | Side point at nostril moves up | Vertical displacement 5
Mouth
12 | 1. Left corner point of lip moves up 1. Euclidean distance 6
between 100 and 170 degrees
2. Right corner point of lip moves up 2. Euclidean distance
between 10 and 80 degrees
20 | 1. Left corner point of lip moves 1. Euclidean distance 6
horizontally between 170~180 and -
170~-180 degrees
2. Right corner point of lip moves 2. Euclidean distance
horizontally between 0~10 and 0~-10
degrees
15 | 1. Left corner point of lip movesdown | 1. Euclidean distance 3
between -90 and -170 degrees
2. Right corner point of lip movesdown | 2. Euclidean distance
between -10 and -90 degrees
18 | Both corner points of lip move Horizonta distance 8
horizontally toward one another between both lip corners
23 | Two points on upper lip move Horizontal distance 2
horizontally together between both points
24 | Both center points on lips move Vertical distance between 5
vertically together both points
25~27 | Both center points on lips move Vertical distance between | 20

vertically away from baseline

both points
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Table5 (Continued)
The dictionary for expression intensity estimation (image: 417 x 385 pixels).

Action Constraint: direction M easured Displacement Kk
Unit 180 ¥y~ N\ 0 d (Pixel
180 —" )
Mouth
17 Existence of furrow or wrinkle on the Not measured -
chin

(listed in Table 5) to give a genuine expression intensity time course fit to the velocity of
the facia motion (like the oscillation of a spring between compression and release) as
shown in Figure 21.

The expression intensity estimation given above is one first attempt to quantify AU
expression measurement. In redlity, it is difficult to measure the expression of an
individual AU by tracking a single feature point which indicates a single muscle
movement. For example, both AU15 and AU20 involve downward motions of feature
points at lip corners. Although the FACS system assumes that there is a one-to-one
mapping between an AU and a single muscle motion, the expression intensity of an
individual AU may be composed of the coordinated movements of multiple muscles or
movements of multiple feature points. It would be desirable to consider a set of feature
points corresponding to an “expression unit,” and measure their simultaneous motion for

guantifying the expression intensity. This will be a challenging aspect for future research.
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Figure21 Expression intensity time course of AUL, 2 and 5 fit to the
displacement changes of facial feature points based on the
non-linear mapping "
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40 DENSE FLOW TRACKING AND EIGENFLOW COMPUTATION

Feature point tracking of eyebrows and mouth presented in Chapter 3 is sensitive to
subtle feature motions and is capable to track large displacements. The forehead, cheek
and chin regions also contribute important facial expression information. Since the actions
of individual facial muscles are interdependent, and the activation of fibers in one muscle
may influence movements of adjacent muscles. Single facial expression may be the result
of movements and deformation of not only facial features but also facial skins which are
caused by facial muscle actions triggered by nerve impulses. To enhance the realism of an
automatic recognition system, it is desirable to capture more detailed motion information.
This leads to the consideration dense flow which describes the motion of each pixel on the

entire face image.

4.1 Wavelet-Based M otion Estimation

Wu’s approach of dense flow estimatid¥ is employed to estimate the entire facial
motion. The flow window functions are based on scaling function and wavelet of Cai and
Wang ®® (Figure 22.a), which provide wavelet coefficients from the coarse-to-fine
resolution levels. This approach estimates image motion in large regions with large
window support at the coarse resolution level and motions in small regions with small
window support at the fine resolution level. It is different from the traditional coarse-to-
fine pyramid method by taking into account the detail information decomposing image
resolutions at various resolution levels. Both coarser and finer level motions can be
simultaneously estimated to correct the error produced by the previous motion estimation
at the coarse level. It will yield moeecurate motion estimation.

Let us consider the one-dimensional case first. The scaling furgzisathe fourth-
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(a3 The 10 scaling function
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Wavelet
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1-dimensional scaling function and wavelet.
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2-dimensional scaling function and wavelets: (a) @x,y) = @X) dy),
(0) ¢'(xy) = @X) UY), (©) YxYy) = ¢x) @y), and (d) ¢P(xy) = ¢UX) YY)-

Figure22.a 1- and 2-dimensional scaling functions and wavelets .
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Figure22.b Dilation and trandation of 1-dimensional basis (scaling and
wavelet) functions .
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order (L = 4) B-spline function acting as a low-pass filter for smoothing the signals, thisis

represented by
W):%;E?E“lmx—n&‘ OH()  wherel =[0L=4]  (4-1)

where | denotes a finite interval and H%(1) represents the Sobolev space containing all
continuous functions with the finite energy norm up to the second derivative. The wavelet
(/X) acting as a high-pass filter is derived from the scaling function through a 2-scale
equation.

W(x) = _73g0(2x) " %gﬂ(Zx 1) - _73¢1(2x ~2) 4-2)

The interval for ¢(x) is[0,3]. The dilation 2 and trandlation k of ¢(x) and ¢/(x) are given
by (Figure 22.afor j=0 and k=0)
@ (¥) = (2" x = k) j20, k=-2,..,2L-2 (4-3)

@, () = (2" x-k) j=0, k=-1,..,2L-2 (4-4)

A finite energy continuous function d(x), which represents the motion a position X,
can be decomposed into a scaling component d.;(X) at the coarsest resolution level -1 and

many wavelet components d;(x)'s at resolution levelg= 0,

400 = d; (%) + dy () + 6,00 +..+, (4 (4-5)
where
d.(0= 3 o) (4-6)
d,00= Y 20 @7

In the motion estimation problerd(x) is unknown but satisfies the optical flow equation.
Its solution is to be computed by the above multi-resolution approximation (Figure 22.b).
By repeatedly estimatind’ the coefficients; ,, each componemk(x) is constructed from

the linear combination of translated basis functions at jevel
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For the case of a two-dimensional images, the two-dimensional scaling functions and
wavelets may be constructed from the tensor products of two scaling function and wavelet
(Figure 22.afor j=0, k;=0 and k,=0). Hence,

B, (6 Y) = 2T X— k) P21 y —k,) (4-8)
W 0y = 2 x= k)2 y-k,) (4-9)
WY (0Y) = (2 x -k )A2 Y- k) (4-10)
WO, (0Y) = (@ X - k)WY -k,) (4-12)

where j, k;, and k, denote the resolution level, horizontal trandation, and vertical
tranglation, respectively.

Let u(x,y) and v(xy) be the displacement of flow functions a the horizontal and
vertical directions, respectively. They can be closely approximated by linear combinations
of the scaling functions and wavelets (window functions) given in equations (4-8) through

(4-11) from the coarsest motion-resolution level -1 to the fine motion-resolution level J.

u(x,y) =u,(xy) + 2[11,” (%, y) +uj (X, y) +up (%, y)] (4-12)
V(X y) =v4(xy) + Z[V}* (X, Y) +V (%, y) + V7 (% Y)] (4-13)
where
L2 Ly,=2
wLxy=S Sc . e (xy) (4-14)
k=2 Ky=2 TE T

2l-2 20,2

U,H (xy) = Z Z C;-!kl,kzéa;-jkl,kz (%y) (4-15)
K=2 K=
2l -2 2)1,-2

U\j/ (xy) = Z Z C\j/,kl,kzl>[/\j/,k1,k2 (%y) (4-16)
=1 k=2
2l -2 2)1,-2

UjD (xy) = Z Z CjD,kl,kzl)[/,'D,kl,k2 (xy) (4-17)
1

k=1 K5=
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and

L2 Ly,-2

vu(oy)= S S d e (XY

Lz e Lk ky 7 0,k Ko
2l -2 2)1,-2

H _ H H

Vi (X,y) = Z Zdj,kl,k2¢j,kl,k2 (%y)
K=2 Ky=1
2l -2 20,2

v _ v v

v (X,y) = Z Zdj,kl,k2¢j,kl,k2 (%y)
=1 k=2
2l -2 20,2

ViD (xy) = Z Z dj[?kl,kzl)[/jD,kl,kz (x,y)

k=1 Ky=1

58

(4-18)

(4-19)

(4-20)

(4-21)

The four window functions are used for the following representations. ¢ (x,y) is

used initially to represent the flow at the coarsest level so as to achieve afast convergence.

Wavelets ¢} , (%Y), ¢}, (%y) and ¢p , (xy) are used to represent the high

gradient components of the optical flow at the jth resolution level in the vertical,
horizontal and diagonal directions, respectively. Based on these four basis window

functions, we can estimate the Hessian matrix G and difference-gradient vector e by %V

G=3 g(xg(xy) wxy)

e=> [ (x=u(xy),y =v(x,y)) = l..(x V)] g(x, Y)W(X, )

where
window (weighted) functionw(x, y) is unity,
g(X’ Y) = l%,—z,—zl x "'%,Ll—Z,LZ—ZI; ‘/lcl)-,'—z,—ll X[)Ulel L,-2,2) ,_2_2| x
wg,—l,—ZI x h 'w\jl,zi L,-2,2] L2—2| x wCE,)-l,-ll x h 'ij,zi L,-2,2] L2—2| X
Boaly By Yool y 9], L-22iL,-2] y

v ' v ' D ' D '
wO,-1,-2| y wj,zi L,-2,2) L2—2| y wO,-l,-lI y wj,Zj L-22] L2—2| y]T
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L(xy) =(.1,)

0l (x=u(x ),y =v(xy)) ol (X=u(xy).y=v(x.y), (4-26)

= ox oy

Since the feature of Cai and Wang's basis functions is to use wavelet coefficients from
coarse-to-fine levels to represent any given function, the flow funaticng andv(x,y)

can be determined by estimating the wavelet coefficient vecle(s.., G« k.,...) and
d'=(...,d.k,...) from the coarsest level —1 to current lejvelsing iterations of both

coefficient vectors,

T T\T — H \% D H \% D
(c,d" )" =([-Coiik, = Cokk, *Cokok, = Cokuk, = Cik ks *Chkiky = Cikuk, -+

H \% D H \% D T
[0k, Dok, ok, Dok k, =Cikk, +Cikik, = Cikk, 1)

=G'e (4-27)
where
2<ks Li-2 and -Xk< L;-2 for c_yy , andd_
2<k<2L;-2 and -1k <2l,-2 for ¢l ,, andd?
1<k <2l;-2 and -Xk<2l,-2 for ¢!, andd},
1<k <2l -2 and -1k <2l,-2 for ¢, andd?
and

L; =L, =4, and j=0,1,..J
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4.2  DenseFlow Tracking

In this method, the wavelet-based dense flow is used to automatically track a large
region, for example, the entire 417 x 385-pixel face image (cropped from the original 490
x 640-pixel image) for each image sequence of a certain length (from the neutra to the
peak expression) so as to include the whole motion information of a facial expression
(Figure 23). Since the movement of each pixel is estimated between two consecutive
frames, the ending position of each tracked pixel at the previous motion estimation
(between images 1.; and I) is the beginning position at the current motion estimation
(between images I; and I+;). The motion of subpixel accuracy is estimated, and the gray
vaue a the non-integer-valued ending position for each tracked pixel is bilinearly
interpolated for further processing.

Because using the wavelet-based dense flow method is very time consuming at the
present time, taking more than 2 hours for three-level (-1, 0 and 1) or 20 minutes for two-
level (-1 and O) computation between two 417 x 385-pixel frames using a SGI-Irix
workstation, we use the two-level wavelet-based dense flow computation to save time.
When less levels are used, it will restrict how small the window size can be at the finest
level and, hence, may be less sensitive to subtle motions (less than 2 pixels). 1t will also
miss tracking large displacements (more than 15 pixels). In spite of these, our
experimental work has shown better overall recognition rate in comparison to the feature
point tracking in 5 levels. Since facial expressions are produced by movements of
interdependent muscles over a region, the dense flow tracking has the advantage that it
can include the entire motion information and so may be more effective to capture the
facial motion.

The scaling function and wavelets at multi-resolution levels provide window functions
of multiple support sizes to capture both local and global characteristics in the
optimization process. This makes the wavelet-based motion estimation stable and
accurate, especidly for the low texture regions where the large window size at the coarse

level may include sufficient higher gradient information in the neighboring regions to
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Figure23 Automatic dense flow tracking for an image sequence. Out-
of-plane motion (pitch) occurs at the bottom image. Dense
flows are shown once for every 13 pixels.
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give a consistent motion information (Figure 24). It is aso capable to track motions of
certain discontinuities such as furrows with only two coarse-to-fine levels (-1 and 0)
chosen in the current scheme, however, the resulting window functions are not localized
enough to accurately capture sharp changes in the motion field (large motion more than 15
pixels) in a highly textured region such as the large movement of brows raised or of mouth
opening together with the appearance of high gradient components, for example, teeth and
tongue (Figure 25), while the multi-level feature point tracking can track 100- pixel
movement with fast computation. Nevertheless, the overal performance of the wavelet-
based dense flow is very good. The main issue is how to significantly improve the

computation speed to enable more than 2-level estimation.

4.3  Eigenflow Computation

The motion captured in consecutive frames of an image sequence is strongly
correlated. The information gathered by 417 x 385-pixel dense flows of many frames each
sequence need to be compressed to retain significant characteristics and inter-frame
correlations for yielding an efficient representation of facial expressions. The principal
component analysis (PCA) has excellent properties and can be used to achieve this
purpose. Although PCA has been widely applied to image gray values. This is one of the
pioneering researches that it is being applied to motion fields.

Before applying the PCA, it is necessary to ensure that the dense flows of individual
frames have relative geometric correspondence. An affine transformation described before
Is used to automatically warp the dense flow of each frame to the two-dimensional face
model based on three points: the medial canthus of both eyes and the uppermost point on
the philtrum (Figure 26).

Based on FACS criteria, we can separate facial expressions into upper face motion
(forehead, brows and eyes) and lower face motion (eyes, cheek, nose, mouth and chin) for

facial expression analysis. It isassumed that AU expressions at upper and lower facial
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Figure24 Good tracking performance of using the wavelet-based dense
flow for (&) furrow discontinuities at the forehead and chin
regions, and (b) textureless regions with reflections at the
forehead and cheek.
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Figure25 Tracking errors of the 2-level wavelet-based dense flow
because of (@) large movements of brows or mouth, and (b)
eye blinking also introduces motion error at brow regions.
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Transformation

(b) After Normalization

includes both the rigid head motion in upward and leftward
65

Figure26 Dense flow normalization using affine transformation: (@)
direction and non-rigid facial expression, and (b) eliminates
the rigid head motion by using the affine transformation.

(a) Before Normalization
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regions are independent. The size of the face model is 417 x 385 (row x column) pixels.
The upper face region is 110 x 240 pixels and the lower face region is 220 x 240 pixels
(Figure 26). It should be noted that each flow unit contains both horizontal flow and
vertical flow components. The PCA is applied to each dense flow region, the horizontal
dense-flow region and vertical dense-flow region, separately.

For PCA computation, initially let the normalized estimated dense flow, either
horizontal or vertical component, in a region (either upper or lower face) of frame i be

represented lexicographically by a normalized dense-flow vector f;,

fi =[Pia Prgreess P Pin ]’ Pin = Uiy OF Vi (4-28)
where

1<isM and 1<n<N

Here, pin isthe normalized optical flow in either horizontal or vertical direction (u;, Or Vi)
at pixel n of frame i, and N is the total number of pixels of frame i (or in upper or lower
face region). There are X different facial expressions and a total of M training frames.
The number of frames for each facial expression sequence varies from 9 to 47 frames. The
variance matrix F of all normalized dense-flow training frames is given by

F=[F,F,..F,...F,]

=[f,-¢ f,-c,..,f —-c..,f, -cl 1<isM (4-29)

where

i
M

c= (4-30)

c isthe mean flow (Figure 27) and the size of F isN x M. The N x N covariance matrix C
of all normalized dense flowsis given by

C=FF' (4-31)
which will have N different N-dimensional eigenvectors E; (called eigenflows because of
the flow-based eigenspace) corresponding to N eigenvalues A, of C ranked in the

descending order, A, 214, 2.2 4,
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Mean (Average) Flow c

....................
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Figure 27 The mean (average) flow c is divided into horizontal flow c, and

vertical flow ¢, for further
analysis (PCA).

processing by the principal component
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CE =AE, 1<i<N (4-32)

Generdly, N is much larger than the total of training frames M, i.e. N >> M, where N
IS 110 x 240 pixels for the upper face region and 220 x 240 pixels for the lower face
region, and M is 932 and 1212 training frames in the respective region. It will be
impractical to compute eigenvalue A; and eigenvectors E; directly from the N x N
covariance matrix C. We will flow a more feasible computation approach described
below.

When total number of dense-flow training frames M is far less than the number of
dense flows N in the measured region, there are only M meaningful eigenvectors
(elgenflows) associating with the non-zero eigenvalues of C. The remaining N - M
eigenvectors correspond to zero eigenvalues. We can use a much more efficient method

to obtain the M meaningful eigenvectors E; by solving for the M-dimensional eigenvectors
e and their corresponding eigenvalues /T, of an M x M covariance matrix C, where
C=F'F (4-33)
Ce =1e 1<i<M (4-34)
Multiplying both sides by F, gives
FF'Fe = 1.Fe 1<i<M (4-35)
then
CFe = A, Fe 1<i<M (4-36)
F x g arethefirst M eigenvectors of the covariance matrix C, leading to
E =Fe

<

e,F;

[

M
S e, (f-c) 1<isM (4-37)
=1

This computation greatly reduces the order of time complexity from N-dimensional dense

flows of each measured region to M dense-flow training frames where M << N.
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We can reconstruct exactly the original dense flows of each measured region by a liner
combination of al M eigenflows E;. But, in general, using a small number M’ (M’ < M) of
significant eigenflows that correspond to M’ largest eigenvalues is adequate to reconstruct
a good approximation of the original dense flow in each measured region without losing
significant feature characteristics. The egenflows (eigenvectors) with the largest
eigenvalues represent the most significant characteristics in their corresponding
dimensions of the eigenspace, where the variances of measured dense flows are bigger in
terms of correlation. We rank the eigenflows according to the ranking of their
corresponding eigenvalues, which contain the most useful information about the
variational characteristics among the training dense flows. Furthermore, if the motion
variation (deviation) among the training regions is large, we need a large number M' (M’ <
M) of eigenflows to accurately approximate the original dense flows. If the variation of
motion among training regions is small, then a very smal number M' (M' << M) of
eigenflows is adequate to approximate the original dense flows. To determine the number
M" of eigenflows needed to represent adequately the primary characteristics of the original

dense flows in the region, we may use an information criterion such that

<

l

R=ZL_>Twhere &, 21, 2.2, 2.2, (4-38)

RInR Is the representative entropy (4-39)

l

and

where T is a threshold close to unity. The linear combination (the weighted sum) of the
M" eigenflows is sufficient to reconstruct accurately the significant characteristics of each

original dense flows in the region. The M' N-dimensional eigenflows E; are computed by

M
E, =

J

F

)

D

1

J
1

:%ehj(f.—c) 1<isM (4-40)
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We project each variational dense-flow F; (N dimensions) of facial expression
sequence into the eigenflow space by taking its inner product with each eigenflow E; (N
dimensions) of the set E = [E,E,,....Ew] in the M’-dimensional subspace to produce the
M’-dimensional weight vector W.. Each element w; of the weight vector W is the
projected component of F; at the eigenflow dimension E; in the eigenspace. Any N-
dimensional normalized dense-flow fi can be represented by its corresponding M’-
dimensional weight vector W,

W =W, Wy, Wy 1T wherel<i<M (4-41)
and
w,; = R’
=E(f-c)’ wherel<isM and 1<jsM’ (4-42)

by projecting the N-dimensional variationa region F; to the M'-dimensional eigenspace
(M’<<N).

4.4  Data Quantization and Conversion for the Recognition System

Figure 28 shows the flow image which will project to the flow-based eigenspace for
PCA process. PCA enables us to convert dense flows of each image (or region) to a low-
dimensional representative weight vector for input to the recognition system. For the 110
X 240-pixel upper face region, 10 most significant eigenflows are chosen and for the 220 x
240-pixel lower face region, 15 most significant eigenflows are chosen. The decision for
the choice of M’ is that R should be greater than or equal to T where T is set to be 0.9
(refer to equation (4-38)), which led us to select M’=10 for the upper facial expressions
and M’'=15 for the lower facial expressions as shown in Figure 29. The same of
eigenflows should be used for both horizontal flow and vertical flow. These eigenflows
are the eigenvectors corresponding to the 10 (and 15) largest eigenvalues of the 932 x
932- (and 1212 x 1212-) covariance matrix constructed by 932 (and 1212) dense-flow
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training frames from 45 (and 60) training image sequences for the upper (and lower) face

regions (Figure 29). The compression rate is 93:1 as shown in Figure 29.a (and 80:1 as

shown in Figure 29.b). Because the variation (deviation) among the training data of the

upper facial “expression units” is smaller than that of the lower facial “expression units,” it
IS expected that the number of eigenflows used for representing the upper facial
“expression units” NI’ = 10) is fewer than that used for representing the lower facial
“expression units” " = 15). As shown by the later experiments, this choice leads to

good performance on overall recognition rate of 92% (Figure 29).

The dense flow at each frame region of an expression sequence is projected onto the
flow-based eigenspace by taking its inner product with each element of the respective
eigenflow set, producing a 10- (and 15-) dimensional weight vector for the upper (and
lower) facial expressions as shown in Figure 30. The 10- (and 15-) dimensiona
horizontal-flow weight vector and 10- (and 15-) dimensional vertical-flow weigh vector
are concatenated to form a 20- (and 30-) dimensional weight vector for each dense-flow
region. After vector quantization, the concatenated weight-vector sequence is converted
into a symbol sequence. Table 6 shows sample symbol sequences for nine facia
expressions under consideration. Such symbol sequences are used as inputs to the HMMs
of upper facial expressions and lower facial expressions, respectively, for automatic

recognition.
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Figure28 Each dense flow image is divided into horizontal and vertical flow
images for the principal component analysis (PCA).
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Figure29.a Computation of eigenflow (eigenvector) number for the upper facia
expressions. (al) is for the horizontal flow and (a.2) is for the
vertical flow. The compression rate is 93:1 (932:10) and from which
the recognition rate is 92% based on 45 training and 60 testing image
sequences.
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Figure29.b Computation of eigenflow (eigenvector) number for the lower facial
expressions: (b.1) is for the horizontal flow and (b.2) is for the
vertical flow. The compression rate is 80:1 (1212:15) and from
which the recognition rate is 92% based on 60 training and 90 testing
Image sequences.
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Figure 30 Principal component analysis (PCA) for (a) horizontal flow weight
vector and (b) vertical flow weight vector for the upper facia
expressions (M’ = 10).
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Table6 Sample symbol sequences for three upper facial expressions and six
lower facia expressions under consideration.

AUs Dense Flowswith PCA: Upper Facial Expressions
(Symbol Sequence)

4 3 33 355555555

1+4 3 33337 77T 7T 7T7

1+2 3 336 6 2 2 2222 22

AUs Dense Flow with PCA: Lower Facial Expressons

(Symbol Sequence)

12 6 6 6 6 6 6 9 9 1 11
6+12+25 |6 6 9 9 3 3 3 3 3 3 3
20+25 6 6 6 11 13 13 13 13 13 13
9+17 6 6 6 7 7 7 7 2 2 2 2
15+17 6 6 6 6 6 14 14 14 14 14 14 14
17+23+24 |6 6 6 1212 4 4 4 4
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45 Correation and Distance in Eigenspace

The sum of squared differences (SSD) between two dense-flow frame regions f; and f;

IS given by
2
[ -] == )"(f - 1)
=(fTf +ff)-2f"f, (4-43)
where ff; represents the correlation between f; and f. The distance SSD becomes

smaller when the correlation between the two flows is stronger. Each dense flow f; in
frame i can be represented by its representative weight vector W, in the M’-dimensional

eigenflow space. It can be reconstructed by a linear combination of M’ eigenflows E;.

"
fi=yw,E+c (4-44)

1=1

where w; is the jth element of the weight vector Wi flow f;. Since

Ji- o = [Ew.erdF ﬁzw e, +cﬁ
= Z(Wlk j,k)Ek
=ZZETE*(W.k—W )’
@LZ(W"( W, if k=l (4-45)
otherwise (since Ex O E)
This can also be expressed as
[ =6 = -w (4-46)

Thus, we can estimate the expression similarity between two dense flows f; and f; by

measuring the distance between their representative weight vectors Wi and W in the M'-
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dimensional eigenspace. Smaller distance indicates greater correlation or similarity
between two dense flows. This can be used in expression intensity estimation as described
below.

4.6  Expresson Intensity Estimation

The expression intensity of any frame in a sequence may be estimated by using the
correlation property of the PCA. The expression intensity of individual frames in each
training image sequence is determined a priori by experts, beginning from the neutra
expression (expression intensity: 0.0) to the peak expression (expression intensity: 1.0).
The length of each image sequence varies from 9 to 47 frames. Each frame in the training
sequence has its representative weight vector. So, the relationship between weight vector
and expression intensity can be established.

After atest facia expression sequence is recognized, the expression intensity of any
frame f; in the sequence can be estimated as follows. Consider the distances between its

representative weight vector W and all weight vectors W, in a training sequence whose

expression intensty values are known, the minimum distance between W and W

indicates the maximum correlation or expression similarity between the two. Then, the

expression intensity of frame i in the testing sequence will be estimated to have the same

value asthat of W,? training data (Figure 31).
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Training image sequence:
~ ~~ . . : _ ~

Expression intensity: 0.0 Weight Expression
_ _ i tensity: 1.
Testing image sequence: vector : W? intensity: 1.0
i _\A/O
i -wi|
Weight
vector : W,

Figure31 Expresson intensity matching by seeking the minimum distance
between the weight vector of the testing frame and the weight
vectors of al frames in a training sequence, whose expression
intensity values are known. Each weight vector of the training
Image corresponds to a given expression intensity value.
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5.0 HIGH GRADIENT COMPONENT ANALYSIS

Facial motion produces transient darkened skin-color lines or edges perpendicular to
the motion direction of the activated muscle. Those darkened lines or edges are called
furrows or wrinkles. The facial action produces the motion position, shape, length and
gray-value changes of these furrows in the face image and which are strongly associated
with different meanings of the facial expression. Extracting (segmenting) and realizing the
motion of those high gradient components (i.e., furrows) may provide a very important

source for recognizing facial expressions.

51 High Gradient Component Detection in the Spatial Domain

The shapes of furrows in the face image contain horizontal, vertical and/or diagonal
directions of lines or arched curves (Figure 32). To extract the high gradient component
at pixel (x,y) from the face image (in the spatial domain) | at time t, we use horizontal,
vertical and diagonal line or edge detectors, Ly, Ly, Ly, respectively.

W =L, 01(xy,t) =D, (X V,t) (5-1)
M =L, O01(x,y,t) =D, (X, y,1) (5-2)
oy
axy.0) _ Ly O1(X,y,t) =D, (X y,1) (5-3)
o(xy)
and
D(x,y,t) = {Dx(x, y.1),D, (X, y,1), D, (X, y,t)} (5-4)

where [(x,y,t) is the image gray value at position (x,y) and frame t, and [0 denotes

convolution. Du(X,y,t), Dy(Xy,t) and Dy/(X,y,t) are gradient intensities of the high gradient
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components at pixel (x,y) in the horizontal, vertical and diagona directions, respectively.
D(x,y,t) is used as the general term of the gradient intensities including Dx(X,y,t), Dy(X,y,t)
and Dy/(X,y,t).

Before normalization of each 417 x 385-pixel image using affine transformation by
three feature points (the medial canthus of both eyes and the uppermost point on the
philtrum), a 5 x 5 Gaussian filter is used to smooth the image. For the upper face
expression (Figure 32.a), a 3 x 5 (row x column) horizontal- and a 5 x 3 vertical-line
detectors are used to detect horizontal lines (i.e., high gradient components in the vertical
direction) and vertica lines in the forehead region, around the eye region, and between
brows or eyes for AU4, AU1+4 and AU1+2 expressions. Two 5 x 5 diagona-line
detectors are used to detect 45-degree and 135-degree diagonal furrows at the forehead
region during AU1+4 expression. For the lower face expressions, two 5 x 5 diagonal-line
detectors are used to detect 45-degree and 135-degree diagonal lines along the nasolabial
furrow (Figure 32.b). Two 3 x 3 edge detectors are used to detect high gradient
components around the lips and on the chin region by thresholding their magnitudes
(Figure 32.b and 32.c). The components filtered out (or thresholded out) by the line or

edge detectors are set to a value of zero.

5.2  High Gradient Component Detection in the Spatio-Temporal Domain

To verify the detected high gradient component D(x,y,t) which is produced by
transient skin or feature deformations and not a permanent characteristic of the individual’s
face (Figure 33), it is necessary to consider its the temporal gradient.

_"D(; %5 = D(x,y.t) - D(x Y.t =1 =T, (x.Y) (5-5)

where D(x,y,t) and D(x,y,t-1) are the gradient intensities of the detected high gradient
components at pixel (x,y) and framest and t-1 in the spatial domain, respectively. T(X,y)

is the temporal gradient intensity between gradient intensities at framest and t-1 at pixel
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Neutral Expression Peak Expression

ertical Line Detection

1111111 ol-1l [lalo 1
0lololo o o1l 1o 1
-1(-1(-1)-11|-1 ol-1l-1lo 11
Al-1l-11-1 -1 0(-1]-1]0]1
olo]o]o]o 0l-df1lol1
111111
135° Diagonal Line Detection 45° Diagonal Line Detection

0|1({0|0 |0 0(-210({0]0 0[{0[(0]1]0 0[{0[0]-1]0
-110(12 (0|0 110(-12/0 |0 0O(0|1|(0|-1|/|0fl0O]|-1|0 |1
Oj-1{0(1 (0 oO{1(0(-1(0 O({1(0|-110 O(-1({0|1 |0
0/|0(-1/0 |1 0|0[1]0|-1 11]0]-2{0|0|(-2{0]|1[0 |O
0{0f0|(-1(0 0{0ofo(1|(o0 O(-1{0|0 (O 0({1({0|0 |0

Figure32.a High gradient component (furrow) detection for the
forehead and eye regions.
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Neutral Expression Peak Expression

High Magnitude Value Detection

45° Diagonal Line Detection 135° Diagonal Line Detection
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Figure32.b High gradient component (furrow) detection for the
mouth, cheek, and chin regions.
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High Magnitude Value Detection

Figure32.c High gradient component (furrow) detection for the chin region.
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Permanent

Permanent
furrows
Expresson AU4 made
to look as expression
AUl+4 by permanent
Q furrows a the
forehead.

Hair occlusion

Hair occlusion

High Gradient Component (i.e. Furrow) Detection

Figure 33 Permanent furrows or hair occlusion.
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(x,y) considering the spatio-temporal domain. Equation (5-5) is the method used for
tracking high gradient components such as the motion lines or edges in the spatial and
tempora domains.

In our current study, the gradient intensity of each detected high gradient component
D(xy,t) at the current frame t and pixel (xy) is compared with corresponding points

within a3 x 3 region of the first frame for each sequence.

—aDO(‘;’ yh) D(X, ¥,t) = D(x=Ax, y=Ay,0) =T (X, Y) (5-6)

where
-1<Ax<l1 and -1<Ay<1

A 3 x 3 region is used in order to avoid the error of geometrical correspondence since
affine transformation works well for close (but not exact) geometrical correspondence. |If
the absolute value of the difference in gradient intensity between these points is higher
than the threshold value, it is considered a valid high gradient component produced by
facial expression. All other high gradient components are ignored. In the former case, the
high gradient component (pixel) is assigned a value of 1. In the latter case, the pixels are
assigned a value of 0. An example of the procedure for extracting high gradient
components in the spatio-temporal domain for the upper facia expression is shown in
Figure 34. A gray value of O corresponds to black and 255 to white. Using this

procedure, we also can remove the hair blocking the forehead region (Figure 35).

5.3  Morphology and Connected Component Labeling

In order to use line and edge detectors, the threshold is employed to segment the
higher gradient components for the foreground furrows and the lower gradient
components for the background. If the given threshold is too high, then it will filter out
more significant components. If the threshold is given too low, then it will include more

high gradient components with unnecessary noise (Figure 36). For line or edge detection,

86



87

it is very difficult to give a constant or even dynamic threshold to satisfy all conditions,
especidly in dealing with images containing the conditions of rigid and non-rigid motion
such as images of facial expresson whose gray values vary in lighting, ages and
individuals. Younger subjects, especially infants, show smoother furrowing than older
ones, and initial expressions show weaker furrowing than that of peak expressions for
each sequence (Figure 37). To overcome this difficulty, further low level image
processing is needed.

Because we do not want to lose any useful information of high gradient components,
we give a low threshold for each furrow detection processing sequence (Figure 36). An
erosion morphological transformation is used to eliminate the piece regions or the very
short lines, thin the lines, or smooth the line boundary (Figure 38.8). The eliminated
(either one or several) pixels are assumed as noise and introduced might be because of the
low threshold. A dilation morphological transformation is then used to connect two end-
to-end close but separated lines (Figure 38.a). Findly, we implement a connected
components labeling (CC labeling) algorithm based on Haralick and Shapirtdslabel
each cluster of connected high gradient components (Figure 38.b). This algorithm is
based on the 8-connected component to link components of its 8 neighbors at the binary
image (1 is the high gradient component, 0 is the background) and includes two processes:
top-down and bottom-up processes with 4 steps (APPENDIX). If the number of detected
high gradient components for each connected component cluster is less than 6 pixels, or
the horizontal to vertical ratio for the horizontal line detection or the vertical to horizontal
ratio for the vertical line detection is less than 5, then this cluster is assumed to be noise,

not furrow, and will be removed (Figure 38.b).
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Position
(Pixels)
90 Furrow
Detection at
the Spatial
0 Domain
255 Gray Values
White & Black
First frame i

| @ | > Threshold

Figure34 The procedure of the high gradient component analysis in the
spatio-temporal domain, which can reduce the effect of the
permanent high gradient components (furrows) and hair
occlusion for the upper facia expression.
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(a —> (b) —> (c)
Figure35 (&) Original gray value images. (b) High gradient component
(furrow) detection in the spatial domain. (c) High gradient
component analysis in the spatio-temporal domain.
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(a) Gray value image

(b) High gradient
component

(furrow) detection
with a very low
threshold,  which
will include too
many furrows or
noise information.

High gradient
component (furrow)
detection with a low
threshold, which
was used in our
study.

(d) High gradient
component (furrow)
detection with a high
threshold, which will
lose some furrow
information.

Neutral Expression Peak Expression

Figure 36.a High gradient component detection with different constant
threshold values.

90



91

(a) Gray value image

(b) High gradient
component (furrow)
detection with a
very low threshold,
which will include
too many furrow or
noise information.

High gradient
component (furrow)
detection with a low
threshold, which
was used in our
study.

(d) High gradient
component (furrow)
detection with a high
threshold, which will
lose some furrow
information.

Neutral Expression Peak Expression

Figure 36.b High gradient component detection with different constant
threshold values.
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Figure37.a Younger subjects, especialy infants (Figure 37.a8), show smoother
furrowing than older ones (Figure 37.b), and initial expressions show
weaker furrowing than that of peak expressions for each sequence.
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Figure37.b Younger subjects, especialy infants (Figure 37.a8), show smoother
furrowing than older ones (Figure 37.b), and initial expressions show
weaker furrowing than that of peak expressions for each sequence.
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—(a) Continue processing following Figure 34
& 35 (high gradient component analysis).

Template for erosion or dilation processing

Horizontal line Vertical line
template template
43-2-10023. o201
-3
-2
-1
Ol
1
. High gradient 2
component 3
4

piece causing noise or the very short lines,
thinning the lines, or smoothing the line

boundary:

Consider the 8-connected componefit o
the grey color region at each templafte, i

there is no three-pixel connection of the
horizontal (or vertical) direction at both

regions after detection by the horizontal
(or vertical) line template, then the center
black pixel will be removed.

- c) Dilation processing — linking the broken
lines:

Consider the 8-connected componefit o
the grey color region at each templafte, i
there is three-pixel connection of the
horizontal (or vertical) direction at both

regions after detection by the horizontal
(or vertical) line template, then the center
black pixel will be connected with both

grey regions.

v

. ] Figure38.a Delete redundant high gradient
Figure 38.b: . .
Connected Combonent components using morphological
Lacl)belin P transformation including erosion and

g dilation processings.




Label 2
Label 4
Label 6
Label 8
Label 10

Figure 38.ac Erosion and
dilation processings

(d) Connected

————————————— Component

Labeling

Label 1
Label 3
Label 5

Label 7
Label 9
Label 11
Label 12

(e) Eliminate the clusters of
high gradient components:

(2) less than 6 pixels for each
cluster such as Labels 2, 4
and 12 clusters

(2) the horizontal to vertical
ratio for the horizontal line
cluster, or the vertical to
horizontal ratio for the
vertical line cluster is less
than 5 such as Labels 2, 4,
5,9, 10, and 11.

Figure38.b Delete the redundant high gradient components
using the connected component labeling algorithm.
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54  Analysisof High Gradient Component Detection Problems

We have tried to use 3 x 3 Canny ¥, Sobel “?, Prewitt “® and wavelet-based ©? edge
detectors to detect the high gradient components on the face image. We can not find any
difference in the results.

Some high gradient components, such as the horizontal lines along the furrows at the
forehead, are wide. If we use high gradient component detectors with small sizes, such as
3 x 3, to extract this line from vertica directions, which are perpendicular to this line or
furrow direction, then this wide line will be detected into two lines (Figure 39). One way
to solve this problem isto use line detectors with large sizessuch as3 x 5 or 5x 7 in order
to match the width and the length of the detected lines or furrows (Figure 39). In our
approach, the 3 x 5, 5 x 3, and 5 x 5 horizontal, vertical, and diagonal line detectors,
respectively, are adequate for most of the facial expression images. The larger size of
detector requires more computation time.

The high gradient components (such as furrows) move in consecutive frames, so we
need to consider the motion furrows in the spatio-tempora domain to ensure the detected
high gradient components are produced by transient skin or feature deformations, and are
not a permanent characteristic of the individual's face. Equation (5-5) is a way for
tracking the motion high gradient component in the spatio-temporal domain. It is not
accurate because of introducing the zeroing result: it is based on the tracking of individual
pixels, which sometimes appear or disappear because of lighting or deformation of skin
movement, or do not have any movement between consecutive frames because of a high
sampling rate for an image sequence. To overcome above weakness, equation (5-6) can
give a more reliable result by assuming the first (neutral expression) frame to be the
background, then the foreground components. The motion of high gradient components
can be extracted easily by subtraction instead of tracking processing from the remaining
frames of each sequence.

According to equations (5-5) and (5-6), an interesting approach will be demonstrated

by directly subtracting the gray values instead of gradient components: considering the
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(a) Gray value image (b) Using3x 3 (c) Using 3 x 5 horizontal
horizontal line detectors line detectors
1111 1(1(1|1]|1
0
-11-1(-1 -1)-1)-1(-11-1
-1(-1(-1 -11-1-1(-1 (-1
0|00 0/|0|0]0 |0
1/1|1 1(1(1|1|1

Figure 39 Horizontal line (furrow) detection using different sizes of detectors. (b)
If the size of the detector is too small compared with the width and
length of the line (furrow), then each line will be extracted to two lines.
(c) It is necessary to adjust the size of the line detector to match the
width and length of the line in order to obtain the correct result.

motion effect in the temporal domain and ignoring the gradient effect in the spatial

domain.

W: 106y, t) =1 (%, Yt =1) =T (%, y) (5-7)
or

W = 1(x,y,1) = 1 (x= A%, y = Ay,0) = (X, Y) (5-8)
where

-1<Ax<1l and -1<Ay<1
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Next, a threshold is given to remove unnecessary gray-value components at which the
absolute gray-value differences between the two images are below the threshold. This
threshold process can compensate for the lacking of without considering the gradient
factor in the spatial domain. According to our experiments, it works well to extract the
teeth when mouth is opening. Since the gray values of the target (teeth) are obviously
different from the background (skin, lips, and tongue), it is easy to segment the
foreground from background using a simple threshold process (Figure 40). It is very
difficult to extract the furrows exactly by using a simple thresholding process of different
gray values between two face images, because the gray values of the entire face image are
affected by lighting and are different across the ages and individuals of subjects. Since we
define and can observe furrows, which are constituted from the motion high gradient
components on face image sequence, it is necessary to extract the motion furrow by

considering the spatial and temporal gradient components at the mean time.

55  Data Quantization and Conversion for the Recognition System

After the motion and high gradient components (furrows) are extracted in the spatio-
tempora domain, the high gradient pixels are assigned a value 1 and other background
components are assigned a value O for each facial expression sequence, we want to
summarize the high gradient components of many pixels into a low-dimensiona vector for
each face image as an input to the recognition system. The forehead (upper face) and
lower face regions of each normalized face image are divided into 16 and 16 blocks
(Figure 41). The mean number of high gradient components in each block is calculated by
dividing the number of pixels having a value of 1 by the total number of pixels in the
block. The positional variance of high gradient components in each block is calculated as
the sum of variances in the row and column directions. The mean number and positional
variance per block discussed here are simply abbreviated as mean-variance for brevity.

These give 32 parameters for 16 blocks in each of the upper and lower face regions. For
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Figure40 Teeth can be extracted directly from the subtraction of the gray value
image at the current frame to that at first frame for each image
sequence whose absolute value is larger than a constant threshold.
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Mean-Variance vector f; = (m,1,m2,..., My,...,M;,G1,G2...,0Gj,...,0i)
wherem; is the mean number of high gradient components at the jplock
and frante
a; is the positional variance of high gradient components at the
blockand framd.
and i =16 (blocks) for the upper face region.
I = 16 (blocks) for the lower face region.

Mean-Variance vector sequerfce (f1,f2,...f;,...,fr)

whereT is the length of this image sequence.

Figure4l Mean-Variance vector of the high gradient component analysis in the
spatio-tempora domain for input to the Hidden Markov Model.
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Table7 Sample symbol sequences for three upper facial expressions and
six lower facial expressions under consideration.

AUs Motion Furrow Detection: Upper Facial Expressons
(Symbol Sequence)
0 O 0O0OO0OOOOOOOOOOOODO
4 0O 00 0O 4 4 10101010
1+4 0 0 01212121212 6 6 6
1+2 0 00001129 9 31111
AUs Motion Furrow Detection: Lower Facial Expressions
(Symbol Sequence)
12 1010101010101 1 1 5 5 5 5 5 5 5 5 5
(6+12+25)
9+17 101010101010 12 12 12 12 12 4 4 4 4 4 4 4444
(17+23+24) | 4

upper and lower facial expression recognitions, these mean and variance values are
concatenated to form a 32-dimensional mean-variance vector for each region in a frame.
Table 7 shows sample symbol sequences for nine facial expressions under consideration.
Such symbol sequences are used as inputs to the HMMs of upper facia expressions and

lower facia expressions, respectively, for automatic recognition.
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56  Expresson Intensity Estimation

The sum of squared difference (SSD) criterion is employed to find a close estimation
of furrow expression intensity. The furrow detection on each 417 x 385 image gives a 32-
dimensional mean-variance vector for the upper facial expressions and similarly another
32-dimensional mean-variance vector for the lower facial expressions.

In the training data, the furrow expression intensity of individual frames of each facial
expression sequence with length varying from 9 to 47 frames has been quantified by
experts: from neutral expression (expression intensity: 0.0) to peak expression (expression
intensity: 1.0). The corresponding mean-variance vector of each training frame has also
been extracted. The Euclidean distance between the mean-variance vector of the testing
frame to the mean-variance vector of the individual frame in the chosen training sequence
Isa measure of how close are their expression intensity values. After recognizing an input
furrow expression sequence, the furrow expression intensity of an individua frame in the
sequence is estimated by finding the best match of the furrow expression intensity from a

training frame based on the shortest distance in the mean-variance space (Figure 42).
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Training image sequence:

~

~N S
Expression intensity: 0.0 Mean-Variance
Testing image sequence: vector : f,’

H _f0
minlf, ]

Mean-V ariance
vector: f;

Figure42 Furrow expression intensity matching by measuring the minimum
value (distance) of the sum of squared differences (SSD) between
the mean-variance vector of the known training image and that of
the testing image. Each mean-variance vector of the training
Image corresponds to a given expression intensity value.
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6.0 FACIAL EXPRESSION RECOGNITION USING
HIDDEN MARKOV MODELS

If we try to build a signal model that can be used to explain and characterize the
occurrence of the observable symbol sequences, then we can use this model to identify or
recognize other sequences of observable symbols. A Hidden Markov Model (HMM) can
be employed to represent the statistical behavior of an observable symbol sequence in
terms of a network of states. For each observable symbol, the process being modeled
occupies one of the states of the HMM. With each observable symbol, the HMM either
stays in the same state or moves to another state based on a set of state transition
probability associated with the state. The variety of the observable symbols for which the
HMM uses a particular state is described in terms of the distribution of probability that
each observable symbol will occur from that state. Thus, an HMM is a doubly (observable
and hidden) stochastic model where the observable symbol probability distribution for
each state captures the intra-state variability of the observable symbols, and the state
transition probability describe the underling dynamic structure of the observable symbols.

We use HMMs to recognize subtly different facial expressions because of their
smplicity and reliability. The HMM uses only three parameters. the initial state
probability vector, the state-transition probability matrix, and the observable symbol
probability matrix. The convergence of recognition computation may run in real time.
Analysis of dynamic images naturally will yield more accurate recognition than that of a
single static image, in our study, facial expressions are recognized in the context of entire
Image sequences of arbitrary lengths. Use of an HMM for facial expression recognition is
advantageous because it is analogous to human performance which is a doubly stochastic
process, involving a hidden immeasurable human mental state and measurable, observable
human action. An HMM can produce satisfactory performance in the spatio-temporal
domain and deal with the time warping problem. In addition, an HMM may allow for
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multiple input sequences. Thiswill result in areliable recognition system as it will include
a variety of extracted information from the facial expressions. It may also be used in

combination for both expression recognition and speech recognition.

6.1  Preprocessing of Hidden Markov Models: Vector Quantization

In order to model various “expression units” of individual AUs or AU combinations
for recognizing subtly different facial expressions, we train discrete HMMs (simply called
HMMs in our study) to model facial expressions. We must first preprocess those training
multi-dimensional vector sequences to convert them to those one-dimensional (discrete)
symbol sequences. The specific preprocessing algorithm we chose is the vector
quantization (VQ)Y®. VQ techniques have been used widely and successfully to solve
guantization and data compression problems. In an HMM-based approach, we need to
guantize each multi-dimensional feature or motion vector sequence into a finite symbol
sequence before training HMMs.

The purpose of designing dftlevel vector quantizer (called a codebook with $)e
is to partition allk-dimensional training feature vectors itbclusters and associate each
clusterC', whose centroid is thie-dimensional vectoc', with a quantized value named
codeword (symbolp'. While VQ will reduce data redundancy and get rid of small noise,
it will inevitably cause a quantization error betwesh training feature vectarandc'.

As the size of the codebook increases, the quantization error decreases, and required
storage for the codebook entries increases. It is very difficult to find a trade-off among
these three factors.

In order to have a good recognition performance in using HMMs, it is critical to
design a codebook for vector quantizing ekalimensional training feature vectriinto
a symbold with minimum quantization error. Therefore, two primary issues are
considerable for the design of the codebook: (1) codebook creation (the size of

codebook), and (2) distortion measurement. Defining the size of codebook is still an open
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problem when we use the VQ technique. According to our experimental result, the
recognition system has high performance when the size M of the codebook, which should
be power of 2, is at least 1/50 less than the number of all k-dimensional training feature
vectors.

For the distortion measurement, there are two main considerations for optimizing the
VQ:
1. The quantizer must satisfy the nearest neighbor rule.

x OC' it [x-c'|<|x-c!| (6-1)
where [x-c'|= i(xh ~cl)? and i#j, i,j=01,..,M-1 (6-2)
and

q(x) = 0 where 0<o0 <M-1 (6-3)

This means that the k-dimensional feature vector x = [Xy,Xa,...,xJ is classified to cluster C,
whose centroid is the k-dimensional vector ¢, and encoded to be the codeword o' because
the distance between x and c' is shorter than x and ¢. q(.) is the quantization operator.

2. Each cluster center ¢ must minimize not only the distortion D' in cluster C' but also

total quantization errors D.

D= Mz_lDi (6-4)
where D' :i x —c' H :ig(xgyh -c)? (6-5)

N k-dimensional feature vectors x! are located at cluster C'. Because the total distortion

D is a linear combination of D' which is the distortion in cluster C', the k-dimensional
cluster center ¢' can be independently computed after classification of x.

Using the overall distortion measurement, it is hard to guarantee global minimization.
A similar technique used for cluster analysis with squared error cost functionsis called the
K-means algorithm. The K-means algorithm is an iterative algorithm which can guarantee

alocal minimum, and works well in practice.
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The K-means Algorithm:

Step 1: Initialization - Define the codebook size to be M and choose M initial (1st
iteration) k-dimensiona cluster centers (1), ¢'(1),..., (1) corresponding to
each cluster C' where0<i < M-1.

Step 2. Classification - At the Ith iteration, according to the nearest neighbor rule,
classify each k-dimensional sample x of training feature vectors into one of the

clugtersC.
xOc () if |x-c'@)<[x-c')| where i#j,i,j=0.1,...M-1(6-6)

Step 3: Codebook Updating - Update the codeword (symbol) o' of each cluster C' by

computing new cluster centers ¢'(I+1) wherei = 0,1,...,M-1 at the |+1th iteration.
_ 1N . .
c(l+1) = N z X, where x' OC'(1 +1) (6-7)
n=1

N is the number of feature vectorsin cluster C'(I+1) at the |+1th iteration, and
qx)=0  where 0<o' sM-1 (6-8)
where q(.) is the quantization operator.

Step 4: Termination - If the decrease in the overal distortion at the current iteration
|+1 compared with that of the previous iteration | is below a selected threshold,
then stop; otherwise goes back to Step 2.

Gf [D(1 +2) - D(l)| < threshold, then Stop
Hf |D( +1) - D(1)| = threshold, then Goes to Step 2

(6-9)

Note that the K-means algorithm can only converge to alocal optimum. The behavior
of the K-means algorithm is affected by the number of clusters specified and the choice of
initial cluster centers. Instead of using K-means agorithm, our VQ approach is based on
Linde, Buzo and Gray’s algorithff? for vector quantizer design, which is an extended
algorithm of K-means, but unlike K-means which initializes each cluster center in the
beginning. This VQ algorithm uses iterative method, splits the training vectors from

assuming whole data to be one cluster to 2,4M8,(M's size is power of 2) clusters, and
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determines the centroid for each cluster. The centroid of each cluster is refined iteratively

by K-means clustering.

TheVector Quantization Algorithm:

Step 1:

Step 2:

Step 3:

Step 4:

Initialization - Assume all N k-dimensional training vectors to be one cluster C°,
i.e., codebook size M = 1 and codeword o° = 0, and find its k-dimensional cluster

centroid c°(1) where 1 is the initia iteration.

N

(1) = % 3 X (6-10)

n
n=1

where x is one sample of al N k-dimensional feature vectors at cluster C°.
Splitting - Double the size M of the codebook by splitting each cluster into two.
The current codebook size M is split into 2M. Set M = 2M by

Tl =c@)+e
T W=cw-e

¢ isthe centroid of theith cluster C', M is the size of current codebook, € is a k-

where 0<isM-1 (6-11)

dimensional splitting parameter vector and is value 0.0001 for each dimension in
our study. 1istheinitial iteration.

Classification - At the Ith iteration, according to the nearest neighbor rule,
classify each k-dimensional sample x of training feature vectors into one of the
clusters C'.

xOC'(l) if [x=c'()|<[x-c')|]  where i#j,i,j=01...M-1(6-12)

Codebook Updating - Update the codeword (symbol) o' of each cluster C' by

computing new cluster centers ¢'(I+1) wherei = 0,1,...,M-1 at the |+1th iteration.
c(l+1) = % z X, where x' OC'(1 +1) (6-13)
n=1

N is the number of feature vectorsin cluster C'(1+1) at the |+1th iteration. And
qx)=0  where 0<o' sM-1 (6-14)

where q(.) is the quantization operator.
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Step 5: Termination 1 - If the difference between the current overall distortion D(I+1)
and that of the previous iteration D(I) is below a selected threshold, proceed to
Step 6; otherwise goes back to Step 3.

Gf |D(1+1) - D(l)| < threshold, then Goesto Sep 6

Hf |D(I +1)-D()| = threshold, then Goesto Step 3 (615
(where threshold is 0.0001 in our study.)
Step 6: Termination 2 -
|'s the codebook size M equal to the VQ codebook size required ?
af Yes, then Sop (6-16)

Ef No, then Goesto Sep 2

Once the final codebook is obtained according to all training vectors by using this VQ
algorithm, it is used to vector quantize each training and testing feature (or motion) vector
into a symbol value (codeword) for the preprocessing of the HMM recognition process
(Figure 43).

6.2  Beginning from Markov Models

Thefirst order Markov chain is a stochastic process which follows the rule
P(0k+ 1= | Go=K,Qu=1,...,.Q=1) = P(Qua=] | :=1) (6-17)
where ¢ represents the state q at time t, and i, j, k, | represent the possible states of g at
different instant of time. The first order Markov chain states that the probabilistic
dependence is truncated at the preceding state. We consider only those processes in
which the right-hand side of above equation is independent of time. We can then see that
atime independent Markov chain is characterized by its state-transition probability a;,
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All Training Vector Sequence:
Vectors F=(fy,f2,....f,...,f1)
Codebook Creztion Vector Quantization
(Sizee 2"=M,n=0,1,2,...)

l

Symbol Sequence:
O = (011021"'1011"'101—)
Symbol 0: 0< o< M-1

HMM

Figure43 Vector quantization for encoding any vector sequence to
a symbol sequence based on the codebook.

which is the probability of moving from one state i to another statej.

aj = P(q=] | a=i), 1<ij<N (6-18)
where N is the total number of states. The a; obeys standard stochastic constraints.
a;=20 1<ij<N (6-19)
N
aj=1 1<i<N (6-20)
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The Markov model could be called an observable Markov model because the output of
the stochastic process is the state sequence where each state corresponds to each instant

of time with a deterministically observable event (symbol).

6.3 Extension of Markov Models; Hidden M arkov M odels

In the Markov model, the state sequence is observable. The output observable event
in any given state is deterministic, not random. This will be too constraining when we use
it to model the stochastic nature of the human performance, which is related to doubly
stochastic processes, namely human mental states (hidden) and human actions
(observable). It is necessary that the observable event is a probabilistic function of the
state. That iswhy an HMM is employed. HMM is a representation of a Markov process
and is a doubly embedded stochastic process with an underlying stochastic process that
cannot be directly observed, but can only be observed through another set of stochastic
processes that produce the sequence of observable symbols.

Before the description of HMMs, we define the elements of an HMM by specifying the
following parameters:

N: The number of statesin the model. The state of the model at timet is given by q;,
1<g<N and 1<t<T (6-21)
where T is the length (number of frames) of the output observable symbol
seguence.
M: The size of the codebook or the number of distinct observable symbols per state.
Assume o is one of all possible observable symbols for each state at timet, then
0<o <M-1 (6-22)
7&:  AnN-element vector indicates the initial state probability.
m={n}, where 7=P(qu=i),1<i<N (6-23)
Ansn: An N x N matrix specifies the state-transition probability that the state will transit
from state i to statej.
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A={aj} where a; =P(q=) | g1=1), 1<ij<N (6-24)

and

a; 20, aj=1 1<i<N (6-25)

Buxn: An M x N matrix represents the probability that the system will generate the
observable symbol o at statej and at timet.
B ={bj(o)} where bj(o) = P(O=0;|q=j), 1<] <N, 0< 0 < M-1,(6-26)

and

M-1

b(o) 20, 1<j<N, and ij(ot):l, 1<j<N (6-27)
0,=0

The complete parameter set A of the discrete HMM is represented by one vector /rand
two matrices A and B
A= (mAB) (6-28)
In order to accurately describe a real-world process such as facial expression with an
HMM, we need to appropriately select the HMM parameters. The parameter selection
processis caled the HMM "training.”

This parameter set A can be used to evaluate the probability P(O | A), that is to

measure the maximum likelihood performance of an output observable symbol sequence
O.

O=(04, 0y ..., O7) (6-29)
where T is the number of frames for each image sequence. For evaluating each P(O | A),
we need to select the number of states N, select the size of the codebook or the observable
symbols M, and compute the results of probability density vector /rand matrices A and B

by training each HMM from a set of corresponding training data after VQ (Figure 44).
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Symbol sequence: O = (04,0z,...,0t,...,07)

State: g =(h=1,...,0=1,0+17],...,ar=N)
Codebook size: M

HMM parameter set: A = (11A,B)

Initial state distribution: 7m=1.0, 7%=0.0 if 2<k<N
State-transition probability: Awn = {a;} from statei to]

Observable symbol probability: ~ Bww = {bj(0+1)} at statg and timet+1
Output probability: P(O|A)

Figure44 The construction (topology) of the Hidden Markov Model.
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6.4 Three Basic Problems of Hidden M arkov M odels

There are three basic problemsin HMM design:
1. Problem of Probability Evaluation: How do we efficiently evaluate P(O | A), the
probability (or likelihood) of an output observable symbol sequence O = {0,,0,,...,01}
given an HMM parameter set A = (77A,B) ?
2. Problem of Optimal State Sequence: How do we determine an optimal state
sequence q = {qu,0g,-.-,0r}, Which is associated with the given output observable symbol
sequence O = {04,0,,...,01}, by given an HMM parameter set A = (77A,B) ?
3. Problem of Parameter Estimation: How do we regulate an HMM parameter set A =
(7zA,B) in order to maximize the output probability P(O | A) of generating the output
observable symbol sequence O = {0,,0,,...,07} ?

Analyzing and solving the above three basic problems can help us to design and

understand the HMM for training and recognition processes.

6.4.1 Probability Evaluation Using the Forward-Backward Procedure

In order to use an HMM for facial expression recognition, we need to compute the
output probability P(O | A) with which the HMM will generate an output observable
symbol sequence O = {0;,0,,...,0r} given the parameter set A = (AB,7). The most
straightforward way to compute this is by enumerating every possible state sequence of
length T, so there will be N" possible combinations of state sequence where N is the total
number of states. Suppose there is one state sequence

q= {q11 G2, qT} (6'30)
Assume statistical independence of observable symbol o, and given the above state
sequence q, the probability of the output observable symbol sequence will be
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P(OlqgA) = |_| P(o | a.4) = b, (0,) by, (0;) ... by (o) (6-31)

Also, we can get the probability of such a state sequence q by given an HMM parameter
st A

P(|A) = T, A4 Q40 3 q (6-32)

The joint probability of O and q (or the probability that O and g occur at the sametime) is
P(O,q[A) =P(O[q.4) P(q|A) (6-33)
The probability of P(O | A) is the summation of this joint probability over all N' possible
state sequences q.

N

P(O|A) = z P(0,0,...0;, Oy =i | A)

1=1

= S PO, d; =i )

1=1

> P(Olar; =i,4) P(ar =i] A)

1=1

z m, b, (0,)a,, b, (0,)..a, , b, (0r) (6-34)
or

G-

For the time complexity of the above computation, we can base the interpretation on
Figure 45. Each state g+, at time t+1 has N possible paths with order O(1) calculations to
be reached from the previous N state ; at timet. That is, each state g, at timet = 2 can be
reached from N possible state g, at timet = 1, and N possible state g, at t = 2. Each state
s at time't = 3 can have N possible paths to be reached from N possible states g, at t = 1.
Overall there are N™ possible paths with the order O(T) calculations to reach each final
state gr at time T for each state sequence. (According to the above equation, 2T-1
multiplications are required for each state sequence.) The time complexity is the order
O(N™ T) for each state sequence. The totally N final state gr at time T can be reached.
The overall time complexity of computing the probability of P(O | A) isthe order O(N™ T)
x O(N) = O(N" T). The valueis very difficult to calculate. Even if we have a small
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NZ-N+1

/e' NZ-N+2
>

N 3F— N-N+3
|
|
|

NE-N+1

(D)
/9" N=N+2
@% N 3 N-N+3

|
|
|

State: O N3

»———>
Time: t=1 t=2 t=3 t=4 -——— t=T
Computational complexity (for each state):
O(1) O(N) O(N?) O(N°) -=--O(N"™)

Computational complexity for total N states: O(N™) * O(N) = O(N")

Figure45 The tree structure of the computational complexity for
direct evaluation of the output probability P(O]A) %,
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number of states N and T frames of state sequence, e.g., N=4and T = 20, it still requires
on the order of 4%° x 20 = 2.2 x 10" calculations. Fortunately, we can use a more efficient
procedure called the Forward-Backward procedure " to overcome this limitation.

Figure 46 can help us to describe the Forward procedure easily and clearly. We define
the forward variable

ay(i) = P(010,...0, =i | A) (6-35)

as the probability of the partial observable symbol sequence 0, 0; ... 0; a statei and at time
t by given the HMM parameter set A. We can solve for ai(i) inductively as follows:

The Forward Procedure:
1. Initialization: The initial forward variable is the joint probability of state i, timet =1
and initial observable symbol o, by given the HMM parameter set A.

ay(i) = P(oy, gi=i | A) = ribi(oy) where 1<i<N (6-36)
2. Induction (or Recursion): State j can be reached at time t+1 from the N possible

statesi, 1<i < N, at timet with the state-transition probability &;.

0w+1()) = P(010z...0t+1, Q1= | A)

N
= §M(i)ajﬁ)j(0t+l), where 1<t<T-1,1<i,j<N (6-37)
=1

3. Termination: The sum of al N final forward variables a+(i), 1<i < N.

P(O|A) = %P(OlOZ...OT, gr=i| A)

1=1

ZZP(O, gr=i|A)

1=1

= %m(i) (6-38)

1=1

The second step of the Forward procedure reduces the computational complexity since

the calculation of the forward variable a.1(j) at time t+1, state j and observable symbol
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Ow+1 depends only on the previous (at time t) N forward variables ai(i), 1 <i < N (Figure
46, 47). This computation is performed for all statesj, 1 <j < N, and then iterated from
the initial frame at t = 1 to t = T-1 for al possible state sequences. In other words,
because there are only N states at each instant time, all the possible state sequences will
remerge into these N states, no matter how long the observable symbol sequence will be
(Figure 47). The time complexity is the order O(N T) for each observable symbol
sequence. This computation obviously reduces the computational complexity of each
state sequence from the order O(N™) to O(N). There are N states for each instant time or
at theend timet = T. The overal time complexity of computing the probability of P(O |
A) is O(N T) x O(N) = O(N* T) whose origin is O(N" T). Compared to the original
example N = 4 and T = 20, it requires only the order of 4% x 20 = 3.2 x 10? which is much
less than 4”° x 20 = 2.2 x 10" calculations.
Figure 46 describes the Backward procedure. We define a backward variable
B(i) = P(0102...07 | =i, A) (6-39)

which means the probability of the partial observable symbol sequence from t+1 to the end
time T by given state i at timet and the HMM parameter set A. We can compute the (i)

using the following steps:

The Backward Procedure:

1. Initialization: Arbitrarily defines the backward variable at the end time T and state i as
Gi(i)=1 where 1<i<N (6-40)

2. Induction (or Recursion): Statei can reach N possible statesj, 1 <j < N, at time t+1

as well as the observable symbol o1 by state-transition probability a; and observation

probability b;(0w1).
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ai(i) aa(j)
| : >
Symbol
sequence; 01 T O Or+1
Time: 1 ——- t t4] ————————————
Symbol o Owl ——
sequence: |
[

The Forward Procedure

bj(0t+1)

b1(0t+1)
b2(01+1)

j ) Bi(0t)

bN:(0t+1)

10 Ba())

Figure46 The Forward and Backward Procedures.
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>
Time: 1 2 - t t41 e - T
Symbol
sequence: 0 Oy --m-————-- O Oty —mmmmmmmmm Oor
Computational complexity
for each state: O(1) O(N)

Computational complexity for total N states: O(N) * O(N) = O(N?)

The single shortest (best) path (state sequence): O—O

Figure47 Thetree structure of the computational complexity for the forward
and backward procedures 2.
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B(i) = P(01:101+2...07 | G:=i,A)

N

= Za..b.(om)ﬁm(j) where t=T-1,T-2,...,1,and 1<i <N (6-41)
£

U

The backward procedure’s computational complexity is the same as the Forward

procedure, O¥* T), using the similar but opposite approach direction of Figure 47.

6.4.2 Optimal State Sequence Using the Dynamic Programming Approach

We use a dynamic programming method called the Viterbi algofititi® to find the
single best state sequenge= (0:0z...0r) (or the most likely path) given the observable

symbol sequenc® = (0,0,...0r) and the HMM parameter satin order to maximizé>(q |
0O,A). Since

P(.0] 1)

P(q] O,1) = PO 1)

(6-42)

Maximizing P(q | O,A) is equivalent to maximizing(qg,O | A) using the Viterbi algorithm.
The basic idea of the Viterbi algorithm (a dynamic programming method) is similar to the
Forward procedure (Figure 46) whose calculation at each time is considered only between
two consecutive timesandt+1, and starts at the initial tinte= 1 and proceeds forward
to the end time = T. The major difference is during this calculation between two instant
times. The control, which produces the maximum value corresponding to the single
shortest or best path (state sequence), is “saved” instead of the summation of overall
calculations (Figure 47). At the end of the state sequence for the calculation, the
“remembered” best controls can be used to recover the state space trajectory based on
path backtracking.

We define the maximum probability along a single best path atttimbich accounts

for the firstt observable symbols and ends in stagwen the HMM parameter sdf as
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¢ (i)=_max P(Gd,.-01,0 =1.0,0,.-0,|4) (6-43)

We also define the “remembered” arrggj) for each statg at timet, which keeps track
of the argument that maximizes the vafiigi) X a;, in order to retrieve the optimal state

sequence during the path backtrackirg.is the single most likely state at tie

The Viterbi Algorithm:
1. Initialization: The initial probabilityd (i) is at state, timet = 1 and initial observable

symbolo, by given the HMM parameter sét

¢,()=P(o,q,=i|A)=7b(0) where 1<i<N (6-44)
$,i)=0 where 1<i<N (6-45)
q, =arg max(d, (i)) (6-46)

I<i<N
2. Recursion: The single best path (state sequence) andbmpgssible paths fron\
possible stateisat timet to statg at timet+1 with the state-transition probabiliy is

Ca(J 1) =maxP(0,0,..0,,1, Gy = j[4)
I<i<N

= [Ec;:vN((Jt(i)a.j )]bj (0,,,) Where 1<t<T-1,1<j<N (6-47)
Yul) =ag [Q%(ét(i)qj )] where 1<t<T-1,1<j<N (6-48)
Gy =ag max(3,.,() (6-49)

I<isN
3. Termination: The single best path reaches the end Tirfex each state sequence.

P = TaxP(oloz...oT, g, =i|A)

<i<N

= max P(O, qT =i|A)

I<i<N

= max(J; (i) (6-50)

I<i<N

Gr =ag maX(JT (l)) (6'51)

1<i<N
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4. Path (State Sequence) Backtracking: Backtracking isretrieving the path which have
been saved as the most likely states.
0, =¢..0.y) where t=T-1,T-2, ..., 1 (6-52)
For computation simplicity, the Viterbi agorithm can be implemented by additional
preprocessing which takes the logarithms of the HMM parameters in order to convert

multiplication to addition.

0. Preprocessing:

' =log(rr,) where 1<i<N (6-53)

a,f:Iog(a,.j) where 1<i<Nand1<t<T (6-54)

b*(0,) = log(b, (0,)) where 1<i<Nand1<t<T (6-55)
1. Initialization:

37 (i) =log(d, (1)) = ¥ + b*(0,) where 1<i<N (6-56)

Wh(i)=0 where 1<i<N (6-57)

o =ag max(s7 () (6-58)
2. Recursion:

3ta(i) =109(0.. (1))

= [max(s7 () + af)] +b(0,,,) where 1<t<T-1,1<j<N (6-59)

1<i<N

Wiali) = arg [max(s() +ay where 1<t<T-1,1<j<N (6-60)
a5, =ag mex(d7., () (6-61)

3. Termination:

P* = max(d% (i) (6-62)

1<i<N

123



124

O =arg max(J%(i)) (6-63)

I<i<N
4. Path (State Sequence) Backtracking:
a’ =¢l, @, where t=T-1,T-2, ..., 1 (6-64)

6.4.3 Parameter Estimation Using the Baum-Welch M ethod

We can use a set of training observable symbol sequences to adjust the model
parameters in order to build a signal model that can be used to identify or recognize other
sequences of observable symbols. There is, however, no efficient way to optimize the
model parameter set that globally maximizes the probability of the symbol sequence.
Therefore, the Baum-Welch method © is used for choosing the maximum likelihood
model parameter set A = (77A,B) such that its likelihood function P(O | A) is locally
maximized using an iterative procedure.

To easily describe the procedure for reestimation (iterative computation) of the HMM
parameter set A = (77A,B), we define a posterior probability variable (i), shown in Figure
48, as the probability of being in state i at time t by given the HMM parameter set A and
the entire observable symbol sequence O.

P(O.q =i|4) PO.q =i|A)
y ()=P(@ =i]0A)=—" = f

POIN 5 pog, =i 14
= M (6-65)
;at () ()
where
PO.a=i | ) = ai(i) A(i) (6-66)
ay(i) = P(010,...0,, g=i | A) (6-67)
B(i) = P(0+10t+2...07 | =i, A) (6-68)
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We define the other probability variable &(i,j) (illustrated in Figure 49), which represents
the probability of being in state i at time t, and state j at time t+1 given the observable
symbol sequence O and the HMM parameter set A.

¢ (,))=P(q =1,0,,,= | | O, A)

_P(G =1,Gs, =1.00 1)
PO 1)

_P(g, =i,6,, = 1,01 A)
N
S PO.q, =i 4)
i=1

a,(1)3;b; (0u4) £1a (1)

NN (6-69)
Z Zat (ha;b; (0.1) 5.1 (1)
Then the relationship between (i) and &(i,)) is
y. (i) = ZEt(i,J) (6-70)

If we sum k(i) and &(i,j) from theinitial timet = 1 to thetimet = T-1, we can find

—

-1
y. (i) = expected number of trangitions or times, i.e., frequency, from
t

1l
it

state i given observable symbol sequence O (6-71)

—

-1
¢, (i, ) = expected number of trangitions from state i to statej given O (6-72)

t

1l
it

A set of reasonable reestimation formulas for HMM parameters 7z A, and B is given
77 = expected number of transitionsin statei at timet (= 1)

P(O,q, =i]1)
P(O] A)

_ a,()A.(0)

X0

n(i) =

(6-73)
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Time: t-1 t t+1
Symbol
sequence:  Ot1 o Ot

Figure48 A posterior probability variable y(i) which is the probability of being
in state i at time t by given the HMM parameter set A and the entire
observable symbol sequence O.
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(i) | | B())
......... >— 7 F‘ | _SIIEEIEE =
Time: t-1 t t+1 t+2
Symbol
sequence;  Or1 O Ot+1 Ots2

Figure49 The probability variable &(i,j) which represents the probability of
being in state i at time t, and state | at time t+1 given the observable
symbol sequence O and the HMM parameter set A.
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_expected number of transitions from state i to state |

% exptected number of transitionsin state i
T-1 o T-1 ) )
> &(.)) > P =i0,=]0]A)
= t'_I'l—l ] = = T-1 )
40 P(q, =i,0] 4)
t=1 t=
T-1 ) )
at (I)aij bj (Ot+1):8t+1(J)
=8 (6-74)
a . (1)B,()
t=
b(0) = expected number of transitions in state j and observable symbol o, at timet
: expected number of transitionsin state
.
yi(i) .
2" S P, =j,0] 1)(0,,0)
— st. O;=q — =
> v(i) > P(a,=].0]4)
t=1 t=1
>
a.())B.(1)a(C,0,) A =
f =
> a.()B.()
t=1
where
P(q=i,0 [ ) = ai(i) A(i) (6-76)
N N
PO[A) =% a()B() = a-() (6-77)
1=1 1=1
P(qt:i’qt’fl:jio | /\) = at(i)aijbj(ot+1),a+l(j) (6-78)

Note that these updated parameters should satisfy stochastic constraints for computation

normalization.

3 7 =1 (6-79)

1=1
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N
Zaﬂ. =1 where 1<i<N (6-80)
=1
M-1
ij(ot):l where 1<j<N and 1<t<T (6-81)
0,=0

6.5 Computation Considerations

To be able to enhance the effectiveness of HMM performance in the practical
applications, such as facial expression recognition, it iS necessary to have accurate
computation and guarantee the local maximum of the likelihood function using an iterative

procedure (reestimation procedure), i.e. the Forward-Backward procedure, convergence.

6.5.1 Choice of Hidden M arkov M odel

There are several types of HMMs  such as the ergodic model (Figure 50.a) in which
every state of the model can be reached in a single step from any state of the model. Its
state-transition probability matrix A is afull matrix.

By @p o Gy [

Ul

Ay . Ay
A={a =%ﬂ 0 6-82
{a”} ... U I ( )

[l

%Nl Ay, Ay [

where

2,20, Ya =1 and 1<isN (6-83)

The left-right model (the Bakis model) which is used for facial expression recognition in
various lengths of image sequences because they perform well in the spatio-temporal

domain and are able to deal with the time warping problem. The left-right type of HMM
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(b)

(©)

Figuer 50 (@) 4 state ergodic HMM (b) 1st-order 4-state left-right
(Bakis) HMM (c) 2nd-order 4-state left-right HMM.
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has the desirable properties that the initial state probability has the characteristic
M ifizl _

n‘:%iifizl where 1<i<N (6-84)
The state sequence must begin at the first state 1 with left to right order and end at the
final state N. Asthe time increases, the observable symbols in each sequence either stay at
the same state or increase in a successive manner. The state-transition coefficients of the
left-right model have the property

a;=0 if j<i (6-85)
No transitions can occur from the current state to a state with a lower index. An
additional constraint for the state-transition coefficients of the left-right HMM is

a;=0 if j>i+Ai (6-86)
for some value Ai which means the order of the left-right HMM. No jumps of more than
Ai number of states are allowed. For example, Ai = 1 and N = 4 means the 1st-order 4-
state left-right HMM (Figure 50.b) whose state-transition probability matrix A is

@, a 0 0Q

0 0
0 a 0
As(ap=0 %2 %= O (6:87)
00 0 a, a,0
Ho 0 0 a,f
where
a;20, Z a, =1 and 1s<is4 (6-88)

=

Ai = 2 and N = 4 indicates the 2nd-order 4-state left-right HMM (Figure 50.c) whose
state-transition probability matrix A is

By & 8 0 g
A={a;}= DO Ay 8x Ay 0
00 0 a; ayd
Ho 0o 0 a.f

(6-89)

where
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a;20, iaijzl and 1<i<4 (6-90)

6.5.2 Initialization of Hidden Markov M odel Parameter Estimation

For the training process, accurate initial estimations of the HMM parameters 77 A and

B will help the local maximum approach using an iteration procedure as close as possible
to the global maximum of the likelihood function. If the elements of the parameters are
set to zero initialy, they will remain at zero during the entire process. In practice, it is not
important to reach the global maximum of the likelihood function. Instead, finding a set of
HMM parameters which promote a highly accurate recognition result is more important.
Our experiment shows that very small random initial values of the HMM parameters
(smaller than 10°°) are adequate and useful and recognition accuracy is high. Remember
that for the left-right HMM, the initial state probability for the first stateis 1 (72 = 1) and

other statesare 0.

6.5.3 Computation of Scaling

The forward and backward variables ai(i) and (i) are computed recursively, so they
are composed of a large number of accumulated {&;} and {bj(0;)} multiplications. Since
each a;; and by(oy) is less (or extensively less) than 1, each term of ax(i) or A(i) will start to
head exponentially to zero when the length (or number of frames) T in each image
sequence increases. The dynamic range of the ai(i) or A(i) computation will then be
beyond the precision range of any computer capability. To keep ai(i) and A(i) within the
dynamic range of the computer, the most straightforward method is to multiply a(i) and
G(i) by scaling coefficients which can be canceled out completely at the end of the
computation. The scaling coefficient for ay(i) is defined as ¢, "
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%ctat(i):ct%at(i):l where 1<t<T (6-91)
. (6-92)
> a.0)

The scaling coefficient ¢, is the inverse of the sum overall states N of ai(i) at time t, is
dependent only on time t and independent of state i, and effectively rebuilds the magnitude
of the a(i) to 1. To keep the Z(i) computation within reasonable bounds as ai(i), we can
apply the same scaling coefficient ¢; to A(i) because the magnitudes of the ay(i) and A(i)
are comparable. For efficient computation within rational bounds, the ai(i) and A(i)

should be replaced by

a.() = ¢, (i) = -2 (6:93)
> ()
Bon(i) = o) = Pl (6-94)

Zam(i)

where @, (i) and B,,,(j) arethe scaling results of ay(i) and B.1(j), respectively.
In addition, when @, (i) and f,.,(j) are applied at the scaling intermediate probability
. (i) and & (i j).
7 )= Nﬁt(i)ﬁt(i) _ N(ctat(i))(ctﬂt(i)) I AOAU)
;ﬁt(i)ﬁtm ;(ctat(i))(ctﬂt(i)) > .80

=y.() (6-95)

a@,()a,b;(0)Ba(i)  _  (a®)ab (0..)€ L)

ABIEE =
XAOLLACHZMORPACCAOLLACHICEND)

1=1 ]

a,()a,b,(0,,)6:..(i)
S a,()ayb;(0..1)B..(])

1=1

N =&, 1) (6-96)
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The numerator and denominator terms are both deleted because the scaling coefficient ¢, is
independent of statesi and j. The scaling intermediate probability j, (i) and ﬁ(i,j) has the
same vaues as the intermediate probability without scaling ), (i) and &,(i,)).
Furthermore, the HMM parameters 77 A, and B will also keep the same probability values
when both ai(i) and 3.1(j) are scaled, because those parameters are constructed from
either or both intermediate probability ), (i) and &, (i.j).

=T g =3, ad b(o)=b(0) (6-97)

M)

The only rea affected event of the HMM procedure by scaling coefficient is

computing the maximum likelihood function P(O | A). Since "

T

Me S a-()=1 (6-98)
where scaling coefficient ¢ is independent of statei. So

PO A=Y ay()=— :

= Ct:TNl
L [J;am)

The computation for the denominator term of the maximum likelihood function P(O | A)

(6-99)

will be extremely small, which is out of the dynamic range of the computer’s ability. It can

be solved by taking logarithms.

N

log P(O] A) = —i log c, = ilogZat(i) (6-100)

This can be used for evaluating the most likely performance of any input data
corresponding to a set of HMMs. The Viterbi algorithm for finding the maximum
likelihood state sequence also uses the logarithms, which will be within the dynamic

bounds of the computer, so no scaling process is needed.
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6.5.4 Computation of Smoothing for Insufficient Training Data

The amount of data (observable symbol sequences) used to train an HMM is aways
limited because of considerations of the computational cost of HMM training or the
availability of training data. Thus, there is always an inadequate number of occurrences of
low-probability state transitions between states and observable symbols within states to
give reasonable estimates of the model parameters. If the training number of the
observable symbol sequences are so smal that they do not have any occurrences

smultaneously to satisfy the conditional probability of HMM parameters, then 7, =0, a,

= 0, and b, (0,) = O will occur and will stay at O after each reestimation. When this

resultant model is employed to evaluate any other observable symbol sequence which
possibly contains the state transitions or the observable symbol that do not occur in the
training sequences, this model will produce a zero probability result for this evaluated
observable symbol sequence. Such a singular outcome is certainly a consegquence of the

unreliable estimation that 7, = 0, a; =0, and Ej(ot) = 0 due to the insufficiency of the

training datato cover all possible varieties.

There are many possible solutions for handling the effects of insufficient training data
979 "quch as production of the codebook size (reduction of the number of observable
symbols at each state) or the number of states. The simplest and most practical way for
combating the insufficient training data problem is to add the numeric floor & for
smoothing the probability distributions of HMM parameters in order to ensure that no

model parameter estimation falls below a specified threshold ¢ for each iterative

estimation.
- Om  if m2>e,
T =0 o~ where ¢-. >0.0 (6-101)
£, It m<e,
. [Oa if & >¢.
a =0 . % where & >0.0 (6-102)
DEE If aij < 85
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_Ba(0) if B(o)2e;

b (@) . if b(o)<e;

where £ > 0.0

Inour study, ¢, = &5 = ¢-=0.0001.

6.5.5 Computation of Normalization

135

(6-103)

Each probability distribution of HMM parameters, which consist of conditional

probability, should satisfy the stochastic constraints at each iteration estimation.

N
=1
1=1

=z

where 1<i<N

el
I
H

=1

<

_l~
b,(0,)=1 where 1<j<N

;=0

o
I}

(6-104)

(6-105)

(6-106)

Since the probability of each parameter is reestimated at each iteration, the conflict with

the stochastic constraints always occurs. The sum of the above equation is not equal to 1,

particularly if the probability distribution of each parameter are smoothed by a numeric

floor at each iterative estimation. Therefore, it is necessary to normalize the probability

distributions of the HMM parameters so that the densities obey the required stochastic

constraints after each iteration of parameter reestimation and smoothing.

~

T = i where 1<i<N

l

135

(6-107)
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where 1<j<N and 0o s M-1 (6-109)

6.5.6 Computation of Convergence

Since the Forward-Backward procedure is based on local maxima estimation by

iterative computation to achieve global maximum, it is important to guarantee that the
reestimated parameter set A= (7, A, I§) Is convergent. It is necessary to prove that model
AL = (771, At B*1) following the i+1th iterative reestimation is either equal or more
likely than modd A =(7,A',B') a current ith reestimation in the sense that
P(O| A*) > P(O| A). In other words, if the model A' is replaced by A** and this
reestimation is repeated, then the probability of symbol sequence O being observed from

the given update model A s improved until some limiting point is reached. The final
result of this reestimation procedure is a maximum likelihood estimation of the HMM.

Because

PO|A)= Y P(O,qA) (6-110)

Then an auxiliary function® is defined as

Q' A)= ¥ POq| X) log P(O,q| A) (6-111)

gi..gr

QA" = ¥ PO,q| X) log P(O,q| A™) (6-112)

qi.qr
over A", Since

QU A" = Q(A',A) 0 PO| )= P(O]| A) (6-113)
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we can maximize the auxiliary function Q(A', A1) over X! to the better A' in order to

optimize the likelihood function P(O | E). By iterating the procedure, the likelihood

function eventually converges to a critical point.

6.5.7 Computation of Confidence

Unlike the artificia neural networks, even though there is no learnable mapping
between input and output from the training process, HMM still can generate a satisfactory
input-output confidence (mapping) for the recognition process (because of the
computation consideration in section 6.5.4). The output of the HMM, P(O | E), Is a
probability instead of one taking all. If the output probability is close to 1, it indicates that
the input symbol sequence has high confidence (similarity) with the training model. If the
output probability is close to O, it implies the input symbol sequence has low confidence
with the training model. The highest output probability among al training models is
always chosen to be the recognition result and the recognition confidence is evaluated as
well.
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70 DETERMINATION OF HIDDEN MARKOV MODEL TOPOLOGY

An HMM topology is defined as the statistical behavior of an observable symbol
sequence in terms of a network of states, which represents the overal process behavior
with regard to movement between states of the process, and describes the inherent
variations in the behavior of the observable symbols within a state. An HMM topology,
then, consists of the number of states with varied connections between states which
depend on the occurrence of the observable symbol sequences being modeled. Each state
represents a similarly-behaving portion of an observable symbol sequence process, such as
phonemes to speech ©*"*™) and facial features to face identification ®”. The variety of the
observable symbols for which the HMM uses a particular state is described in terms of the
distribution of probability that each observable symbol will occur from that state. At each
instant of time, the observable symbol in each sequence ether stays at the same state
(called sdlf-trangition) or moves to another state based on a set of state-transition
probability associated between the states, which models the duration of each similarly-
behaving portion of the process. So, to determine the HMM topology is to choose the
types of HMM, such as ergodic, left-right or some others, and to decide the number of
states and the connections between states. To accomplish this, it IS necessary to
understand the physical meaning of states represented by the corresponding observable
symbols.

71 TheMethod
If different HMM topologies are equivalent in their abilities to generate the same

recognition performance, then the simplest topology of these models is the best with the

fewest elements of model parameters. If the number of elements of model parameters for
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an HMM is unnecessarily large, then its topology will not efficiently represent the
performance of the training data, and the model will incur unnecessary computational cost.

There exists no simple and theoretical method for determining the optimum topology
for an HMM. Currently, most HMM topologies are determined by experiments using
iterative trial-and-error processes, without discussing the physical meaning to support
their determinations of HMM topologies. To optimize the HMM recognition
performance, we develop a method to determine the HMM topology for our facial
expression recognition.

Facial expressions are recognized in the context of the entire image sequence of an
arbitrary length, so the left-right (or Bakis) model is employed to model the image

sequences whose properties change over time in a successive manner.

711 Step 1: The 1st-Order Markov M odel

Since HMM is derived from a (observable) Markov model, the method for determining
the HMM topology isto start from the 1st-order left-right Markov model. Theruleis:

Rule1.1: The same and successive observable symbols of portion of each sequence will
occupy at one and only one state of the 1st-order left-right Markov model and

states are connected in order as the symbols in each sequence.

Example:

Based on a codebook of size M = 16, there is a training observable symbol sequence
with 3 different symbols o; , 0 < 0; < M-1, in order 016 = 14, Oi=7-s = 6, and Ot=9-11 = 9,
wheret isthe instant time (or frame number), and 11 frames (1 <t < 11 =T) in Figure 51.
This symbol sequence can be represented by a 1st-order 3-state left-right Markov model
where each state is occupied by an individua symbol.
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Subject Number: 111

Expressions: AU12
Codebook Size: M =16
Time (Frame Number) t: 1 2 3 4 5 6 7 8 9 1011

Observable Symbol Sequence O: 14 14 14 14 14 14 6 6 9 9 9

Observable Symbol 0, (0< 0, <M-1):(0. 0, 03 04 Os 0g) (07 0Og) (09 O19 O11)

/ /
&1/ &2 a3
1 /

1st-Order 3-State Markov Modd :
State-Transition Probability a;:

by(016=14)  by(075=6 (061129
Observable Symbol Probability by(0,): :1(1_66 ) :2(1?68 ) —3(1?8 v

(at statej timet)

Figure51 A 1st-order 3-state Markov Model used to represent the
observable symbol sequence.

7.1.2 Step 2: The 1st-Order Hidden Markov M odel

The Markov model can be seen as a special case of an HMM having redundant states.
That is, for each state j at time t, the observable symbol probability bj(o;) has one 1.0,
others are 0.0. In HMM, each state tolerates probability distributions of different
observable symbols occurring at the same time. ThisHMM property alows us to combine
different 1st-order left-right Markov models into one 1st-order left-right HMM by
eliminating the redundant states without losing the individual performance. The rules are

as following:
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Rule2.1;

Rule 2.2

Rule2.3:

Rule 2.4:

141

If the observable symbols of each training sequence are shown only at the
initial state or at the last state of the 1st-order left-right Markov models, then
these observable symbols should be at the first state or at the last state of the
1st-order left-right HMM.

Each symbol having higher occupied probability among total observable
symbols from all 1st-order left-right Markov models will dominate one state of
the 1st-order left-right HMM. Each symbol having the lower occupied
probability among al observable symbols can be combined (absorbed) by its
neighbor states having the higher occupied probability among all observable
symbols at the 1st-order left-right HMM.

Symbols having the lower occupied probability among all observable symbols
taken from consecutive states at the 1st-order left-right Markov model can
combine to take one state at the 1st-order left-right HMM. If the occupied
probability of the sum of these symbols at this state at the 1st-order left-right
HMM is still lower, then as Rule 2.2, this state can be combined by its
neighbor states having the higher occupied probability among all observable
symbols at the 1st-order left-right HMM.

According to al 1st-order left-right Markov models, we can count the number
of connections (or state transitions) between two states as the connective
intensity between these two states. More numbers of connections have
stronger connective intengity between both states. Fewer numbers of
connections have weaker connective intensity between both states. During the
combination process, the connection between both states having stronger
connective intensity should keep the same status as that at the 1st-order left-
right Markov model. If the connection between both states having weaker
connective intensity will be easily broken, then either both states will combine

to become one state, or each state is combined by its neighbor state having the
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higher occupied probability among all observable symbols at the 1st-order left-
right HMM.
Rule2.5: The number of states at the 1st-order left-rignt HMM should be no more than

the maximum number of states among all 1st-order left-right Markov models.

Rules 2.2 and 2.3 are created according to the following HMM property. For each
state, if its self-transition probability is much lower than other state-transition probability,
then this state can be combined by its neighbor states without losing its origina
performance. This is because without the self-transition, a state is merely an intermediate
state between other states. It cannot represent a meaningful portion of the process. The
meaningful portion of the process is represented by the probability of observable symbols
a the HMM.

The following examples demonstrate execution of the rules to combine different 1st-
order left-right Markov models into one 1st-order left-right HMM for each “expression
unit.” According to the number of total 1212 training images for recognition of the lower
facial expression using the dense flow tracking with principal component analysis (PCA)
method, the codebook sizeNs = 16 (Z < 1212/50 < 2. The observable symbo| at
timet will be 0< 0, < 15.

Example 1:

In Figure 52 for “expression unit” AU12, there are twelve 1st-order left-right Markov
models with three different symbols having high occupied probability (B4706: 0.293,
and 9: 0.330). Using the rules:

Rule 2.1: Observable symbol 14 should be at the first state and observable symbol 9
should be at the last state of the 1st-order left-right HMM, since symbols 14
and 9 are at the first state and the last state of each Markov model,
respectively, with high occupied probability.

Rule 2.4: Symbol 6 has very strong connective intensity with symbol 14. It also has very
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The overal probability for each observable symbol from all 12 different symbol
sequences of the facial expression AU12: (O = {0=6, 0=9, 0=14})

Major Symbols:

P(o= 6]0) = 0.293

P(o=9|0) = 0.330

P(o= 14|0) = 0.377

aig adx
Step 1: The 1st-Order Markov Model

Thereare5 a
1st-order 2-state Markov Models;

bl(Q:14) b2(01=6)

=10 =10
aig adx das
Thereare 7 ap s
1st-order 3-state Markov Models;
bi(0=14) b,(0=6) bs(0=9)
=1.0 =1.0 =1.0

Step 2: The 1st-Order Hidden Markov Model -

All 1st-order Markov Models at a1 a2 az3
Step 1 can be represented by
this 1st-order 3-state Hidden

Markov Model. &2 823
The major observable bi(0=14) b2(0:=6) bs(0=9)
symbols for each state: <10 <10 <10

Figure52 A 1st-order Hidden Markov Moddl can be used to represent the
combination of al 1st-order Markov Models for facial expression AU12.
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strong connective intensity with symbol 9 but in the opposite direction.
Symbol 9 does not have any connective intensity with symbol 14.
We can use a 1st-order 3-state left-right HMM with symbols 14, 6 and 9 for states 1, 2,

and 3, respectively, to represent all Markov models for “expression unit” AU12.

Example 2:

In Figure 53 for “expression unit” AU12, there are twelve 1st-order left-right Markov

models with three different symbols having high occupied probability 8850.9: 0.372,

and 1: 0.243).

Rule 2.1: Symbols 2 and 1 should be at the first state and the last state of the 1st-order
left-right HMM, since both have high occupied probability and are at the first
state and last state for each Markov model.

Rule 2.2 & 2.4: Symbol 9 is either at the middle or last state at Markov model. Symbol 2
has stronger connective intensity with symbol 9 than that of symbol 1, so the
connection between symbol 2 and symbol 1 will be easy to break.

Based on the above analysis, we insert symbol 9 between symbols 1 and 2 by breaking the

connection between symbols 2 and 1. That is, we can model the training image sequences

of “expression unit” AU12 by a 1st-order 3-state HMM whose major probability of

observable symbols for state 1 is 2, for state 2 is 9, and for state 3 is 1.

Example 3:
In Figure 54 for “expression unit” AU15+17, there are thirteen 1st-order left-right
Markov models with two major symbols having higher occupied probability 4280and
6: 0.459) and with two minor symbols having lower occupied piitiigafd: 0.082 and
12: 0.031).
Rule 2.1: Symbol 2 should be at the initial state and symbols 1 and 6 should be at the last
state of the 1st-order left-right HMM.
Rule 2.2:  Since symbols 1 and 6 should be at the last state of the 1st-order left-right
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The overal probability for each observable symbol from all 12 different symbol
sequences of the facial expression AU12: (O = {0=1, 0=2, 0=9})

Major Symbols:

P(o=1]0) = 0.243
P(o=2|0) =0.385
P(o=9|0) =0.372

Step 1: The 1st-Order Markov Moddl -

Thereare 7 Thereare 4
1st-order 2-state Markov Models; 1st-order 2-state Markov Models;
an ax an axp
aip aip
bi(0=2) b.(0:=9) bi(0=2) bo(0=1)
=1.0 =1.0 =1.0 =1.0
Thereis 1 au 822 &3
1st-order 3-state Markov Mode!:
a a:
1 12 2 23
bi(0=2) b.(0:=9) bs(0=1)
=10 =10 =1.0

Step 2: The 1st-Order Hidden Markov Model -

All 1st-order Markov Models at iy a2 as3
Step 1 can be represented by
this 1st-order 3-state Hidden

Markov Model. 1 2 =
The major observable
 b0=2) bz(0=9) 0s(0=1)
symbols for each state: <10 <1.0 <10

Figure53 A 1st-order Hidden Markov Moddl can be used to represent the
combination of al 1st-order Markov Models for facial expression AU12.
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The overal probability for each observable symbol from all 13 different symbol
sequences of the facial expression AU15+17: (O = {0=1, 0=2, 0=6, 0=12})

Major Symbols: Minor Symbols:
P(o=2|0) = 0.428 P(o= 1|O) = 0.082
P(o= 6]0O) = 0.459 P(o= 12|0) = 0.031
Step 1: The 1st-Order Markov Model
Thereare 2 Thereare 2
1st-order 1-state Markov Models; 1st-order 2-state Markov Models;
aig agn adx
aip
bi(0=2) bi(0=2) bo(0=1)
=1.0 =1.0 =1.0
Thereare 7 Thereare 2
1st-order 2-state Markov Models: 1st-order 3-state Markov Models;
ay A aig adx dss
ar aip a3
bi(0=2) bx(0r=6) by(0=2) by(0=12) bs(0r=6)
=1.0 =1.0 =10 =1.0 =1.0

Step 2: The 1st-Order Hidden Markov Model -

All 1st-order Markov Models at &1 a2
Step 1 can be represented by
this 1st-order 2-state Hidden

a2
Markov Model.
The major observable bs(0=2) b,(0=6)
symbols for each state: <10 <10

Figure54 A 1st-order Hidden Markov Model can be used to represent the

combination of all 1st-order Markov Models for facial expression
AU15+17.
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HMM and symbol 6 has a much higher occupied probability than that of
symbol 1, symbol 1 can be combined by symbol 6 and be at the same last state
of the HMM.

Rule 2.2 & 2.4: Symbols 2 and 6 have very strong connective intensity compared with
that between symbols 2 and 12 which has lower occupied probability. So
symbol 12 can be combined by its neighbor states taken by symbols 2 and 6
with higher occupied probability.

We use a 1st-order 2-state HMM with mgjor symbols 2 and 6 for the first state and the

second (last) state, respectively.

Example 4:
In Figure 55 for “expression unit” AU15+17, there are twelve 1st-order left-right

Markov models with three major symbols having higher occupied probability529,06:

0.269, and 14: 0.159) and with two minor symbols having lower occupied pitgl{ab

0.028 and 12: 0.005).

Rule 2.1: Symbol 2 should be only at the initial state, and symbols 1 and 14 should be
only at the last state of the 1st-order left-right HMM.

Rule 2.2:  Symbol 1 (lower occupied probability) will be combined by symbol 14 (higher
occupied probability) and both are at the last state of the 1st-order left-right
HMM.

Rule 2.4: Symbols 2 and 6 have very strong connective intensity compared with those of
symbol 2 and 14, and 2 and 12 (lower occupied probability), so symbols 2 and
6 will strongly connect together by combined symbol 12.

According to the above analysis, three major occupied probability (2, 6, and 14) should

have their own states at HMM, since symbols 2 and 14 should dominate the first state and

last state, respectively. Symbol 6 has strong connective intensities between symbol 2 and

14, so symbol 6 will be at the middle state of the HMM. That is, a 1st-order 3-state left-

right HMM will be applied with major symbols 2, 6, and 14 at states 1, 2, and 3,
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The overal probability for each observable symbol from all 12 different symbol
sequences of the facial expression AU15+17: (O = {0=1, 0=2, 0=6, 0=12, 0,=14})

Major Symbols: Minor Symbols:
P(o=2|0) = 0.539 P(o=1]O) = 0.028
P(o= 6|0) = 0.269 P(o=12|0) = 0.005

P(o= 14|0) = 0.159
Step 1: The 1st-Order Markov Model
Thereare 3 1st-order 1-  Thereis 1 1st-order 2-state  There are 3 1st-order 2-

state Markov Modéls: Markov Modd: state Markov Moddls:
ai adig do a1 ax»
O 00 O
bi(0=2) b.(0=2) bo(0=1) bi(0=2) b,(0=6)
=1.0 =1.0 =10 =1.0 =1.0
Thereis1 1st-order 2-  There are 3 1st-order 3- Thereis 1 1st-order 3-
state Markov Modd!: state Markov Modéls: state Markov Modd!:

a1 a2 da3

Q1 ay a1 A ds3
8112’8 82’8%% = =

bi(0=2)  0(0=14) by(0=2) bu(0=6) bs(0=14) by(0=2) bx(0=12) bs(0=6)
=1.0 =1.0 =10 =10 =10 =10 =10 =10

Step 2: The 1st-Order Hidden Markov Model -

All 1st-order Markov Models at an a2 ass
Step 1 can be represented by
this 1st-order 3-state Hidden

a a

Markov Model. 2 2
The major observable b,(0:=2) b,(0:=6) bs(0=14)
symbols for each state: <1.0 <1.0 <10

Figure55 A 1st-order Hidden Markov Model can be used to represent the
combination of al 1st-order Markov Models for facial expression
AU15+17.
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respectively.

Example 5:
In Figure 56 for “expression unit” AU17+23+24, there are thirteen 1st-order left-right

Markov models with five major symbols having higher occupied probability (@:10.4:

0.191, 8: 0.155, 12: 0.133, and 14: 0.346) and with one minor symbol having lower

occupied probability (1: 064).

Rule 2.1: Symbol 14 should be at the first state, and symbols 0 and 8 should be at the last
state of the 1st-order left-right HMM.

Rule 2.2: Symbol 1 will be combined by its neighbor states since it has lower occupied
probability.

Rule 2.4: Symbol 12 has very strong connective intensities between symbols 14 and 4.
Symbol 4 has strong connective intensities between symbols 12 and 0.

Since symbols 0, 4, 8, 12, and 14 all have high occupied probability, symbol 14 should be

at the first state, and symbol 12 will be at the second state of the 1st-order left-right

HMM, which is right after symbol 14 but before symbol 4. Symbol 4 should domain one

state which is between symbols 12 and 0. Symbols 0 and 8 should be at the last states.

Rule 2.5: The total state numbers of the HMM should be no more than the maximum
state number of Markov models.

The final result is a 1st-order 4-state left-right HMM whose major probability of

observable symbols for each state is symbol 14 for state 1, symbol 12 for state 2, symbol 4

for state 3, and symbol 0 and 8 for the last state.

Example 6:

In Figure 57 for “expression unit” AU6+12+25, there are eleven 1st-order left-right
Markov models with three major symbols having higher occupied probability2@2,07:
0.302, and 14: 0.274) and four minor symbols having lower occupied pitgbgh
0.044, 9: 0.011, 11: 0.044, and 15: 0.063).
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The overall probability for each observable symbol from al 13 different symbol
sequences of the facial expresson AU17+23+24: (O = {0=0, 0=1, 0=4, 0=8, 0=12,
0=14}) Major Symbols: Minor Symbols:

P(o=0/0) =0.111  P(o= 4|0) = 0.191 P(o= 1/0) = 0.064
P(o=8|0) =0.155 P(0= 12|0) = 0.131

Step 1: The 1st-Order Markov Model
Thereis1 1st-order 2-state Thereis 1 1st-order 2-state There are 3 1st-order 3-

Markov Model: N state Markov Models:

i o i o ain ax» as3
ai ai aio o3
bi(0=14) by(0=12) bi(0=14) by(0=1) b1(0=14) by(0=12) bs(0=4)

=10 =10 =10 =10 =10 =10 =10
Thereare 3 1st-order 3- Thereis 1 1st-order 3- There are 4 1st-order 4-
state Markov Models: state Markov Modd: state Markov Modéls:
adig do das a1 do das
aio adxs aio adxs
bi(0=14)  by(0=8)  by(0=14)  bs(0=8) bi(0=14) bs(0=4)
=1.0 =1.0 =1.0 =1.0 =1.0 » 12)= 1.0 4(0=0)
by(0=12) = 1.0 by(0=1) = 1.0 2( 0= 4\O=
A0=12) A0=1) =1.0 =1.0
Step 2: The 1st-Order Hidden Markov Model -  a,, an ass au

All 1st-order Markov Models at
Step 1 can be represented by
this 1st-order 4-state Hidden

Markov Model.
The major observable bi1(0=14) by(0=12) bs(0=4){bs(0=0) +
symbols for each state: <10 <10 <10 byo=8)}

<10

Figure56 A 1st-order Hidden Markov Model can be used to represent the
combination of all 1st-order Markov Models for facial expression
AU17+23+24.
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The overall probability for each observable symbol from all 11 different symbol

sequences of the facial expresson AU6+12+25: (O = {0=3, 0=6, 0=7, 0:=9, 0=11,

0=14, 0=15}) Major Symbols:
P(o= 3|0) = 0.262
P(o= 7|0O) = 0.302
P(o= 14]0) = 0.274

Step 1: The 1st-Order Markov Model

Thereis 1 1st-order 3-state Markov
Modd:

ail a2 da3

a2 o3

bi(0=14) by(0=11) bs(0=15)
=10 =10 =10

Thereis 1 1st-order 3-state Markov
Modd:

ail a2 da3

a2 o3

bi(0=14) by(0=6) bs(0:=3)
=10 =10 =10

Figure57 (Continued)
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Minor Symbols;

P(o=6|0) =0.044 P(o=9|0) = 0.011
P(o= 11|0) = 0.044 P(o= 15/0) = 0.063

There are 3 1st-order 3-state Markov
Models:

a1 a2

a2 o3

b1(0=14) by(0=11) b3(0:=3)
=10 =10 =10
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Thereis 1 1st-order 4-state Markov Thereis 1 1st-order 4-state Markov
Modd: Modd:

bl(Q:14) bB(Ot:9)

=1.0 =1.0 1.0 .
by(0:=6) ba(0:=3) ba(0:=6) ba(0=7)
=1.0 =1.0 =10 =1.0
There are 2 1st-order 5-state Markov Thereis1 1st-order 5-state Markov
Models: Mode!:

bi(0=14)  bs(0=9) bs(0=7)  bi(0=14)  by(0=11)  bs(0=7)
=10 =10 =10 =10 =10 =10
b(0=6) ba(0=3) by(0=6) b«(0=3)
=1.0 =1.0 =10 =10

Step 2: The 1st-Order Hidden Markov Model -

All 1st-order Markov Models at
Step 1 can be represented by
this 1st-order 4-state Hidden

Markov Model. { b2(01:6) +
b(0=9) +
The mgjor observable bi(0=14) by(0=11)} bs(0=3) ba(0=7)

symbols for each state: <1.0 <1.0 <10 =10

Figure57 A 1st-order Hidden Markov Model can be used to represent the
combination of all 1st-order Markov Models for facial expression
AUG+12+25,
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Rule2.1: Symbol 14 should be at the first state, and symbols 7 and 15 should be at the
last state of the 1st-order left-right HMM.

Rule2.2:  Symbol 15 (lower occupied probability) will be combined by symbol 7 (higher
occupied probability) at the last state of the HMM.

Rule 2.3 & 2.4: For three symbols having lower probability (6, 9, and 11), symbol 9 is
always after symbol 6. Symbol 6 is always at the second state after symbol 14
a the first state. Symbol 11 is either following symbol 6 or at the second state
after symbol 14. Symbol 3 has no connective intensity with symbol 14 taken
the first state. So al three symbols (6, 9, and 11) can combine together and
take the second state of the HMM. We can then find that symbol 3 has strong
connective intensities between the second state (taken by symbols 6, 9, and 11)
and the last state (taken by symbols 7 and 15).

A 1st-order 4-state left-right HMM whose major probability of observable symbols for

state 1 is 14, for state 2 is 6, 9, and 11, for state 3 is 3, and for state 4 is 7 will be

employed.

Example 7:
In Figure 58 for “expression unit” AU6+12+25, there are twelve 1st-order left-right

Markov models with four major symbols having higher occupied probability 83250 .3:

0.109, 5: 0.287 and 11: 0.236) and with three minor symbols having lower occupied

probability (1: 0003, 9: 0.030, and 10: 0.030).

Rule 2.1: Symbol 2 should be at the first state, and symbols 3 and 11 should combine and
be at the last state of the 1st-order left-right HMM.

Rule 2.3 & 2.4: Symbols 9 and 10 are always at the second state which is after symbol 2
at the first state, so both symbols can combine together at the second state.
Symbol 5 has very weak connective intensity with the first state, but it has very
strong connective intensities between the second and the last state.

Rule 2.2: Symbol 1 can be combined by both symbols 9 and 10 at the second state and
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The overall probability for each observable symbol from all 12 different symbol

sequences of the facia expresson AU6+12+25: (O = {0=1, 0=2, 0:=3, 0:=5, 0=9,

0=10, 0=11}) Major Symbols:

P(o=2/0) =0.305 P(0= 3|0) = 0.109
P(0= 5/0) = 0.287

Step 1: The 1st-Order Markov Model

There are 2 1st-order 3-state
Markov Models:

ai1 a2 da3

ai2 o3

bi(0=2) by(0=5) bs(0=11)
=10 =10 =10

There are 2 1st-order 3-state Markov
Models:

a1 a2 da3

a2 o3

bi(0=2) by(0=9) bs(0=5)
=10 =10 =10

Figure58 (Continued)

P(o= 11/0) = 0.236
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Minor Symbols;
P(o= 1JO) = 0.003

P(o= 9|0) = 0.030
P(o= 10|0) = 0.030

There are 3 1st-order 3-state Markov

Models:

ai1 a2 da3

aiz o3

bi(0=2) b,(0=10) bs(0=5)
=10 =10 =10
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Thereis 1 1st-order 4-state Markov Thereis 1 1st-order 4-state Markov
Modd: Modd:

bi(0=2) bs(0:=5)
=10 =10 .0 )
b,(0=10) bs(0=11) b2(0=9) b(0=3)
=1.0 =1.0 =1.0 =1.0
There are 2 1st-order 5-state Markov Thereis 1 1st-order 5-state Markov
Models: Model:

b.(0=2) bs(0=5) bi(0=2) bs(0=1) bs(0=3)
=1.0 =1.0 =1.0 =10 =10
b2(0:=9) bs(0=11) b2(0=9) bs(0=5)
=10 =10 =1.0 =10
oo das Aas
Step 2: The 1st-Order Hidden Markov Model -
All 1st-order Markov Models at
Step 1 can be represented by G2 B Gz
this 1st-order 4-state Hidden
Markov Model. {by(0=9) + {ba(0=3) +
The major observable bi(0=2) by(0=10)} bs(0=5) bs(0=11)}
symbols for each state: <10 <10 <10 <10

Figure58 A 1st-order Hidden Markov Model can be used to represent the
combination of all 1st-order Markov Models for facial expression
AUG+12+25,
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symbol 5 having high occupied probability.
We can use a 1st-order 4-state left-rignt HMM whose major probability of observable
symbols is 2 for state 1, 9 and 10 for state 2, 5 for state 3, and 3 and 11 for state 4 to

represent the performance of original all Markov models.

Example 8:

In Figure 59 for “expression unit” AU20+25, there are eighteen 1st-order left-right

Markov models with three major symbols having higher occupied probability 4@4,0.

10: 0.212, and 11: 0.128) and with seven minor symbols having lower occupied

probability (3: 0080, 5: 0.060, 6: 0.003, 7: 0.014, 12: 0.003, 13: 0.074, and 14: 0.021).

Rule 2.1 & 2.3: Symbol 2 should be at the first state. Symbols 5, 7, 13, and 14 will be
combined by symbol 11 (higher occupied probability) and be at the last state of
the 1st-order left-right HMM.

Rule 2.2 & 2.4: Since symbol 10 (high occupied probability) has strong connective
intensity with the first state taken by symbol 2, and also has strong connective
intensity with the following state, it is not likely to be at the last state of HMM.

Rule 2.2: The state having symbols 3, 6 or 12 will be combined by its neighbor states
with higher occupied probability of symbols.

Rule 2.4: Symbols 5, 7, 11, 13, and 14 at the last state will have strong connective
intensity with symbol 10 at the second state of HMM.

So a 1st-order 3-state left-right HMM whose major probability of observable symbols is 2

for state 1, 10 for state 2, and 5, 7, 11, 13 and 14 for state 3 will be employed.
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The overall probability for each observable symbol from all 18 different symbol
sequences of the facial expression AU20+25: (O = {0=2, 0=3, 0=5, 0:=6, 0=7, 0=10,
0=11, 0=12, 0=13, 0=14})

Major Symbols: Minor Symbols:

P(o=2|0) = 0.404 P(o=3|0) =0.080 P(o=5|O) =0.060
P(o=10|0) = 0.212 P(o=6|0) =0.003 P(o=7|0) =0.014
P(o=11|O) = 0.128 P(o=12|0) =0.003 P(o=13|0) =0.074

P(o= 14|0) = 0.021
Step 1: The 1st-Order Markov Model

Thereis 1 1st-order 3-state Markov There are 4 1st-order 3-state Markov
Mode!: Models:
adig A ai1 A
aip aip
bi(0=2) by(0=5) bi(0=2) by(0=10)
=1.0 =1.0 =1.0 =10
Thereis 1 1st-order 3-state Markov There are 3 1st-order 3-state Markov
Mode!: Models:
i1 axn da3 adig axn da3
i o3 ain o3
bl(OtZZ) bz(Ot:].Z) b3(0125) bl(OtZZ) bz(Ot:].O) b3(Q213)
=1.0 =10 =1.0 =1.0 =10 =1.0

Figure59 (Continued)
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There are 3 1st-order 3-state Markov
Models:

ai1 a2 da3

ai2 o3

bi(0=2) by(0=10)bs(0:=3)
=10 =10 =10

Thereis 1 1st-order 4-state Markov
Modd:

ail axn da3 Qus

bio=2)  byo=10)

=10 =10
by(0=6) ba(0=14)
=10 =10

Step 2: The 1st-Order Hidden Markov Model -

All 1st-order Markov Models at
Step 1 can be represented by
this 1st-order 3-state Hidden
Markov Model.

The major observable
symbols for each state:

There are 4 1st-order 3-state Markov
Models:

a1 a2 da3

ai2 o3

bi(0=2) b,(0=10)bs(0=11)
=10 =10 =10

Thereis 1 1st-order 4-state Markov
Modd:

by(0=2) bs(0r=3)
=10 =1.0
b.(0=10) ba(0=7)
=10 =10
a1 a2 da3
ai2 o3
b:(0=2) {bs(o=5) +
<10 by(0=7) +
bz(Ot:].O) bg(Ot:].l) +
<1.0 bs(0=13) +
b3(Q214)
<10

Figure59 A 1st-order Hidden Markov Model can be used to represent the
combination of all 1st-order Markov Models for facial expression

AU20+25.
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7.1.3 Step 3: The Multi-Order Hidden Markov M odel

The property of an HMM is such that each state can be reached by any state based on
the connections of state transitions. We can therefore combine different state numbers of
1st-order left-rignt HMMs into one multi-order multi-state left-right HMM, without loss

of the individual performance.

Rule3.1: The initial multi-order N-state left-right HMM is the same as the 1st-order N-
state left-right HMM which has the maximum number state N of all 1st-order
n-state left-right HMMs formed at Step 2.
N = max {n} (7-1)
Rule 3.2: If there exist 1st-order n-state left-rignt HMMs at Step 2, then the states at the
multi-order N-state left-right HMM should be connected between statesi and |
(i.e., there exists state-transition probability &;) as follow:
g 20 if j=i+(N-n+l where 1<i,j<N (7-2)

Example:

According to the above example analysis at Step 2, we use 1st-order 2-state (n = 2), 3-
state (n = 3), and 4-state (n = 4) left-right HMMs to model various “expression units” of
individual AUs or AU combinations for lower facial expressions. Using the above rules,
we can use a 3rd-order 4-statd £ max {n} = 4) left-right HMM to include all
possibilities of state-transition probabilitg;] and observable symbol probabilitly;((;))

among all 1st-order left-right HMMs at Step 2 (Figure 60).
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1st-order n-state Hidden Markov Model (n = 2, 3, 4):

ai1 dx a1 adx das
aip ain o3
Number of states: Number of states:
n=2 n=3

Number of states:
n=4

Rule 3.1: The number of states N for the multi-order N-state Hidden Markov Model -

N=max {n} =max {2,3,4}=4

Figure60 (Continued)
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Rule 3.2: The combination of the 1st-order 2-, 3- and 4-state Hidden Markov Models -

1. The 1st-order 2-, 3- and 4-state Hidden Markov Models can be represented by
different multi-order 4-state Hidden Markov Models:

Compatible to the 1st-order 2- Compatible to the 1st-order 3-
state Hidden Markov Model state Hidden Markov Model

The 1st-order 4-state Hidden
Markov Modd

2. All above multi-order 4-state Hidden Markov Models can combine to be a 3rd-
order 4-state Hidden Markov Moddl.

Figure60 The 1st-order 2-, 3- and 4-state Hidden Markov Models can combine
to be a 3rd-order 4-state Hidden Markov Model.
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7.2  Physical M eaning of Hidden Markov Model Topology

One advantage of starting from the Markov model in determining the HMM topology
Is avoidance of the redundant states and connections (state transitions) at the HMM. The
“redundant state” means multiple states connected in series which are represented by the
same observable symbol having the major observable symbol probfdjy(such as
bj(o) > 0.90) at each state. In addition, this kind of redundant state is always an
intermediate state and always occurs simultaneously with a very low self-transition
probability a; (such asa; < 0.01). The “redundant state transition” means the state-
transition probability is close or equal to zero. Both redundant situations will increase the
elements of HMM parameters and increase the computation time. Because of this, HMM
parameters may difficult to adapt in order to perform well the statistical behavior of the
training data. Our method begins with assigning each individual symbol of each
observable symbol sequence to one state of the 1st-order left-right Markov model. Then,
based on the HMM properties, the state numbers of the 1st-order left-right Markov model
are reduced by the combination of redundant states. State connections of the 1st-order
left-right HMM are increased when required to form the optimal multi-order left-right
HMM.

If the HMM has an insufficient number of states or state transitions, then the physical
meaning corresponding to each stat#l e difficult to represent, and the temporal
consideration for state transitions will be lost. Furthermore, the ability of the model to
represent the training sequences will degrade, which will lower performance of the
recognition process. Using our method, the state combinations still maintain the property
of each major symbol (high occupied probigh dominating one state of the multi-order
left-right HMM (but each state of this HMM can contain one or several major symbols).
Further, the connections between staies, Gtate transitions) at the multi-order left-right
HMM contain all transition possibilities over all training symbol sequences. Therefore,
our method can ensure that the multi-order left-right HMM has exactly as many states and

state transitions as the training symbol sequences required to be modeled.
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Table8 Physical meaning of the Hidden Markov Model topology.
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Extracted Methods

Input Vector Sequence

Physical M eaning of each

for theHMM HMM State
Feature Point Tracking | Displacement Vector The displacements of facial
Sequence feature points

Dense Flow Tracking

Weight Vector Sequence

The displacements of the

Component Analysis

Seguence

with Principal entire upper or lower facial
Component Analysis region
High Gradient Mean-Variance Vector The distribution of furrow

variation

According to our method for determining the HMM topology, each state at the multi-

order left-right HMM consists of one or several mgjor symbols having high occupied

probability, and many other minor symbols having low occupied probability to represent a

similarly-behaving portion of training symbol sequences. Using these symbols, it can

obvioudly realize the physical meaning of each state corresponding to a portion of these

training observable symbol sequences, such asthosein Table 8.

The number of states for each HMM is proportional to some measure of variation in

motion as well as variation (deviation) among the training motion data of different classes.

In our study, the motion deviation among these three “expression units” of the upper facial
expressions is smaller than that among these six “expression units” of the lower facial
expressions. Based on this method for determination of HMM topology, a 2nd-order 3-

state left-right HMM is created to model the three upper facial expressions, and a 3rd-

order 4-state left-right HMM for the six lower facial expressions.
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80 EXPERIMENTAL RESULTS

The computer-vision based facia expression recognition system described in the
previous chapters has been trained and experimented with a large set of image sequences
containing nine frequently occurred facia expressions of many subjects with various
expression intensities. The experimental results are very exciting and have shown a great

promise of our automatic recognition system.

8.1 DataAcquisition, Experimental Setup, and Digitizing

The database consists of 90 adult volunteers and 4 infants. The subjects included both
male (35%) and female (65%). They ranged in both age (from 1 to 35 years of age) and
ethnicity (81% Caucasian, 14% African-American, 4% Asian or Indian, and 1% Hispanic).
The data acquisition was done in 8 sessions over a 2-month period *. More than 400
image sequences and 8000 images were made available to this research.

Adult subjects were seated 2 meters directly in front of a standard VHS video camera,
with a video rate of 30 frames per second, which was manually adjusted to capture a full-
face frontal view. None of the subjects wore eyeglasses. Some of subjects had hair
covering their foreheads, and severa subjects wore caps, or had makeup on their brows,
eyelids or lips. Overhead fluorescent and incandescent lights as well as two halogen lights
attached to portable umbrellas were positioned to the front at 30 degrees left and right,
and were adjusted to provide maximum illumination with a minimum of facial shadows
(Figure 61). Although reflection and lighting may have varied across individuals because
of different facia skin colors and different times, constant illumination was used for each

subject. These constraints - constant illumination using

! This was done by Miss Adena J. Zlochower and Dr. Jeffrey F. Cohn, Department of
Psychology, University of Pittsburgh.
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Subject

VHS Video
D) ) o

Figure 61 Experimental setup.

fixed light sources, and no eyeglasses - were imposed to minimize optical flow
degradation.

None of the subjects were previously trained in displaying specific facial expressions.
Prior to video recording, subjects practiced the expressions with FACS experts. During
recording, subjects were free to look at the experts and copy their expressions. Subjects
were asked to perform six basis expressions (joy, fear, anger, disgust, sadness, and
surprise), and a series of “expression units” corresponding to individualeégJsAU12)
and AU combinationse(g., AU12+25) (see Table 3 for a complete list, and Figure 4 for
“expression units”). Each expression was repeated 3 times, and the best expression was

chosen. Each posed expression began from neutral, reached peak, and ended at neutral
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expressions again. There is at least a half second duration (15 frames) of neutral
expression between posed expressions. Even though these untraining subjects have seen

the expressions demonstrated by experts, subjects still showed a range of posing ahility.

Not all of the expressions conformed to the “expression units,” such as the combination of
“expression units”: AU1+2+4, AU12+20+25 and AU12+15. The spontaneous
expressions showed more variability. In addition, facial expressions (non-rigid motion)
with some out-of-plane head motion (rigid motion) such as yawing or pitch lessléfan
occurred concurrently, even though all subjects were viewed frontally.

Each frame of video sequence was automatically digitized into 490 x 640-pixel image
on a Sun Sparc 20 workstation using the K2T digitizer. For feature point tracking and
high gradient component analysis, the size of each frame was kept the same as the original
490 x 640-pixel image. To save the computing time when using dense flow tracking, the
image size of each frame was automatically cropped to 417 x 385 pixels, which exactly

covered the entire face and cut out the unnecessary background.

8.2  Segmentation and Coding by Human Observers (Ground Truth)

Before digitizing, the image sequences were segmented and coded by two certified
FACS coders. Training a FACS coder is time consuming and takes approximately 100
hours to achieve acceptable levels of réiighband coding criteria are subject to drift over
the course of prolonged studies. It can take up to 10 hours of coding time per minute (30
frames/second) of taped facial behavior depending on the comprehensiveness of the
system and the density of behavior changes.

Certified FACS coders segmented video tape from the beginning of the beginning
duration, to the apex duration, and finally to the end of the ending duration to capture an
expression sequent®. For each expression sequence, the beginning duration is defined
as the last 2 ~ 4 frames of the neutral expression, which are prior to the facial movement,

to the beginning of the apex duration. The ending duration is defined as from the end of
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the apex duration to the first 2 ~ 4 frames of the neutral expression, which are after facial
movement. The apex duration is defined as the maximum movement of facial motion,
which is between the end of the beginning duration and the beginning of the ending
duration. According to our experiments, generally there are at least 3 frame without any
obvious movement at the apex duration (Figure 62). The velocity of facial motion for the
beginning duration or the ending duration increases then decreases, like the oscillation of a
spring between compression and release (Figure 62). Different expressions (from the
beginning of the beginning duration to the end of the ending duration) correspond to
different durations from 1/2 second (15 frames) to 3 1/3 seconds (100 frames).

All expression sequences were coded by two FACS experts at different dates. The
overall agreement between the two FACS experts is 97%. Disagreement occurred due to
fatigue during observation, which produced misclassification of subtly asymmetric
expressions, eye blinking, or out-of-plane head motion. The agreement at eyebrow (upper
face) expressions for AU1+4 was only 78%, because it is easy to confuse AU1+4 with
either AU1 or AU4. The confusing between AU1+4 and AU1 occurs when very weak
inner brows close together during inner brow raised, or the Q shape of the furrow appears
at the forehead during inner brow raised but without closing inner brows together (Figure
63.8). The confusion between AU1+4 and AU4 occurs when inner brows close together
with eye blinking, head rotation pitching in the vertical direction, the Q shape of furrow at

the forehead, or asymmetric brow motion (Figure 63.b) In addition, the confusion among

AU12+25, AU20+25 and AU12+20+25 also occurs sometimes, because these “expression

units” have common muscle movement in the lip region (Figure 63.c). The final FACS

AU coding for each expression sequence, which includes the subtle motion, instant motion

(expression appears temporarily for only few frames but can not be seen at the peak

expressions) and asymmetric motion, is set by the agreement of both FACS experts to be

the ground true of our training and recognition processes.

In our experimental study, we used image sequences which start from the beginning of

the beginning duration and end during the apex duration. These digitized image sequences
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Intensity
A

10—

0.0

168

..... >

Apex
Beginning Duration Duration Ending Duration
Neutral One Facial Expression Neutral
Expression Expression

Figure62 Each facial expression begins from the beginning duration,
continues through the apex duration, and ends at the ending
duration. In our current work, we segmented each facial
expression to include only the beginning and apex durations.
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Standard AU1+4

AU1+4+20+25 AU1+4+20+25
Medial portion of the eyebrowsisraised (AU1) and pulled together (AU4).

nlm
AU1+15+17 AU1+2+12+27
Both left (AU1) and right images (AU1+2) have the same permanent Q
shapes of furrows at her forehead (usualy in AU1+4).

AU1+17 AU1+15+17
Q shape of furrows (usually occurs in AU1+4) appears when the inner
brows are raised (AU1).

Figure63.a Standard AU1+4 expressions and manual misclassification of three
AUL1 expressions and one AU1+2 expression to AU1+4 expressions.
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(1) AU4+15+17 (2) AU4+15+17 (3) AU4+20+25

Figure63.b Manual misclassification of three AU4 expressions to AU1+4
expressions. These mistakes are because of (1) Q shape of furrows at
the forehead, (2) confusing expression, and (3) asymmetric brow
motion. The standard AU4 expression is shown in Figure 63.c (3).

e

(2) AU1+4+12+20+25 (3) AU4+12+20+25
Confusion between
AU4 and AU1+4 occurs

(4) AU6+12+25 (5) AU6+12+25

Figure 63.c Confusions among AU12+25, AU20+25 (aso in Figure 63.a and
63.b) and AU12+20+25.
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are in arbitrary length varying from 9 to 47 frames. The average number of images per

expression sequence is about 20.

8.3  Automatic Expression Recognition

Our goal is to discriminate subtle differences in facial expressions for the upper face
region: AU4, AU1+4, and AU1+2, and for the lower face region: AU12, AU6+12+25,
AU20+25, AU9+17, AU17+23+24, and AU15+17. The experimental image sequences
were processed for extraction of expression information and coding. About one half of
them were used in training, and the other half in testing. From these two sets, subsets
were processed by three methods (facial feature point tracking, dense flow tracking with
PCA, and high gradient component analysis). The extracted expression information is
normalized using affine transformation, converted to displacement vector sequences,
weight vector sequences, and mean-variance vector sequences, and then vector quantized

into symbol sequences for use in training and recognition processes (Figure 64).

8.3.1 Training Process

In redlity, the same facia expression may appear different among individuals because
of different motion intensities. To design a robust recognition system, the training data
were selected to cover all possible facia actions and expression intensities for each facia
expression (Figure 65). Motions in upper facial expressons and in lower facial
expressions were separately extracted. For upper facial expressions, the training data
consist of 100 image sequences for high gradient component analysis, 60 image sequences
for facial feature point tracking, and of which a subset of 45 sequences for dense flow
tracking. For lower facial expressions, the training data consist of 120, 120, and 60 image
sequences, respectively (Table 9). We used a smaller subset of data for dense flow

tracking because of its requirement of excessive processing time.
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Feature Point Flow Dense Flow Motion Furrow
Sequences Sequences Sequences
|
v v

Rigid and Non-rigid Motion Separation and Geometric Normalization

v

v

Principal Component Gradient Distribution
Anaysis
v
Displacement V ector Weight Vector Mean-Variance
Sequences Sequences Vector Sequences
Recognitipn System
____________ Y N W,

Vector Quantization

Vector Quantization

v

v

Vector Quantization

v

Symbol Sequences

Symbol Sequences

Symbol Sequences

Hidden Markov
Mode

Hidden Markov
Mode

Hidden Markov
Mode

Figure64 Three sets of extracted information as inputs to the recognition

system using Hidden Markov Models.
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AU15+17 AU15+17 AU15+17

AU4+17+23+24 AU4+17+23+24 AU4+17+23+24

Figure 65 Theimages at the same row have the same facial expressions, but
different facia actions or expression intensities.
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Table9 Different Hidden Markov Models for 3 upper facial expressions
and 6 lower facial expressions.

Methodsfor the Feature Point Dense Flow High Gradient

Extraction of Tracking Tracking with Component

Expression Principal Analysisinthe

Information Component Spatio-Temporal
Analysis Domain

Codebook Size (M) M =16 M =16 M =32

for the Upper Facial

Expressions (60 training symbol | (45 training symbol (200 training

seguences) sequences) symbol sequences)

Hidden Markov

2nd-order 3-state

2nd-order 3-state

2nd-order 3-state

Mode (HMM) left-right HMM left-right HMM left-right HMM

Codebook Size (M) M =32 M =16 M =32

for the Lower Facial

Expressions (120 training (60 training symbol (120 training
symbol sequences) sequences) symbol sequences)

Hidden Markov
Modée (HMM)

3rd-order 4-state
left-right HMM

3rd-order 4-state
left-right HMM

3rd-order 4-state
left-right HMM

da3

The 2nd-order 3-state left-right
Hidden Markov Model for AU4,

AU1+4, and AU1+2.
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The 3rd-order 4-state left-right
Hidden Markov Model for AU12,
AU6+12+25, AU20+25, AU9+17,
AU17+23+24, and AU15+17.
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Before using HMMs for training or recognition process, any motion vector sequence
IS preprocessed by vector quantization to an observable symbol sequence O. The
codebooks are created based on their corresponding training data. The codebook size M,
which is power of 2, is chosen to be less than or equa to the total number of training
frames divided by 50. So, the codebook size for the training data having 45 and 60 image
sequences (around 45 x 20 = 900 and 60 x 20 = 1200 frames) isM = 2* (2* < 900/50 = 18,
and 1200/50 = 24 < 2°) (Table 9). The codebook size for the training data having 100 and
120 image sequences (around 100 x 20 = 2000, and 120 x 20 = 2400 frames) isM = 2° (2°
< 2000/50 = 40, and 2400/50 = 48 < 2% (Table 9). The 12- and 20-dimensional
displacement vectors from feature point tracking (for upper and lower facia expressions,
respectively) (Figure 19), the 20- and 30-dimensional weight vectors from the dense flow
tracking with principal component analysis (PCA) (Figures 29 and 30), and the 32- and
32-dimensional mean-variance vectors from the high gradient component analysis (Figure
41) are each vector quantized to one codeword (or observable symbol) o, 0 < o, < M-1,
according to its respective codebook, where the subscript t denotes the framet.

Based on these training symbol sequences, we determine the HMM topology using the
method that we have developed. Thus, a 2nd-order 3-state left-right HMM and a 3rd-
order 4-state left-right HMM are used for modeling the three upper facial expressions and
six lower facial expressions, respectively (Table 9).

There are three sets of information extracted from the upper and lower facia
expressions data by three methods. For each set of data, two sets of HMM parameters A
= (77AB) are trained. Parameter sets Aaus, Aaui+4, and Aaur+2 characterize the most likely
occurrences of the three upper facial “expression units” (individual AUs or AU
combinations), and setdauiz, Aaustizezs, Aauzorzs, Aavesiz, Aauizezsszs, aNd Aauisiaz
characterize the six lower facial “expression units.” These trained HMM parameter sets
serve to evaluate any observable symbol sequence of facial expression to give the most
likely classification (Figure 66).

To initialize the training of each model parameter set, the initial state plitytatithe

175



176

Initial Parameter
Estimation

Figure66 The training process for the Hidden Markov Model (an example for
the lower facial expressons: AU12, AUG6+12+25, AU20+25,

AU12
Sequence Set Parameter Etimation (7-‘AU12, Aauiz, BAU12)
| |
| | | |
| | | |
| | | !
AU15501|7 Baum-Welch Anvisiar =
Sym Set Parameter Estimation P (TBu1s+17, Aauis+iz,
Sequence Bauis+17)
|
L 4

Recognition Process

AU9+17, AUL7+23+24 and AU15+17).

first state 77 is set to 1, and the rest states are set to 0. Each eement of the state-

trangition probability matrix Axxw and the output observable symbol probability matrix

Buxv IS initialized to a very small value (say, 10°) of a uniformly distributed random

variable. The Baum-Welch method is then applied to estimate the parameters A = (77A,B)

in iterations based on the Forward procedure (variable a) and the Backward procedure

(variable p). After each iteration, the estimated probability for each element of these

parameters is smoothed by setting a numeric floor 0.0001 to avoid zeroing the parameter

element and producing an unreliable result. They are then renormalized to meet the
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Table10 The trained parameter set A = (77A,B) of the 3rd-order 4-state
Hidden Markov Model, whose topology is determined in Figures
58 and 60, for the lower facial expresson AU6+12+25 using
dense flow tracking method (codebook size M=16).

T

State 1 State 2

State 3

State 4

1.000000000000000 0.000000000000000

0.000000000000000

0.000000000000000

A

State

State 1 State 2

State 3

State 4

A WNBE

0.852713734696394 0.147286265303606
0.000000000000000 0.530337222246666
0.000000000000000 0.000000000000000
0.000000000000000 0.000000000000000

0.000000000000000
0.106073169816378
0.861441737692501
0.000000000000000

0.000000000000000
0.363589607936957
0.138558262307499
1.000000000000000

B

Symbol

State 1

State 2

State 3

State 4

©Co~NOOOUTA~WNEO

0.000000000000000
0.000000000000000
0.999999999231619
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000587439
0.000000000180942
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000

0.000000000000000
0.000006813844404
0.133964815503377
0.000000000000000
0.000000000000000
0.017482535428337
0.000000000000000
0.000000000000000
0.000000000000000
0.424273591136245
0.424272244087637
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000

0.000000000000000
0.028598228023638
0.000000000000000
0.113344687439651
0.000000000000000
0.858057084052733
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000483978
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000

0.000000000000000
0.000000000000000
0.000000000000000
0.534742185973886
0.000000000000000
0.000000182200935
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000
0.465257631825179
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000000

required statistical constraint, and go on for further iteration.

values for Aaue+12+25, for example, are shown in Table 10.
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Figure 67 The recognition process for the Hidden Markov Model (an example for
the lower facial expressions: AU12, AU6+12+25, AU20+25, AU9+17,

Atz = Anuisiz =
(mu12; AAUlZ;BAU12) — — = (TAU15+17, AAU15+17;
BAU15+17)
P(O | Aau12)

Any Symbol .
Sequence: I I : II_\/I;;lrr?urg
_ —1 | | I ikelihoo
g < (01’<0|2\/|""1’0“'"’0T)’ ! ' ! Decision

=os P(O | Auss17)

Facial Expression i

Expression Intensity Estimation

AU17+23+24 and AU15+17).

8.3.2 Recognition Results

178

From the testing data, any observable symbol sequence O is evaluated or recognized

by selecting the maximum output probability P(O | A) from the HMM parameter set A,

where A is one of the HMM parameter set such as Aau1z, Aaue+12+425, Aauzo+2s, Aaug+17,

Anui7+2s+24 @A Aauis+i7 for the lower facial expressions (Figure 67).

If the output

probability P(O | A) (usually it is close to 1) is greater than other output probability P(O |

A, then the symbol sequence O is recognized as the facial expression represented by the

The recognition result using the HMM classifiers was evaluated by comparison with

the coding of human observers coding taken as the ground truth. Two FACS experts
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agreed on 97% of the collected facial expressions. The agreement for the AU1+4 was
only 78%, since AU1+4 was easlly confused with AU1 or AU4. The other point of
disagreement was AU12+25, AU20+25 and AU12+20+25.

Because the computation time of different extraction methods is very different (the
dense flow tracking is very time consuming when compared with the other two methods),
and these methods were developed at different time (about 6 months apart), the number of
Image sequences used in experiments are not the same as indicated in Table 11. Those
used in the dense flow study is a subset of the image sequences used in the feature point
tracking study, which is a subset of those used in the high gradient components study.
This situation is true for both training and testing. The test results of each study are given
in Table 12, 13 and 14, respectively. The average recognition rate of the three upper
facial expressions is 85% by feature point tracking, 92% by dense flow tracking with PCA,
and 85% by high gradient component analysis. These results are based on 60, 45, and 100
training image sequences and 75, 60, and 160 testing image sequences. The average
recognition rate of the six lower face expressions is 88% by feature point tracking, 92% by
dense flow tracking with PCA, and 81% by high gradient component detection, based on
120, 60, and 120 training image sequences and 150, 90, and 150 testing image sequences
(Table 11).

Comparing the recognition results of three different extraction methods, it is obvious
that the dense flow tracking with PCA has the best performance for all facial expressions
tested except AUL7+23+24, for which the feature point tracking method is better, 92%
against 87% (Table 12 and 13). The high gradient component analysis has the worst
performance (Table 14). This is because dense flow tracking includes the entire motion
information of a facial expression, such as allowing tracking a textureless region, which
provides more complete information for the recognition process, but it requires
substantially more computation time. It is subject to error due to occlusion (hair covering
the forehead) or large discontinuities appearance of tongue or teeth when the mouth

opens). The latter occurred in the case of 2-level dense flow estimation used for saving
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Table11l The number of the training and testing image sequences (the average
number of frames per image sequence is 20) and their corresponding
recognition rates.

180

Training Image Sequences

Three Methods Feature Point Dense Flow High Gradient
Tracking Tracking with PCA Component
Analysis
No. of Sequencesfor
the Upper Facial 60 45 100
Expressions
No. of Sequencesfor
the Lower Facial 120 60 120
Expressions
Testing mage Sequences
Three Methods Feature Point Dense Flow High Gradient
Tracking Tracking with PCA Component
Analysis
No. of Sequencesfor
the Upper Facial 75 60 160
Expressions
Recognition Results 85% 92% 85%
No. of Sequencesfor
the Lower Facial 150 90 150
Expressions
Recognition Results 88% 92% 81%
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Table12 Recognition results of the feature point tracking method. (The
number given in each block is the number of testing image

sequences.)

The average recognition rate for three upper facial expressions is 85%

based on 75 testing image sequences.

HMM AL{4 Recognition
Human Rate
3 0 88%
19 2 76%
AU1+2
.‘| 2 23 92%

The average recognition rate for six lower facial expressions is 88%

based on 150 testing image sequences.

Recognition
Rate
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Table 13 Recognition results of the dense flow tracking method. (The number
given in each block is the number of testing image sequences.)

The average recognition rate for three upper facial expressionsis 92%
based on 60 testing image sequences.

Recognition
Rate
2 0 93%
12 1 80%
0 22 100%

The average recognition rate for six lower facial expressions is 92%
based on 90 testing image sequences.

Recognition
0 0 0 0 100%
2 0 0 0 87%

13 0 0 0 87%
0 15 0 0 100%
0 0 13 2 87%
0 0 1 14 93%
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Table 14 Recognition results of the motion furrow detection method. (The
number given in each block is the number of testing image sequences.)

The average recognition rate for three upper facial expressionsis 85%
based on 160 testing image sequences.

J?Z‘ JAUL+2""" Recognition
e E—“- "z~  Rate
- Y SR

0 0 87%

2 0 86%

24 5 80%

7 43 86%

The average recognition rate for six lower facial expressions is 81%
based on 150 testing image sequences.

HMM

Human

AlLor AUGgLA0r Recognition
UTP5+2 Rate

86 14 86%

12 38 76%
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processing time.

High gradient component detection is sengitive to changes in transient facial features
(e.g., furrows), but is subject to error due to individual differences in subjects. Y ounger
subjects, especially infants, show less furrowing than older ones, which reduces the
information value of the high gradient components. Older subjects, in general, have
permanent shapes of furrows on their faces. No matter how different their expressions or
expression intensities are, the smilar shape of furrows still can be seen such as in Figure
63.a (images at the second row). Occasionally, different FACS AUs may have the similar
shape of furrows such as between AU12 and AU6+12+25, between AU6+12+25 and
AU20+25, or between AU9+17 and AU17+23+24, since there are common facial muscle
actions for both facial motions (Figure 68). Furthermore, the crow-feet wrinkles may or
may not appear during facial expresson AU6+12+25 (Figure 1). With these reasons,
explaining the FACS AUs based only on the shape of furrows is not adequate.
Furthermore, we used a constant threshold for motion line or edge detection. Since the
gray values on each facial image are sengitive to facial motion and lighting, which depend
on individual subjects, a dynamic thresholding would be needed.

The optical flow using the pyramid approach is a simple, fast, and accurate method of
tracking facial feature points. It tracks large displacement well and is also sensitive to
subtle feature motion.

In genera, the pattern of errors in all three methods are similar, i.e., errors were
resulted from classifying an expression to an expression type which is most similar to the
target (e.g., AU4 was confused with AU1+4 but not AU1+2). It appears that the
automatic feature point tracking method has given very good performance and its
processing was very efficient. Potentialy it can be developed into a real time recognition
system. Summary of al three different extraction and recognition methods for facial

expressionsisin Table 15.
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AU12 AU6+12+25

AUB+12+25 AU(1+4)+20+25

AU(4+)9+17 AU(4+)17+23+24

Figure 68 Different FACS AUs have the similar shape of furrows such as
between AU12 and AU6+12+25, between AU6+12+25 and
AU20+25, and between AU9+17 and AU17+23+24, since there are
common facial muscle actions for both facial motions.
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Table15 Summary of three different extraction and recognition methods for

facial expressions.

Extraction System

Three Feature Point Dense Flow Tracking | High Gradient
M ethods Tracking with PCA Component
(5-Level Pyramid) (2-Level Pyramid) Analysisin the
Spatio-Temporal
Domain
Computing Fast (1%) Very Slow (98%) Fast (1%)
Time (70 (13x13-pixel) (417 x 385 pixels: (417 x 385 pixels:
windows: 20 20 minutes/frame) 5 second/frame)
seconds/frame) (SGl-Irix: 6 timesfaster | (SUN Sparc 5)
(SUN Sparc 5) than Sparc 5)
Hair at Occlusion Occlusion No occlusion
Forehead
Lighting Sensitive Sensitive Sensitive
Subtle Motion | Sensitive Insensitive Sensitive
(< 2 pixd) (Subpixel accuracy)
LargeMotion | 100 pixels Missed tracking Sensitive
(> 15 pixels) (Subpixel accuracy)
Advantage Simple and accurate | Includes the entire face | May runin real time

May runin real time

motion region

Disadvantage | Limited to pre- Time consuming Detection error from
selected features individual differences
in subjects (younger
> older)
Recognition System
(Recognition Rate)
Different Displacement Vector | Weight Vector M ean-Variance
Inputsto Sequence Sequence Vector Sequence
HMMs
Upper Facial 85% 92% 85%
Expressions
L ower Facial 88% 92% 81%
Expressions
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9.0 CONCLUSIONS

This research addressed the problem of automatic facial expression recognition based
on FACS AUs. We have developed a computer vison system that automaticaly
recognizes facial expressions with subtle differences and also estimates expression
intensity. Three methods are used to extract facial motion information and estimate
motion intensity: feature point tracking using the coarse-to-fine pyramid method, dense
flow tracking together with the principal component analysis, and high gradient
component analysis in the spatio-tempora domain, and is then used to discriminate subtle
differences in facia expressions observed from image sequences of varying lengths. To
determine the optimum HMM topology, a method has been developed and successfully
applied to the facial expression recognition. Facia expressions of different types,
intengities, and durations from a large number of untrained subjects have been tested. The

results show that our system has high accuracy in facial expression recognition.

9.1 Contributions

The major contributions of this dissertation are summarized below.

This is the first automatic facial expression recognition system that has the capability
of recognizing nine facial expressions based on FACS AUs: 3 subtly different expressions
occurring in the upper face region, and 6 occurring in the lower face region. This system
has successful trained with a significant number of image sequences containing various
expressions from different individuals. It has been tested yielding good recognition
performance.

Three methods have been developed for automatic extraction of information in facial

expressions from an image sequence. The first method is facia feature point tracking by
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applying the coarse-to-fine pyramid approach to track facial feature motion starting from
selected feature points pertinent to facial expressions. It has subpixel accuracy for both
subtle feature motion and large facial motion. A facial expression is then represented by a
displacement vector sequence formed by concatenation of displacement vectors of facial
feature points. The process is automatic except the interactive initialization of the feature
points selection. It may runin rea time. The second method is the wavelet-based multi-
resolution level dense flow tracking over an entire region. The principa component
analysis is then applied to the computed motion field to compress the information in terms
of weighted eigenflows. A facial expression is then abstracted as an appropriate weight
vector sequence. The third method is the high gradient component analysis in the spatio-
temporal domain to automatically extract motion lines and edges corresponding to
furrows appearing in face regions. This information is abstracted as a vector sequence
where each vector consists of means and variances of high gradient components in 16
blocks for each frame region.

It is our pioneering effort to apply HMM for automatic recognition of facial
expressions in image sequences of arbitrary lengths. For each type of the facial motion
extraction and with the encoded symbol sequences obtained therefrom as inputs, two
HMMs have been constructed: one models 3 facia expressions in the upper face region,
and the other models 6 facial expressions in the lower face region. These models are of
low order with simple feedforward connections and are used in the maximum likelihood
decision. They have been successfully trained and tested yielding high recognition rate.

A method has been developed to determinate an “optimal” HMM topology for
modeling facial expressions, “optimal” in the sense of plausible fewest elements of model
parameters. Each state of the HMM corresponds to one level of motion of facial
expressions. The number of states required for each HMM is proportional to some
measure of variation in motion among the training data of different classes. Applying

these method gives a 2nd-order 3-state left-right HMM for modeling the upper facial
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expressions and a 3rd-order 4-state left-right HMM for modeling the lower facial
expressions, respectively.

Differences in facia expression intensity can be used to discriminate between
deliberate and spontaneous expressions, measure the degree of emotion, and analyze and
synthesize facial expressions for teleconferencing or MPEG-4 applications. Expression
intensity estimation may also provide an index for expresson segmentation. We have
given a method for estimating expression intensity based on each type of the extracted

expression information and either a nonlinear mapping or a minimum distance criterion.

9.2  Suggestionsfor Future Work

Potential applications of our automatic facial expression recognition system include:
assessment of nonverbal behavior in clinical and research settings such as psychological
research of facia behavior coding, the communication between parents and preverbal
infants, biomedical applications such as pre/post surgical path planning or clinica
improvement prediction, law enforcement for lie detection, tiresome detecting, detection
of tired drivers to help avoid car accidents, lip-reading to compliment speech recognition
(audio-vision analysis), teleconferencing and MPEG-4 by analyzing and synthesizing facial
signals, animation of the face, and the human-computer interface/interaction to make a
computer able to “see.”

Based on the work in this dissertation, the following problems are suggested for
further research:

1. Recognition of more facial expressions by adding more “expression units” of
individual AUs and AU combinations into the automatic recognition system.

2. Separation of non-rigid facial motion from rigid head motion when the latter
involves a motion greater tha3(0’.

3. Detail comparison of three methods of extraction of facial expression information

by using a larger but the same set of training and testing data.
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4. Studies on Hidden Markov Model integration either from the view point of a
multi-dimensonal HMM with multiple inputs or from the view point of decison
integration of multiple HMMs.

5. Investigations on computational issues with regard to (a) both 2-level and more
than 2-level wavelet-based dense flow estimation, and (b) eigenflow computation.

6. Standardization of expression intensities.

7. Automatic segmentation of facial expression subsequences from a video sequence
based on, for example, expression intensity estimation, for use in areal-time system.

8. Implementation of a real-time system. At the present time, the facial feature point
tracking is the most likely method to approach running in real time; automatic
segmentation of facial expression subsequences will be one of the key problems to be

solved.
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APPENDI X

The Connected Component Labeling (CC labeling) Algorithm “¥:

|. The Top-Down Process:

Step 1: Three tables are used for the global minimum of each row in a binary image (1:

Step 2:

foreground, and O: background). All three tables are initialized at the beginning

when processing each row.

a. Labe table: This table records every label number which occurred in this
row.

b. Equal table: This table has two columns indicating the different labels at the
left (first) and right (second) columns belonging to the same classification.
The label number at the first column is equal to or larger than that at the
second column.

c. Link table: Each link table records the label numbers within the same
classification, which can be linked together and arranged by increasing order.

A 2 x 3 (row x column =r x ¢) CC labeling operator

(r-1,c-1) (r-1,c) (r-1,c+1)
(r,c-1) (r,c)

has been used for each row beginning from the left most and top most (0,0)
position of the image. (r,c) is the center position of the operator at row ‘r’ and
column ‘c’, and I(r,c) is its corresponding binary value. Label(r,c) means a label
number is assigned to the pixel at position (r,c).
If I(r,c) > 0, then process as following; otherwise go to next pixel.

a. IfI(r-1,c) > 0O, then Label(r,c) = Label(r-1,c). Else

b. IfI(r-1,c+1) > 0, then Label(r,c) = Label(r-1,c+1).
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1. IfI(r-1,c-1) > O and Label(r-1,c+1) # Label(r-1,c-1), then record both
label numbers to Equal table and put both number to the Link table. Else
2. 1f I(r,c-1) > 0 and Label(r-1,c+1) # Label(r,c-1), then record both
label numbers to Equal table and put both number to the Link table. Else
c. If1(r-1,c-1) > O, then Label(r,c) = Label(r-1,c-1). Else
d. IfI(r,c-1) > 0, then Label(r,c) = Label(r,c-1).

Step 3:  Check each Link table. If nothing exists in this table, then no label number will
be changed. Otherwise, use the label number in the current Link table to do the
following process in the top-down order.

Scan the second column in the whole Equal table from top to bottom. If
there is the same label number as the Link table, then check if the label
number at the first column is larger than the label number at the current Link
table. If it is, then the label number at the first column of Equal table is
replaced by the label number at the current Link table.

Example:
1 | cc Labeling 2 3
1 1 1| ——— |1 2 3 Currently
1 1 1 > «— process
this row
After this step, these three tables will be like these examples:
Label Table Equal Table Link Table
Index Labd  Index 14 %nd Index  Link Label
Label[0] [ 1 Equall0] | 2 | 1 Link[O] | 1
Label[1] | 2 Equalll] | 3 | 2 Link[1] | 2
Label[2] | 3 Link[2] | 3
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Step 4:

194

1.1 Pop out label number Link[O] = 1 from the Link table, and find out if label
number ‘2’ is equal to ‘1’ from the Equal table: Equal[O](Label[1],Label[0])
where Label[1] = 2 and Label[0] =1.

1.2 Because Equal[O](Label[1],Label[0]), and (Label[1] = 2) > (Label[0] = 1)
at Equal table, Label [1] = 1. That is, Label[1] = 2 = 1 = Label[0].

Label Table Label Table

Index Label Index Label
Labell0]| 1 Label[0]| 1
Label[1] | 2 » Labd[l]| 1
Labell2] | 3 Labell2] | 3

2.1 Pop out label number Link[2] = 3 from the Link table, and find out if label
number ‘3’ is equal to ‘2’ from the Equal table: Equal[l](Label[2],Label[1])
where Label[2] = 3 and Label[1] = 2 = 1 = Label[0].

2.2 Because Equal[l](Label[2],Label[1]), and (Label[2] = 3) > (Label[1] = 2) at
Equal table, Label [2] = 1. That is, Label[2] = 3 = Label[1] = 2 = Label[0] = 1.

Label Table Label Table
Index Label Index Label
Labell0] | 1 Label[0]| 1
Label[1]| 1 > Labell1]| 1
Label[2]| 3 Label[2]| 1

3.1 Pop out label number Link[3] = 3 from the Link table, but there is no label
number ‘3’ at the second column of the Equal table: Then stop.
The same row of the image is examined again (the second pass). If the label

number is different from the Label table, then change it.
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[I. The Bottom-Up Process.
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CC Labeling

_

Currently

<«— process
thisrow

The process is similar to the Top-Down process by two passes for each row,

beginning from the bottom to the top rows of the image, and left to right for each row.

The 2 x 3 operator is:

(r,c-1)

(r.c)

(r+1,c-1)

(r+l,c)

(r+1,c+1)

Since the Link table is already set, we only need the Label table and Equal table to set

the same connected components to have the same label number.
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