
Automatic Recognition of Facial
Expressions Using Hidden Markov Models

and Estimation of Expression Intensity

Jenn-Jier James Lien

CMU-RI-TR-98-31

The Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

April 14, 1998

@ 1998 Jenn-Jier James Lien. All rights reserved.

ii

COMMITTEE SIGNATURE PAGE

This dissertation was presented

by

Jenn-Jier James Lien

It was defended on

April 14, 1998

and approved by

(Signature)
 Committee Co-Chair
 Dr. Ching-Chung Li, Professor of Electrical Engineering

(Signature)
 Committee Co-Chair
 Dr. Takeo Kanade, Professor and Director of the Robotics Institute,
 School of Computer Science, Carnegie Mellon University

(Signature)
 Committee Co-Chair
 Dr. Jeffrey F. Cohn, Professor of Psychology

(Signature)
 Committee Member
 Dr. Henry Y.H. Chuang, Professor of Computer Science

(Signature)
 Committee Member
 Dr. Richard W. Hall, Professor of Electrical Engineering

(Signature)
 Committee Member
 Dr. Morton Kanefsky, Professor of Electrical Engineering

(Signature)
 Committee Member
 Dr. Marwan A. Simaan, Professor and Chairman of Electrical Engineering

iii

ACKNOWLEDGEMENTS

I am greatly indebted to Professor Takeo Kanade and Professor Ching-Chung Li, my

co-advisors and my mentors, for not only providing invaluable guidance, advice, criticism

and encouragement but also giving me the latitude I have needed to develop as a

researcher. I thank Professor Jeffrey Cohn, co-advisor, for his support and teaching with

the Facial Action Coding System (FACS). I would also like to thank the other members

of my thesis committee: Professors Richard Hall, Morton Kanefsky, Marwan Simaan and

Henry Chuang for their valuable suggestions and feedback.

My years at the Vision and Autonomous Systems Center of the Robotics Institute,

Carnegie Mellon University have been priceless. I consider myself lucky to be a part of

this research center and spend many nights with friends discussing technical issues. I

would like to thank Jie Yang and Michael Nechyba for sharing their experiences with

Hidden Markov Models; Conrad Poelman, Richard Madison and Yalin Xiong for

exchanging knowledge on optical flows; Peter Rander, Henry Rowley, Shumeet Baluja,

Teck Khim, Wei Hua, Mei Han, Mei Chen, Dongmei Zhang, Michael Smith, Daniel

Morris and Farhana Kagalwala for much needed help; and Adena Zlochower for her help

with FACS on the facial expression analysis project. My thanks also go to Chung-Hui

Anne Lin for her support and encouragement. I would especially like to thank David

LaRose and Yu-Te Wu, who have been tremendous fun to work and play with, and who

have provided countless hours of invaluable discussions on the topics presented here.

Special thanks to Matthew Turk, Steve Shafer, P. Anandan, Richard Szeliski and

Harry Shum at Microsoft Vision group for their valuable comments and suggestions.

Finally, I would like to thank my parents, Chin-Chuan Lien and Wen-Hua Shih, as well

as my other family members: Jenn-Ren Lien, Jenn-Yueh Lien, Shu-Hua Chien, Hui-Yin

Christia Tien for their constant love, support and encouragement. Without them, none of

this would have been possible. I cannot begin to thank them enough, and they will always

have my respect and love.

iv

ABSTRACT

Signature
 Professor Ching-Chung Li

Signature
 Professor Takeo Kanade

Signature
 Professor Jeffrey F. Cohn

AUTOMATIC RECOGNITION OF FACIAL EXPRESSIONS USING HIDDEN

MARKOV MODELS AND ESTIMATION OF EXPRSSION INTENSITY

Jenn-Jier James Lien, Ph.D.

Facial expressions provide sensitive cues about emotional responses and play a major

role in the study of psychological phenomena and the development of nonverbal

communication. Facial expressions regulate social behavior, signal communicative intent,

and are related to speech production. Most facial expression recognition systems focus on

v

only six basic expressions. In everyday life, however, these six basic expressions occur

relatively infrequently, and emotion or intent is more often communicated by subtle

changes in one or two discrete features, such as tightening of the lips which may

communicate anger. Humans are capable of producing thousands of expressions that vary

in complexity, intensity, and meaning. The objective of this dissertation is to develop a

computer vision system, including both facial feature extraction and recognition, that

automatically discriminates among subtly different facial expressions based on Facial

Action Coding System (FACS) action units (AUs) using Hidden Markov Models

(HMMs).

Three methods are developed to extract facial expression information for automatic

recognition. The first method is facial feature point tracking using the coarse-to-fine

pyramid method, which can be sensitive to subtle feature motion and is capable to handle

large displacements with subpixel accuracy. The second is dense flow tracking together

with principal component analysis, where the entire facial motion information per frame is

compressed to a low-dimensional weight vector for discrimination. And the third is high

gradient component (i.e., furrow) analysis in the spatio-temporal domain, which exploits

the transient variance associated with the facial expression.

Upon extraction of the facial information, non-rigid facial expressions are separated

from the rigid head motion components, and the face images are automatically aligned and

normalized using an affine transformation. The resulting motion vector sequence is vector

quantized to provide input to an HMM-based classifier, which addresses the time warping

problem. A method is developed for determining the HMM topology optimal for our

recognition system. The system also provides expression intensity estimation, which has

significant effect on the actual meaning of the expression.

We have studied more than 400 image sequences obtained from 90 subjects. The

experimental results of our trained system showed an overall recognition accuracy of 87%,

and also 87% in distinguishing among sets of three and six subtly different facial

expressions for upper and lower facial regions, respectively.

vi

DESCRIPTORS

Action Unit (AU) Computer Vision and Pattern Recognition

Dense Flow Eigenflow

Expression Intensity Estimation Facial Action Coding System (FACS)

Facial Expression Recognition Feature Point Tracking

Furrow Extraction Hidden Markov Model (HMM)

Human-Computer Interaction (HCI) Motion Line/Edge Extraction

Optical Flow Principal Component Analysis (PCA)

Rigid and Non-Rigid Motion Wavelet-Based Motion Estimation

vii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS…..……………………………………….………………… iii

ABSTRACT……………………………………………………………….……...…… iv

LIST OF FIGURES…...……………………………………………………………..… x

LIST OF TABLES….………………………………………………………….……….xvii

1.0 INTRODUCTION……..…………………………………………………...….. 1

1.1 Related Works…...…………………………………………………….. 2

1.2 Problem Statement..……………………………………….…………… 7

1.3 Objective of the Research.…………………………………………...… 10

1.4 Organization of the Dissertation….……………………………………. 11

2.0 FACIAL EXPRESSION RECOGNITION SYSTEM OVERVIEW.…………. 13

2.1 Three Methods of Feature Motion Extraction...……………………….. 13

2.2 Recognition Using Hidden Markov Models..………………………..… 16

2.3 Facial Action Coding System and “Expression Units”..………………... 18

2.4 Rigid and Non-Rigid Motion Separation and Geometric

Normalization………………………………………………..………… 22

3.0 FACIAL FEATURE POINT TRACKING………………………………….…. 25

3.1 Dot Tracking and Reliability of Feature Point Selection...……….……. 25

3.2 Motion Estimation and Flow Window…………………………………. 30

3.3 Motion Confidence Estimation.……………………………………...… 35

3.4 Tracking Subpixel and Large Motion………………………………….. 37

3.5 Analysis of Feature Point Tracking Problems…………….…………… 42

3.6 Data Quantization and Conversion for the Recognition System………. 43

3.7 Expression Intensity Estimation..…………………………………….... 49

4.0 DENSE FLOW TRACKING AND EIGENFLOW COMPUTATION.……….. 53

4.1 Wavelet-Based Motion Estimation…………………………………….. 53

viii

4.2 Dense Flow Tracking……..……………………………………………. 60

4.3 Eigenflow Computation..……………………………………………..... 62

4.4 Data Quantization and Conversion for the Recognition System…….… 70

4.5 Correlation and Distance in Eigenspace……………………………….. 77

4.6 Expression Intensity Estimation……...………………………………... 78

5.0 HIGH GRADIENT COMPONENT ANALYSIS……..…………………….… 80

5.1 High Gradient Component Detection in the Spatial Domain………….. 80

5.2 High Gradient Component Detection in the Spatio-Temporal

Domain…………………………………………………………………. 81

5.3 Morphology and Connected Component Labeling…………………..… 86

5.4 Analysis of High Gradient Component Detection Problems………...… 96

5.5 Data Quantization and Conversion for the Recognition System………. 98

5.6 Expression Intensity Estimation.………………………………………. 102

6.0 FACIAL EXPRESSION RECOGNITION USING HIDDEN MARKOV

MODELS…………………………………….……………………………....…104

6.1 Preprocessing of Hidden Markov Models: Vector Quantization…….… 105

6.2 Beginning from Markov Models………………………………….…… 109

6.3 Extension of Markov Models: Hidden Markov Models.………………. 111

6.4 Three Basic Problems of Hidden Markov Models…………………..… 114

6.4.1 Probability Evaluation Using the Forward-Backward

Procedure………………………………………………………. 114

6.4.2 Optimal State Sequence Using the Dynamic Programming

Approach……………………………………………..…………121

6.4.3 Parameter Estimation Using the Baum-Welch Method………... 124

6.5 Computation Considerations..……………………………………..……128

6.5.1 Choice of Hidden Markov Model..…………………………….. 128

6.5.2 Initialization of Hidden Markov Model Parameter

Estimation……………………………………………………… 131

ix

6.5.3 Computation of Scaling…..…………………………...……….. 131

6.5.4 Computation of Smoothing for Insufficient Training Data……. 134

6.5.5 Computation of Normalization…..…………………………….. 135

6.5.6 Computation of Convergence……………………………..…… 136

6.5.7 Computation of Confidence….……………………………….... 137

7.0 DETERMINATION OF HIDDEN MARKOV MODEL TOPOLOGY…….… 138

7.1 The Method………………………………………………………..……138

7.1.1 Step 1: The 1st-Order Markov Model…………..……………... 139

7.1.2 Step 2: The 1st-Order Hidden Markov Model……………..…...140

7.1.3 Step 3: The Multi-Order Hidden Markov Model……………….159

7.2 Physical Meaning of Hidden Markov Model Topology..………...……. 162

8.0 EXPERIMENTAL RESULTS.……………………………………………...… 164

8.1 Data Acquisition, Experimental Setup, and Digitizing.……………...… 164

8.2 Segmentation and Coding by Human Observers (Ground Truth).…….. 166

8.3 Automated Expression Recognition.…………………………………... 171

8.3.1 Training Process..…………...……………………………….… 171

8.3.2 Recognition Results…………………….……………………… 178

9.0 CONCLUSIONS……………………………………………..…………...….... 187

9.1 Contributions……………………….……...…………………………... 187

9.2 Suggestions for Future Work………………...………………………....189

APPENDIX………………………………………………………………………….….191

BIBLIOGRAPHY……………………………………………………………………....196

x

LIST OF FIGURES

Figure No. Page

1 Comparison of different smile expressions with different expression intensities.

The presence or absence of one or more facial actions can change their

interpretations……………………………………;;;;;;;;……………………….. 8

2 The user interface created by programming in C, Motif, X Toolkit and Xlib…. 14

3 Block diagram of a facial expression recognition system……………………… 15

4 “Expression units” of subtly different facial expressions in our study (taken

from (34))………………………………………………………………………... 19

5 Normalization of each face image to a standard 2-dimensional face model….… 23

6 Dot tracking: each dot is marked by a cross (+) at its center, lines trailing from

the dots represent changes in the location of dots due to facial expression….... 28

7 Locations of selected facial feature points (marked by a cross ‘+’) which reflect

the muscle motion of facial features……………………………………………. 29

8 Feature point tracking based on tracking the movement of an n x n feature

window between two consecutive frames (here, n is 13 pixels)……………….. 30

9 Window (weight) function w(x) can be used to control the accuracy of motion

estimation based on the gradient varying from point to point (66)…………….... 33

10 Comparison of Lucas-Kanade, spline-based and wavelet-based window

functions………………………………………………………………………... 34

11 Trackability of various feature regions in a binary image: (a) contains no image

texture so it would make a poor feature; (b) and (c) have high gradients locally

either in one direction, or the horizontal- (’
cI -) and vertical- (’

rI -) gradients are

highly correlated with each other as in (c), they also are not trackable; only

feature (d) can be used as a trackable feature (77)……………………………..... 36

12 Feature point tracking excluding the pyramid method: it is sensitive to subtle

motion such as eye blinking, but it loses tracking for large motion such as

xi

mouth opening and suddenly raising eye brows. Lines trailing along feature

points (marked by a cross ‘+’) denote their movements across image frames in

the sequence……………………………………………………………………. 39

13 A 5-level pyramid for feature point tracking….………………………………... 40

14 Feature point tracking including the pyramid method: it is sensitive to subtle

motion such as eye blinking and also tracks accurately for large motion such as

mouth opening and suddenly raising eye brows………………………………... 44

15 The feature point tracking error due to violation of the feature region’s

trackability condition: tracking along the edge direction at both brows and

mouth regions with deformed shapes…………………………………………... 45

16 Reducing the tracking error by locating feature points away from edges of

facial features: the tracking for brow region is improved, but is still erroneous

in mouth region with large mouth opening…………………………………….. 45

17 Reducing the tracking error by using a large window size which requires more

processing time………………………………………………………………… 46

18 Reducing the tracking error by increasing the value of the weighting factor K

(K=0.5) of the inter-level confidence base in order to include more global

information from the previous low-resolution level processing in the pyramid

method…………………………………………………………………………. 46

19 Displacement vector of the facial feature point tracking to be encoded for input

to a Hidden Markov Model……………………………………………..……… 47

20 An example illustrating the expression intensity estimation by following the

non-linear mapping (k = 7) of the constrained feature point displacement for

the case of AU2………………………………………………………………… 49

21 Expression intensity time course of AU1, 2 and 5 fit to the displacement

changes of facial feature points based on the non-linear mapping (107)…..……... 52

22 a. 1- and 2-dimensional scaling functions and wavelets (101)……………..…….. 54

xii

b. Dilation and translation of 1-dimensional basis (scaling and wavelet)

functions (101)…………………………………………………………………… 55

23 Automatic dense flow tracking for an image sequence. Out-of-plane motion

(pitch) occurs at the bottom image. Dense flows are shown once for every 13

pixels…………………………………………………………………………… 61

24 Good tracking performance of using the wavelet-based dense flow for (a)

furrow discontinuities at the forehead and chin regions, and (b) textureless

regions with reflections at the forehead and cheek…………………………….. 63

25 Tracking errors of the 2-level wavelet-based dense flow because of (a) large

movements of brows or mouth, and (b) eye blinking also introduces motion

error at brow regions…………………………………………………………… 64

26 Dense flow normalization using affine transformation: (a) includes both the

rigid head motion in upward and leftward direction and non-rigid facial

expression, and (b) eliminates the rigid head motion by using the affine

transformation………………………………………………………………….. 65

27 The mean (average) flow c is divided into horizontal flow ch and vertical flow

cv for further processing by the principal component analysis (PCA)…………. 67

28 Each dense flow image is divided into horizontal and vertical flow images for

the principal component analysis (PCA)……….………………………………. 72

29 a. Computation of eigenflow (eigenvector) number for the upper facial

expressions: (a.1) is for the horizontal flow and (a.2) is for the vertical flow.

The compression rate is 93:1 (932:10) and from which the recognition rate is

92% based on 45 training and 60 testing image sequences……………….……. 73

b. Computation of eigenflow (eigenvector) number for the lower facial

expressions: (b.1) is for the horizontal flow and (b.2) is for the vertical flow.

The compression rate is 80:1 (1212:15) and from which the recognition rate is

92% based on 60 training and 90 testing image sequences……………….……. 74

xiii

30 Principal component analysis (PCA) for (a) horizontal flow weight vector and

(b) vertical flow weight vector for the upper facial expressions (M’ = 10)……. 75

31 Expression intensity matching by seeking the minimum distance between the

weight vector of the testing frame and the weight vectors of all frames in a

training sequence, whose expression intensity values are known. Each weight

vector of the training image corresponds to a given expression intensity value.. 79

32 a. High gradient component (furrow) detection for the forehead and eye

regions………………………………………………………………………….. 82

b. High gradient component (furrow) detection for the mouth, cheek, and chin

regions………………………………………………………………………….. 83

c. High gradient component (furrow) detection for the chin region…………... 84

33 Permanent furrows or hair occlusion…………………………………………... 85

34 The procedure of the high gradient component analysis in the spatio-temporal

domain, which can reduce the effect of the permanent high gradient

components (furrows) and hair occlusion for the upper facial expression…….. 88

35 (a) Original gray value images. (b) High gradient component (furrow)

detection in the spatial domain. (c) High gradient component analysis in the

spatio-temporal domain………………………………………………………... 89

36 a. High gradient component detection with different constant threshold

values…………………………………………………………………………... 90

b. High gradient component detection with different constant threshold

values…………………………………………………………………………... 91

37 a. Younger subjects, especially infants (Figure 37.a), show smoother

furrowing than older ones (Figure 37.b), and initial expressions show weaker

furrowing than that of peak expressions for each sequence……………………. 92

b. Younger subjects, especially infants (Figure 37.a), show smoother

furrowing than older ones (Figure 37.b), and initial expressions show weaker

furrowing than that of peak expressions for each sequence……………………. 93

xiv

38 a. Delete redundant high gradient components using morphological

transformation including erosion and dilation processings………………..……. 94

b. Delete the redundant high gradient components using the connected

component labeling algorithm…………………………………………….……. 95

39 Horizontal line (furrow) detection using different sizes of detectors. (b) If the

size of the detector is too small compared with the width and length of the line

(furrow), then each line will be extracted to two lines. (c) It is necessary to

adjust the size of the line detector to match the width and length of the line in

order to obtain the correct result………………………………………...…….. 97

40 Teeth can be extracted directly from the subtraction of the gray value image at

the current frame to that at first frame for each image sequence whose absolute

value is larger than a constant threshold……………………………………….. 99

41 Mean-Variance vector of the high gradient component analysis in the spatio-

temporal domain for input to the Hidden Markov Model……………………… 100

42 Furrow expression intensity matching by measuring the minimum value

(distance) of the sum of squared differences (SSD) between the mean-variance

vector of the known training image and that of the testing image. Each mean-

variance vector of the training image corresponds to a given expression

intensity value………………………………………………………………….. 103

43 Vector quantization for encoding any vector sequence to a symbol sequence

based on the codebook………………………………………………………….110

44 The construction (topology) of the Hidden Markov Model…………………….113

45 The tree structure of the computational complexity for direct evaluation of the

output probability P(O|λ) (105)………………………………………………….. 116

46 The Forward and Backward Procedures………………………………………..119

47 The tree structure of the computational complexity for the forward and

backward procedures (79)……………………………………………………….. 120

xv

48 A posterior probability variable γt(i) which is the probability of being in state i

at time t by given the HMM parameter set λ and the entire observable symbol

sequence O……………………………………………………………………...126

49 The probability variable ξt(i,j) which represents the probability of being in state

i at time t, and state j at time t+1 given the observable symbol sequence O and

the HMM parameter set λ……………………………………………………....126

50 (a) 4 state ergodic HMM (b) 1st-order 4-state left-right (Bakis) HMM (c) 2nd-

order 4-state left-right HMM…………………………………………………... 129

51 A 1st-order 3-state Markov Model used to represent the observable symbol

sequence………………………………………………………………………...140

52 A 1st-order Hidden Markov Model can be used to represent the combination

of all 1st-order Markov Models for facial expression AU12…………………... 143

53 A 1st-order Hidden Markov Model can be used to represent the combination

of all 1st-order Markov Models for facial expression AU12…………………... 145

54 A 1st-order Hidden Markov Model can be used to represent the combination

of all 1st-order Markov Models for facial expression AU15+17…………….… 146

55 A 1st-order Hidden Markov Model can be used to represent the combination

of all 1st-order Markov Models for facial expression AU15+17…………….… 148

56 A 1st-order Hidden Markov Model can be used to represent the combination

of all 1st-order Markov Models for facial expression AU17+23+24…………...150

57 A 1st-order Hidden Markov Model can be used to represent the combination

of all 1st-order Markov Models for facial expression AU6+12+25………….… 152

58 A 1st-order Hidden Markov Model can be used to represent the combination

of all 1st-order Markov Models for facial expression AU6+12+25………….… 155

59 A 1st-order Hidden Markov Model can be used to represent the combination

of all 1st-order Markov Models for facial expression AU6+12+25………….… 158

60 The 1st-order 2-, 3- and 4-state Hidden Markov Models can combine to be a

3rd-order 4-state Hidden Markov Model……………………………………….161

xvi

61 Experimental setup…………………………………………………………….. 165

62 Each facial expression begins from the beginning duration, continues through

the apex duration, and ends at the ending duration. In our current work, we

segmented each facial expression to include only the beginning and apex

durations……………………………………………………………………...... 168

63 a. Standard AU1+4 expressions and manual misclassification of three AU1

expressions and one AU1+2 expression to AU1+4 expressions……………….. 169

b. Manual misclassification of three AU4 expressions to AU1+4 expressions.

These mistakes are because of (1) Ω shape of furrows at the forehead, (2)

confusing expression, and (3) asymmetric brow motion. The standard AU4

expression is shown in Figure 63.c (3)……………………………………….…170

c. Confusions among AU12+25, AU20+25 (also in Figure 63.a and 63.b) and

AU12+20+25…………………………………………………………………... 170

64 Three sets of extracted information as inputs to the recognition system using

Hidden Markov Models………………………………………………………... 172

65 The images at the same row have the same facial expressions, but different

facial actions or expression intensities…………………………………………. 173

66 The training process for the Hidden Markov Model (an example for the lower

facial expressions: AU12, AU6+12+25, AU20+25, AU9+17, AU17+23+24

and AU15+17)…………………………………………………………………. 176

67 The recognition process for the Hidden Markov Model (an example for the

lower facial expressions: AU12, AU6+12+25, AU20+25, AU9+17,

AU17+23+24 and AU15+17)………………………………………………….. 178

68 Different FACS AUs have the similar shape of furrows such as between AU12

and AU6+12+25, between AU6+12+25 and AU20+25, and between AU9+17

and AU17+23+24, since there are common facial muscle actions for both facial

motions………………………………………………………………………….185

xvii

LIST OF TABLES

Table No. Page

1 Correspondence between facial expressions and elements of the Hidden

Markov Model…………………………………………………………………. 18

2 Comparison of modeling facial expressions with modeling speech using

HMMs………………………………………………………………………….. 20

3 Action Units (AUs) in the Facial Action Coding System (FACS) (34)………….. 21

4 Sample symbol sequences for three upper facial expressions and six lower

facial expressions under consideration……………………………………….… 48

5 The dictionary for expression intensity estimation (image: 417 x 385 pixels)….. 50

6 Sample symbol sequences for three upper facial expressions and six lower

facial expressions under consideration……………………………………….… 76

7 Sample symbol sequences for three upper facial expressions and six lower

facial expressions under consideration……………………………………….… 101

8 Physical meaning of the Hidden Markov Model topology……………………...163

9 Different Hidden Markov Models for 3 upper facial expressions and 6 lower

facial expressions…………………………………………………………….….174

10 The trained parameter set λ = (π,A,B) of the 3rd-order 4-state Hidden Markov

Model, whose topology is determined in Figures 58 and 60, for the lower facial

expression AU6+12+25 using dense flow tracking method (codebook size

M=16)…………………………………………………………………….……. 177

11 The number of the training and testing image sequences (the average number

of frames per image sequence is 20) and their corresponding recognition

rates……………………………………………………………………………..180

12 Recognition results of the feature point tracking method. (The number given

in each block is the number of testing image sequences.)…………………….... 181

xviii

13 Recognition results of the dense flow tracking method. (The number given in

each block is the number of testing image sequences.)……………………….... 182

14 Recognition results of the motion furrow detection method. (The number

given in each block is the number of testing image sequences.)………………...183

15 Summary of three different extraction and recognition methods for facial

expressions……………………………………………………………………... 186

1

1

1.0 INTRODUCTION

Human face is a rich and powerful source of communicative information about human

behavior. Facial expression provides sensitive cues about emotional response and plays a

major role in human interaction and nonverbal communication. It can complement verbal

communication, or can convey complete thoughts by itself. It displays emotion (35)*,

regulates social behavior (23), signals communicative intent (38), is computationally related

to speech production (70), and may reveal brain function and pathology (81). Thus, to make

use of the information afforded by facial expressions, automated reliable, valid, and

efficient methods of measurement are critical.

Computer-vision based approaches to facial expression analysis discriminate among a

small set of emotions (12,13,36,68,82,103). This focus follows from the work of Darwin (32) and

more recently Ekman (35), who proposed “six basic emotions” (i.e., joy, surprise, anger,

sadness, fear, and disgust), each of which has a prototypic facial expression involving

changes in facial features in multiple regions of the face. These basic expressions,

however, occur relatively infrequently in everyday life and emotion expression is far more

varied. Facial action (detailed facial motion) more often is communicated by subtle

changes in one or several discrete features, such as tightening the lips which may

communicate anger. In reality, humans are capable of producing thousands of expressions

that vary in complexity, intensity, and meaning.

There is a standard anatomically based Facial Action Coding System (FACS) (34)

developed by psychologists for use in coding facial expressions. With FACS, observers

can manually code all possible discrete movements of the face, which are referred to as

action units (AUs). AUs individually or in combination can represent all visibly

discriminable expressions. Considering the complication of the movements involved and

* Parenthetical references placed superior to the line of text refer to the bibliography.

2

2

discrimination of the subtle changes, there is a need to develop an automated system for

efficient and quantitative measurement of facial expressions based on FACS, which will

make the standardized facial expression measurements more accessible for research in

various fields including cognitive and behavior science, psychology, biomedical

engineering, teleconferencing and human-computer interface or interaction (HCI).

At the present time, most active communication between human and computer is still

in one direction: from human to computer, even though computers may hear human

speeches through the use of special audio and speech recognition equipments. Allowing

computers to understand human operators through vision will bridge the gap of active

communication from the direction of computer to human, which will make computers

more active, smart, and friendly. Human face is the richest source of nonverbal

communication and the most accessible interface displaying human emotion. To

automatically analyze and recognize facial expressions using computers will revolutionize

fields which rely on human-computer interaction so that computers will be able to

understand whether users feel excited or bored, agrees or disagrees. It will be a great

challenge and of practical significance to develop a computer vision system which can

automatically recognize a variety of facial expressions and estimate expression intensity.

1.1 Related Works

An increasing number of researchers in computer vision have developed various

techniques in providing capabilities for automatic facial expression recognition. We will

briefly review the strengths and weaknesses of some major paradigms.

Three-dimensional geometric wireframe (or mesh) face models have been used by

Aizawa, Harashima and Saito (1); Choi, Harashima and Takebe (21); Essa and Pentland (36);

and Terzopoulos and Waters (91) for facial expression analysis, synthesis and recognition.

Essa and Pentland (36) developed two methods to recognize expressions. The first method

is to recognize 5 expressions: smile, surprise, raised brow, anger, and disgust by scoring

3

3

the dot-product similarity based on 36 peak muscle actuations in comparison to the

standard training expression templates but the temporal affect is ignored. The overall

recognition rate was 97.8% on 6 subjects with 23 and 48 image sequences for training and

testing, respectively. The second method uses the temporal-template matching for two-

dimensional gray value images. The time warping is an important consideration which

improves the recognition accuracy since the temporal-template matching measures the

correlation between testing and standard template image sequences.

In contrast to the use of the complex three-dimensional geometric models, Himer,

Schneider, Kost, and Heimann (46); and Kaiser and Wherle (48) proposed a method for

automated detection of facial actions by tracking the positions of attached dots on the face

as appeared in an image sequence. Since the shape of dots will deform due to muscle

movement during facial expression, it is difficult to locate accurately the corresponding

central positions for the deformed dots, and thus affects the tracking accuracy.

Optical flow in two dimensions has been used to track motion and classify basic

emotion expression (Black, Yacoob, Jepson and Fleet (12,13); Mase and Pentland (67,68);

Rosenblum, Yacoob and Davis (82); and Yacoob and Davis (103)). In work by Mase (68),

motions of facial muscles were computed rather than those of facial features. Muscle

regions were manually selected by referring to major feature points in the face. Optical

flow was computed to extract 12 of the 44 facial muscle movements, which in

combination with feature positions were interpreted as appropriate AUs. Mase’s approach

relies heavily on accurate tracking of the manually selected muscle regions; flow directions

within each individual region is averaged to represent the flow direction of that region.

However, when the selected area corresponds to a smooth, featureless surface in the face,

the optical flow estimation will be unreliable, leading to tracking error. Some selected

muscle regions may be difficult to locate manually since they are small and highly mobile.

In essence, Mase built a model that is appropriate for synthesizing facial expressions but

remains uncertain in analyzing facial expressions. He computed mean and covariance of

the optical flow in each local region, and then, based on the highest ratio of between-class

4

4

to within-class variability to classify various expressions; the k-nearest-neighbor rule was

applied for recognition. His experiments indicated an accuracy of approximately 86% in

recognizing five expressions (happiness, anger, surprise, disgust, and unknown) on 1

subject with 20 and 30 training and testing image sequences, respectively.

The work of Yacoob and Davis (103); and Rosenblum, Yacoob and Davis’s (82) are

related closely to Mase’s in that they used optical flow to track the motion of the surface

regions of facial features: brows, eyes, nose and mouth, but not that of the underlying

muscle groups. In each facial feature region, the flow magnitude was thresholded to

reduce the effect of small computed motions which may be either produced from

textureless parts or affected by illumination. The overall flow direction of each region is

to conform with the plurality in the neighborhood. The direction of any flow in this region

is quantized to one of eight main directions to give a mid-level representation (to match

with the dictionary or lookup table of the motion direction for each region of the basic

facial action) so as to permit the high-level classification of facial expressions. Yacoob

and Davis (103) used this mid-level representation to classify the six basic facial expressions

as well as eye blinking. The recognition rate was 88% (except eye blinking for which it

was 65%) among 32 subjects with 46 image sequences. Rosenblum, Yacoob and Davis
(82) extended Yacoob and Davis’s (103) work, based on the similar mid-level representation

to recognition of facial expressions of smiling and surprise, using an artificial neural

networks with radial basis function (RBF). The recognition rate achieved was 88% for 32

subjects.

Black and Yacoob (12) used a local parameterized model of the image motion to

separate and recognize the non-rigid facial expression from the rigid head motion. Their

high-level recognition approach was similar to that of Yacoob and Davis’s technique (103),

which is based on the mid-level index of the motion direction of each facial feature region

(brows, eyes and mouth). The mid-level representation was predicted, however, by taking

the difference of the motion parameter estimation and a threshold value. Thresholding

motion parameters would filter out some subtle motion. Furthermore, different threshold

5

5

were used for different motion parameters in the experiment (12): some were between 0.5 ~

-0.5, and others were between 0.00005 ~ -0.00005. This thresholding method for motion

parameters, in effect, reduced reliability and accuracy of the recognition. In their studies

of recognition of six basic facial expressions, the average recognition rate was 92% in 40

subjects with 70 image sequences.

Principal component analysis (PCA) has been used previously in gray-value base for

recognition expressions of on the forehead and brows (Bartlett, Viola, Sejnowski,

Golomb, Larsen, Hager, and Ekman (4)), for face recognition (Kirby and Sirovich (54); and

Turk and Pentland (93)), and for object recognition with varying poses (rigid motion) and

illumination (Murase and Nayar (73)). It has also been used in optical flow base for

recognition of smile and mouth motion (Black, Yacoob, Jepson, and Fleet (13)), and of lip-

reading (Mase and Pentland (67)). Black, et. al. (13) assigned thresholds for motion

parameters of linear combination in PCA for their classification paradigm. Mase, et. al. (67)

considered the averaged flow direction at each of four rectangular feature regions around

the mouth for lip-reading recognition. Both of these constraints introduced some degree

of insensitivity to the extracted motion information and thus limited the recognition ability

and accuracy

Mase and Pentland’s lip-reading approach (67) uses a template matching that minimizes

the sum of squared differences (SSD) between the projected flow curve of the testing

word and that of the word templates in the two-dimensional eigenspace. The work of

Black, Yacoob, Jepson, and Fleet on smile and mouth motion recognition (13) uses a similar

approach by comparing similarities of the parameters of linear combination in PCA

between the training and testing image sequences. In both cases, time warping is an

essential preprocessing for comparison purpose. This becomes impractical when the

lengths of image sequences are arbitrary (say, from 9 to 47 frames) and the projected flow

curves are in a higher dimensional eigenspace.

Kobayashi and Hara (55,56,57) used three sets of artificial neural networks to recognize

six basic facial expressions, mixed facial expressions (combinations of 2 or 3 basic

6

6

components), and the intensity of each facial expression, respectively. Inputs to these

neural networks are the movements of sixty facial characteristic points which are manually

selected. The recognition rate for six basic facial expressions was 88.7% from 15

subjects, and 70% for recognizing mixed facial expressions from 10 subjects.

Other studies in Japan (33,44,80,85,89,94) have used approaches similar to that of Kobayashi

and Hara based on the displacement of manually selected facial characteristic points.

Ding, Shimamura, Kobayashi, and Nakamura (33) used three sets of artificial neural

networks to recognize brows, eyes and mouth expressions. They assumed symmetrical

facial expressions, so they performed recognition only on the left half of the face. Others

used fuzzy logic (Hashiyama, Furuhashi, Uchikawa and Kato (44), Ralescu and Hartani (80),

and Ushida, Takagi and Yamaguchi (94)) or chaos (Sato and Yamaguchi (85)) combined

with artificial neural networks to recognize six basic facial expressions.

Bartlett, Viola, Sejnowski, Golomb, Larsen, Hager, and Ekman (4) used three methods

(PCA of difference images, optical flow with correlation coefficients, and high gradient

component, i.e., wrinkle, detection) to extract information on upper facial expressions (six

upper face FACS AUs: AU1, 2, 4, 5, 6 and 7), and employed artificial neural networks for

recognition. To deal with the time warping problem, they proposed to manually pick up

six frames from each image sequence to form a new sequence for further processing:

neutral expression for the first frame, low magnitude expressions for the second frame,

medium magnitude expressions for the third and forth frames, and high magnitude

expressions for the last two frames. Considering the relative geometric correspondence of

face images, they took care of only rotation and horizontal scaling based on the location of

both eyes, which was insufficient for aligning face images accurately because the vertical

scaling was missing and the sizes of faces could be very different among subjects. The

information they used for the PCA is the differences in images obtained by subtracting the

gray values of the neutral expression (first frame) from those of the subsequent images for

each image sequence. Such a simple subtraction process is not adequate to take care of

the differences among individual faces. For high gradient component detection, they did

7

7

not discriminate that some wrinkles may be produced by facial expressions while others

may be a permanent characteristic of the individual’s face. Also, they proposed to

wrinkles along several lines where some subjects may and other subjects may not appear

wrinkled with the same expression. The best recognition rate was 91% from 20 expert

subjects with 80 image sequences and 400 images.

Other methods of recognition have been applied to face or facial expression analysis.

Beymer (9) proposed a method to normalize face images across different subjects, he

analyzed and synthesized face images by interleaving shape and texture computations

using optical flow and PCA in gray-value base (10). Bregler and Konig (15) employed PCA

and Hidden Markov Model (HMM) for speech recognition (eigenlips) and other

applications. Kanade (49), one of the pioneers in face identification, used geometrical

features of the face, such as the length of facial features, distance between features, and

chin shape, to identify a face. Samaria and Young (84) converted each two-dimensional

static and mono-shot face image into a concatenated one-dimensional gray-value vector

for use in a continuous HMM to identify a face. These are indirectly related to our study

but provide valuable references to this research.

1.2 Problem Statement

As reviewed in the previous section, most research in facial expression recognition is

limited to six basic expressions and several combinations (12,13,36,68,82,103). These stylized

expressions are classified into emotion categories rather than facial actions. It is

insufficient to describe all facial expressions because, in everyday life, six basic expressions

occur relatively infrequently. Emotion is often communicated by small changes in one or

two discrete features; on the other hand, the same facial expression may be involved in

more than one emotion. The presence or absence of one or more facial actions may

change its interpretation. For example, as shown in Figure 1, different smile expressions

have an action unit AU12 (lip corners pulled obliquely) and emotional simile which may

8

8

Figure 1 Comparison of different smile expressions with different expression
intensities. The presence or absence of one or more facial actions can
change their interpretations.

AU6+12+25: without
crow-feet wrinkles near
corners of the eyes

frame 1

frame 6

frame 12

frame 4

frame 1

frame 4

frame 7

frame 12

frame 1

frame 7

frame 9

frame 18

AU12 AU6+12+25: with
crow-feet wrinkles near
corners of the eyes

9

9

indicate an anxious or concealed emotion, a grin or a genuine (AU6+12+25: lip corners

pulled obliquely for AU12, cheek raised for AU6, and subtly exposed for AU25, with or

without crow-feet wrinkles near corners of the eyes). The degree of smiling is

communicated by the intensity of raising the cheek and lip corners, and having the

wrinkles. So it is important to be able not only to recognize basic expressions but also to

discriminate subtly different expressions and estimate their expression intensities, which

have a similar gross morphology but indicate varied meanings.

The Facial Action Coding System (FACS) (34) is so far the most comprehensive

method of coding facial expressions, and provides a guideline for discrimination among

closely related expressions. Manually encoding all action units (AUs) for various facial

expressions is a laborious process. It takes approximately 100 hours to train a technician

to have acceptable levels of coding experiences and up to 10 hours to code one-minute

video tape of facial behavior (4,26). Thus, it is desirable to automate the extraction and

coding process, capable of delineating the temporal dynamics and intensity of facial

expressions. Feature points are to be tracked in pixel base instead of averaging flow

directions in a feature region. Optical flow in a larger region is to be efficiently

represented for discriminating expressions. Image sequences ought to be preprocessed to

separate the non-rigid motion of facial expression from any rigid head motion as much as

possible and to geometrically normalize (align) corresponding face images in a sequence to

ensure the assessment of correct motion information.

As the facial motion information are encoded into symbol sequences, it is natural to

consider an HMM for automatic recognition of facial expressions where the maximum

likelihood decision is assigned to an observable expression symbol sequence. HMM is

capable of taking care the problem of variable expression length. HMM topology is

referred to a particular network of states and state transitions. The best model is one with

as few parameters as possible that can capture the behavior of the training data set. There

exists no unified method to determine the optimum topology for an HMM. It will be a

10

10

great challenge to develop a strategy to do so for the underlying facial expression

recognition problem.

1.3 Objective of the Research

The objective of this dissertation research is to develop a computer vision system,

including both facial feature extraction and facial expression recognition based on FACS

AUs, that is capable of automatically discriminating among subtly different facial

expressions.

For facial feature extraction, we will consider three approaches in parallel. We will

apply a pixel-based feature point tracking method, based on the coarse-to-fine pyramid

approach, so as to make it sensitive to subtle feature motion as well as to handle large

displacements; it will produce facial expression descriptions corresponding to each

individual AU or AU combinations. We will also develop a method by using the dense

flow to track motion vectors over a large facial region and applying the principle

component analysis for data compression yet yielding the entire facial motion information.

In addition, we will extract and analyze the motion of high gradient components (furrows)

in the spatio-temporal domain to exploit their transient variances associated with facial

expression.

Upon extraction of the facial expression information, each motion vector sequence will

be vector quantized to a symbol sequence to provide an input to the facial expression

classifier. An HMM-based classifier will be designed to deal with varies of facial

expressions which are to be recognized in the context of motion sequences of variable

length. Furthermore, different methods based on different types of the extracted

expression information will be developed for expression intensity estimation which will be

useful to segment facial expression sequences, measure the meaning of the expression, and

analyze and synthesize facial expression for MPEG-4 applications in teleconferencing.

11

11

1.4 Organization of the Dissertation

The dissertation is organized into nine chapters. Chapter 1 gives the motivation of this

research and reviews briefly the related works on facial expression recognition systems.

The objectives of this dissertation are discussed. Chapter 2 introduces the framework of

our computer vision system for facial expression recognition where FACS is used as a

basis and where feature tracking is contemplated. Under certain limitations, the rigid head

motion is removed from non-rigid facial expressions, and a geometric normalization is

prescribed to ensure that optical flows or gray values of face images have the close

geometric correspondence.

Chapters 3 through 5 present three methods to extract detail information of facial

expressions and to give expression intensity estimation. Chapter 3 describes the pixel-

based facial feature point tracking method using the pyramid approach for extracting

subtle as well as large movements of facial features in subpixel accuracy. The critical role

of the window function in motion estimation is analyzed. The motion is vector quantized

into a symbol sequence representing the facial expression. Chapter 4 employs the

wavelet-based motion estimation technique for dense flow tracking in order to include

information of the entire range of facial motion. Flow-based principal component analysis

is presented to compress the high-dimensional dense flows to a low-dimensional weight

vector for each frame in a video sequence, which is encoded for recognition processes and

expression intensity estimation. Chapter 5 presents a technique for high gradient

component (i.e., furrows) analysis. Motion line and edge detectors are designed to extract

high gradient components in the spatio-temporal domain and to distinguish furrows from

the noise. The high gradient components are encoded to mean and variance vectors as

inputs to the recognition process.

Chapters 6 and 7 present the HMM for facial expression recognition. Chapter 6

analyzes the HMM technique and its associated computational issues. Chapter 7 presents

a method of determining a special HMM topology for applications to facial expression

recognition.

12

12

Chapter 8 describes our experimental results. A large database has been tested,

subjects ranged in gender, age and ethnicity. We analyzed the performances of the

recognition system using three feature tracking methods and demonstrated its high

accuracy in comparison to the ground truth by human observation.

Chapter 9 discusses our major contributions and suggestions for further research.

13

13

2.0 FACIAL EXPRESSION RECOGNITION SYSTEM OVERVIEW

Humans are capable of producing thousands of facial actions during communication

that vary in complexity, intensity, and meaning. Emotion or intention is often

communicated by subtle changes in one or several discrete features. The addition or

absence of one or more facial actions may alter its interpretation. In addition, some facial

expressions may have a similar gross morphology but indicate varied meaning for different

expression intensities. In order to capture the subtlety of facial expression in nonverbal

communication, we propose to develop a computer vision system with a user interface

(Figure 2) that automatically extract features and their motion information, discriminate

subtly different facial expressions, and estimate expression intensity. The system contains

two components: extraction and recognition as shown in Figure 3. Three methods are

developed for feature and motion extraction yielding symbol sequences to represent

observed expressions. These symbol sequences are input to the recognition process,

which is an HMM computation to give the maximum likelihood decision.

2.1 Three Methods of Feature Motion Extraction

Facial expression is produced by the activation of facial muscles, which are triggered

by the nerve impulses. Facial muscle actions cause the movement and deformations of

facial skin and facial features. In the interpretation of facial expression, it is these

deformations which we observe, and from which we must deduce the underlying emotion.

Three convergent approaches are used to extract expression information (Figure 3): (1)

facial feature point tracking using the pyramid method, (2) dense flow tracking with

principal component analysis (PCA), and (3) high gradient component analysis in the

spatio-temporal domain. In order to allow recognition, this extracted expression

14

14

information must be converted into motion vectors so they may be passed to the

recognition process (Figure 3).

Figure 2 The user interface created by programming in C, Motif, X Toolkit
and Xlib.

15

15

Figure 3 Block diagram of a facial expression recognition system.

Feature
Point

Tracking

Dense
Flow

Tracking

High
Gradient

Component
Analysis

Rigid
and

Non-
Rigid

Motion
Separ-
ation

and

Geome-
tric

Normal-
ization

Principal
Component

Analysis

Gradient
Distribution

Facial Expression Category

Expression Intensity Estimation

Maximum
Likelihood
Decision

Weight
Vector

Sequence

Displacement
Vector

Sequence

Mean-
Variance
Vector

Sequence

Hidden
Markov
Model

Vector
Quantization

Motion Vector Sequence

Image Sequence Facial Expression Extraction System

Facial Expression Recognition System

16

16

Feature point tracking and dense flow tracking are used to track facial motion for

recognition of expressions varying in intensity in the spatio-temporal domain. Frontal

views of subjects (none wears eyeglasses) are videotaped under constant illumination,

although lighting may vary across subjects particularly when we videotape on different

days. These constraints are imposed to prevent significant degradation in optical flow

calculation.

Facial feature point tracking using the pyramid method is especially sensitive to subtle

feature motion and is also able to track a large displacement of feature motion in subpixel

accuracy. Facial feature point is based on facial features in regions of brows, eyes, nose,

and mouth. However, the forehead, cheek and chin regions also have important

expression information. Dense flow tracking is used to include motion information from

the entire face. The use of optical flow to track motion is advantageous because facial

features and skin naturally have a great deal of texture. Using the principal component

analysis, a low-dimensional weight vector in eigenspace can be obtained to represent the

high-dimensional dense flows of each frame. Based on the displacement and weight

vectors, the motion information is converted to symbol sequences from which we can

recognize facial expressions, and is applied to estimate the expression intensity.

High gradient component analysis is also used to recognize expressions by the

presence of furrows. Facial motion produces transient wrinkles and furrows perpendicular

to the motion direction of the activated muscles. The facial motion associated with a

furrow produces gray value change in the face image, which can be extracted by the use of

high gradient component (motion line or edge) detectors in the spatio-temporal domain.

2.2 Recognition Using Hidden Markov Models

Modeling facial expression needs to take into account the stochastic nature of human

facial expression involving both the human mental state, which is hidden or immeasurable,

and the human action, which is observable or measurable. For example, different people

17

17

with the same emotion may exhibit very different facial actions, expression intensities and

durations. Individual variations notwithstanding, a human observer can still recognize

what emotion is being expressed, indicating that some common element underlies each

motion. Therefore, the purpose of facial expression modeling is to uncover the hidden

patterns associated with specific expressions from the measured (observable) data. Facial

expression modeling requires a criterion for measuring a specific expression. It is

desirable to analyze a sequence of images to capture the dynamics (5). Expressions are

recognized in the context of an entire image sequence of arbitrary length. We will develop

a recognition system based on the stochastic modeling of the encoded time series

describing facial expressions, which should perform well in the spatio-temporal domain,

analogous to the human performance.

In order to model subtly different facial expressions having different durations

(arbitrary length of image sequence), the Hidden Markov Model (HMM) is developed to

recognize expressions based on the maximum likelihood decision criterion. A key problem

is to determine the HMM topology for the facial expressions under consideration. Some

other advantages of using HMMs are: HMM computations converge quickly making it

practical for real time processing, it may evaluate an input sequence of uncertain category

to present a low output probability, and a multi-dimensional HMM may be developed to

integrate individual HMMs to give a robust and reliable recognition. The correspondence

between facial expressions and elements of the HMM is shown in Table 1.

Facial expression and speech represent human visual and audio actions, respectively
(88). The HMM technique has been successfully applied to model all known phonemes (the

basic units of speech). Elementary HMMs of phonemes have then combined to represent

words, and then sentences (59,76,79). Speech may be considered as two- or three-

dimensional signals: frequency and amplitude change with time. Facial expressions may be

considered as three (or four)-dimensional signals: a time sequence of images. So a set of

elementary HMMs will be developed to model various “expression units” of individual

18

18

Facial Expression Hidden Markov Model

Hidden Process Mental State Model State

Observable Expression (Facial Action) Symbol Sequence

Temporal Domain Dynamic Behavior A Network of State
Transition

Characteristics Expression State Transition
Probability and Symbol
Probability

Recognition Expression Similarity The Confidence of Output
Probability

AUs or AU combinations, such as illustrated in Figure 4. Based on combinations of

elementary HMMs, we will be able to recognize continuously varying facial expressions.

A comparison of modeling facial expressions with modeling speech using HMMs is listed

in Table 2.

2.3 Facial Action Coding System and “Expression Units”

The proposed automatic of facial expression analysis follows the anatomically based

Facial Action Coding System (FACS) (34), which is the most comprehensive method for

coding facial expressions by psychologists. With FACS, observers can manually code

discrete deformations of the face (movements of the facial muscle and skin) which are

referred to as action units (AUs). Basically, FACS divides the face into upper and lower

facial expressions and subdivides motion AUs. FACS consists of 44 basic AUs, with 14

additional AUs for head and eye positions as shown in Table 3. AUs are the smallest

visibly discriminable muscle actions that individuate or combine to produce characteristic

facial expressions which can be recognized from the image. More than 7000

Table 1 Correspondence between facial expressions and elements of
the Hidden Markov Model.

19

19

Upper Facial Expressions

AU4:
Brows are lowered and
drawn together.

AU1+4:

Medial portion of the
eyebrows is raised (AU1)
and pulled together
(AU4).

AU1+2:
Inner (AU1) and outer
(AU2) portions of the
brows are raised.

Lower Facial Expressions

AU12:
Lip corners are pulled up
and backward.

AU6+12+25:
Cheek raised (the lower-
eye and infra-orbital
furrows are raised and
deepened, and the eye
opening is narrowed)
(AU6), and AU12 with
mouth opening (AU25).

AU20+25:
Lips are parted (AU25),
pulled back laterally, and
may be slightly raised or
pulled down (AU20).

AU9+17:
The infra-orbital triangle
and center of the upper
lip are pulled upwards
(AU9), and the chin boss
and lower lip are pulled
upwards (AU17).

AU17+23+24:

The chin boss is raised,
which pushes up the
lower lip (AU17); the lips
are tightened, narrowed
(AU23), and pressed
together (AU24).

AU15+17:
Lip corners are pulled
down and stretched
laterally (AU15), and
chin boss is raised which
pushes up the lower lip
(AU17).

Figure 4 “Expression units” of subtly different facial expressions in our study
(taken from (34)).

20

20

Speech Facial Expressions
Human Action Audio Action Visual Action

Dimension (Including
Time Series)

2-dimensional Signals 3 or 4-dimensional Signals

Action Unit Phoneme Expression Unit: Individual
AUs or AU Combinations

HMM Unit 1st-order 3-state HMM 2nd-order 3-state HMM for
Upper Facial Expression and
3rd-order 4-state HMM for
Lower Facial Expression *.

HMM Unit
Combinations

One Word One Basic Facial Expression
(e.g., joy)

Concatenated HMM
Unit Combinations

Sentences Continuously Varying Basic
Facial Expressions

have been observed. According to FACS, each AU corresponds to an activity in a distinct

muscle, with the exception of AU4 (34,107). Even though the one-to-one mapping of

individual AUs to distinct muscle activities is a basic assumption of the FACS, AUs enable

discrimination between closely related expressions. By discriminating “expression units

(individual AUs or AU combinations)”, we can simulate and understand individual

mechanics of the facial muscles. In the present study we consider, three upper facial

“expression units” and six lower facial “expression units” which are shown in Figure 4.

They are frequently occurring facial expressions containing subtle differences. They will

be studied for automatic recognition and estimation of their intensities.

Table 2 Comparison of modeling facial expressions with modeling speech
using HMMs.

* Obtained in this research.

21

21

Upper Face Lower Face Miscellaneous

AU Label AU Label AU Label
1 Inner Brow Raise 9 Nose Wrinkle 8 Lips Toward
2 Outer Brow Raise 10 Upper Lip Raise 19 Tongue Show
4 Brow Lower 11 Nasolabial Deepen 21 Neck Tighten
5 Upper Lid Raise 12 Lip Corner Pull 29 Jaw Thrust
6 Cheek Raise 13 Sharp Lip Pull 30 Jaw Sideways
7 Lids Tight 14 Dimple 31 Jaw Clench
41 Lids Droop 15 Lip Corner Depress 32 Bite (Lip)
42 Lids Slit 16 Lower Lip Depress 33 Blow
43 Lids Closed 17 Chin Raise 34 Puff
44 Squint 18 Lip Pucker 35 Cheek Suck
45 Blink 20 Lip Stretch 36 Tongue Bulge
46 Wink 22 Lip Funnel 37 Lip Wipe

23 Lip Tight 38 Nostril Dilate
24 Lip Press 39 Nostril Compress
25 Lips Part
26 Jaw Drop
27 Mouth Stretch
28 Lip Suck

Head Position Eye Position

AU Label AU Label
51 Turn Left 61 Left
52 Turn Right 62 Right
53 Head Up 63 Up
54 Head Down 64 Down
55 Tilt Left 65 Walleye
56 Tilt Right 66 Cross-eye
57 Forward
58 Back

Table 3 Action Units (AUs) in the Facial Action Coding System (FACS) (34).

22

22

2.4 Rigid and Non-Rigid Motion Separation and Geometric Normalization

For facial expression recognition, two main issues in image processing will affect the

recognition results: separation of non-rigid facial expression from rigid head motion, and

facial geometric correspondence to keep face size constant across subjects. Both

processes are necessary in order to ensure that these variables do not interfere with

expression recognition. Though all subjects are viewed frontally in our current research,

some out-of-plane head motion (e.g., yaw rotations or less than ±10 degree pitch

rotations) may occur with facial expressions. Furthermore, face size varies among

individuals. For elimination of the above-mentioned rigid head motion from non-rigid

facial expression, an affine transformation (which includes translation, scaling and rotation

factors) is adequate to normalize the face geometric position and maintain face

magnification invariance. Face images are automatically normalized with the affine

transformation to ensure that optical flows or gray values of individual frames have close

geometric correspondence in order to achieve consistent recognition performance.

In the first frame of each image sequence, we manually select three facial feature

points for image normalization: medial canthus of both eyes and the uppermost point on

the philtrum as shown in Figure 5. These three points will carry only rigid motion

components accompanied with the head motion. Each of these points forms the center of

a 13 x 13 pixel flow window, and they are automatically tracked in the remaining frames

of each image sequence. Based on these three facial feature points, the original 490 x 640

(row x column) pixel display is cropped to 417 x 385 pixels for each frame to keep the

foreground face and remove the unnecessary background. The positions of all tracking

facial feature points, dense flows, or image gray values for each frame are then normalized

by warping them onto a standard two-dimensional face model based on the affine

transformation ℑ (Figure 5) given as follows:

23

23

Figure 5 Normalization of each face image to a standard 2-dimensional face model.

Philtrum
Medial Canthus

θ

(0,0)

(384,416)

(0,0)

(384,416)

ℑ:
Affine

Transformation

Before normalization
 (Original image I’)

After normalization to a
standard 2-dimensional face
model

(Warped image I)

(192,230)

(167,155) (217,155)

1800

00

-1800

u

v

(u,v)

uu-1 u+1

v

v-1

v+1

u’

v’

(u’,v’)

u’u’-1 u’+1

v’

v’-1

v’+1

Gray value I(u,v) is bilinearly
interpolated by gray values
I’ (u’,v’), I’ (u’+1,v’),
I’ (u’,v’+1) and I’ (u’+1,v’+1)

I(u,v)
I’ (u’,v’)

I’ (u’,v’+1)

I’ (u’+1 ,v’)

I’ (u’+1 ,v’+1)

24

24

u

v

S

S

u

v

D

D

u

v

u

v







=
−















+ 





cos sin

sin cos

’

’

θ θ
θ θ

0

0
(2-1)

where

[]S S S
w

w

h

h
u v= = 



’ ’

(2-2)

[] []D D D d d d du v u u v v= = − −’ ’ (2-3)

Here, u and v are the horizontal and vertical positions of the two-dimensional face model

coordinates, and u’ and v’ are the horizontal and vertical positions of the original image

coordinates. The upper-left corner of each frame, including the face model image is

denoted as (0,0). In the standard face model, the top point of the philtrum is the rotation

center whose position is (du,dv) = (192,230), and the position of the medial canthus of the

right eye is (167,155) and that of the left eye is (217,155); the width w between the medial

canthi of both eyes is 50 pixels and the height h from the level of the medial canthi to the

top point of the philtrum is 75 pixels. The horizontal scaling is given by the parameter Su

which is computed as the ratio of the distance w at the face model to that distance w’ at

the original face image. The vertical scaling given by Sv is computed as the ratio of the

distance h at the face model to that distance h’ at the original face image. The horizontal

and vertical displacements (translations) are represented by Du and Dv, respectively, and

are measured from the top point of the philtrum in the original face image (d'u,d'v) to that

in the face model (du,dv). The angle of rotation of the line connecting the medial canthi of

both eyes in the original face image from the corresponding horizontal line in the face

model is represented by θ, where the clockwise rotation is negative and the

counterclockwise rotation is positive. The pixel positions of each image are integer-

valued, but the warped positions after the affine transformation are, in general, not

integer-valued. So the gray value at each integer-valued pixel of the warped image needs

to be estimated by bilinear interpolation based on the gray values of its four nearest

neighbor pixels in the original image as shown in Figure 5.

25

25

3.0 FACIAL FEATURE POINT TRACKING

The face is an interface of nonverbal communication, which can represent a subject’s

social feeling or reveal his brain function through the use of expressions. People activates

facial action mainly by controlling the individual or combined motions of four facial

features: brows, eyes, nose and mouth. These are the most attractive features on the facial

surface because they have high textures, and symbolize the underlying muscle activations.

An observer may recognize easily and directly the messages transmitted from the

movement of facial features. Optical flow in an image sequence has been used to track

highly textured regions reliably for extracting the motion information of facial features to

be used in further recognition process. Optical flow provides an estimate of the movement

of facial feature points. Since our goal is to discriminate subtly different facial expressions

and to estimate the expression intensity, the tracking algorithm must have high accuracy,

be sensitive to subpixel motion, and be able to deal with relatively large facial movements.

3.1 Dot Tracking and Reliability of Feature Point Selection

Since FACS specifies that each AU corresponds to the movement of a single muscle,

we design an automatic feature point tracking to extract motion information of facial

feature actions based on the movement of facial feature points (which represents the

underlying muscle activations) across an image sequence. This will allow realization of

the AU actions of facial expressions for encoding “expression units” constructed by

individual AUs or AU combinations.

It is important to make sure that the locations and movement of feature points can

exactly reflect the AU activation. The following method is used to track the facial

features. We attach black dots to specific points on faces of the subjects; a black dots

26

26

have the same radius equivalent to 15 pixels on a face image of the size of 490 x 640. We

use the template matching (the correlation coefficient ρ) method to track dot movements

during the facial action by considering the highest value of the correlation coefficient

between the dot template F and the gray values in a target region I(x) centered at position

x,

ρ(x) =
− + −

− + −
∈

∈ ∈

∑
∑ ∑

[()][() ()]

[()] [() ()]

F r F I x r I x

F r F I x r I x

r R

r R r R

2 2
0.0 ≤ ρ ≤ 1.0 (3-1)

where r denotes a position within the circular region of the dot template whose area is R

(radius = 15 pixels), I(x+r) denotes the gray value of the image at position x+r, F and

I (x) are the average gray values in circle regions of the dot template and the image,

respectively, and x is in a search region m of 60 x 60 pixels, which is large enough to reach

the maximum dot movement but not too large to reach any neighboring dot template. If

the correlation coefficient ρ is closer to 1.0, there is very strong similarity between the dot

template and the target region; otherwise, they are less correlated. Utilizing the relations

∑
∈

=
Rr

FRrF)((3-2)

and ∑
∈

=+
Rr

xIRrxI)()((3-3)

the above equation is simplified to achieve the efficient computation,

ρ(x) =
+ − − + +

− + − + +
∈ ∈ ∈ ∈

∈ ∈ ∈ ∈

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

F r I x r I x F r F I x r FI x

F r F I x r I x I x r I x

r R r R r R r R

r R r R r R r R

() () () () () ()

[()] () () () ()2 2 2
2

 =
+ −

− + −
∈

∈ ∈

∑
∑ ∑

F r I x r RFI x

F r F I x r RI x I x

r R

r R r R

() () ()

[()] () () ()2 2
(3-4)

The first term in the denominator and the average gray value of dot template F can be

calculated first and assigned as constant values for quick processing.

27

27

For the first frame of each image sequence, we used the computer user interface which

we designed to initially locate the center of each dot marked by a cross (+) on the screen.

By observing or automatically tracking the motion of the dots in the remaining frames, we

realized the AU actions of facial expressions and understood the underlying muscle

activations (Figure 6). This allowed us to correctly locate controlled positions of facial

feature points and measure the reliability of the selection of feature points based on which

the automatic tracking using the optical flow will begin.

Using the template matching method to track dots is inaccurate for two reasons: the

dots on screen may become deformed and are sometimes affected by the reflections due to

lighting (especially if red or white dot templates are used) on subjects with dark skin color.

The method is also much slower when compared to selected optical flow tracking

discussed before, especially when the number of dots and search regions are increased.

For the optical flow tracking, a set of feature points will be initially selected on the first

frame of each image sequence (from the neutral expression to the peak expression in an

arbitrary length of time). We suggest to select 4 facial feature points around the contour

of each brow, 4 points around each eye, 14 points around the nose contour, 10 points

surround the lip contour, and 3 points along each cheek bone (below each lower eyelid) as

shown in Figure 7. This can be done by an operator using a computer, mouse, and user

interface as shown in Figure 2. The manually selected feature points are then

automatically tracked using optical flow in the remainder of the sequence. The motion of

these facial feature points simulates the facial muscular actions corresponding to AUs.

The displacements of these feature points are directly proportional to the AU expression

intensities.

The reliability of the feature point selection has been confirmed in experiments by two

experienced operators. The first frames of 80 image sequences are independently selected

by two different operators. The optical flow method was used to automatically track

those selected feature points and inter-observer reliability was evaluated. Our

28

28

Figure 6 Dot tracking: each dot is marked by a cross (+) at its center, lines
trailing from the dots represent changes in the location of dots due to
facial expression.

Neutral Expression
(first frame)

Peak Expression
(last frame)

29

29

results showed a very high correlation and the identical recognition performance between

two operators (28). This selection process can be easily taught to new operators. An

operator can learn this after a training of about 5 minutes session, which is substantially

shorter than learning the FACS (which may require 100 hours).

Figure 7 Locations of selected facial feature points (marked by a cross ‘+’)
which reflect the muscle motion of facial features.

30

30

3.2 Motion Estimation and Flow Window

The motion estimation method used here is based on the optical flow algorithm

developed by Lucas and Kanade (66), and implemented by including the pyramid approach

used by Poelman and Kanade (77) to track large motion. This method assumes that the

gray values in any image feature region (n x n feature window) do not change between

two consecutive frames, but only shift from one position to another (Figure 8). We can

track the motion of high gradient points, such as facial feature points, with subpixel

accuracy by iterative computation. Its convergence is very fast.

Let us consider an n x n region R in the reference image at time t, where It(x) denotes

the gray value of the pixel position x in R. Let us find the best matching (registration)

position of this region in the following frame at time t+1, where It+1(x) denotes the gray

value in the region, by minimizing a cost function E of the sum of squared differences

(SSD) defined as

)()]())(([))((
2

1 xwxIxdxIxdE
Rx

tt∑
∈

+−−= (3-5)

Figure 8 Feature point tracking based on tracking the movement of
an n x n feature window between two consecutive frames
(here, n is 13 pixels).

n x n window
Frame t Frame t+1

31

31

where d(x) is the displacement of x of region R between two consecutive frames and w(x)

is a window function for weighting the squared differences in E. This minimization for

finding the motion vector d(x) can be done in iterations. Let

)()()(xdxdxd i ∆+= (3-6)

at the ith iteration and ∆d(x) is the incremental displacement at the ith iteration. We want

to robustly estimate the incremental displacement ∆d(x) with a subpixel accuracy. Let us

expand the term

))(()(ddxIdxI i
tt ∆+−=− (3-7)

by the first order Taylor’ expansion:

ddxIdxIddxI Ti
t

i
t

i
t ∆−−−≈∆−−)()()(’ (3-8)

where I’ t(x) denotes the gradient of the gray value It(x). The incremental change in the

SSD cost function is given by

E d E d d E di i() () ()∆ ∆= + −

∑∑
∈

+
∈

+ −−−−∆−−−≈
Rx

t
i

t
Rx

t
Ti

t
i

t xwxIdxIxwxIddxIdxI)()]()([)()]()()([2
1

2
1

’

∑∑
∈

+
∈

∆−−−−∆−=
Rx

Ti
tt

i
t

Rx

Ti
t xdwdxIxIdxIxwddxI)()()]()([2)(])([’

1
2’

dedGd TT ∆−∆∆= 2 (3-9)

where

∑ −−=
x

Ti
t

i
t xwdxIdxIG)()()(’’ (3-10)

is the Hessian matrix of the gradients of It with a window function w(x), and

∑ −−−= +
x

Ti
tt

i
t

T xwdxIxIdxIe)()()]()([’
1 (3-11)

is a difference-gradient row vector which is the product of the difference (or error)

between the regions in the two consecutive images and the gradient of the gray-value It

together with a window function w(x). The maximum decrement E(∆d) occurs when its

gradient with respect to ∆d is zero,

32

32

0)(22)(
)(

)(=−∆=−∆+∆=
∆∂
∆∂

edGeGddG
d

dE TT (3-12)

Hence,

eGxd 1)(−=∆ (3-13)

Initializing d(0)(x) = [0,0]T and following equations (3-8), (3-10), (3-11) and (3-13), the

optical flow d(x) can be robustly estimated through iterations yielding the subpixel

accuracy.

The motion estimate d(x) is more accurate when the gradients of both It(x) and It+1(x)

are large and nearly equal as illustrated in Figure 9 (66).

)()()()(’
1

’
1

’
1

’ xIdxIxIxI tttt +++ −+=−

)(])()([’
1

’’
1

’
1 xIdxIxI ttt +++ −+≈

dxI T
t)(’’

1+= (3-14)

and)("
1 xI t+ denotes the second derivatives. The first order Taylor’s linear approximation

is more likely to give an accurate estimate d when both the difference of the gradients ’
tI

and ’
1+tI , and the second derivatives of It+1 are small (66). Otherwise, it is prove to have a

large error. Thus the window function w(x) should be small when the difference of the ’
tI

and ’
1+tI is large, and large when the difference is small (Figure 9) (66). If the window

function is unity, w(x) = 1, over the n x n region R such as used in Lucas and Kanade’s

flow estimation (66), the local minimum of SSD is considered which maintains the high

frequency information in the region but may yield a noisy result. This optical flow can

accurately track the highly textured local region and the computation converges very fast.

It is good for use in the facial feature point tracking and for real time processing. But it

will be less accurate when used to track a less textured region or a region with high

reflection where there is no high gradient pixels for tracking, i.e., the region is not

trackable. In such a case, more global information instead of local minimization may be

needed, such as using the regularization-based or global smoothness approach (11,47) to

estimate the optical flow in textureless region, but it is more time consuming since a large

33

33

window is involved and it may also smooth out high frequency components and thus

reduce the tracking accuracy. Two methods have been recently developed to overcome

these local noise and global smoothness problems: the spline base method (90) and the

wavelet base method (101), both use the pyramid approach and multiple flow windows

(Figure 10).

Gray Value

I(x)

Accurate tracking
estimation

Weight
w(x)

Position x

Position x

d(x)

Figure 9 Window (weight) function w(x) can be used to control the

accuracy of motion estimation based on the gradient

varying from point to point (66).

It(x)

It+1(x)

Accurate tracking
estimation

Less accurate
tracking estimation

x x+d

34

34

Figure 10 Comparison of Lucas-Kanade, spline-based and wavelet-
based window functions.

1.0

0.0

Magnitude
of the
window
function
w(x)

0.0 n Window size

Window function w(x) used in the Lucas-Kanade’s method (66).

1.0

0.0

Magnitude
of the
window
function
w(x)

0.0 n Window size

Window function w(x) used in Szeliski’s spline-based method (90).

Magnitude
of scaling
function
φ(x)

Window size Window size

Low-pass scaling function φ(x) and high-pass wavelet ψ(x) used in the
wavelet-based method of Wu (101).

Magnitude
of wavelet
ψ(x)

35

35

3.3 Motion Confidence Estimation

Tomasi and Kanade (92); and Poelman and Kanade (77) have shown that the eigenvalues

of the Hessian matrix G can be used to estimate the confidence of whether the n x n

feature region R is trackable or not. We illustrate it by four features regions shown in

Figure 11 with window function w(x) = 1 in each region, thus

G =
G G

G G
11 12

12 22







 =



























































∑∑

∑∑

∈
−

∈
−

∈
−

∈
−

Rx
idx

t

Rx
idx

tt

Rx
idx

tt

Rx
idx

t

x

I

x

I

x

I

x

I

x

I

x

I

2

221

21

2

1

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

(3-15)

e = 








2

1

e

e
 =




















−−






−−






∑

∑

∈
+−

∈
+−

Rx
t

i
tdx

t

Rx
t

i
tidx

t

xIdxI
x

I

xIdxI
x

I

i)]()([

)]()([

1
2

1
1

∂
∂
∂
∂

(3-16)

In Figure 11.a, the feature region R is textureless or very smooth. This region will be

difficult to track since it has zero gradient in all directions and, hence, both eigenvalues of

the Hessian matrix G are equal to zero. If a feature region R contains a line or edge which

has high spatial gradient values in at least one direction as shown in Figure 11.b or 11.c, or

which has highly correlated spatial gradients in both horizontal and vertical directions as in

Figure 11.c (the Hessian matrix G has one large eigenvalue and one small eigenvalue),

then this region will be difficult to track. Only when the feature region R has high spatial

gradients in two orthogonal directions (horizontal- and vertical-gradients are weakly

correlated), and hence both eigenvalues of G are large, can this feature region be localized

and easily tracked as shown in Figure 11.d. From the mathematical point of view, if the

Hessian matrix G has one or more small eigenvalues, then computation of its inverse is an

ill-conditioned problem because it is close to be singular.

To estimate the confidence of whether a selected n x n feature region R is trackable or

not, we use the confidence value defined below.

36

36

Figure 11 Trackability of various feature regions in a binary image: (a) contains no
image texture so it would make a poor feature; (b) and (c) have high
gradients locally either in one direction, or the horizontal- (’

cI -) and

vertical- (’
rI -) gradients are highly correlated with each other as in (c),

they also are not trackable; only feature (d) can be used as a trackable
feature (77).

0
0

0

0
0

0
0

0

0
0

0
0

0

0
0

0
0

0

0
0

0
0

0

0
0

0
0

0

0
0

0
0

0

0
0

0
0

0

0
0

0
0

0

0
0

0
0

0

0
0

I ’
cI ’

rI G

0

0

0

0

(λ1,λ2)
(λ1≥λ2)

(0,0)

0
0

0

0
0

1
1

1

1
1

0
0

0

0
0

-1
-1

-1

-1
-1

0
0

0

0
0

0
0

0

0
0

0
0

0

0
0

0
0

0

0
0

0
0

0

0
0

0
0

0

0
0

10

0

0

0
(10,0)

0
0

0

 1
0

0
0

 1

0
-1

0
 1

0

-1
0

1
0

-1

0
0

0
-1

0

0
0

0
0

0

1
0

0
0

1

0
-1

0
1

0

-1
0

1
0

-1

0
0

0
-1

0

0
0

8

 8

 8

8
(16,0)

0
0

1

0
0

1
1

0

-1
0

0
0

0

1
1

-1
-1

0

0
0

0
0

-1

0
0

0
0

1

0
-1

0
1

0

-1
0

0
0

-1

0
0

0
1

0

0
0

0
0

1

0
0

9

1

1

7
(9.41,6.59)

(a)

(b)

(c)

(d)

37

37

∑
∈

+−−+
=

Rx
tt xIdxI

nn
C

2
1

min

)]()([1

)*(*λ
(3-17)

Here, λmin is the minimum eigenvalue of the Hessian matrix G. The constant 1 is used to

avoid a zero value in the denominator in case of a perfect matching. The trackability is

proportional to the confidence value, (or is proportional to λmin), and inversely

proportional to the difference (or residue) between two matching regions. A feature

region with high λmin contains high-frequency textured patterns and can be localized

accurately even though there is noise in the image. A feature region with a very low value

of λmin contains smooth areas, so image noise is more likely to cause shifts along the lower

gradient direction, such as along the line or edge in Figure 11.b and 11.c.

3.4 Tracking Subpixel and Large Motion

Since we want to discriminate subtly different facial expressions by extracting the

movement of feature points, it is necessary to use optical flow to accurately track motions

of feature points in subpixel accuracy. Initially a 5 x 5 Gaussian filter is used to smooth

out the noise in order to enhance the flow computation convergence. Selecting the size of

the feature region is an important trade-off. It should be large enough to include sufficient

texture in it, while small enough so that the computation of the inverse Hessian matrix G

will not become ill-conditional. Also, a larger region will require more computation in

order to perform feature tracking. We choose 13 x 13 pixels to be the feature region.

That is, each selected feature point in the first frame of each image sequence (image size

490 x 640 pixels but cropped to 417 x 385 pixels) is the center of a 13 x 13 flow region.

A window function w(x) = 1 over the feature region is chosen because the area

surrounding each feature point is full of texture. The movement of facial feature points is

then automatically tracked with subpixel accuracy in translation (3,102) via optical flow in

the remaining frames of the image sequence.

38

38

The selected feature point location x is integer-valued, but x+d is generally not integer-

valued in order to accommodate for subpixel flows. We estimate the image gray value at

an non-integer-valued pixel by using the bilinear interpolation,

),()(21 xxIdxI =+

 = + − + − + + + − − +I i i i x i x I i i i x x i(,) * (,) (,) * (,)1 2 1 1 2 2 1 2 1 1 2 21 1 1 1

),(*)1,1()1,(*),1(221121221121 ixixiiIxiixiiI −−+++−+−+ (3-18)

where  i x1 1= and  i x2 2= , and  x represents the largest integer smaller than or

equal to x. Since the movement of feature points will be tracked for an entire sequence in

subpixel accuracy, the ending position of each tracked feature point in the first pair of

frames (It,It+1) will be used as the starting position of the tracked point for the next pair of

frames (It+1,It+2), and so on. The bilinear interpolation method is applied to interpolate

gray values of the non-integer-valued pixels of both the starting and ending positions for

each tracked feature point in each consecutive pair of frames in the sequence.

Consecutive frames of an image sequence may contain large feature-point motion

caused by gross movement of the subject between frames, such as sudden head

movements, brow raised or mouth opening of the surprise expression, which may cause

missing or lost tracking (Figure 12). In Figure 12, lines trailing along feature points

denote their movements across image frames in the sequence. In order to recover these

large motions without losing subpixel accuracy, we use a pyramid method with reduced

resolution (spatial smoothing) (77). Each image is decomposed into 5 levels from level 0

(the original finest resolution image) to level 4 (the coarsest resolution image). The image

sizes are 490 x 640 (row x column), 125 x 160, 62 x 80, 31 x 40, and 15 x 20 pixels,

respectively (Figure 13). We use 13 x 13-pixel window regions for each level. From level

4 to level 1 (from coarse to fine levels), we consider window-wise 1, 4, 16 and 64 flow

regions for the whole image at each level, respectively. Each window center in the first

frame is used as the starting position for motion estimation at that level. From level 1 to

level 0, we only consider those 13 x 13 feature regions whose centroids are the locations

of the previously tracked feature points. Flow computation proceeds from the

39

39

Figure 12 Feature point tracking excluding the pyramid method: it is sensitive
to subtle motion such as eye blinking, but it loses tracking for large
motion such as mouth opening and suddenly raising eye brows.
Lines trailing along feature points (marked by a cross ‘+’) denote
their movements across image frames in the sequence.

40

40

Level 4:

15 x 20 pixels

Level 3:

31 x 40 pixels

Level 2:

62 x 80 pixels

Level 1:

125 x 160 pixels

Level 0:

490 x 640 pixels
cropped to be

417 x 385 pixels

frame 7 frame 8

Figure 13 A 5-level pyramid for feature point tracking.

41

41

lowest resolution level (level 4) to the highest level (level 0) of the pyramid.

For the iterative computation at level l, we use the estimated motion vector dl+1 and

confidence value Cl+1 obtained at the coarser level l+1. At the coarsest resolution level 4,

the motion vector is initialized at (0,0)T and iterated to obtain a solution d4; confidence

value C4 is then computed. There are four feature regions at level 3, 2*d4 is taken as the

initial motion vector of each region center and iteration proceeds to obtain a motion

vector d
~

3 in each region with confidence value C
~

3. d
~

3 and d4 are weighted as described

below to give a new estimate d3; so is a new estimate of C3 obtained by weighting C
~

3 and

C4. In general,

)1(*
~

*

)1(**
~

*)*2(*

1

11

KCKC

KdCKdC
d

ll

llll
l −+

−+
=

+

++ (3-19)

)1(*
~

*

)1(*
~

*
~

**

1

11

KCKC

KCCKCC
C

ll

llll
l −+

−+
=

+

++ (3-20)

where 0.0 ≤ K ≤ 1.0 and 1 ≤ l ≤ 3

where K is a constant weighting factor that determines how much confidence is given to

that obtained from the coarser level in the pyramid. 2*dl will be used as the initial motion

vector and Cl as new confidence value for iterative estimation at the next finer resolution

level l-1. If K = 1.0, all flow estimates at the current level (l) are derived from the

previous level (l+1) without regard to the flow estimate computed at the current level. If

K = 0.0, it provokes each level’s computation to use the previous level’s flow estimate

only as an initial value. This inter-level confidence base is used for combining the effect of

spatial smoothing. In order to have a reliable flow estimation when the tracking region

contains insufficient texture, the flow at the high-resolution level is mainly inherited from

the flow in the previous coarse level of the pyramid, that is, K is close to but not equal to

1.0. If the tracking region has high texture, then it can be reliably tracked so as to be less

involved with the flow estimated at the previous level, that is, K is close to but not equal

to 0.0. We choose K=0.5 for confidence estimation. From level 1 to level 0, we first

identify the locations at level 1 corresponding to the feature points at level 0, which in

42

42

general will not coincide with the region centers at level 1. At each of these locations, its

motion vector will be estimated by the bilinear transformation from its four neighboring

centers. This estimated vector multiplied by 4 will be used as the initial motion vector at

the corresponding feature point for iterative estimation at level 0 to obtain the estimate d0

in the feature point tracking. Then the process repeats for the next consecutive point of

frames.

Using this pyramid method for optical flow computation, we initially enable the

gradient descent method at low resolution levels to avoid local minima in the search for

the optimal solution of feature point displacement. This allows us to recover any large

motion (up to 100-pixel displacement) of the feature point while maintaining its sensitivity

to subtle (subpixel) facial motion (as shown in Figure 14), and the flow computation

converges quickly (less than 20 seconds for tracking 70 feature points between two

consecutive frames using the interface under SUN Sparc 5). Point tracking method deals

very well with large feature point movement between two 490 x 640-pixel frames.

3.5 Analysis of Feature Point Tracking Problems

It has been noted in our experiments that an error may occurred when some facial

feature points located at the edge of the brows or mouth had large movements between

two consecutive frames. Those selected feature points were tracked along the edge

direction of the brows or mouth (Figure 15). This is due to the fact that the tracking was

sensitive along the low gradient direction when this region contains a high gradient line.

There are three ways to correct these errors. One way is to locate those feature points

away from edges instead of along the edges. The error is reduced for brows raised but

still occurs along edges when mouth opens larger (Figure 16), because the mouth motion

causes more facial deformation than that by brow motion. Another solution is to have a

larger n x n feature region R to include more motion information (Figure 17), but it

requires more computation time for tracking. Still another method, which we use, is to

43

43

increase the value of the weighting factor K of the inter-level confidence base so as to

include more global information from the previous low-resolution level processing in the

pyramid method (Figure 18).

3.6 Data Quantization and Conversion for the Recognition System

Three upper facial expressions are to be recognized based on displacements of 6

feature points at the upper boundaries of both brows, and six lower face expressions are to

be recognized based on displacements of 10 feature points around the mouth. Feature

points are numbered from left to right for brows region, and from the left corner point of

lip clockwise around the mouth. The displacement of each feature point is calculated by

subtracting its normalized position in the first frame from its current normalized position.

Each feature point has the horizontal displacement component and vertical displacement

component. The displacement vector is 12-dimensional in the upper face and 20-

dimensional in the lower face (Figure 19). Facial expressions are characterized by these

two vector sequences. These displacement vectors in upper and lower facial regions are

vector-quantized separately into 16 and 32 symbols, respectively, as discussed in section

6.1 and section 8.3.1. Table 4 shows sample symbol sequences for nine facial expressions

under consideration. Such symbol sequences are used as inputs to the HMMs of upper

facial expressions and lower facial expressions, respectively, for automatic recognition.

44

44

Figure 14 Feature point tracking including the pyramid method: it is sensitive
to subtle motion such as eye blinking and also tracks accurately for
large motion such as mouth opening and suddenly raising eye
brows.

45

45

Figure 15 The feature point tracking error due to violation of the feature
region’s trackability condition: tracking along the edge direction at
both brows and mouth regions with deformed shapes.

Figure 16 Reducing the tracking error by locating feature points away from edges
of facial features: the tracking for brow region is improved, but is still
erroneous in mouth region with large mouth opening.

46

46

Figure 17 Reducing the tracking error by using a large window size which
requires more processing time.

Figure 18 Reducing the tracking error by increasing the value of the weighting
factor K (K=0.5) of the inter-level confidence base in order to include
more global information from the previous low-resolution level
processing in the pyramid method.

47

47

Figure 19 Displacement vector of the facial feature point tracking to be
encoded for input to a Hidden Markov Model.

d1

dt

dT

Displacement vector dt = (dt,1,dt,2,…, dt,j,…,dt,i)
 where dt,j = (dt,j,horizontal, dt,j,vetrical) is the pair of horizontal and vertical
 displacements for feature point j at frame t,
 i = 6 for brow region (upper facial expression)
 i = 10 for mouth region (lower facial expression)

and feature points are numbered from left to right for brow region, and from the
left corner point of lip clockwise around the mouth.

Displacement vector sequence D = (d1,d2,…,dt,…,dT) for each of the upper and
lower facial expressions where T is the length of an image sequence.

48

48

AUs Feature Point Tracking: Upper Facial Expressions
(Symbol Sequence)

4 3 3 3 3 5 5 5 5 5 5 5 5

1+4 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1

1+2 3 3 3 3 3 6 6 6 6 6 6 6

AUs Feature Point Tracking: Lower Facial Expressions
(Symbol Sequence)

12 2 2 2 2 2 2 2 9 1 1 1

6+12+25 2 2 2 2 10 5 5 5 11 11 11 11 11 11 11

20+25 2 10 10 10 13 13 13 13 13 13 13

9+17 2 2 3 3 3 14 14 14 14 14

15+17 2 2 2 2 6 6 6 6 6 6 6 6 6

17+23+24 2 2 2 2 4 4 4 4 4

Table 4 Sample symbol sequences for three upper facial expressions and six
lower facial expressions under consideration.

49

49

d 0 1 3 5 7 10 14 20

η 0.00 0.14 0.39 0.58 0.71 0.82 0.89 0.94

3.7 Expression Intensity Estimation

Since displacements of feature points correspond to AU intensities of facial

expressions and indicate the underlying muscle motion, we can quantify the expression

intensity based on the displacements of feature points. Figure 20 and Table 5 show the

logic of expression intensity estimation and the specified constraints for displacement

measurement of each feature point which corresponds to the expression intensity of

individual AU. We propose to estimate the expression intensity η by using following non-

linear mapping of the feature point displacement

η =
+

d

d k2 2
where 0 ≤ η ≤ 1.0 (3-21)

where d is the measured normalized displacement of a feature point under constraint for a

AU as specified in Table 5. Since the motion of a feature point during a facial expression

is described, in general, initial as gradual motion (starting from the neutral expression)

followed by quick motion then gradually slowing down until the peak expression is

reached, the value of constant k is determined empirically according to individual AU

Figure 20 An example illustrating the expression intensity estimation by
following the non-linear mapping (k = 7) of the constrained
feature point displacement for the case of AU2.

0 5 10 15 20
0.0

0.5

1.0

Expression
Intensity η

Displacement d
(pixels)

50

50

Action
Unit

Constraint: direction Measured Displacement
d

k
(Pixel

)

Brows
1 Inner point of brow moves vertical up Vertical displacement 7
2 Outer point of brow moves vertical up Vertical displacement 7
4 1. Inner point of brow moves vertically

down
2. Inner points of both brows move
horizontally toward one another

1.Vertical displacement

2.Horizontal distance
between both points

4

Eyes
5 Middle point of upper eyelid moves up Vertical displacement 2
7 Middle point of lower eyelid moves up Vertical displacement 2

41~46 Middle points of eyelids move vertically
together (narrow eyes or blinking)

Vertical displacement
between both points

4

Nose
9 Side point at nostril moves up Vertical displacement 5

Mouth
12 1. Left corner point of lip moves up

between 100 and 170 degrees
2. Right corner point of lip moves up
between 10 and 80 degrees

1. Euclidean distance

2. Euclidean distance

6

20 1. Left corner point of lip moves
horizontally between 170~180 and -
170~-180 degrees
2. Right corner point of lip moves
horizontally between 0~10 and 0~-10
degrees

1. Euclidean distance

2. Euclidean distance

6

15 1. Left corner point of lip moves down
between -90 and -170 degrees
2. Right corner point of lip moves down
between -10 and -90 degrees

1. Euclidean distance

2. Euclidean distance

3

18 Both corner points of lip move
horizontally toward one another

Horizontal distance
between both lip corners

8

23 Two points on upper lip move
horizontally together

Horizontal distance
between both points

2

24 Both center points on lips move
vertically together

Vertical distance between
both points

5

25~27 Both center points on lips move
vertically away from baseline

Vertical distance between
both points

20

Table 5 The dictionary for expression intensity estimation (image: 417 x 385 pixels).

1800

00

-1800

51

51

Action
Unit

Constraint: direction Measured Displacement
d

k
(Pixel

)

Mouth
17 Existence of furrow or wrinkle on the

chin
Not measured -

(listed in Table 5) to give a genuine expression intensity time course fit to the velocity of

the facial motion (like the oscillation of a spring between compression and release) as

shown in Figure 21.

The expression intensity estimation given above is one first attempt to quantify AU

expression measurement. In reality, it is difficult to measure the expression of an

individual AU by tracking a single feature point which indicates a single muscle

movement. For example, both AU15 and AU20 involve downward motions of feature

points at lip corners. Although the FACS system assumes that there is a one-to-one

mapping between an AU and a single muscle motion, the expression intensity of an

individual AU may be composed of the coordinated movements of multiple muscles or

movements of multiple feature points. It would be desirable to consider a set of feature

points corresponding to an “expression unit,” and measure their simultaneous motion for

quantifying the expression intensity. This will be a challenging aspect for future research.

Table 5 (Continued)
The dictionary for expression intensity estimation (image: 417 x 385 pixels).

1800

00

-1800

52

52

Figure 21 Expression intensity time course of AU1, 2 and 5 fit to the
displacement changes of facial feature points based on the
non-linear mapping (107).

0

0 .2

0 .4

0 .6

0 .8

1

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

F r a m e #

In
te

n
si

ty A U 1
A U 2
A U 5

0

0 .2

0 .4

0 .6

0 .8

1

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

F ra m e #

In
te

n
si

ty A U 1
A U 2
A U 5

0

0 .2

0 .4

0 .6

0 .8

1

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

F r a m e #

In
te

n
si

ty A U 1
A U 2
A U 5

0

0 . 2

0 . 4

0 . 6

0 . 8

1

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

F r a m e #

In
te

n
si

ty A U 1
A U 2
A U 5

AU1

AU2

AU5

53

53

4.0 DENSE FLOW TRACKING AND EIGENFLOW COMPUTATION

Feature point tracking of eyebrows and mouth presented in Chapter 3 is sensitive to

subtle feature motions and is capable to track large displacements. The forehead, cheek

and chin regions also contribute important facial expression information. Since the actions

of individual facial muscles are interdependent, and the activation of fibers in one muscle

may influence movements of adjacent muscles. Single facial expression may be the result

of movements and deformation of not only facial features but also facial skins which are

caused by facial muscle actions triggered by nerve impulses. To enhance the realism of an

automatic recognition system, it is desirable to capture more detailed motion information.

This leads to the consideration dense flow which describes the motion of each pixel on the

entire face image.

4.1 Wavelet-Based Motion Estimation

Wu’s approach of dense flow estimation (101) is employed to estimate the entire facial

motion. The flow window functions are based on scaling function and wavelet of Cai and

Wang (18) (Figure 22.a), which provide wavelet coefficients from the coarse-to-fine

resolution levels. This approach estimates image motion in large regions with large

window support at the coarse resolution level and motions in small regions with small

window support at the fine resolution level. It is different from the traditional coarse-to-

fine pyramid method by taking into account the detail information decomposing image

resolutions at various resolution levels. Both coarser and finer level motions can be

simultaneously estimated to correct the error produced by the previous motion estimation

at the coarse level. It will yield more accurate motion estimation.

Let us consider the one-dimensional case first. The scaling function φ is the fourth-

54

54

Figure 22.a 1- and 2-dimensional scaling functions and wavelets (101).

x x

1-dimensional scaling function and wavelet.

Wavelet
ψ(x)

Scaling
function
φ(x)

2-dimensional scaling function and wavelets: (a) φ(x,y) = φ(x) φ(y),
(b) ψH(x,y) = φ(x) ψ(y), (c) ψV(x,y) = ψ(x) φ(y), and (d) ψD(x,y) = ψ(x) ψ(y).

55

55

Figure 22.b Dilation and translation of 1-dimensional basis (scaling and
wavelet) functions (101).

pixel

56

56

order (L = 4) B-spline function acting as a low-pass filter for smoothing the signals, this is

represented by

∑
=

−−





=

L

j

j jx
j

x
0

3)()1(
4

6

1
)(φ ∈ H2(I) where I = [0,L=4] (4-1)

where I denotes a finite interval and H2(I) represents the Sobolev space containing all

continuous functions with the finite energy norm up to the second derivative. The wavelet

ψ(x) acting as a high-pass filter is derived from the scaling function through a 2-scale

equation.

ψ φ φ φ() () () ()x x x x= − + − − − −3

7
2

12

7
2 1

3

7
2 2 (4-2)

The interval for ψ(x) is [0,3]. The dilation 2j and translation k of φ(x) and ψ(x) are given

by (Figure 22.a for j=0 and k=0)

)2()(, kxx j
kj −= φφ j ≥ 0, k = -2,..., 2jL-2 (4-3)

)2()(, kxx j
kj −=ψψ j ≥ 0, k = -1,..., 2jL-2 (4-4)

A finite energy continuous function d(x), which represents the motion at position x,

can be decomposed into a scaling component d-1(x) at the coarsest resolution level -1 and

many wavelet components dj(x)’s at resolution levels j ≥ 0,

d x d x d x d x d xj() () () () ... ()≈ + + + +−1 0 1 (4-5)

where

d x c xk k
k

L

− −
=−

−

= ∑1 1 0
2

2

() (), ,φ (4-6)

d x c xj j k j k
k

Lj

() (), ,=
=−

−

∑ ψ
1

2 2

j ≥ 0 (4-7)

In the motion estimation problem, d(x) is unknown but satisfies the optical flow equation.

Its solution is to be computed by the above multi-resolution approximation (Figure 22.b).

By repeatedly estimating (101) the coefficients cj,k, each component dj(x) is constructed from

the linear combination of translated basis functions at level j.

57

57

For the case of a two-dimensional images, the two-dimensional scaling functions and

wavelets may be constructed from the tensor products of two scaling function and wavelet

(Figure 22.a for j=0, k1=0 and k2=0). Hence,

)2()2(),(21,, 21
kykxyx jj

kkj −−= φφφ (4-8)

ψ φ ψj k k
H j jx y x k y k, , (,) () ()

1 2
2 21 2= − − (4-9)

ψ ψ φj k k
V j jx y x k y k, , (,) () ()

1 2
2 21 2= − − (4-10)

ψ ψ ψj k k
D j jx y x k y k, , (,) () ()

1 2
2 21 2= − − (4-11)

where j, k1, and k2 denote the resolution level, horizontal translation, and vertical

translation, respectively.

Let u(x,y) and v(x,y) be the displacement of flow functions at the horizontal and

vertical directions, respectively. They can be closely approximated by linear combinations

of the scaling functions and wavelets (window functions) given in equations (4-8) through

(4-11) from the coarsest motion-resolution level -1 to the fine motion-resolution level J.

∑
=

− +++=
J

j

D
j

V
j

H
j yxuyxuyxuyxuyxu

0
1)],(),(),([),(),((4-12)

∑
=

− +++=
J

j

D
j

V
j

H
j yxvyxvyxvyxvyxv

0
1)],(),(),([),(),((4-13)

where

∑ ∑
−

−=

−

−=
−− =

 21

21

22

22
,,0,,11),(),(

2121

L

k

L

K
kkkk

yxcyxu φ (4-14)

∑ ∑
−

−=

−

−=

=
 212

21

222

12

,,,,),(),(
2121

Lj

k

Lj

K

H
kkj

H
kkj

H
j yxcyxu ψ (4-15)

∑ ∑
−

−=

−

−=

=
 212

11

222

22

,,,,),(),(
2121

Lj

k

Lj

K

V
kkj

V
kkj

V
j yxcyxu ψ (4-16)

∑ ∑
−

−=

−

−=

=
 212

11

222

12

,,,,),(),(
2121

Lj

k

Lj

K

D
kkj

D
kkj

D
j yxcyxu ψ (4-17)

58

58

and

∑ ∑
−

−=

−

−=
−− =

 21

21

22

22
,,0,,11),(),(

2121

L

k

L

K
kkkk

yxdyxv φ (4-18)

∑ ∑
−

−=

−

−=

=
 212

21

222

12

,,,,),(),(
2121

Lj

k

Lj

K

H
kkj

H
kkj

H
j yxdyxv ψ (4-19)

∑ ∑
−

−=

−

−=

=
 212

11

222

22

,,,,),(),(
2121

Lj

k

Lj

K

V
kkj

V
kkj

V
j yxdyxv ψ (4-20)

∑ ∑
−

−=

−

−=

=
 212

11

222

12

,,,,),(),(
2121

Lj

k

Lj

K

D
kkj

D
kkj

D
j yxdyxv ψ (4-21)

The four window functions are used for the following representations.),(
21,,0

yx
kk

φ is

used initially to represent the flow at the coarsest level so as to achieve a fast convergence.

Wavelets),(
21,, yxH

kkjψ ,),(
21,, yxV

kkjψ and),(
21,, yxD

kkjψ are used to represent the high

gradient components of the optical flow at the jth resolution level in the vertical,

horizontal and diagonal directions, respectively. Based on these four basis window

functions, we can estimate the Hessian matrix G and difference-gradient vector e by (101)

∑=
yx

T yxwyxgyxgG
,

),(),(),((4-22)

),(),()],()),(),,(([
,

1 yxwyxgyxIyxvyyxuxIe
yx

tt∑ +−−−= (4-23)

where

window (weighted) function),(yxw is unity, (4-24)

[

]Ty
D

LLjy
D

y
V

LLjy
V

y
H

LLjy
H

yLLy

x
D

LLjx
D

x
V

LLjx
V

x
H

LLjx
H

xLLx

IIII

IIII

IIII

IIIIyxg

jjjj

jj

jjjj

jj

’

22,22,

’
1,1,0

’

22,22,

’
2,1,0

’

22,22,

’
1,2,0

’
2,2,0

’
2,2,0

’

22,22,

’
1,1,0

’

22,22,

’
2,1,0

’

22,22,

’
1,2,0

’
2,2,0

’
2,2,0

2121

2121

2121

2121

),(

−−−−−−−−

−−−−−−−−

−−−−−−−−

−−−−−−−−=

ψψψψ

ψψφφ

ψψψψ

ψψφφ

LL

LL

LL

LL

(4-25)

59

59

I x y I It x y
’ ’ ’(,) (,)=

)
)),(),,((

,
)),(),,((

(
y

yxvyyxuxI

x

yxvyyxuxI tt

∂
−−∂

∂
−−∂

= (4-26)

Since the feature of Cai and Wang’s basis functions is to use wavelet coefficients from

coarse-to-fine levels to represent any given function, the flow functions u(x,y) and v(x,y)

can be determined by estimating the wavelet coefficient vectors cT=(…,cj k k, ,1 2 ,…) and

dT=(…,dj k k, ,1 2 ,…) from the coarsest level –1 to current level j using iterations of both

coefficient vectors,

...],..................([...),(
21212121212121 ,,,,,,,,0,,0,,0,,1

D
kkj

V
kkj

H
kkj

D
kk

V
kk

H
kkkk

TTT cccccccdc −=

 TD
kkj

V
kkj

H
kkj

D
kk

V
kk

H
kkkk cccdddd ...])..................[...

21212121212121 ,,,,,,,,0,,0,,0,,1−

 eG 1−= (4-27)

where

-2 ≤ k1 ≤ L1 - 2 and -2 ≤ k2 ≤ L2 - 2 for c k k−1 1 2, , and d k k−1 1 2, ,

-2 ≤ k1 ≤ 2jL1 - 2 and -1 ≤ k2 ≤ 2jL2 - 2 for c j k k
H
, ,1 2

 and d j k k
H
, ,1 2

-1 ≤ k1 ≤ 2jL1 - 2 and -2 ≤ k2 ≤ 2jL2 - 2 for c j k k
V
, ,1 2

 and d j k k
V
, ,1 2

-1 ≤ k1 ≤ 2jL1 - 2 and -1 ≤ k2 ≤ 2jL2 - 2 for c j k k
D
, ,1 2

 and d j k k
D
, ,1 2

and

L1 = L2 = 4, and j = 0, 1, ..., J

60

60

4.2 Dense Flow Tracking

In this method, the wavelet-based dense flow is used to automatically track a large

region, for example, the entire 417 x 385-pixel face image (cropped from the original 490

x 640-pixel image) for each image sequence of a certain length (from the neutral to the

peak expression) so as to include the whole motion information of a facial expression

(Figure 23). Since the movement of each pixel is estimated between two consecutive

frames, the ending position of each tracked pixel at the previous motion estimation

(between images It-1 and It) is the beginning position at the current motion estimation

(between images It and It+1). The motion of subpixel accuracy is estimated, and the gray

value at the non-integer-valued ending position for each tracked pixel is bilinearly

interpolated for further processing.

Because using the wavelet-based dense flow method is very time consuming at the

present time, taking more than 2 hours for three-level (-1, 0 and 1) or 20 minutes for two-

level (-1 and 0) computation between two 417 x 385-pixel frames using a SGI-Irix

workstation, we use the two-level wavelet-based dense flow computation to save time.

When less levels are used, it will restrict how small the window size can be at the finest

level and, hence, may be less sensitive to subtle motions (less than 2 pixels). It will also

miss tracking large displacements (more than 15 pixels). In spite of these, our

experimental work has shown better overall recognition rate in comparison to the feature

point tracking in 5 levels. Since facial expressions are produced by movements of

interdependent muscles over a region, the dense flow tracking has the advantage that it

can include the entire motion information and so may be more effective to capture the

facial motion.

The scaling function and wavelets at multi-resolution levels provide window functions

of multiple support sizes to capture both local and global characteristics in the

optimization process. This makes the wavelet-based motion estimation stable and

accurate, especially for the low texture regions where the large window size at the coarse

level may include sufficient higher gradient information in the neighboring regions to

61

61

Figure 23 Automatic dense flow tracking for an image sequence. Out-
of-plane motion (pitch) occurs at the bottom image. Dense
flows are shown once for every 13 pixels.

62

62

give a consistent motion information (Figure 24). It is also capable to track motions of

certain discontinuities such as furrows with only two coarse-to-fine levels (-1 and 0)

chosen in the current scheme, however, the resulting window functions are not localized

enough to accurately capture sharp changes in the motion field (large motion more than 15

pixels) in a highly textured region such as the large movement of brows raised or of mouth

opening together with the appearance of high gradient components, for example, teeth and

tongue (Figure 25), while the multi-level feature point tracking can track 100- pixel

movement with fast computation. Nevertheless, the overall performance of the wavelet-

based dense flow is very good. The main issue is how to significantly improve the

computation speed to enable more than 2-level estimation.

4.3 Eigenflow Computation

The motion captured in consecutive frames of an image sequence is strongly

correlated. The information gathered by 417 x 385-pixel dense flows of many frames each

sequence need to be compressed to retain significant characteristics and inter-frame

correlations for yielding an efficient representation of facial expressions. The principal

component analysis (PCA) has excellent properties and can be used to achieve this

purpose. Although PCA has been widely applied to image gray values. This is one of the

pioneering researches that it is being applied to motion fields.

Before applying the PCA, it is necessary to ensure that the dense flows of individual

frames have relative geometric correspondence. An affine transformation described before

is used to automatically warp the dense flow of each frame to the two-dimensional face

model based on three points: the medial canthus of both eyes and the uppermost point on

the philtrum (Figure 26).

Based on FACS criteria, we can separate facial expressions into upper face motion

(forehead, brows and eyes) and lower face motion (eyes, cheek, nose, mouth and chin) for

facial expression analysis. It is assumed that AU expressions at upper and lower facial

63

63

(a) (b)

Figure 24 Good tracking performance of using the wavelet-based dense
flow for (a) furrow discontinuities at the forehead and chin
regions, and (b) textureless regions with reflections at the
forehead and cheek.

64

64

Figure 25 Tracking errors of the 2-level wavelet-based dense flow
because of (a) large movements of brows or mouth, and (b)
eye blinking also introduces motion error at brow regions.

(a) (b)

65

65

(a) Before Normalization (b) After Normalization

Affine
Transformation

Affine
Transformation

Affine
Transformation

Figure 26 Dense flow normalization using affine transformation: (a)
includes both the rigid head motion in upward and leftward
direction and non-rigid facial expression, and (b) eliminates
the rigid head motion by using the affine transformation.

240 pixels

Upper face: 110
 pixels

Lower face: 220
 pixels

66

66

regions are independent. The size of the face model is 417 x 385 (row x column) pixels.

The upper face region is 110 x 240 pixels and the lower face region is 220 x 240 pixels

(Figure 26). It should be noted that each flow unit contains both horizontal flow and

vertical flow components. The PCA is applied to each dense flow region, the horizontal

dense-flow region and vertical dense-flow region, separately.

For PCA computation, initially let the normalized estimated dense flow, either

horizontal or vertical component, in a region (either upper or lower face) of frame i be

represented lexicographically by a normalized dense-flow vector fi,

,],...,,...,,[,,2,1,
T

Niniiii ppppf = ninini vorup ,,. = (4-28)

where

1 ≤ i ≤ M and 1 ≤ n ≤ N

Here, pi,n is the normalized optical flow in either horizontal or vertical direction (ui,n or vi,n)

at pixel n of frame i, and N is the total number of pixels of frame i (or in upper or lower

face region). There are X different facial expressions and a total of M training frames.

The number of frames for each facial expression sequence varies from 9 to 47 frames. The

variance matrix F of all normalized dense-flow training frames is given by

],...,,...,,[21 Mi FFFFF =

],...,,...,,[21 cfcfcfcf Mi −−−−= 1 ≤ i ≤ M (4-29)

where

c

f

M

i
i

M

= =
∑

1 (4-30)

c is the mean flow (Figure 27) and the size of F is N x M. The N x N covariance matrix C

of all normalized dense flows is given by

C = F FT (4-31)

which will have N different N-dimensional eigenvectors Ei (called eigenflows because of

the flow-based eigenspace) corresponding to N eigenvalues λi of C ranked in the

descending order, Nλλλ ≥≥≥ ...21 ,

67

67

Mean (Average) Flow c

Horizontal Flow ch Vertical Flow cv

Figure 27 The mean (average) flow c is divided into horizontal flow ch and
vertical flow cv for further processing by the principal component
analysis (PCA).

68

68

C Ei = λi Ei, 1 ≤ i ≤ N (4-32)

Generally, N is much larger than the total of training frames M, i.e. N >> M, where N

is 110 x 240 pixels for the upper face region and 220 x 240 pixels for the lower face

region, and M is 932 and 1212 training frames in the respective region. It will be

impractical to compute eigenvalue λi and eigenvectors Ei directly from the N x N

covariance matrix C. We will flow a more feasible computation approach described

below.

When total number of dense-flow training frames M is far less than the number of

dense flows N in the measured region, there are only M meaningful eigenvectors

(eigenflows) associating with the non-zero eigenvalues of C. The remaining N - M

eigenvectors correspond to zero eigenvalues. We can use a much more efficient method

to obtain the M meaningful eigenvectors Ei by solving for the M-dimensional eigenvectors

ei and their corresponding eigenvalues iλ~ of an M x M covariance matrix
~
C , where

~
C F FT= (4-33)

~ ~
Ce ei i i= λ 1 ≤ i ≤ M (4-34)

Multiplying both sides by F, gives

 FF Fe FeT
i i i=

~
λ 1 ≤ i ≤ M (4-35)

then

 CFe Fei i i=
~
λ 1 ≤ i ≤ M (4-36)

F x ei are the first M eigenvectors of the covariance matrix C, leading to

 ii FeE =

 ∑
=

=
M

j
jji Fe

1
,

 = −
=

∑e f ci j j
j

M

, ()
1

1 ≤ i ≤ M (4-37)

This computation greatly reduces the order of time complexity from N-dimensional dense

flows of each measured region to M dense-flow training frames where M << N.

69

69

We can reconstruct exactly the original dense flows of each measured region by a liner

combination of all M eigenflows Ei. But, in general, using a small number M’ (M’ < M) of

significant eigenflows that correspond to M’ largest eigenvalues is adequate to reconstruct

a good approximation of the original dense flow in each measured region without losing

significant feature characteristics. The eigenflows (eigenvectors) with the largest

eigenvalues represent the most significant characteristics in their corresponding

dimensions of the eigenspace, where the variances of measured dense flows are bigger in

terms of correlation. We rank the eigenflows according to the ranking of their

corresponding eigenvalues, which contain the most useful information about the

variational characteristics among the training dense flows. Furthermore, if the motion

variation (deviation) among the training regions is large, we need a large number M' (M' <

M) of eigenflows to accurately approximate the original dense flows. If the variation of

motion among training regions is small, then a very small number M' (M' << M) of

eigenflows is adequate to approximate the original dense flows. To determine the number

M' of eigenflows needed to represent adequately the primary characteristics of the original

dense flows in the region, we may use an information criterion such that

TR
M

i
i

M

i
i

~

~

1

’

1 ≥=
∑

∑

=

=

λ

λ
where MM λλλλ ~

...
~

...
~~

’21 ≥≥≥≥≥ (4-38)

and

R ln R is the representative entropy (4-39)

where T is a threshold close to unity. The linear combination (the weighted sum) of the

M' eigenflows is sufficient to reconstruct accurately the significant characteristics of each

original dense flows in the region. The M' N-dimensional eigenflows Ei are computed by

E e Fi i j j
j

M

=
=

∑ ,
1

 = −
=

∑e f ci j j
j

M

, ()
1

1 ≤ i ≤ M’ (4-40)

70

70

We project each variational dense-flow Fi (N dimensions) of facial expression

sequence into the eigenflow space by taking its inner product with each eigenflow Ej (N

dimensions) of the set E = [E1,E2,...,EM’] in the M’-dimensional subspace to produce the

M’-dimensional weight vector Wi. Each element wi,j of the weight vector Wi is the

projected component of Fi at the eigenflow dimension Ej in the eigenspace. Any N-

dimensional normalized dense-flow fi can be represented by its corresponding M’ -

dimensional weight vector Wi

T
Miiii wwwW],...,,[’,2,1,= where 1 ≤ i ≤ M (4-41)

and

w E Fi j j i
T

, =

 = −E f cj i
T() where 1 ≤ i ≤ M and 1 ≤ j ≤ M’ (4-42)

by projecting the N-dimensional variational region Fi to the M'-dimensional eigenspace

(M’<<N).

4.4 Data Quantization and Conversion for the Recognition System

Figure 28 shows the flow image which will project to the flow-based eigenspace for

PCA process. PCA enables us to convert dense flows of each image (or region) to a low-

dimensional representative weight vector for input to the recognition system. For the 110

x 240-pixel upper face region, 10 most significant eigenflows are chosen and for the 220 x

240-pixel lower face region, 15 most significant eigenflows are chosen. The decision for

the choice of M’ is that R should be greater than or equal to T where T is set to be 0.9

(refer to equation (4-38)), which led us to select M’=10 for the upper facial expressions

and M’=15 for the lower facial expressions as shown in Figure 29. The same of

eigenflows should be used for both horizontal flow and vertical flow. These eigenflows

are the eigenvectors corresponding to the 10 (and 15) largest eigenvalues of the 932 x

932- (and 1212 x 1212-) covariance matrix constructed by 932 (and 1212) dense-flow

71

71

training frames from 45 (and 60) training image sequences for the upper (and lower) face

regions (Figure 29). The compression rate is 93:1 as shown in Figure 29.a (and 80:1 as

shown in Figure 29.b). Because the variation (deviation) among the training data of the

upper facial “expression units” is smaller than that of the lower facial “expression units,” it

is expected that the number of eigenflows used for representing the upper facial

“expression units” (M’ = 10) is fewer than that used for representing the lower facial

“expression units” (M’ = 15). As shown by the later experiments, this choice leads to

good performance on overall recognition rate of 92% (Figure 29).

The dense flow at each frame region of an expression sequence is projected onto the

flow-based eigenspace by taking its inner product with each element of the respective

eigenflow set, producing a 10- (and 15-) dimensional weight vector for the upper (and

lower) facial expressions as shown in Figure 30. The 10- (and 15-) dimensional

horizontal-flow weight vector and 10- (and 15-) dimensional vertical-flow weigh vector

are concatenated to form a 20- (and 30-) dimensional weight vector for each dense-flow

region. After vector quantization, the concatenated weight-vector sequence is converted

into a symbol sequence. Table 6 shows sample symbol sequences for nine facial

expressions under consideration. Such symbol sequences are used as inputs to the HMMs

of upper facial expressions and lower facial expressions, respectively, for automatic

recognition.

72

72

Figure 28 Each dense flow image is divided into horizontal and vertical flow
images for the principal component analysis (PCA).

Flow Image f

Horizontal Flow Image fh Vertical Flow Image fv

73

73

Figure 29.a Computation of eigenflow (eigenvector) number for the upper facial
expressions: (a.1) is for the horizontal flow and (a.2) is for the
vertical flow. The compression rate is 93:1 (932:10) and from which
the recognition rate is 92% based on 45 training and 60 testing image
sequences.

1.00
0.96

0.50

0.00
0 5 M’ =10 20 M=932

Number of Eigenvalues

Recognition
Rate (%)

100
92

0

80

60

40

20

0 5 M’ =10 12

Dimension of Eigenspace
(a.1)

1.00
0.94

0.50

0.00
0 5 M’ =10 20 M=932

Number of Eigenvalues

Recognition
Rate (%)

100
92

0

80

60

40

20

0 5 M’ =10 12

Dimension of Eigenspace
(a.2)

MM λλλλ ~
...

~
...

~~
’21 ≥≥≥≥≥

R

MM λλλλ ~
...

~
...

~~
’21 ≥≥≥≥≥

R

74

74

Figure 29.b Computation of eigenflow (eigenvector) number for the lower facial
expressions: (b.1) is for the horizontal flow and (b.2) is for the
vertical flow. The compression rate is 80:1 (1212:15) and from
which the recognition rate is 92% based on 60 training and 90 testing
image sequences.

1.00
0.93

0.50

0.00
0 5 10 M’ =15 20 M=1212

Number of Eigenvalues

Recognition
Rate (%)

100
92

0

80

60

40

20

0 5 10 M’ =15 20

Dimension of Eigenspace
(b.1)

1.00
0.91

0.50

0.00

Number of Eigenvalues

Recognition
Rate (%)

100

Dimension of Eigenspace
(b.2)

92

0

80

60

40

20

0 5 10 M’ =15 20 M=1212 0 5 10 M’ =15 20

MM λλλλ ~
...

~
...

~~
’21 ≥≥≥≥≥

MM λλλλ ~
...

~
...

~~
’21 ≥≥≥≥≥

R

R

75

75

Figure 30 Principal component analysis (PCA) for (a) horizontal flow weight
vector and (b) vertical flow weight vector for the upper facial
expressions (M’ = 10).

wh,M’

Eh,1
ch

Weights

-
fh

Inner
Product

Eh,M’

wh,1

(a)

wv,M’

Ev,1
cv

Weights

-
fv

Inner
Product

Ev,M’

wv,1

(b)

+

+

76

76

AUs Dense Flows with PCA: Upper Facial Expressions
(Symbol Sequence)

4 3 3 3 3 5 5 5 5 5 5 5 5

1+4 3 3 3 3 3 7 7 7 7 7 7

1+2 3 3 3 6 6 2 2 2 2 2 2 2 2

AUs Dense Flow with PCA: Lower Facial Expressions
(Symbol Sequence)

12 6 6 6 6 6 6 9 9 1 1 1

6+12+25 6 6 9 9 3 3 3 3 3 3 3

20+25 6 6 6 11 13 13 13 13 13 13

9+17 6 6 6 7 7 7 7 2 2 2 2

15+17 6 6 6 6 6 14 14 14 14 14 14 14

17+23+24 6 6 6 12 12 4 4 4 4

Table 6 Sample symbol sequences for three upper facial expressions and six
lower facial expressions under consideration.

77

77

4.5 Correlation and Distance in Eigenspace

The sum of squared differences (SSD) between two dense-flow frame regions fi and fj

is given by

f f f f f fi j i j
T

i j− = − −
2

() ()

 = + −()f f f f f fi
T

i j
T

j i
T

j2 (4-43)

where fi
T fj represents the correlation between fi and fj. The distance SSD becomes

smaller when the correlation between the two flows is stronger. Each dense flow fi in

frame i can be represented by its representative weight vector Wi in the M’ -dimensional

eigenflow space. It can be reconstructed by a linear combination of M’ eigenflows Ej.

f w E ci i j j
j

M

≈ +
=

∑ ,

’

1

(4-44)

where wi,j is the jth element of the weight vector Wi flow fi. Since

f f w E c w E ci j i k k
k

M

j k k
k

M

− ≈ +





− +



= =

∑ ∑2

1 1

2

,

’

,

’

 = −
=

∑ (), ,

’

w w Ei k j k k
k

M

1

2

 = −
==
∑∑ E E w wk

T
l i k j l

l

M

k

M

*(), ,

’’
2

11





 =−= ∑

=
otherwise

lkifww
M

k
kjki

0

)(
’

1

2
,, (4-45)

This can also be expressed as

f f W Wi j i j− ≈ −
2 2

(4-46)

Thus, we can estimate the expression similarity between two dense flows fi and fj by

measuring the distance between their representative weight vectors Wi and Wj in the M'-

(since Ek ⊥ El)

78

78

dimensional eigenspace. Smaller distance indicates greater correlation or similarity

between two dense flows. This can be used in expression intensity estimation as described

below.

4.6 Expression Intensity Estimation

The expression intensity of any frame in a sequence may be estimated by using the

correlation property of the PCA. The expression intensity of individual frames in each

training image sequence is determined a priori by experts, beginning from the neutral

expression (expression intensity: 0.0) to the peak expression (expression intensity: 1.0).

The length of each image sequence varies from 9 to 47 frames. Each frame in the training

sequence has its representative weight vector. So, the relationship between weight vector

and expression intensity can be established.

After a test facial expression sequence is recognized, the expression intensity of any

frame fi in the sequence can be estimated as follows. Consider the distances between its

representative weight vector Wi and all weight vectors 0
kW in a training sequence whose

expression intensity values are known, the minimum distance between Wi and 0
kW

indicates the maximum correlation or expression similarity between the two. Then, the

expression intensity of frame i in the testing sequence will be estimated to have the same

value as that of 0
kW training data (Figure 31).

79

79

Figure 31 Expression intensity matching by seeking the minimum distance
between the weight vector of the testing frame and the weight
vectors of all frames in a training sequence, whose expression
intensity values are known. Each weight vector of the training
image corresponds to a given expression intensity value.

Weight
vector : 0

kW

Weight
vector : Wi

0min ki
k

WW −

Expression intensity: 0.0 Expression
intensity: 1.0

Training image sequence:

Testing image sequence:

80

80

5.0 HIGH GRADIENT COMPONENT ANALYSIS

Facial motion produces transient darkened skin-color lines or edges perpendicular to

the motion direction of the activated muscle. Those darkened lines or edges are called

furrows or wrinkles. The facial action produces the motion position, shape, length and

gray-value changes of these furrows in the face image and which are strongly associated

with different meanings of the facial expression. Extracting (segmenting) and realizing the

motion of those high gradient components (i.e., furrows) may provide a very important

source for recognizing facial expressions.

5.1 High Gradient Component Detection in the Spatial Domain

The shapes of furrows in the face image contain horizontal, vertical and/or diagonal

directions of lines or arched curves (Figure 32). To extract the high gradient component

at pixel (x,y) from the face image (in the spatial domain) I at time t, we use horizontal,

vertical and diagonal line or edge detectors, Lx, Ly, Lxy, respectively.

),,(),,(
),,(

tyxDtyxIL
x

tyxI
xx =⊗=

∂
∂

(5-1)

),,(),,(
),,(

tyxDtyxIL
y

tyxI
yy =⊗=

∂
∂

(5-2)

),,(),,(
)(

),,(
tyxDtyxIL

xy

tyxI
xyxy =⊗=

∂
∂

(5-3)

and

{ }D x y t D x y t D x y t D x y tx y xy(, ,) (, ,), (, ,), (, ,)= (5-4)

where I(x,y,t) is the image gray value at position (x,y) and frame t, and ⊗ denotes

convolution. Dx(x,y,t), Dy(x,y,t) and Dxy(x,y,t) are gradient intensities of the high gradient

81

81

components at pixel (x,y) in the horizontal, vertical and diagonal directions, respectively.

D(x,y,t) is used as the general term of the gradient intensities including Dx(x,y,t), Dy(x,y,t)

and Dxy(x,y,t).

Before normalization of each 417 x 385-pixel image using affine transformation by

three feature points (the medial canthus of both eyes and the uppermost point on the

philtrum), a 5 x 5 Gaussian filter is used to smooth the image. For the upper face

expression (Figure 32.a), a 3 x 5 (row x column) horizontal- and a 5 x 3 vertical-line

detectors are used to detect horizontal lines (i.e., high gradient components in the vertical

direction) and vertical lines in the forehead region, around the eye region, and between

brows or eyes for AU4, AU1+4 and AU1+2 expressions. Two 5 x 5 diagonal-line

detectors are used to detect 45-degree and 135-degree diagonal furrows at the forehead

region during AU1+4 expression. For the lower face expressions, two 5 x 5 diagonal-line

detectors are used to detect 45-degree and 135-degree diagonal lines along the nasolabial

furrow (Figure 32.b). Two 3 x 3 edge detectors are used to detect high gradient

components around the lips and on the chin region by thresholding their magnitudes

(Figure 32.b and 32.c). The components filtered out (or thresholded out) by the line or

edge detectors are set to a value of zero.

5.2 High Gradient Component Detection in the Spatio-Temporal Domain

To verify the detected high gradient component D(x,y,t) which is produced by

transient skin or feature deformations and not a permanent characteristic of the individual’s

face (Figure 33), it is necessary to consider its the temporal gradient.

),()1,,(),,(
),,(

yxtyxDtyxD
t

tyxD
tΓ=−−=

∂
∂

(5-5)

where D(x,y,t) and D(x,y,t-1) are the gradient intensities of the detected high gradient

components at pixel (x,y) and frames t and t-1 in the spatial domain, respectively. Γt(x,y)

is the temporal gradient intensity between gradient intensities at frames t and t-1 at pixel

82

82

Neutral Expression Peak Expression

1

0
-1

1

0
-1

1

0
-1

1

0
-1

1

0
-1

1
1

1

1
1

0
0

0

0
0

-1
-1

-1

-1
-1

Horizontal Line Detection

-1

0
 1

-1

0
 1

-1

0
 1

-1

0
 1

-1

0
 1

-1

-1
-1

-1
-1

0

0
0

0

0

 1

 1

 1

 1

 1

Vertical Line Detection

0
-1

0

0
0

1
0

-1

0
0

0
1

0

-1
0

0
0

1

0
-1

0
0

0

1
0

0
1

0

0
0

-1
0

1

0
0

0

-1
0

 1
0

0
0

-1

0
1

0
0

0

-1
0

1350 Diagonal Line Detection

0
0

0

-1
0

0
0

-1

0
1

0
-1

0

1
0

-1
0

1

0
0

0
1

0

0
0

450 Diagonal Line Detection

0
0

0

1
0

0
0

1

0
-1

0
1

0

-1
0

1
0

-1

0
0

0
-1

0

0
0

Figure 32.a High gradient component (furrow) detection for the
forehead and eye regions.

83

83

Neutral Expression Peak Expression

1
1

1

0
0

0

-1
-1

-1

1

 0
-1

1

0
-1

 1

 0
-1

High Magnitude Value Detection

0
0

0

-1
0

0
0

-1

0
1

0
-1

0

1
0

-1
0

1

0
0

0
1

0

0
0

450 Diagonal Line Detection

0
0

0

1
0

0
0

1

0
-1

0
1

0

-1
0

1
0

-1

0
0

0
-1

0

0
0

Figure 32.b High gradient component (furrow) detection for the
mouth, cheek, and chin regions.

0
-1

0

0
0

1
0

-1

0
0

0
1

0

-1
0

0
0

1

0
-1

0
0

0

1
0

0
1

0

0
0

-1
0

1

0
0

0

-1
0

 1
0

0
0

-1

0
1

0
0

0

-1
0

1350 Diagonal Line Detection

84

84

Neutral Expression Peak Expression

1
1

1

0
0

0

-1
-1

-1

1

 0
-1

1

0
-1

 1

 0
-1

High Magnitude Value Detection

Figure 32.c High gradient component (furrow) detection for the chin region.

85

85

Figure 33 Permanent furrows or hair occlusion.

Permanent
furrows

Permanent
furrows

Expression AU4 made
to look as expression
AU1+4 by permanent
Ω furrows at the
forehead.

Hair occlusion

Hair occlusion

High Gradient Component (i.e. Furrow) Detection

86

86

(x,y) considering the spatio-temporal domain. Equation (5-5) is the method used for

tracking high gradient components such as the motion lines or edges in the spatial and

temporal domains.

In our current study, the gradient intensity of each detected high gradient component

D(x,y,t) at the current frame t and pixel (x,y) is compared with corresponding points

within a 3 x 3 region of the first frame for each sequence.

),()0,,(),,(
),,(0

0

yxyyxxDtyxD
t

tyxD
tΓ=∆−∆−−=

∂
∂

(5-6)

where

11 ≤∆≤− x and 11 ≤∆≤− y

A 3 x 3 region is used in order to avoid the error of geometrical correspondence since

affine transformation works well for close (but not exact) geometrical correspondence. If

the absolute value of the difference in gradient intensity between these points is higher

than the threshold value, it is considered a valid high gradient component produced by

facial expression. All other high gradient components are ignored. In the former case, the

high gradient component (pixel) is assigned a value of 1. In the latter case, the pixels are

assigned a value of 0. An example of the procedure for extracting high gradient

components in the spatio-temporal domain for the upper facial expression is shown in

Figure 34. A gray value of 0 corresponds to black and 255 to white. Using this

procedure, we also can remove the hair blocking the forehead region (Figure 35).

5.3 Morphology and Connected Component Labeling

In order to use line and edge detectors, the threshold is employed to segment the

higher gradient components for the foreground furrows and the lower gradient

components for the background. If the given threshold is too high, then it will filter out

more significant components. If the threshold is given too low, then it will include more

high gradient components with unnecessary noise (Figure 36). For line or edge detection,

87

87

it is very difficult to give a constant or even dynamic threshold to satisfy all conditions,

especially in dealing with images containing the conditions of rigid and non-rigid motion

such as images of facial expression whose gray values vary in lighting, ages and

individuals. Younger subjects, especially infants, show smoother furrowing than older

ones, and initial expressions show weaker furrowing than that of peak expressions for

each sequence (Figure 37). To overcome this difficulty, further low level image

processing is needed.

Because we do not want to lose any useful information of high gradient components,

we give a low threshold for each furrow detection processing sequence (Figure 36). An

erosion morphological transformation is used to eliminate the piece regions or the very

short lines, thin the lines, or smooth the line boundary (Figure 38.a). The eliminated

(either one or several) pixels are assumed as noise and introduced might be because of the

low threshold. A dilation morphological transformation is then used to connect two end-

to-end close but separated lines (Figure 38.a). Finally, we implement a connected

components labeling (CC labeling) algorithm based on Haralick and Shapiro’s (43) to label

each cluster of connected high gradient components (Figure 38.b). This algorithm is

based on the 8-connected component to link components of its 8 neighbors at the binary

image (1 is the high gradient component, 0 is the background) and includes two processes:

top-down and bottom-up processes with 4 steps (APPENDIX). If the number of detected

high gradient components for each connected component cluster is less than 6 pixels, or

the horizontal to vertical ratio for the horizontal line detection or the vertical to horizontal

ratio for the vertical line detection is less than 5, then this cluster is assumed to be noise,

not furrow, and will be removed (Figure 38.b).

88

88

Gray Values
0255

0

90

White Black

Position
(Pixels)

| | > Threshold

+-

Figure 34 The procedure of the high gradient component analysis in the
spatio-temporal domain, which can reduce the effect of the
permanent high gradient components (furrows) and hair
occlusion for the upper facial expression.

First frame

Furrow
Detection at
the Spatial
Domain

89

89

Figure 35 (a) Original gray value images. (b) High gradient component
(furrow) detection in the spatial domain. (c) High gradient
component analysis in the spatio-temporal domain.

(a) (b) (c)

90

90

(a) Gray value image

(b) High gradient
component
(furrow) detection
with a very low
threshold, which
will include too
many furrows or
noise information.

Neutral Expression Peak Expression

(c) High gradient
component (furrow)
detection with a low
threshold, which
was used in our
study.

(d) High gradient
component (furrow)
detection with a high
threshold, which will
lose some furrow
information.

Figure 36.a High gradient component detection with different constant
threshold values.

91

91

Neutral Expression Peak Expression

Figure 36.b High gradient component detection with different constant
threshold values.

(a) Gray value image

(b) High gradient
component (furrow)
detection with a
very low threshold,
which will include
too many furrow or
noise information.

(c) High gradient
component (furrow)
detection with a low
threshold, which
was used in our
study.

(d) High gradient
component (furrow)
detection with a high
threshold, which will
lose some furrow
information.

92

92

Figure 37.a Younger subjects, especially infants (Figure 37.a), show smoother
furrowing than older ones (Figure 37.b), and initial expressions show
weaker furrowing than that of peak expressions for each sequence.

93

93

Figure 37.b Younger subjects, especially infants (Figure 37.a), show smoother
furrowing than older ones (Figure 37.b), and initial expressions show
weaker furrowing than that of peak expressions for each sequence.

94

94

(b) Erosion processing – eliminating the small
piece causing noise or the very short lines,
thinning the lines, or smoothing the line
boundary:
Consider the 8-connected component of
the grey color region at each template, if
there is no three-pixel connection of the
horizontal (or vertical) direction at both
regions after detection by the horizontal
(or vertical) line template, then the center
black pixel will be removed.

(a) Continue processing following Figure 34
& 35 (high gradient component analysis).

Template for erosion or dilation processing

Horizontal line
template

-1
 0
 1

-4 -3 -2 -1 0 1 2 3 4

Vertical line
template

-1 0 1
-4
-3
-2
-1
 0
 1
 2
 3
 4

(c) Dilation processing – linking the broken
lines:
Consider the 8-connected component of
the grey color region at each template, if
there is three-pixel connection of the
horizontal (or vertical) direction at both
regions after detection by the horizontal
(or vertical) line template, then the center
black pixel will be connected with both
grey regions.

Figure 38.a Delete redundant high gradient
components using morphological
transformation including erosion and
dilation processings.

Figure 38.b:
Connected Component
Labeling.

High gradient
component

95

95

Figure 38.a: Erosion and
dilation processings

Label 2

Label 4

Label 6

Label 8

Label 10

Label 1
Label 3
Label 5
Label 7
Label 9
Label 11
Label 12

(e) Eliminate the clusters of
high gradient components:

(1) less than 6 pixels for each
cluster such as Labels 2, 4
and 12 clusters

(2) the horizontal to vertical
ratio for the horizontal line
cluster, or the vertical to
horizontal ratio for the
vertical line cluster is less
than 5 such as Labels 2, 4,
5, 9, 10, and 11.

(d) Connected
Component
Labeling

Figure 38.b Delete the redundant high gradient components
using the connected component labeling algorithm.

96

96

5.4 Analysis of High Gradient Component Detection Problems

We have tried to use 3 x 3 Canny (19), Sobel (43), Prewitt (43) and wavelet-based (52) edge

detectors to detect the high gradient components on the face image. We can not find any

difference in the results.

Some high gradient components, such as the horizontal lines along the furrows at the

forehead, are wide. If we use high gradient component detectors with small sizes, such as

3 x 3, to extract this line from vertical directions, which are perpendicular to this line or

furrow direction, then this wide line will be detected into two lines (Figure 39). One way

to solve this problem is to use line detectors with large sizes such as 3 x 5 or 5 x 7 in order

to match the width and the length of the detected lines or furrows (Figure 39). In our

approach, the 3 x 5, 5 x 3, and 5 x 5 horizontal, vertical, and diagonal line detectors,

respectively, are adequate for most of the facial expression images. The larger size of

detector requires more computation time.

The high gradient components (such as furrows) move in consecutive frames, so we

need to consider the motion furrows in the spatio-temporal domain to ensure the detected

high gradient components are produced by transient skin or feature deformations, and are

not a permanent characteristic of the individual’s face. Equation (5-5) is a way for

tracking the motion high gradient component in the spatio-temporal domain. It is not

accurate because of introducing the zeroing result: it is based on the tracking of individual

pixels, which sometimes appear or disappear because of lighting or deformation of skin

movement, or do not have any movement between consecutive frames because of a high

sampling rate for an image sequence. To overcome above weakness, equation (5-6) can

give a more reliable result by assuming the first (neutral expression) frame to be the

background, then the foreground components. The motion of high gradient components

can be extracted easily by subtraction instead of tracking processing from the remaining

frames of each sequence.

According to equations (5-5) and (5-6), an interesting approach will be demonstrated

by directly subtracting the gray values instead of gradient components: considering the

97

97

motion effect in the temporal domain and ignoring the gradient effect in the spatial

domain.

),(
~

)1,,(),,(
),,(

yxtyxItyxI
t

tyxI
tΓ=−−=

∂
∂

(5-7)

or

),(
~

)0,,(),,(
),,(0

0

yxyyxxItyxI
t

tyxI
tΓ=∆−∆−−=

∂
∂

(5-8)

where

11 ≤∆≤− x and 11 ≤∆≤− y

(a) Gray value image (b) Using 3 x 3
horizontal line detectors

(c) Using 3 x 5 horizontal
line detectors

-1

1

0
-1

1

0
-1

1

0
-1

1

0
-1

1

0

-1

0
 1

-1

0
 1

-1

0
 1

-1

0
 1

-1

0
 1

-1

1

0
-1

1

0
-1

1

0
-1

-1

0
 1

-1

0
 1

-1

0
 1

Figure 39 Horizontal line (furrow) detection using different sizes of detectors. (b)
If the size of the detector is too small compared with the width and
length of the line (furrow), then each line will be extracted to two lines.
(c) It is necessary to adjust the size of the line detector to match the
width and length of the line in order to obtain the correct result.

98

98

Next, a threshold is given to remove unnecessary gray-value components at which the

absolute gray-value differences between the two images are below the threshold. This

threshold process can compensate for the lacking of without considering the gradient

factor in the spatial domain. According to our experiments, it works well to extract the

teeth when mouth is opening. Since the gray values of the target (teeth) are obviously

different from the background (skin, lips, and tongue), it is easy to segment the

foreground from background using a simple threshold process (Figure 40). It is very

difficult to extract the furrows exactly by using a simple thresholding process of different

gray values between two face images, because the gray values of the entire face image are

affected by lighting and are different across the ages and individuals of subjects. Since we

define and can observe furrows, which are constituted from the motion high gradient

components on face image sequence, it is necessary to extract the motion furrow by

considering the spatial and temporal gradient components at the mean time.

5.5 Data Quantization and Conversion for the Recognition System

After the motion and high gradient components (furrows) are extracted in the spatio-

temporal domain, the high gradient pixels are assigned a value 1 and other background

components are assigned a value 0 for each facial expression sequence, we want to

summarize the high gradient components of many pixels into a low-dimensional vector for

each face image as an input to the recognition system. The forehead (upper face) and

lower face regions of each normalized face image are divided into 16 and 16 blocks

(Figure 41). The mean number of high gradient components in each block is calculated by

dividing the number of pixels having a value of 1 by the total number of pixels in the

block. The positional variance of high gradient components in each block is calculated as

the sum of variances in the row and column directions. The mean number and positional

variance per block discussed here are simply abbreviated as mean-variance for brevity.

These give 32 parameters for 16 blocks in each of the upper and lower face regions. For

99

99

Figure 40 Teeth can be extracted directly from the subtraction of the gray value
image at the current frame to that at first frame for each image
sequence whose absolute value is larger than a constant threshold.

+

+

-

+

+

-

-

-

Indicate the
absolution value
bigger than a
threshold value

100

100

Figure 41 Mean-Variance vector of the high gradient component analysis in the
spatio-temporal domain for input to the Hidden Markov Model.

f1
ft

fT

Mean-Variance vector ft = (mt,1,mt,2,…, mt,j,…,mt,i,σt,1,σt,2,…,σt,j,…,σt,i)
 where mt,j is the mean number of high gradient components at the block j
 and frame t.
 σt,j is the positional variance of high gradient components at the
 block j and frame t.
 and i = 16 (blocks) for the upper face region.
 i = 16 (blocks) for the lower face region.

Mean-Variance vector sequence f = (f1,f2,…ft,…,fT)

 where T is the length of this image sequence.

101

101

AUs Motion Furrow Detection: Upper Facial Expressions
(Symbol Sequence)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 4 4 10 10 10 10

1+4 0 0 0 12 12 12 12 12 6 6 6

1+2 0 0 0 0 0 12 9 9 3 11 11

AUs Motion Furrow Detection: Lower Facial Expressions
(Symbol Sequence)

12
(6+12+25)

10 10 10 10 10 10 1 1 1 5 5 5 5 5 5 5 5 5

9+17
(17+23+24)

10 10 10 10 10 10 12 12 12 12 12 4 4 4 4 4 4 4 4 4 4
4

upper and lower facial expression recognitions, these mean and variance values are

concatenated to form a 32-dimensional mean-variance vector for each region in a frame.

Table 7 shows sample symbol sequences for nine facial expressions under consideration.

Such symbol sequences are used as inputs to the HMMs of upper facial expressions and

lower facial expressions, respectively, for automatic recognition.

Table 7 Sample symbol sequences for three upper facial expressions and
six lower facial expressions under consideration.

102

102

5.6 Expression Intensity Estimation

The sum of squared difference (SSD) criterion is employed to find a close estimation

of furrow expression intensity. The furrow detection on each 417 x 385 image gives a 32-

dimensional mean-variance vector for the upper facial expressions and similarly another

32-dimensional mean-variance vector for the lower facial expressions.

In the training data, the furrow expression intensity of individual frames of each facial

expression sequence with length varying from 9 to 47 frames has been quantified by

experts: from neutral expression (expression intensity: 0.0) to peak expression (expression

intensity: 1.0). The corresponding mean-variance vector of each training frame has also

been extracted. The Euclidean distance between the mean-variance vector of the testing

frame to the mean-variance vector of the individual frame in the chosen training sequence

is a measure of how close are their expression intensity values. After recognizing an input

furrow expression sequence, the furrow expression intensity of an individual frame in the

sequence is estimated by finding the best match of the furrow expression intensity from a

training frame based on the shortest distance in the mean-variance space (Figure 42).

103

103

Figure 42 Furrow expression intensity matching by measuring the minimum
value (distance) of the sum of squared differences (SSD) between
the mean-variance vector of the known training image and that of
the testing image. Each mean-variance vector of the training
image corresponds to a given expression intensity value.

Mean-Variance
vector : 0

kf

Mean-Variance
vector: fi

Expression intensity: 0.0 Expression
intensity: 1.0

Training image sequence:

Testing image sequence:

0min ki
k

ff −

104

104

6.0 FACIAL EXPRESSION RECOGNITION USING
HIDDEN MARKOV MODELS

If we try to build a signal model that can be used to explain and characterize the

occurrence of the observable symbol sequences, then we can use this model to identify or

recognize other sequences of observable symbols. A Hidden Markov Model (HMM) can

be employed to represent the statistical behavior of an observable symbol sequence in

terms of a network of states. For each observable symbol, the process being modeled

occupies one of the states of the HMM. With each observable symbol, the HMM either

stays in the same state or moves to another state based on a set of state transition

probability associated with the state. The variety of the observable symbols for which the

HMM uses a particular state is described in terms of the distribution of probability that

each observable symbol will occur from that state. Thus, an HMM is a doubly (observable

and hidden) stochastic model where the observable symbol probability distribution for

each state captures the intra-state variability of the observable symbols, and the state

transition probability describe the underling dynamic structure of the observable symbols.

We use HMMs to recognize subtly different facial expressions because of their

simplicity and reliability. The HMM uses only three parameters: the initial state

probability vector, the state-transition probability matrix, and the observable symbol

probability matrix. The convergence of recognition computation may run in real time.

Analysis of dynamic images naturally will yield more accurate recognition than that of a

single static image, in our study, facial expressions are recognized in the context of entire

image sequences of arbitrary lengths. Use of an HMM for facial expression recognition is

advantageous because it is analogous to human performance which is a doubly stochastic

process, involving a hidden immeasurable human mental state and measurable, observable

human action. An HMM can produce satisfactory performance in the spatio-temporal

domain and deal with the time warping problem. In addition, an HMM may allow for

105

105

multiple input sequences. This will result in a reliable recognition system as it will include

a variety of extracted information from the facial expressions. It may also be used in

combination for both expression recognition and speech recognition.

6.1 Preprocessing of Hidden Markov Models: Vector Quantization

In order to model various “expression units” of individual AUs or AU combinations

for recognizing subtly different facial expressions, we train discrete HMMs (simply called

HMMs in our study) to model facial expressions. We must first preprocess those training

multi-dimensional vector sequences to convert them to those one-dimensional (discrete)

symbol sequences. The specific preprocessing algorithm we chose is the vector

quantization (VQ) (65). VQ techniques have been used widely and successfully to solve

quantization and data compression problems. In an HMM-based approach, we need to

quantize each multi-dimensional feature or motion vector sequence into a finite symbol

sequence before training HMMs.

The purpose of designing an M-level vector quantizer (called a codebook with size M)

is to partition all k-dimensional training feature vectors into M clusters and associate each

cluster Ci, whose centroid is the k-dimensional vector ci, with a quantized value named

codeword (symbol) oi. While VQ will reduce data redundancy and get rid of small noise,

it will inevitably cause a quantization error between each training feature vector x and ci.

As the size of the codebook increases, the quantization error decreases, and required

storage for the codebook entries increases. It is very difficult to find a trade-off among

these three factors.

In order to have a good recognition performance in using HMMs, it is critical to

design a codebook for vector quantizing each k-dimensional training feature vector x into

a symbol oi with minimum quantization error. Therefore, two primary issues are

considerable for the design of the codebook: (1) codebook creation (the size of

codebook), and (2) distortion measurement. Defining the size of codebook is still an open

106

106

problem when we use the VQ technique. According to our experimental result, the

recognition system has high performance when the size M of the codebook, which should

be power of 2, is at least 1/50 less than the number of all k-dimensional training feature

vectors.

For the distortion measurement, there are two main considerations for optimizing the

VQ:

1. The quantizer must satisfy the nearest neighbor rule.

x Ci∈ if x c x ci j− < − (6-1)

where ∑
=

−=−
k

h

i
hh

i cxcx
1

2)(and i ≠ j, i, j = 0,1,...,M-1 (6-2)

and

q x oi() = where 0 1≤ ≤ −o Mi (6-3)

This means that the k-dimensional feature vector x = [x1,x2,...,xk] is classified to cluster Ci,

whose centroid is the k-dimensional vector ci, and encoded to be the codeword oi because

the distance between x and ci is shorter than x and cj. q(.) is the quantization operator.

2. Each cluster center ci must minimize not only the distortion Di in cluster Ci but also

total quantization errors D.

D Di

i

M

=
=

−

∑
0

1

(6-4)

where ∑∑∑
= ==

−=−=
N

n

k

h

i
h

i
hn

N

n

ii
n

i cxcxD
1 1

2
,

1

)((6-5)

N k-dimensional feature vectors xn
i are located at cluster Ci. Because the total distortion

D is a linear combination of Di which is the distortion in cluster Ci, the k-dimensional

cluster center ci can be independently computed after classification of x.

Using the overall distortion measurement, it is hard to guarantee global minimization.

A similar technique used for cluster analysis with squared error cost functions is called the

K-means algorithm. The K-means algorithm is an iterative algorithm which can guarantee

a local minimum, and works well in practice.

107

107

The K-means Algorithm:

Step 1: Initialization - Define the codebook size to be M and choose M initial (1st

iteration) k-dimensional cluster centers c0(1), c1(1),..., cM-1(1) corresponding to

each cluster Ci where 0 ≤ i ≤ M-1.

Step 2: Classification - At the lth iteration, according to the nearest neighbor rule,

classify each k-dimensional sample x of training feature vectors into one of the

clusters Ci.

x Ci∈ (l) if x c l x c li j− < −() () where i ≠ j, i, j = 0,1,...,M-1 (6-6)

Step 3: Codebook Updating - Update the codeword (symbol) oi of each cluster Ci by

computing new cluster centers ci(l+1) where i = 0,1,...,M-1 at the l+1th iteration.

ci(l+1) =
1

1N
xn

i

n

N

=
∑ where x C li i∈ +()1 (6-7)

N is the number of feature vectors in cluster Ci(l+1) at the l+1th iteration, and

q(x) = oi where 0 1≤ ≤ −o Mi (6-8)

where q(.) is the quantization operator.

Step 4: Termination - If the decrease in the overall distortion at the current iteration

l+1 compared with that of the previous iteration l is below a selected threshold,

then stop; otherwise goes back to Step 2.

if D l D l threshold then Stop

if D l D l threshold then Goes to Step

() () ,

() () ,

+ − <
+ − ≥





1

1 2
(6-9)

Note that the K-means algorithm can only converge to a local optimum. The behavior

of the K-means algorithm is affected by the number of clusters specified and the choice of

initial cluster centers. Instead of using K-means algorithm, our VQ approach is based on

Linde, Buzo and Gray’s algorithm (65) for vector quantizer design, which is an extended

algorithm of K-means, but unlike K-means which initializes each cluster center in the

beginning. This VQ algorithm uses iterative method, splits the training vectors from

assuming whole data to be one cluster to 2,4,8,...,M (M's size is power of 2) clusters, and

108

108

determines the centroid for each cluster. The centroid of each cluster is refined iteratively

by K-means clustering.

The Vector Quantization Algorithm:

Step 1: Initialization - Assume all N k-dimensional training vectors to be one cluster C0,

i.e., codebook size M = 1 and codeword o0 = 0, and find its k-dimensional cluster

centroid c0(1) where 1 is the initial iteration.

c0(1) =
1 0

1N
xn

n

N

=
∑ (6-10)

where x is one sample of all N k-dimensional feature vectors at cluster C0.

Step 2: Splitting - Double the size M of the codebook by splitting each cluster into two.

The current codebook size M is split into 2M. Set M = 2M by

c c

c c

i i

i i
+

−

= +
= −





() ()

() ()

1 1

1 1

ε
ε

where i M 0 1≤ ≤ − (6-11)

ci is the centroid of the ith cluster Ci, M is the size of current codebook, ε is a k-

dimensional splitting parameter vector and is value 0.0001 for each dimension in

our study. 1 is the initial iteration.

Step 3: Classification - At the lth iteration, according to the nearest neighbor rule,

classify each k-dimensional sample x of training feature vectors into one of the

clusters Ci.

x Ci∈ (l) if x c l x c li j− < −() () where i ≠ j, i, j = 0,1,...,M-1 (6-12)

Step 4: Codebook Updating - Update the codeword (symbol) oi of each cluster Ci by

computing new cluster centers ci(l+1) where i = 0,1,...,M-1 at the l+1th iteration.

ci(l+1) =
1

1N
xn

i

n

N

=
∑ where x C li i∈ +()1 (6-13)

N is the number of feature vectors in cluster Ci(l+1) at the l+1th iteration. And

q(x) = oi where 0 1≤ ≤ −o Mi (6-14)

where q(.) is the quantization operator.

109

109

Step 5: Termination 1 - If the difference between the current overall distortion D(l+1)

and that of the previous iteration D(l) is below a selected threshold, proceed to

Step 6; otherwise goes back to Step 3.

if D l D l threshold then Goes to Step

if D l D l threshold then Goes to Step

() () ,

() () ,

+ − <
+ − ≥





1 6

1 3
(6-15)

(where threshold is 0.0001 in our study.)

Step 6: Termination 2 -

Is the codebook size M equal to the VQ codebook size required ?

if Yes then Stop

if No then Goes to Step

 ,

 , 2




(6-16)

Once the final codebook is obtained according to all training vectors by using this VQ

algorithm, it is used to vector quantize each training and testing feature (or motion) vector

into a symbol value (codeword) for the preprocessing of the HMM recognition process

(Figure 43).

6.2 Beginning from Markov Models

The first order Markov chain is a stochastic process which follows the rule

P(qt+1=j | q0=k,q1=l,...,qt=i) = P(qt+1=j | qt=i) (6-17)

where qt represents the state q at time t, and i, j, k, l represent the possible states of q at

different instant of time. The first order Markov chain states that the probabilistic

dependence is truncated at the preceding state. We consider only those processes in

which the right-hand side of above equation is independent of time. We can then see that

a time independent Markov chain is characterized by its state-transition probability aij,

110

110

which is the probability of moving from one state i to another state j.

aij = P(qt=j | qt-1=i), 1 ≤ i,j ≤ N (6-18)

where N is the total number of states. The aij obeys standard stochastic constraints.

aij ≥ 0 1 ≤ i,j ≤ N (6-19)

aij

j

N

=
=

∑ 1
1

1 ≤ i ≤ N (6-20)

All Training
Vectors

Codebook Creation
(Size: 2n = M, n = 0,1,2,...)

HMM

Vector Sequence:
F=(f1,f2,...,ft,...,fT)

Symbol Sequence:
O = (o1,o2,...,ot,...,oT)

Symbol ot: 0 ≤ ot ≤ M-1

Vector Quantization

Figure 43 Vector quantization for encoding any vector sequence to
a symbol sequence based on the codebook.

111

111

The Markov model could be called an observable Markov model because the output of

the stochastic process is the state sequence where each state corresponds to each instant

of time with a deterministically observable event (symbol).

6.3 Extension of Markov Models: Hidden Markov Models

In the Markov model, the state sequence is observable. The output observable event

in any given state is deterministic, not random. This will be too constraining when we use

it to model the stochastic nature of the human performance, which is related to doubly

stochastic processes, namely human mental states (hidden) and human actions

(observable). It is necessary that the observable event is a probabilistic function of the

state. That is why an HMM is employed. HMM is a representation of a Markov process

and is a doubly embedded stochastic process with an underlying stochastic process that

cannot be directly observed, but can only be observed through another set of stochastic

processes that produce the sequence of observable symbols.

Before the description of HMMs, we define the elements of an HMM by specifying the

following parameters:

N: The number of states in the model. The state of the model at time t is given by qt,

1 ≤ qt ≤ N and 1 ≤ t ≤ T (6-21)

where T is the length (number of frames) of the output observable symbol

sequence.

M: The size of the codebook or the number of distinct observable symbols per state.

Assume ot is one of all possible observable symbols for each state at time t, then

0 ≤ ot ≤ M-1 (6-22)

πN: An N-element vector indicates the initial state probability.

π = {πi}, where πi = P(q1=i), 1 ≤ i ≤ N (6-23)

ANxN: An N x N matrix specifies the state-transition probability that the state will transit

from state i to state j.

112

112

A = {aij} where aij = P(qt=j | qt-1=i), 1 ≤ i,j ≤ N (6-24)

and

aij ≥ 0, aij

j

N

=
=

∑ 1
1

1 ≤ i ≤ N (6-25)

BMxN: An M x N matrix represents the probability that the system will generate the

observable symbol ot at state j and at time t.

B = {bj(ot)} where bj(ot) = P(Ot=ot | qt=j), 1 ≤ j ≤ N, 0 ≤ ot ≤ M-1,(6-26)

and

bj(ot) ≥ 0, 1 ≤ j ≤ N, and b oj t
o

M

t

() =
=

−

∑ 1
0

1

, 1 ≤ j ≤ N (6-27)

The complete parameter set λ of the discrete HMM is represented by one vector π and

two matrices A and B

λ = (π,A,B) (6-28)

In order to accurately describe a real-world process such as facial expression with an

HMM, we need to appropriately select the HMM parameters. The parameter selection

process is called the HMM "training."

This parameter set λ can be used to evaluate the probability P(O | λ), that is to

measure the maximum likelihood performance of an output observable symbol sequence

O.

O = (o1, o2, ..., oT) (6-29)

where T is the number of frames for each image sequence. For evaluating each P(O | λ),

we need to select the number of states N, select the size of the codebook or the observable

symbols M, and compute the results of probability density vector π and matrices A and B

by training each HMM from a set of corresponding training data after VQ (Figure 44).

113

113

Figure 44 The construction (topology) of the Hidden Markov Model.

t t+1

1 i j N
aijπ1

bj(ot+1)

Symbol sequence: O = (o1,o2,...,ot,...,oT)

State: q = (q1=1,…,qt=i,qt+1=j,…,qT=N)

Codebook size: M

HMM parameter set: λ = (π,A,B)

Initial state distribution: π1 = 1.0, πk = 0.0 if 2 ≤ k ≤ N

State-transition probability: ANxN = {aij} from state i to j

Observable symbol probability: BMxN = {bj(ot+1)} at state j and time t+1

Output probability: P(O|λ)

114

114

6.4 Three Basic Problems of Hidden Markov Models

There are three basic problems in HMM design:

1. Problem of Probability Evaluation: How do we efficiently evaluate P(O | λ), the

probability (or likelihood) of an output observable symbol sequence O = {o1,o2,...,oT}

given an HMM parameter set λ = (π,A,B) ?

2. Problem of Optimal State Sequence: How do we determine an optimal state

sequence q = {q1,q2,...,qT}, which is associated with the given output observable symbol

sequence O = {o1,o2,...,oT}, by given an HMM parameter set λ = (π,A,B) ?

3. Problem of Parameter Estimation: How do we regulate an HMM parameter set λ =

(π,A,B) in order to maximize the output probability P(O | λ) of generating the output

observable symbol sequence O = {o1,o2,...,oT} ?

Analyzing and solving the above three basic problems can help us to design and

understand the HMM for training and recognition processes.

6.4.1 Probability Evaluation Using the Forward-Backward Procedure

In order to use an HMM for facial expression recognition, we need to compute the

output probability P(O | λ) with which the HMM will generate an output observable

symbol sequence O = {o1,o2,...,oT} given the parameter set λ = (A,B,π). The most

straightforward way to compute this is by enumerating every possible state sequence of

length T, so there will be NT possible combinations of state sequence where N is the total

number of states. Suppose there is one state sequence

q = {q1, q2,..., qT} (6-30)

Assume statistical independence of observable symbol o, and given the above state

sequence q, the probability of the output observable symbol sequence will be

115

115

P(O | q,λ) =
t

T

=
∏

1

P(ot | qt,λ) = b o b o b oq q q TT1 21 2() () ... () (6-31)

Also, we can get the probability of such a state sequence q by given an HMM parameter

set λ.

P(q | λ) =
TT qqqqqqq aaa

132211
 ...

−
π (6-32)

The joint probability of O and q (or the probability that O and q occur at the same time) is

P(O,q | λ) = P(O | q,λ) P(q | λ) (6-33)

The probability of P(O | λ) is the summation of this joint probability over all NT possible

state sequences q.

P(O | λ) = P o o o q iT T
i

N

(... , |)1 2
1

 =
=
∑ λ

 = P O q iT
i

N

(, |) =
=
∑ λ

1

 = P O q i P q iT T
i

N

(| ,) (|) = =
=
∑ λ λ

1

 = ∑ −

T

TTT
qqq

Tqqqqqqqq obaobaob
...

21

21

122111
)(...)()(π (6-34)

For the time complexity of the above computation, we can base the interpretation on

Figure 45. Each state qt+1 at time t+1 has N possible paths with order O(1) calculations to

be reached from the previous N state qt at time t. That is, each state q2 at time t = 2 can be

reached from N possible state q1 at time t = 1, and N possible state q2 at t = 2. Each state

q3 at time t = 3 can have N2 possible paths to be reached from N possible states q1 at t = 1.

Overall there are NT-1 possible paths with the order O(T) calculations to reach each final

state qT at time T for each state sequence. (According to the above equation, 2T-1

multiplications are required for each state sequence.) The time complexity is the order

O(NT-1 T) for each state sequence. The totally N final state qT at time T can be reached.

The overall time complexity of computing the probability of P(O | λ) is the order O(NT-1 T)

x O(N) = O(NT T). The value is very difficult to calculate. Even if we have a small

116

116

Figure 45 The tree structure of the computational complexity for
direct evaluation of the output probability P(O|λ) (105).

1

2

3

N

N2-N+1

N2-N+2

N2-N+3

N2

N3-N+1

N3-N+2

N3-N+3

N3State:

t=4Time:

Computational complexity (for each state):

t=1 t=2

O(N) O(N2) O(N3)

1

1

1

1

1

1

2

3

2

3

2

3

1

N

N

N

N

N

N

N

i-1

i

i+1

t=3

O(1)

Computational complexity for total N states: O(NT-1) * O(N) = O(NT)

t=T

O(NT-1)

117

117

number of states N and T frames of state sequence, e.g., N = 4 and T = 20, it still requires

on the order of 420 x 20 ≈ 2.2 x 1013 calculations. Fortunately, we can use a more efficient

procedure called the Forward-Backward procedure (79) to overcome this limitation.

Figure 46 can help us to describe the Forward procedure easily and clearly. We define

the forward variable

αt(i) = P(o1o2...ot, qt=i | λ) (6-35)

as the probability of the partial observable symbol sequence o1 o2 ... ot at state i and at time

t by given the HMM parameter set λ. We can solve for αt(i) inductively as follows:

The Forward Procedure:

1. Initialization: The initial forward variable is the joint probability of state i, time t = 1

and initial observable symbol o1 by given the HMM parameter set λ.

α1(i) = P(o1, q1=i | λ) = πibi(o1) where 1 ≤ i ≤ N (6-36)

2. Induction (or Recursion): State j can be reached at time t+1 from the N possible

states i, 1≤ i ≤ N, at time t with the state-transition probability aij.

αt+1(j) = P(o1o2...ot+1, qt+1=j | λ)

= αt

i

N

ij j ti a b o
=

+∑








1

1() () , where 1 ≤ t ≤ T-1, 1 ≤ i, j ≤ N (6-37)

3. Termination: The sum of all N final forward variables αT(i), 1≤ i ≤ N.

P(O | λ) = P o o o q iT T

i

N

(... , |)1 2

1

 =
=
∑ λ

 = P O q iT

i

N

(, |) =
=
∑ λ

1

 = αT

i

N

i()
=
∑

1

(6-38)

The second step of the Forward procedure reduces the computational complexity since

the calculation of the forward variable αt+1(j) at time t+1, state j and observable symbol

118

118

ot+1 depends only on the previous (at time t) N forward variables αt(i), 1 ≤ i ≤ N (Figure

46, 47). This computation is performed for all states j, 1 ≤ j ≤ N, and then iterated from

the initial frame at t = 1 to t = T-1 for all possible state sequences. In other words,

because there are only N states at each instant time, all the possible state sequences will

remerge into these N states, no matter how long the observable symbol sequence will be

(Figure 47). The time complexity is the order O(N T) for each observable symbol

sequence. This computation obviously reduces the computational complexity of each

state sequence from the order O(NT-1) to O(N). There are N states for each instant time or

at the end time t = T. The overall time complexity of computing the probability of P(O |

λ) is O(N T) x O(N) = O(N2 T) whose origin is O(NT T). Compared to the original

example N = 4 and T = 20, it requires only the order of 42 x 20 = 3.2 x 102 which is much

less than 420 x 20 ≈ 2.2 x 1013 calculations.

Figure 46 describes the Backward procedure. We define a backward variable

βt(i) = P(ot+1ot+2...oT | qt=i, λ) (6-39)

which means the probability of the partial observable symbol sequence from t+1 to the end

time T by given state i at time t and the HMM parameter set λ. We can compute the βt(i)

using the following steps:

The Backward Procedure:

1. Initialization: Arbitrarily defines the backward variable at the end time T and state i as

βT(i) = 1 where 1 ≤ i ≤ N (6-40)

2. Induction (or Recursion): State i can reach N possible states j, 1 ≤ j ≤ N, at time t+1

as well as the observable symbol ot+1 by state-transition probability aij and observation

probability bj(ot+1).

119

119

Figure 46 The Forward and Backward Procedures.

a1j

a2j

aNj bj(ot+1)

αt(i) αt+1(j)

b1(ot+1)ai1

ai2

aiN

βt(i) βt+1(j)

The Forward Procedure

The Backward Procedure

1

2

N

ji
aij

Time: t t+1

o1

Symbol
sequence: ot

1

ot+1

T

Symbol
sequence:

ot ot+1 oT

1

2

N

ji
aij

b2(ot+1)

bj(ot+1)

bN(ot+1)

120

120

1 2 t t+1 T

O(1)

1

2

3

N

1

2

3

N

1

2

3

N

1

2

3

N

1

2

3

N

Time:

Symbol
sequence: o2 ot ot+1 oT

Computational complexity
for each state: O(N)

Computational complexity for total N states: O(N) * O(N) = O(N2)

Figure 47 The tree structure of the computational complexity for the forward
and backward procedures (79).

2

N

1

3

2

The single shortest (best) path (state sequence):

o1

121

121

βt(i) = P(ot+1ot+2...oT | qt=i,λ)

 = ∑
=

++

N

j
ttjij joba

1
11)()(β where t = T-1, T-2,...,1, and 1 ≤ i ≤ N (6-41)

The backward procedure’s computational complexity is the same as the Forward

procedure, O(N2 T), using the similar but opposite approach direction of Figure 47.

6.4.2 Optimal State Sequence Using the Dynamic Programming Approach

We use a dynamic programming method called the Viterbi algorithm (37,79,98) to find the

single best state sequence q = (q1q2...qT) (or the most likely path) given the observable

symbol sequence O = (o1o2...oT) and the HMM parameter set λ in order to maximize P(q |

O,λ). Since

P q O
P q O

P O
(| ,)

(, |)

(|

)

λ λ
λ

= (6-42)

Maximizing P(q | O,λ) is equivalent to maximizing P(q,O | λ) using the Viterbi algorithm.

The basic idea of the Viterbi algorithm (a dynamic programming method) is similar to the

Forward procedure (Figure 46) whose calculation at each time is considered only between

two consecutive times t and t+1, and starts at the initial time t = 1 and proceeds forward

to the end time t = T. The major difference is during this calculation between two instant

times. The control, which produces the maximum value corresponding to the single

shortest or best path (state sequence), is “saved” instead of the summation of overall

calculations (Figure 47). At the end of the state sequence for the calculation, the

“remembered” best controls can be used to recover the state space trajectory based on

path backtracking.

We define the maximum probability along a single best path at time t, which accounts

for the first t observable symbols and ends in state i given the HMM parameter set λ, as

122

122

) | ... ,,...(max)(21121
,...,,

121

λδ ttt
qqq

t oooiqqqqPi
t

== −
−

(6-43)

We also define the “remembered” array ψt(j) for each state j at time t, which keeps track

of the argument that maximizes the value δt-1(i) x aij, in order to retrieve the optimal state

sequence during the path backtracking. qt is the single most likely state at time t.

The Viterbi Algorithm:

1. Initialization: The initial probability δ1(i) is at state i, time t = 1 and initial observable

symbol o1 by given the HMM parameter set λ.

)() | ,()(1111 obiqoPi iiπλδ === where 1 ≤ i ≤ N (6-44)

0)(1 =iψ where 1 ≤ i ≤ N (6-45)

()q i
i N

1
1

1=
≤ ≤

arg max () δ (6-46)

2. Recursion: The single best path (state sequence) among N possible paths from N

possible states i at time t to state j at time t+1 with the state-transition probability aij is

) | ,...(max)1(1121
1

1 λδ jqoooPj tt
Ni

t ==+ ++≤≤+

 = ()[]max () ()
1

1≤ ≤ +
i N

t ij j ti a b oδ where 1 ≤ t ≤ T-1, 1 ≤ j ≤ N (6-47)

()[]ψ δt
i N

t ijj i a+ ≤ ≤
=1

1
() arg max () where 1 ≤ t ≤ T-1, 1 ≤ j ≤ N (6-48)

()q it
i N

t+ ≤ ≤ +=1
1

1arg max () δ (6-49)

3. Termination: The single best path reaches the end time T for each state sequence.

P = max (... , |)
1

1 2≤ ≤
=

i N
T TP o o o q i λ

 = max (, |)
1≤ ≤

=
i N T

P O q i λ

 = ()max ()
1≤ ≤i N

T iδ (6-50)

()q iT
i N

T=
≤ ≤

arg max ()
1

δ (6-51)

123

123

4. Path (State Sequence) Backtracking: Backtracking is retrieving the path which have

been saved as the most likely states.

q qt t t= + +ψ 1 1() where t = T-1, T-2, ..., 1 (6-52)

For computation simplicity, the Viterbi algorithm can be implemented by additional

preprocessing which takes the logarithms of the HMM parameters in order to convert

multiplication to addition.

0. Preprocessing:

()π πi i
log= where 1 ≤ i ≤ N (6-53)

()a aij ij
log= where 1 ≤ i ≤ N and 1 ≤ t ≤ T (6-54)

()b o b oi t i t
() log ()= where 1 ≤ i ≤ N and 1 ≤ t ≤ T (6-55)

1. Initialization:

()δ δ π1 1 1
#() log () ()i i b oi i= = + where 1 ≤ i ≤ N (6-56)

ψ 1 0# ()i = where 1 ≤ i ≤ N (6-57)

()q i
i N

1
1

1
#arg max ()=

≤ ≤
 δ (6-58)

2. Recursion:

()δ δt tj j+ +=1 1
() log ()

= ()[]max () ()# # #

1
1≤ ≤ ++ +

i N
t ij j ti a b oδ where 1 ≤ t ≤ T-1, 1 ≤ j ≤ N (6-59)

()[]ψ δt
i N

t ijj i a+ ≤ ≤
= +1

1

#() arg max () where 1 ≤ t ≤ T-1, 1 ≤ j ≤ N (6-60)

()q it
i N

t+ ≤ ≤ +=1
1

1
#arg max () δ (6-61)

3. Termination:

()P i
i N

T
#max ()=

≤ ≤1
δ (6-62)

124

124

()q iT
i N

T
#arg max ()=

≤ ≤

1
δ (6-63)

4. Path (State Sequence) Backtracking:

)(#
1

#
1

#
++= ttt qq ψ where t = T-1, T-2, ..., 1 (6-64)

6.4.3 Parameter Estimation Using the Baum-Welch Method

We can use a set of training observable symbol sequences to adjust the model

parameters in order to build a signal model that can be used to identify or recognize other

sequences of observable symbols. There is, however, no efficient way to optimize the

model parameter set that globally maximizes the probability of the symbol sequence.

Therefore, the Baum-Welch method (6) is used for choosing the maximum likelihood

model parameter set λ = (π,A,B) such that its likelihood function P(O | λ) is locally

maximized using an iterative procedure.

To easily describe the procedure for reestimation (iterative computation) of the HMM

parameter set λ = (π,A,B), we define a posterior probability variable γt(i), shown in Figure

48, as the probability of being in state i at time t by given the HMM parameter set λ and

the entire observable symbol sequence O.

γ λ
λ

λ

λ

λ
t t

t t

t
i

Ni P q i O
P O q i

P O

P O q i

P O q i
() (| ,)

(, |)

(|)

(, |)

(, |)
= = =

=
=

=

=
=
∑

1

∑
=

=
N

i
tt

tt

ii

ii

1

)()(

)()(

βα

βα
(6-65)

where

P(O,qt=i | λ) = αt(i) βt(i) (6-66)

αt(i) = P(o1o2...ot, qt=i | λ) (6-67)

βt(i) = P(ot+1ot+2...oT | qt=i,λ) (6-68)

125

125

We define the other probability variable ξt(i,j) (illustrated in Figure 49), which represents

the probability of being in state i at time t, and state j at time t+1 given the observable

symbol sequence O and the HMM parameter set λ.

ξ λ
t t ti j P q i q j O(,) (, |= = =+1 ,)

=
P q i q j O

P O
t t(, , |)

(|)

= =+1

λ
λ

=
P q i q j O

P O q i

t t

t
i

N

(, , |)

(, |)

= =

=

+

=
∑

1

1

λ

λ

=

∑∑
= =

++

++
N

i

N

j
ttjijt

ttjijt

jobai

jobai

1 1
11

11

)()()(

)()()(

βα

βα
(6-69)

Then the relationship between γt(i) and ξt(i,j) is

γ ξt t
j

N

i i j() (,)=
=

∑
1

(6-70)

If we sum γt(i) and ξt(i,j) from the initial time t = 1 to the time t = T-1, we can find

γ t
t

T

i
=

−

∑
1

1

() = expected number of transitions or times, i.e., frequency, from

 state i given observable symbol sequence O (6-71)

ξ t
t

T

i j
=

−

∑
1

1

(,) = expected number of transitions from state i to state j given O (6-72)

A set of reasonable reestimation formulas for HMM parameters π, A, and B is given

πi = 1)(= at time statein ns transitioofnumber expected ti

 = γ1(i) =
P O q i

P O

(, |)

(|)
1 =

λ
λ

 =

∑
=

N

i
T i

ii

1

11

)(

)()(

α

βα
(6-73)

126

126

Figure 48 A posterior probability variable γt(i) which is the probability of being
in state i at time t by given the HMM parameter set λ and the entire
observable symbol sequence O.

Figure 49 The probability variable ξt(i,j) which represents the probability of
being in state i at time t, and state j at time t+1 given the observable
symbol sequence O and the HMM parameter set λ.

a1i

a2i

aNi bi(ot)

t-1

αt(i)

1

2

N

b1(ot+1)ai1

ai2

aiN

βt(i)

1

2

N

j
aij

b2(ot+1)

bj(ot+1)

bN(ot+1)

i

t t+1Time:
Symbol
sequence: ot-1 ot

ot+1

a1i

a2i

aNi

aij

t-1

αt(i)

1

2

N

b1(ot+2)aj1

aj2

ajN

βt+1(j)

1

2

N

b2(ot+2)

bN(ot+2)

i

t t+2Time:
Symbol
sequence: ot-1 ot ot+1

j

t+1

ot+2

bi(ot) bj(ot+1)

127

127

aij =
expected number of transitions from state to state

exptected number of transitions in state

i j

i

 =
ξ

γ

t
t

T

t
t

T

i j

i

=

−

=

−

∑

∑
1

1

1

1

(,)

()
 =

P q i q j O

P q i O

t t
t

T

t
t

T

(, , |)

(, |)

= =

=

+
=

−

=

−

∑

∑

1
1

1

1

1

λ

λ

 =
α β

α β

t ij j t t
t

T

t t
t

T

i a b o j

i i

() () ()

() ()

+ +
=

−

=

−

∑

∑

1 1
1

1

1

1 (6-74)

 bj(ot) =
expected number of transitions in state and observable symbol at time

expected number of transitions in state

j o t

j
t

 =

γ

γ

t
t

s t O o

T

t
t

T
t t

j

j

=

=

∑

∑

1

1

. .

()

()

 =
 =

P q j O O o

P q j O

t t
t

T

t
t

T

(, |) (,)

(, |)

=

=

=

=

∑

∑

λ δ

λ

1

1

 =
α β δ

α β

t t t t
t

T

t t
t

T

j j O o

j j

() () (,)

() ()

=

=

∑

∑
1

1

where δ(Ot,ot) =




otherwise 0

= if 1 tt oO
(6-75)

where

P(qt=i,O | λ) = αt(i) βt(i) (6-76)

P(O | λ) = α βt t
i

N

i i() ()
=
∑

1

 = α T
i

N

i()
=
∑

1

(6-77)

P(qt=i,qt+1=j,O | λ) = αt(i)aijbj(ot+1)βt+1(j) (6-78)

Note that these updated parameters should satisfy stochastic constraints for computation

normalization.

π i
i

N

=
∑ =

1

1 (6-79)

t

128

128

aij
j

N

=
∑ =

1

1 where 1 ≤ i ≤ N (6-80)

b oj t
o

M

t

() =
=

−

∑ 1
0

1

where 1 ≤ j ≤ N and 1 ≤ t ≤ T (6-81)

6.5 Computation Considerations

To be able to enhance the effectiveness of HMM performance in the practical

applications, such as facial expression recognition, it is necessary to have accurate

computation and guarantee the local maximum of the likelihood function using an iterative

procedure (reestimation procedure), i.e. the Forward-Backward procedure, convergence.

6.5.1 Choice of Hidden Markov Model

There are several types of HMMs (79) such as the ergodic model (Figure 50.a) in which

every state of the model can be reached in a single step from any state of the model. Its

state-transition probability matrix A is a full matrix.

A = {aij} =

a a a

a a a

a a a

N

N

N N NN

11 12 1

21 22 2

1 2

. . .

. . .

.

. . .

...



















(6-82)

where

aij ≥ 0, aij
j

N

=
∑ =

1

1 and 1 ≤ i ≤ N (6-83)

The left-right model (the Bakis model) which is used for facial expression recognition in

various lengths of image sequences because they perform well in the spatio-temporal

domain and are able to deal with the time warping problem. The left-right type of HMM

129

129

Figuer 50 (a) 4 state ergodic HMM (b) 1st-order 4-state left-right
(Bakis) HMM (c) 2nd-order 4-state left-right HMM.

a11

(a)

(b)

(c)

1 2 3 4
a23

1

2

4

3

a12 a34

a23a12 a34
1 2 3 4

a13 a24

a11 a22 a33 a44

a11 a22

a22

a33 a44

a33

a44

a12

a13

a14

a21

a23

a24

a31

a32

a34

a41

a42

a43

130

130

has the desirable properties that the initial state probability has the characteristic

π i

i

i
=

≠
=





0 1

1 1

 if

 if
where 1 ≤ i ≤ N (6-84)

The state sequence must begin at the first state 1 with left to right order and end at the

final state N. As the time increases, the observable symbols in each sequence either stay at

the same state or increase in a successive manner. The state-transition coefficients of the

left-right model have the property

aij = 0 if j < i (6-85)

No transitions can occur from the current state to a state with a lower index. An

additional constraint for the state-transition coefficients of the left-right HMM is

aij = 0 if j > i + ∆i (6-86)

for some value ∆i which means the order of the left-right HMM. No jumps of more than

∆i number of states are allowed. For example, ∆i = 1 and N = 4 means the 1st-order 4-

state left-right HMM (Figure 50.b) whose state-transition probability matrix A is

A={aij}=

a a

a a

a a

a

11 12

22 23

33 34

44

0 0

0 0

0 0

0 0 0



















(6-87)

where

aij ≥ 0, aij
j =
∑ =

1

4

1 and 1 ≤ i ≤ 4 (6-88)

∆i = 2 and N = 4 indicates the 2nd-order 4-state left-right HMM (Figure 50.c) whose

state-transition probability matrix A is

A={aij}=

a a a

a a a

a a

a

11 12 13

22 23 24

33 34

44

0

0

0 0

0 0 0



















(6-89)

where

131

131

aij ≥ 0, aij
j =
∑ =

1

4

1 and 1 ≤ i ≤ 4 (6-90)

6.5.2 Initialization of Hidden Markov Model Parameter Estimation

For the training process, accurate initial estimations of the HMM parameters π, A and

B will help the local maximum approach using an iteration procedure as close as possible

to the global maximum of the likelihood function. If the elements of the parameters are

set to zero initially, they will remain at zero during the entire process. In practice, it is not

important to reach the global maximum of the likelihood function. Instead, finding a set of

HMM parameters which promote a highly accurate recognition result is more important.

Our experiment shows that very small random initial values of the HMM parameters

(smaller than 10-6) are adequate and useful and recognition accuracy is high. Remember

that for the left-right HMM, the initial state probability for the first state is 1 (π1 = 1) and

other states are 0.

6.5.3 Computation of Scaling

The forward and backward variables αt(i) and βt(i) are computed recursively, so they

are composed of a large number of accumulated {aij} and {bj(ot)} multiplications. Since

each aij and bj(ot) is less (or extensively less) than 1, each term of αt(i) or βt(i) will start to

head exponentially to zero when the length (or number of frames) T in each image

sequence increases. The dynamic range of the αt(i) or βt(i) computation will then be

beyond the precision range of any computer capability. To keep αt(i) and βt(i) within the

dynamic range of the computer, the most straightforward method is to multiply αt(i) and

βt(i) by scaling coefficients which can be canceled out completely at the end of the

computation. The scaling coefficient for αt(i) is defined as ct
(79)

132

132

c i c it t
i

N

t t
i

N

α α() ()
= =
∑ ∑= =

1 1

1 where 1 ≤ t ≤ T (6-91)

c
i

t

t
i

N=

=
∑

1

1

α ()
(6-92)

The scaling coefficient ct is the inverse of the sum overall states N of αt(i) at time t, is

dependent only on time t and independent of state i, and effectively rebuilds the magnitude

of the αt(i) to 1. To keep the βt(i) computation within reasonable bounds as αt(i), we can

apply the same scaling coefficient ct to βt(i) because the magnitudes of the αt(i) and βt(i)

are comparable. For efficient computation within rational bounds, the αt(i) and βt(i)

should be replaced by

∑
=

==
N

i
t

t
ttt

i

i
ici

1

)(

)(
)()(~

α

ααα (6-93)

∑
=

+

+
+++ ==

N

i
t

t
ttt

i

j
jcj

1
1

1
111

)(

)(
)()(

~

α

βββ (6-94)

where)(~ itα and
~

()β t j+1 are the scaling results of αt(i) and βt+1(j), respectively.

In addition, when)(~ itα and
~

()β t j+1 are applied at the scaling intermediate probability

tγ~ (i) and tξ~ (i,j).

()()
()()

)(
)()(

)()(

)()(

)()(

)(
~

)(~

)(
~

)(~
)(~

111

i
ii

ii

icic

icic

ii

ii
i tN

i
tt

tt
N

i
tttt

tttt
N

i
tt

tt
t γ

βα

βα

βα

βα

βα

βαγ ====
∑∑∑

===

(6-95)

() ()

() ()∑∑∑∑
= =

++

++

= =
++

++ ==
N

i

N

j
tttjijtt

tttjijtt

N

i

N

j
ttjijt

ttjijt
t

jcobaic

jcobaic

jobai

jobai
ji

1 1
11

11

1 1
11

11

)()()(

)()()(

)(
~

)()(~

)(
~

)()(~
),(

~

βα

βα

βα

βα
ξ

= =+ +

+ +
==

∑∑
α β

α β
ξt ij j t t

t ij j t t
j

N

i

N t

i a b o j

i a b o j
i j

() () ()

() () ()
(,)1 1

1 1
11

(6-96)

133

133

The numerator and denominator terms are both deleted because the scaling coefficient ct is

independent of states i and j. The scaling intermediate probability tγ~ (i) and tξ~ (i,j) has the

same values as the intermediate probability without scaling tγ (i) and tξ (i,j).

Furthermore, the HMM parameters π, A, and B will also keep the same probability values

when both αt(i) and βt+1(j) are scaled, because those parameters are constructed from

either or both intermediate probability tγ (i) and tξ (i,j).

~π πi i= , ~a aij ij= , and
~

() ()b o b oj t j t= (6-97)

The only real affected event of the HMM procedure by scaling coefficient is

computing the maximum likelihood function P(O | λ). Since (79)

c it
t

T

T
i

N

= =
∏ ∑ =

1 1

1α () (6-98)

where scaling coefficient ct is independent of state i. So

P O i
c

i

T
i

N

t
t

T

t
i

N
t

T(|) ()

()

 λ α

α

= = =
=

=

=

=

∑
∏

∑
∏1

1

1

1

1 1
1

(6-99)

The computation for the denominator term of the maximum likelihood function P(O | λ)

will be extremely small, which is out of the dynamic range of the computer’s ability. It can

be solved by taking logarithms.

log (|) log log () P O c it
t

T

t
i

N

t

T

λ α= − =
= ==
∑ ∑∑

1 11

 (6-100)

This can be used for evaluating the most likely performance of any input data

corresponding to a set of HMMs. The Viterbi algorithm for finding the maximum

likelihood state sequence also uses the logarithms, which will be within the dynamic

bounds of the computer, so no scaling process is needed.

134

134

6.5.4 Computation of Smoothing for Insufficient Training Data

The amount of data (observable symbol sequences) used to train an HMM is always

limited because of considerations of the computational cost of HMM training or the

availability of training data. Thus, there is always an inadequate number of occurrences of

low-probability state transitions between states and observable symbols within states to

give reasonable estimates of the model parameters. If the training number of the

observable symbol sequences are so small that they do not have any occurrences

simultaneously to satisfy the conditional probability of HMM parameters, then ~π i = 0, ~aij

= 0, and
~

()b oj t = 0 will occur and will stay at 0 after each reestimation. When this

resultant model is employed to evaluate any other observable symbol sequence which

possibly contains the state transitions or the observable symbol that do not occur in the

training sequences, this model will produce a zero probability result for this evaluated

observable symbol sequence. Such a singular outcome is certainly a consequence of the

unreliable estimation that ~π i = 0, ~aij = 0, and
~

()b oj t = 0 due to the insufficiency of the

training data to cover all possible varieties.

There are many possible solutions for handling the effects of insufficient training data
(59,79), such as production of the codebook size (reduction of the number of observable

symbols at each state) or the number of states. The simplest and most practical way for

combating the insufficient training data problem is to add the numeric floor ε for

smoothing the probability distributions of HMM parameters in order to ensure that no

model parameter estimation falls below a specified threshold ε for each iterative

estimation.

~
~ ~

~
~

~ ~
π

π π ε
ε π ε

π

π π
i

i i

i

if

if

=

≥
<





where 0.0~ >πε (6-101)

~
~ ~

~
~

~ ~
a

a if a

if aij

ij ij a

a ij a

=

≥
<





ε
ε ε where 0.0~ >aε (6-102)

135

135

~
()

~ ~
()

~
()

~

~ ~

b o
b o if b o

if b oi t
i t i t b

b i t b

=
≥
<







()

ε
ε ε

where ε ~ .
b

> 0 0 (6-103)

In our study, ε ε επ~ ~ ~= =a b
= 0.0001.

6.5.5 Computation of Normalization

Each probability distribution of HMM parameters, which consist of conditional

probability, should satisfy the stochastic constraints at each iteration estimation.

~π i
i

N

=
∑ =

1

1 (6-104)

~aij
j

N

=
∑ =

1

1 where 1 ≤ i ≤ N (6-105)

~
()b oj t

ot

M

=
=

−

∑ 1
0

1

where 1 ≤ j ≤ N (6-106)

Since the probability of each parameter is reestimated at each iteration, the conflict with

the stochastic constraints always occurs. The sum of the above equation is not equal to 1,

particularly if the probability distribution of each parameter are smoothed by a numeric

floor at each iterative estimation. Therefore, it is necessary to normalize the probability

distributions of the HMM parameters so that the densities obey the required stochastic

constraints after each iteration of parameter reestimation and smoothing.

∑
=

=
N

k
k

i
i

1

~

~
~

π

ππ where 1 ≤ i ≤ N (6-107)

~
~

~
a

a

a
ij

ij

ik
k

N=

=
∑

1

where 1 ≤ i,j ≤ N (6-108)

136

136

~
()

~
()

~
()

b o
b o

b k
j t

j t

j t
kt

M=

=

−

∑
0

1 where 1 ≤ j ≤ N and 0 ≤ ot ≤ M-1 (6-109)

6.5.6 Computation of Convergence

Since the Forward-Backward procedure is based on local maxima estimation by

iterative computation to achieve global maximum, it is important to guarantee that the

reestimated parameter set
~

(~,
~

,
~

)λ π= A B is convergent. It is necessary to prove that model

~
(~ ,

~
,
~

)λ πi i i iA B+ + + +=1 1 1 1 following the i+1th iterative reestimation is either equal or more

likely than model
~

(~ ,
~

,
~

)λ πi i i iA B= at current ith reestimation in the sense that

P O P Oi i(|
~

) (|
~

) λ λ+ ≥1 . In other words, if the model
~
λi is replaced by

~
λi+1 and this

reestimation is repeated, then the probability of symbol sequence O being observed from

the given update model
~
λi+1 is improved until some limiting point is reached. The final

result of this reestimation procedure is a maximum likelihood estimation of the HMM.

Because

P O P O q
q qT

(
~

) (, |
~

)
...

 | λ λ= ∑
1

 (6-110)

Then an auxiliary function (6,79) is defined as

Q P O q P O qi i i i

q qT

(
~

,
~

) (, |
~

) log (, |
~

)
...

λ λ λ λ= ∑
1

 (6-111)

Q P O q P O qi i i i

q qT

(
~

,
~

) (, |
~

) log (, |
~

)
...

λ λ λ λ+ += ∑1 1

1

 (6-112)

over
~
λi+1 . Since

Q Q P O P Oi i i i i i(
~

,
~

) (
~

,
~

) (|
~

) (|
~

)λ λ λ λ λ λ+ +≥ ⇒ ≥1 1 (6-113)

137

137

we can maximize the auxiliary function Q i i(
~

,
~

)λ λ +1 over
~
λi+1 to the better

~
λi in order to

optimize the likelihood function P O(|
~

) λ . By iterating the procedure, the likelihood

function eventually converges to a critical point.

6.5.7 Computation of Confidence

Unlike the artificial neural networks, even though there is no learnable mapping

between input and output from the training process, HMM still can generate a satisfactory

input-output confidence (mapping) for the recognition process (because of the

computation consideration in section 6.5.4). The output of the HMM, P O(|
~

) λ , is a

probability instead of one taking all. If the output probability is close to 1, it indicates that

the input symbol sequence has high confidence (similarity) with the training model. If the

output probability is close to 0, it implies the input symbol sequence has low confidence

with the training model. The highest output probability among all training models is

always chosen to be the recognition result and the recognition confidence is evaluated as

well.

138

138

7.0 DETERMINATION OF HIDDEN MARKOV MODEL TOPOLOGY

An HMM topology is defined as the statistical behavior of an observable symbol

sequence in terms of a network of states, which represents the overall process behavior

with regard to movement between states of the process, and describes the inherent

variations in the behavior of the observable symbols within a state. An HMM topology,

then, consists of the number of states with varied connections between states which

depend on the occurrence of the observable symbol sequences being modeled. Each state

represents a similarly-behaving portion of an observable symbol sequence process, such as

phonemes to speech (59,76,79) and facial features to face identification (84). The variety of the

observable symbols for which the HMM uses a particular state is described in terms of the

distribution of probability that each observable symbol will occur from that state. At each

instant of time, the observable symbol in each sequence either stays at the same state

(called self-transition) or moves to another state based on a set of state-transition

probability associated between the states, which models the duration of each similarly-

behaving portion of the process. So, to determine the HMM topology is to choose the

types of HMM, such as ergodic, left-right or some others, and to decide the number of

states and the connections between states. To accomplish this, it is necessary to

understand the physical meaning of states represented by the corresponding observable

symbols.

7.1 The Method

If different HMM topologies are equivalent in their abilities to generate the same

recognition performance, then the simplest topology of these models is the best with the

fewest elements of model parameters. If the number of elements of model parameters for

139

139

an HMM is unnecessarily large, then its topology will not efficiently represent the

performance of the training data, and the model will incur unnecessary computational cost.

There exists no simple and theoretical method for determining the optimum topology

for an HMM. Currently, most HMM topologies are determined by experiments using

iterative trial-and-error processes, without discussing the physical meaning to support

their determinations of HMM topologies. To optimize the HMM recognition

performance, we develop a method to determine the HMM topology for our facial

expression recognition.

Facial expressions are recognized in the context of the entire image sequence of an

arbitrary length, so the left-right (or Bakis) model is employed to model the image

sequences whose properties change over time in a successive manner.

7.1.1 Step 1: The 1st-Order Markov Model

Since HMM is derived from a (observable) Markov model, the method for determining

the HMM topology is to start from the 1st-order left-right Markov model. The rule is:

Rule 1.1: The same and successive observable symbols of portion of each sequence will

occupy at one and only one state of the 1st-order left-right Markov model and

states are connected in order as the symbols in each sequence.

Example:

Based on a codebook of size M = 16, there is a training observable symbol sequence

with 3 different symbols ot , 0 ≤ ot ≤ M-1, in order ot=1~6 = 14, ot=7~8 = 6, and ot=9~11 = 9,

where t is the instant time (or frame number), and 11 frames (1 ≤ t ≤ 11 = T) in Figure 51.

This symbol sequence can be represented by a 1st-order 3-state left-right Markov model

where each state is occupied by an individual symbol.

140

140

Subject Number: 111

Expressions: AU12

Codebook Size: M = 16

Time (Frame Number) t: 1 2 3 4 5 6 7 8 9 10 11

Observable Symbol Sequence O: 14 14 14 14 14 14 6 6 9 9 9

Observable Symbol ot (0 ≤ ot ≤ M-1): (o1 o2 o3 o4 o5 o6) (o7 o8) (o9 o10 o11)

1st-Order 3-State Markov Model :

State-Transition Probability aij:

Observable Symbol Probability bj(ot):

(at state j time t)

7.1.2 Step 2: The 1st-Order Hidden Markov Model

The Markov model can be seen as a special case of an HMM having redundant states.

That is, for each state j at time t, the observable symbol probability bj(ot) has one 1.0,

others are 0.0. In HMM, each state tolerates probability distributions of different

observable symbols occurring at the same time. This HMM property allows us to combine

different 1st-order left-right Markov models into one 1st-order left-right HMM by

eliminating the redundant states without losing the individual performance. The rules are

as following:

Figure 51 A 1st-order 3-state Markov Model used to represent the
observable symbol sequence.

b1(o1~6=14)
= 1.0

b2(o7~8=6)
= 1.0

b3(o9~11=9)
= 1.0

a23a12
1 2 3

a11 a22 a33

141

141

Rule 2.1: If the observable symbols of each training sequence are shown only at the

initial state or at the last state of the 1st-order left-right Markov models, then

these observable symbols should be at the first state or at the last state of the

1st-order left-right HMM.

Rule 2.2: Each symbol having higher occupied probability among total observable

symbols from all 1st-order left-right Markov models will dominate one state of

the 1st-order left-right HMM. Each symbol having the lower occupied

probability among all observable symbols can be combined (absorbed) by its

neighbor states having the higher occupied probability among all observable

symbols at the 1st-order left-right HMM.

Rule 2.3: Symbols having the lower occupied probability among all observable symbols

taken from consecutive states at the 1st-order left-right Markov model can

combine to take one state at the 1st-order left-right HMM. If the occupied

probability of the sum of these symbols at this state at the 1st-order left-right

HMM is still lower, then as Rule 2.2, this state can be combined by its

neighbor states having the higher occupied probability among all observable

symbols at the 1st-order left-right HMM.

Rule 2.4: According to all 1st-order left-right Markov models, we can count the number

of connections (or state transitions) between two states as the connective

intensity between these two states. More numbers of connections have

stronger connective intensity between both states. Fewer numbers of

connections have weaker connective intensity between both states. During the

combination process, the connection between both states having stronger

connective intensity should keep the same status as that at the 1st-order left-

right Markov model. If the connection between both states having weaker

connective intensity will be easily broken, then either both states will combine

to become one state, or each state is combined by its neighbor state having the

142

142

higher occupied probability among all observable symbols at the 1st-order left-

right HMM.

Rule 2.5: The number of states at the 1st-order left-right HMM should be no more than

the maximum number of states among all 1st-order left-right Markov models.

Rules 2.2 and 2.3 are created according to the following HMM property. For each

state, if its self-transition probability is much lower than other state-transition probability,

then this state can be combined by its neighbor states without losing its original

performance. This is because without the self-transition, a state is merely an intermediate

state between other states. It cannot represent a meaningful portion of the process. The

meaningful portion of the process is represented by the probability of observable symbols

at the HMM.

The following examples demonstrate execution of the rules to combine different 1st-

order left-right Markov models into one 1st-order left-right HMM for each “expression

unit.” According to the number of total 1212 training images for recognition of the lower

facial expression using the dense flow tracking with principal component analysis (PCA)

method, the codebook size is M = 16 (24 < 1212/50 < 25). The observable symbol ot at

time t will be 0 ≤ ot ≤ 15.

Example 1:

In Figure 52 for “expression unit” AU12, there are twelve 1st-order left-right Markov

models with three different symbols having high occupied probability (14: 0.377, 6: 0.293,

and 9: 0.330). Using the rules:

Rule 2.1: Observable symbol 14 should be at the first state and observable symbol 9

should be at the last state of the 1st-order left-right HMM, since symbols 14

and 9 are at the first state and the last state of each Markov model,

respectively, with high occupied probability.

Rule 2.4: Symbol 6 has very strong connective intensity with symbol 14. It also has very

143

143

b1(ot=14)
= 1.0

b2(ot=6)
= 1.0

a12
1 2

a11 a22

The overall probability for each observable symbol from all 12 different symbol

sequences of the facial expression AU12: (O = {ot=6, ot=9, ot=14})

Major Symbols:
P(ot= 6|O) = 0.293
P(ot= 9|O) = 0.330
P(ot= 14|O) = 0.377

There are 5
1st-order 2-state Markov Models:

There are 7
1st-order 3-state Markov Models:

b1(ot=14)
= 1.0

b2(ot=6)
= 1.0

b3(ot=9)
= 1.0

a23a12
1 2 3

a11 a22 a33

Step 1: The 1st-Order Markov Model

Step 2: The 1st-Order Hidden Markov Model -

b1(ot=14)
≤ 1.0

b2(ot=6)
≤ 1.0

b3(ot=9)
≤ 1.0

a23a12
1 2 3

a11 a22 a33All 1st-order Markov Models at
Step 1 can be represented by
this 1st-order 3-state Hidden
Markov Model.

The major observable
symbols for each state:

Figure 52 A 1st-order Hidden Markov Model can be used to represent the
combination of all 1st-order Markov Models for facial expression AU12.

144

144

strong connective intensity with symbol 9 but in the opposite direction.

Symbol 9 does not have any connective intensity with symbol 14.

We can use a 1st-order 3-state left-right HMM with symbols 14, 6 and 9 for states 1, 2,

and 3, respectively, to represent all Markov models for “expression unit” AU12.

Example 2:

In Figure 53 for “expression unit” AU12, there are twelve 1st-order left-right Markov

models with three different symbols having high occupied probability (2: 0.385, 9: 0.372,

and 1: 0.243).

Rule 2.1: Symbols 2 and 1 should be at the first state and the last state of the 1st-order

left-right HMM, since both have high occupied probability and are at the first

state and last state for each Markov model.

Rule 2.2 & 2.4: Symbol 9 is either at the middle or last state at Markov model. Symbol 2

has stronger connective intensity with symbol 9 than that of symbol 1, so the

connection between symbol 2 and symbol 1 will be easy to break.

Based on the above analysis, we insert symbol 9 between symbols 1 and 2 by breaking the

connection between symbols 2 and 1. That is, we can model the training image sequences

of “expression unit” AU12 by a 1st-order 3-state HMM whose major probability of

observable symbols for state 1 is 2, for state 2 is 9, and for state 3 is 1.

Example 3:

In Figure 54 for “expression unit” AU15+17, there are thirteen 1st-order left-right

Markov models with two major symbols having higher occupied probability (2: 0.428 and

6: 0.459) and with two minor symbols having lower occupied probability (1: 0.082 and

12: 0.031).

Rule 2.1: Symbol 2 should be at the initial state and symbols 1 and 6 should be at the last

state of the 1st-order left-right HMM.

Rule 2.2: Since symbols 1 and 6 should be at the last state of the 1st-order left-right

145

145

b1(ot=2)
= 1.0

b2(ot=9)
= 1.0

a12
1 2

a11 a22

The overall probability for each observable symbol from all 12 different symbol

sequences of the facial expression AU12: (O = {ot=1, ot=2, ot=9})

Major Symbols:
P(ot= 1|O) = 0.243
P(ot= 2|O) = 0.385
P(ot= 9|O) = 0.372

There are 7
1st-order 2-state Markov Models:

There is 1
1st-order 3-state Markov Model:

b1(ot=2)
= 1.0

b2(ot=9)
= 1.0

b3(ot=1)
= 1.0

a23a12
1 2 3

a11 a22 a33

Step 1: The 1st-Order Markov Model -

Step 2: The 1st-Order Hidden Markov Model -

b1(ot=2)
≤ 1.0

b2(ot=9)
≤ 1.0

b3(ot=1)
≤ 1.0

a23a12
1 2 3

a11 a22 a33All 1st-order Markov Models at
Step 1 can be represented by
this 1st-order 3-state Hidden
Markov Model.

The major observable
symbols for each state:

Figure 53 A 1st-order Hidden Markov Model can be used to represent the
combination of all 1st-order Markov Models for facial expression AU12.

b1(ot=2)
= 1.0

b2(ot=1)
= 1.0

a12
1 2

a11 a22

There are 4
1st-order 2-state Markov Models:

146

146

b1(ot=2)
= 1.0

b2(ot=6)
= 1.0

a12
1 2

a11 a22

The overall probability for each observable symbol from all 13 different symbol

sequences of the facial expression AU15+17: (O = {ot=1, ot=2, ot=6, ot=12})

Major Symbols: Minor Symbols:
P(ot= 2|O) = 0.428 P(ot= 1|O) = 0.082
P(ot= 6|O) = 0.459 P(ot= 12|O) = 0.031

There are 7
1st-order 2-state Markov Models:

There are 2
1st-order 3-state Markov Models:

b1(ot=2)
= 1.0

b2(ot=12)
= 1.0

b3(ot=6)
= 1.0

a23a12
1 2 3

a11 a22 a33

Step 1: The 1st-Order Markov Model

Step 2: The 1st-Order Hidden Markov Model -

b1(ot=2)
≤ 1.0

b2(ot=6)
≤ 1.0

a12
1 2

a11 a22All 1st-order Markov Models at
Step 1 can be represented by
this 1st-order 2-state Hidden
Markov Model.

The major observable
symbols for each state:

Figure 54 A 1st-order Hidden Markov Model can be used to represent the
combination of all 1st-order Markov Models for facial expression
AU15+17.

b1(ot=2)
= 1.0

b2(ot=1)
= 1.0

a12
1 2

a11 a22

There are 2
1st-order 2-state Markov Models:

There are 2
1st-order 1-state Markov Models:

b1(ot=2)
= 1.0

1

a11

147

147

HMM and symbol 6 has a much higher occupied probability than that of

symbol 1, symbol 1 can be combined by symbol 6 and be at the same last state

of the HMM.

Rule 2.2 & 2.4: Symbols 2 and 6 have very strong connective intensity compared with

that between symbols 2 and 12 which has lower occupied probability. So

symbol 12 can be combined by its neighbor states taken by symbols 2 and 6

with higher occupied probability.

We use a 1st-order 2-state HMM with major symbols 2 and 6 for the first state and the

second (last) state, respectively.

Example 4:

In Figure 55 for “expression unit” AU15+17, there are twelve 1st-order left-right

Markov models with three major symbols having higher occupied probability (2: 0.539, 6:

0.269, and 14: 0.159) and with two minor symbols having lower occupied probability (1:

0.028 and 12: 0.005).

Rule 2.1: Symbol 2 should be only at the initial state, and symbols 1 and 14 should be

only at the last state of the 1st-order left-right HMM.

Rule 2.2: Symbol 1 (lower occupied probability) will be combined by symbol 14 (higher

occupied probability) and both are at the last state of the 1st-order left-right

HMM.

Rule 2.4: Symbols 2 and 6 have very strong connective intensity compared with those of

symbol 2 and 14, and 2 and 12 (lower occupied probability), so symbols 2 and

6 will strongly connect together by combined symbol 12.

According to the above analysis, three major occupied probability (2, 6, and 14) should

have their own states at HMM, since symbols 2 and 14 should dominate the first state and

last state, respectively. Symbol 6 has strong connective intensities between symbol 2 and

14, so symbol 6 will be at the middle state of the HMM. That is, a 1st-order 3-state left-

right HMM will be applied with major symbols 2, 6, and 14 at states 1, 2, and 3,

148

148

b1(ot=2)
= 1.0

b2(ot=14)
= 1.0

a12
1 2

a11 a22

The overall probability for each observable symbol from all 12 different symbol

sequences of the facial expression AU15+17: (O = {ot=1, ot=2, ot=6, ot=12, ot=14})

Major Symbols: Minor Symbols:
P(ot= 2|O) = 0.539 P(ot= 1|O) = 0.028
P(ot= 6|O) = 0.269 P(ot= 12|O) = 0.005
P(ot= 14|O) = 0.159

There is 1 1st-order 2-
state Markov Model:

Step 1: The 1st-Order Markov Model

Step 2: The 1st-Order Hidden Markov Model -

All 1st-order Markov Models at
Step 1 can be represented by
this 1st-order 3-state Hidden
Markov Model.

The major observable
symbols for each state:

Figure 55 A 1st-order Hidden Markov Model can be used to represent the
combination of all 1st-order Markov Models for facial expression
AU15+17.

b1(ot=2)
= 1.0

b2(ot=1)
= 1.0

a12
1 2

a11 a22

There is 1 1st-order 2-state
Markov Model:

There are 3 1st-order 1-
state Markov Models:

b1(ot=2)
= 1.0

1

a11

b1(ot=2)
= 1.0

b2(ot=6)
= 1.0

a12
1 2

a11 a22

There are 3 1st-order 2-
state Markov Models:

There are 3 1st-order 3-
state Markov Models:

b1(ot=2)
= 1.0

b2(ot=6)
= 1.0

a12
1 2

a11 a22

b3(ot=14)
= 1.0

a23
3

a33

There is 1 1st-order 3-
state Markov Model:

b1(ot=2)
= 1.0

b2(ot=12)
= 1.0

a12
1 2

a11 a22

b3(ot=6)
= 1.0

a23
3

a33

b1(ot=2)
≤ 1.0

b2(ot=6)
≤ 1.0

b3(ot=14)
≤ 1.0

a23a12
1 2 3

a11 a22 a33

149

149

respectively.

Example 5:

In Figure 56 for “expression unit” AU17+23+24, there are thirteen 1st-order left-right

Markov models with five major symbols having higher occupied probability (0: 0.111, 4:

0.191, 8: 0.155, 12: 0.133, and 14: 0.346) and with one minor symbol having lower

occupied probability (1: 0.064).

Rule 2.1: Symbol 14 should be at the first state, and symbols 0 and 8 should be at the last

state of the 1st-order left-right HMM.

Rule 2.2: Symbol 1 will be combined by its neighbor states since it has lower occupied

probability.

Rule 2.4: Symbol 12 has very strong connective intensities between symbols 14 and 4.

Symbol 4 has strong connective intensities between symbols 12 and 0.

Since symbols 0, 4, 8, 12, and 14 all have high occupied probability, symbol 14 should be

at the first state, and symbol 12 will be at the second state of the 1st-order left-right

HMM, which is right after symbol 14 but before symbol 4. Symbol 4 should domain one

state which is between symbols 12 and 0. Symbols 0 and 8 should be at the last states.

Rule 2.5: The total state numbers of the HMM should be no more than the maximum

state number of Markov models.

The final result is a 1st-order 4-state left-right HMM whose major probability of

observable symbols for each state is symbol 14 for state 1, symbol 12 for state 2, symbol 4

for state 3, and symbol 0 and 8 for the last state.

Example 6:

In Figure 57 for “expression unit” AU6+12+25, there are eleven 1st-order left-right

Markov models with three major symbols having higher occupied probability (3: 0.262, 7:

0.302, and 14: 0.274) and four minor symbols having lower occupied probability (6:

0.044, 9: 0.011, 11: 0.044, and 15: 0.063).

150

150

The overall probability for each observable symbol from all 13 different symbol

sequences of the facial expression AU17+23+24: (O = {ot=0, ot=1, ot=4, ot=8, ot=12,

ot=14}) Major Symbols: Minor Symbols:

P(ot= 0|O) = 0.111 P(ot= 4|O) = 0.191 P(ot= 1|O) = 0.064
P(ot= 8|O) = 0.155 P(ot= 12|O) = 0.131

Step 1: The 1st-Order Markov Model

Step 2: The 1st-Order Hidden Markov Model -

All 1st-order Markov Models at
Step 1 can be represented by
this 1st-order 4-state Hidden
Markov Model.

The major observable
symbols for each state:

Figure 56 A 1st-order Hidden Markov Model can be used to represent the
combination of all 1st-order Markov Models for facial expression
AU17+23+24.

b1(ot=14)
= 1.0

b2(ot=12)
= 1.0

a12
1 2

a11 a22

There is 1 1st-order 2-state
Markov Model:

b1(ot=14)
= 1.0

b2(ot=1)
= 1.0

a12
1 2

a11 a22

There is 1 1st-order 2-state

Markov Model:

b1(ot=14)
= 1.0

b2(ot=12)
= 1.0

a12
1 2

a11 a22

There are 3 1st-order 3-
state Markov Models:

b3(ot=4)
= 1.0

a23
3

a33

There are 3 1st-order 3-
state Markov Models:

There is 1 1st-order 3-
state Markov Model:

There are 4 1st-order 4-
state Markov Models:

b1(ot=14)
= 1.0

1

a11

b2(ot=12)
= 1.0

a12

2

a22

b3(ot=4)
= 1.0

a23

3

a33

b4(ot=0)
= 1.0

a34

4

a44

b1(ot=14)
=1.0

1

a11

b2(ot=12) = 1.0

a12

2

a22

b3(ot=8)
= 1.0

a23

3

a33

b1(ot=14)
=1.0

1

a11

b2(ot=1) = 1.0

a12

2

a22

b3(ot=8)
= 1.0

a23

3

a33

b1(ot=14)
≤ 1.0

b2(ot=12)
≤ 1.0

a12
1 2

a11 a22

b3(ot=4)
≤ 1.0

a23
3

a33

{b4(ot=0) +
 b4(ot=8)}
 ≤ 1.0

a34
4

a44

151

151

The overall probability for each observable symbol from all 11 different symbol

sequences of the facial expression AU6+12+25: (O = {ot=3, ot=6, ot=7, ot=9, ot=11,

ot=14, ot=15}) Major Symbols: Minor Symbols:

P(ot= 3|O) = 0.262 P(ot= 6|O) = 0.044 P(ot= 9|O) = 0.011
P(ot= 7|O) = 0.302 P(ot= 11|O) = 0.044 P(ot= 15|O) = 0.063
P(ot= 14|O) = 0.274

Step 1: The 1st-Order Markov Model

b1(ot=14)
= 1.0

b2(ot=11)
= 1.0

a12
1 2

a11 a22

There is 1 1st-order 3-state Markov
Model:

b3(ot=15)
= 1.0

a23
3

a33

b1(ot=14)
= 1.0

b2(ot=11)
= 1.0

a12
1 2

a11 a22

There are 3 1st-order 3-state Markov

Models:

b3(ot=3)
= 1.0

a23
3

a33

b1(ot=14)
= 1.0

b2(ot=6)
= 1.0

a12
1 2

a11 a22

There is 1 1st-order 3-state Markov
Model:

b3(ot=3)
= 1.0

a23
3

a33

Figure 57 (Continued)

152

152

Step 2: The 1st-Order Hidden Markov Model -
All 1st-order Markov Models at
Step 1 can be represented by
this 1st-order 4-state Hidden
Markov Model.

Figure 57 A 1st-order Hidden Markov Model can be used to represent the
combination of all 1st-order Markov Models for facial expression
AU6+12+25.

There are 2 1st-order 5-state Markov
Models:

b1(ot=14)
= 1.0

1

a11

b2(ot=6)
= 1.0

a12

2

a22

b3(ot=9)
= 1.0

a23

3

a33

b4(ot=3)
= 1.0

a34

4

a44

b5(ot=7)
= 1.0

a45

5

a55

There is 1 1st-order 5-state Markov
Model:

b1(ot=14)
= 1.0

1

a11

b2(ot=6)
= 1.0

a12

2

a22

b3(ot=11)
= 1.0

a23

3

a33

b4(ot=3)
= 1.0

a34

4

a44

b5(ot=7)
= 1.0

a45

5

a55

b1(ot=14)
≤ 1.0

{b2(ot=6) +
 b2(ot=9) +
 b2(ot=11)}
 ≤ 1.0

a12
1 2

a11 a22

b3(ot=3)
≤ 1.0

a23
3

a33

b4(ot=7)
≤ 1.0

a34
4

a44

The major observable
symbols for each state:

There is 1 1st-order 4-state Markov
Model:

b1(ot=14)
= 1.0

1

a11

b2(ot=6)
= 1.0

a12

2

a22

b3(ot=3)
= 1.0

a23

3

a33

b4(ot=7)
= 1.0

a34

4

a44

There is 1 1st-order 4-state Markov
Model:

b1(ot=14)
= 1.0

1

a11

b2(ot=6)
= 1.0

a12

2

a22

b3(ot=9)
= 1.0

a23

3

a33

b4(ot=3)
= 1.0

a34

4

a44

153

153

Rule 2.1: Symbol 14 should be at the first state, and symbols 7 and 15 should be at the

last state of the 1st-order left-right HMM.

Rule 2.2: Symbol 15 (lower occupied probability) will be combined by symbol 7 (higher

occupied probability) at the last state of the HMM.

Rule 2.3 & 2.4: For three symbols having lower probability (6, 9, and 11), symbol 9 is

always after symbol 6. Symbol 6 is always at the second state after symbol 14

at the first state. Symbol 11 is either following symbol 6 or at the second state

after symbol 14. Symbol 3 has no connective intensity with symbol 14 taken

the first state. So all three symbols (6, 9, and 11) can combine together and

take the second state of the HMM. We can then find that symbol 3 has strong

connective intensities between the second state (taken by symbols 6, 9, and 11)

and the last state (taken by symbols 7 and 15).

A 1st-order 4-state left-right HMM whose major probability of observable symbols for

state 1 is 14, for state 2 is 6, 9, and 11, for state 3 is 3, and for state 4 is 7 will be

employed.

Example 7:

In Figure 58 for “expression unit” AU6+12+25, there are twelve 1st-order left-right

Markov models with four major symbols having higher occupied probability (2: 0.305, 3:

0.109, 5: 0.287 and 11: 0.236) and with three minor symbols having lower occupied

probability (1: 0.003, 9: 0.030, and 10: 0.030).

Rule 2.1: Symbol 2 should be at the first state, and symbols 3 and 11 should combine and

be at the last state of the 1st-order left-right HMM.

Rule 2.3 & 2.4: Symbols 9 and 10 are always at the second state which is after symbol 2

at the first state, so both symbols can combine together at the second state.

Symbol 5 has very weak connective intensity with the first state, but it has very

strong connective intensities between the second and the last state.

Rule 2.2: Symbol 1 can be combined by both symbols 9 and 10 at the second state and

154

154

The overall probability for each observable symbol from all 12 different symbol

sequences of the facial expression AU6+12+25: (O = {ot=1, ot=2, ot=3, ot=5, ot=9,

ot=10, ot=11}) Major Symbols: Minor Symbols:

P(ot= 2|O) = 0.305 P(ot= 3|O) = 0.109 P(ot= 1|O) = 0.003
P(ot= 5|O) = 0.287 P(ot= 11|O) = 0.236 P(ot= 9|O) = 0.030

P(ot= 10|O) = 0.030

Step 1: The 1st-Order Markov Model

b1(ot=2)
= 1.0

b2(ot=5)
= 1.0

a12
1 2

a11 a22

There are 2 1st-order 3-state
Markov Models:

b3(ot=11)
= 1.0

a23
3

a33

b1(ot=2)
= 1.0

b2(ot=10)
= 1.0

a12
1 2

a11 a22

There are 3 1st-order 3-state Markov

Models:

b3(ot=5)
= 1.0

a23
3

a33

b1(ot=2)
= 1.0

b2(ot=9)
= 1.0

a12
1 2

a11 a22

There are 2 1st-order 3-state Markov
Models:

b3(ot=5)
= 1.0

a23
3

a33

Figure 58 (Continued)

155

155

Step 2: The 1st-Order Hidden Markov Model -
All 1st-order Markov Models at
Step 1 can be represented by
this 1st-order 4-state Hidden
Markov Model.

Figure 58 A 1st-order Hidden Markov Model can be used to represent the
combination of all 1st-order Markov Models for facial expression
AU6+12+25.

There are 2 1st-order 5-state Markov
Models:

There is 1 1st-order 5-state Markov
Model:

b1(ot=2)
= 1.0

1

a11

b2(ot=9)
= 1.0

a12

2

a22

b3(ot=1)
= 1.0

a23

3

a33

b4(ot=5)
= 1.0

a34

4

a44

b5(ot=3)
= 1.0

a45

5

a55

b1(ot=2)
≤ 1.0

{b2(ot=9) +
 b2(ot=10)}
 ≤ 1.0

b3(ot=5)
≤ 1.0

{b4(ot=3) +
 b4(ot=11)}
 ≤ 1.0

a12
1 2

a11 a22

a23
3

a33

a34
4

a44

The major observable
symbols for each state:

There is 1 1st-order 4-state Markov
Model:

b1(ot=2)
= 1.0

1

a11

b2(ot=9)
= 1.0

a12

2

a22

b3(ot=5)
= 1.0

a23

3

a33

b4(ot=3)
= 1.0

a34

4

a44

There is 1 1st-order 4-state Markov
Model:

b1(ot=2)
= 1.0

1

a11

b2(ot=10)
= 1.0

a12

2

a22

b3(ot=5)
= 1.0

a23

3

a33

b4(ot=11)
= 1.0

a34

4

a44

b1(ot=2)
= 1.0

1

a11

b2(ot=9)
= 1.0

a12

2

a22

b3(ot=5)
= 1.0

a23

3

a33

b4(ot=11)
= 1.0

a34

4

a44

156

156

symbol 5 having high occupied probability.

We can use a 1st-order 4-state left-right HMM whose major probability of observable

symbols is 2 for state 1, 9 and 10 for state 2, 5 for state 3, and 3 and 11 for state 4 to

represent the performance of original all Markov models.

Example 8:

In Figure 59 for “expression unit” AU20+25, there are eighteen 1st-order left-right

Markov models with three major symbols having higher occupied probability (2: 0.404,

10: 0.212, and 11: 0.128) and with seven minor symbols having lower occupied

probability (3: 0.080, 5: 0.060, 6: 0.003, 7: 0.014, 12: 0.003, 13: 0.074, and 14: 0.021).

Rule 2.1 & 2.3: Symbol 2 should be at the first state. Symbols 5, 7, 13, and 14 will be

combined by symbol 11 (higher occupied probability) and be at the last state of

the 1st-order left-right HMM.

Rule 2.2 & 2.4: Since symbol 10 (high occupied probability) has strong connective

intensity with the first state taken by symbol 2, and also has strong connective

intensity with the following state, it is not likely to be at the last state of HMM.

Rule 2.2: The state having symbols 3, 6 or 12 will be combined by its neighbor states

with higher occupied probability of symbols.

Rule 2.4: Symbols 5, 7, 11, 13, and 14 at the last state will have strong connective

intensity with symbol 10 at the second state of HMM.

So a 1st-order 3-state left-right HMM whose major probability of observable symbols is 2

for state 1, 10 for state 2, and 5, 7, 11, 13 and 14 for state 3 will be employed.

157

157

The overall probability for each observable symbol from all 18 different symbol

sequences of the facial expression AU20+25: (O = {ot=2, ot=3, ot=5, ot=6, ot=7, ot=10,

ot=11, ot=12, ot=13, ot=14})

Major Symbols: Minor Symbols:

P(ot= 2|O) = 0.404 P(ot= 3|O) = 0.080 P(ot= 5|O) = 0.060
P(ot= 10|O) = 0.212 P(ot= 6|O) = 0.003 P(ot= 7|O) = 0.014
P(ot= 11|O) = 0.128 P(ot= 12|O) = 0.003 P(ot= 13|O) = 0.074

P(ot= 14|O) = 0.021
Step 1: The 1st-Order Markov Model

b1(ot=2)
= 1.0

b2(ot=5)
= 1.0

a12
1 2

a11 a22

There is 1 1st-order 3-state Markov
Model:

b1(ot=2)
= 1.0

b2(ot=10)
= 1.0

a12
1 2

a11 a22

There are 4 1st-order 3-state Markov
Models:

Figure 59 (Continued)

b1(ot=2)
= 1.0

b2(ot=12)
= 1.0

a12
1 2

a11 a22

There is 1 1st-order 3-state Markov
Model:

b3(ot=5)
= 1.0

a23
3

a33

b1(ot=2)
= 1.0

b2(ot=10)
= 1.0

a12
1 2

a11 a22

There are 3 1st-order 3-state Markov
Models:

b3(ot=13)
= 1.0

a23
3

a33

158

158

Step 2: The 1st-Order Hidden Markov Model -
All 1st-order Markov Models at
Step 1 can be represented by
this 1st-order 3-state Hidden
Markov Model.

Figure 59 A 1st-order Hidden Markov Model can be used to represent the
combination of all 1st-order Markov Models for facial expression
AU20+25.

There is 1 1st-order 4-state Markov
Model:

There is 1 1st-order 4-state Markov
Model:

b1(ot=2)
≤ 1.0

b2(ot=10)
≤ 1.0

a12
1 2

a11 a22

a23
3

a33

{b3(ot=5) +
 b3(ot=7) +
 b3(ot=11) +
 b3(ot=13) +
 b3(ot=14)
 ≤ 1.0

The major observable
symbols for each state:

There are 4 1st-order 3-state Markov
Models:

There are 3 1st-order 3-state Markov
Models:

b1(ot=2)
= 1.0

1

a11

b2(ot=6)
= 1.0

a12

2

a22

b3(ot=10)
= 1.0

a23

3

a33

b4(ot=14)
= 1.0

a34

4

a44

b1(ot=2)
= 1.0

b2(ot=10)
= 1.0

a12
1 2

a11 a22

b3(ot=3)
= 1.0

a23
3

a33

b1(ot=2)
= 1.0

b2(ot=10)
= 1.0

a12
1 2

a11 a22

b3(ot=11)
= 1.0

a23
3

a33

b1(ot=2)
= 1.0

1

b2(ot=10)
= 1.0

a12

2

b3(ot=3)
= 1.0

a23

3

b4(ot=7)
= 1.0

a34

4

a11 a22 a33 a44

159

159

7.1.3 Step 3: The Multi-Order Hidden Markov Model

The property of an HMM is such that each state can be reached by any state based on

the connections of state transitions. We can therefore combine different state numbers of

1st-order left-right HMMs into one multi-order multi-state left-right HMM, without loss

of the individual performance.

Rule 3.1: The initial multi-order N-state left-right HMM is the same as the 1st-order N-

state left-right HMM which has the maximum number state N of all 1st-order

n-state left-right HMMs formed at Step 2.

N = max {n} (7-1)

Rule 3.2: If there exist 1st-order n-state left-right HMMs at Step 2, then the states at the

multi-order N-state left-right HMM should be connected between states i and j

(i.e., there exists state-transition probability aij) as follow:

)1(0 +−+=≥ nNijifaij where 1 ≤ ≤i j N, (7-2)

Example:

According to the above example analysis at Step 2, we use 1st-order 2-state (n = 2), 3-

state (n = 3), and 4-state (n = 4) left-right HMMs to model various “expression units” of

individual AUs or AU combinations for lower facial expressions. Using the above rules,

we can use a 3rd-order 4-state (N = max {n} = 4) left-right HMM to include all

possibilities of state-transition probability (aij) and observable symbol probability (bj(ot))

among all 1st-order left-right HMMs at Step 2 (Figure 60).

160

160

Rule 3.1: The number of states N for the multi-order N-state Hidden Markov Model -

N = max {n} = max {2,3,4}= 4

a12
1 2

a11 a22

a12
1 2

a11 a22

a23
3

a33

a12
1 2

a11 a22

a23
3

a33

a34
4

a44

Number of states:

n = 2

Number of states:

n = 3

Number of states:

n = 4

1st-order n-state Hidden Markov Model (n = 2, 3, 4):

a12
1 2

a11 a22

a23
3

a33

a34
4

a44

Figure 60 (Continued)

161

161

Figure 60 The 1st-order 2-, 3- and 4-state Hidden Markov Models can combine
to be a 3rd-order 4-state Hidden Markov Model.

Rule 3.2: The combination of the 1st-order 2-, 3- and 4-state Hidden Markov Models -

a12
1 2

a11 a22

a23
3

a33

a34
4

a44

a12
1 2

a11 a22

a23
3

a33

a34
4

a44

Compatible to the 1st-order 2-
state Hidden Markov Model

a14 a13 a24

Compatible to the 1st-order 3-
state Hidden Markov Model

The 1st-order 4-state Hidden
Markov Model

a12
1 2

a11 a22

a23
3

a33

a34
4

a44

1. The 1st-order 2-, 3- and 4-state Hidden Markov Models can be represented by
different multi-order 4-state Hidden Markov Models:

2. All above multi-order 4-state Hidden Markov Models can combine to be a 3rd-
order 4-state Hidden Markov Model.

a13 a24

a12
1 2

a11 a22

a23
3

a33

a34
4

a44

a14

162

162

7.2 Physical Meaning of Hidden Markov Model Topology

One advantage of starting from the Markov model in determining the HMM topology

is avoidance of the redundant states and connections (state transitions) at the HMM. The

“redundant state” means multiple states connected in series which are represented by the

same observable symbol having the major observable symbol probability bj(ot) (such as

bj(ot) > 0.90) at each state. In addition, this kind of redundant state is always an

intermediate state and always occurs simultaneously with a very low self-transition

probability aii (such as aii < 0.01). The “redundant state transition” means the state-

transition probability is close or equal to zero. Both redundant situations will increase the

elements of HMM parameters and increase the computation time. Because of this, HMM

parameters may difficult to adapt in order to perform well the statistical behavior of the

training data. Our method begins with assigning each individual symbol of each

observable symbol sequence to one state of the 1st-order left-right Markov model. Then,

based on the HMM properties, the state numbers of the 1st-order left-right Markov model

are reduced by the combination of redundant states. State connections of the 1st-order

left-right HMM are increased when required to form the optimal multi-order left-right

HMM.

If the HMM has an insufficient number of states or state transitions, then the physical

meaning corresponding to each state will be difficult to represent, and the temporal

consideration for state transitions will be lost. Furthermore, the ability of the model to

represent the training sequences will degrade, which will lower performance of the

recognition process. Using our method, the state combinations still maintain the property

of each major symbol (high occupied probability) dominating one state of the multi-order

left-right HMM (but each state of this HMM can contain one or several major symbols).

Further, the connections between states (i.e., state transitions) at the multi-order left-right

HMM contain all transition possibilities over all training symbol sequences. Therefore,

our method can ensure that the multi-order left-right HMM has exactly as many states and

state transitions as the training symbol sequences required to be modeled.

163

163

Extracted Methods Input Vector Sequence
 for the HMM

Physical Meaning of each
HMM State

Feature Point Tracking Displacement Vector
Sequence

The displacements of facial
feature points

Dense Flow Tracking
with Principal
Component Analysis

Weight Vector Sequence The displacements of the
entire upper or lower facial
region

High Gradient
Component Analysis

Mean-Variance Vector
Sequence

The distribution of furrow
variation

According to our method for determining the HMM topology, each state at the multi-

order left-right HMM consists of one or several major symbols having high occupied

probability, and many other minor symbols having low occupied probability to represent a

similarly-behaving portion of training symbol sequences. Using these symbols, it can

obviously realize the physical meaning of each state corresponding to a portion of these

training observable symbol sequences, such as those in Table 8.

The number of states for each HMM is proportional to some measure of variation in

motion as well as variation (deviation) among the training motion data of different classes.

In our study, the motion deviation among these three “expression units” of the upper facial

expressions is smaller than that among these six “expression units” of the lower facial

expressions. Based on this method for determination of HMM topology, a 2nd-order 3-

state left-right HMM is created to model the three upper facial expressions, and a 3rd-

order 4-state left-right HMM for the six lower facial expressions.

Table 8 Physical meaning of the Hidden Markov Model topology.

164

164

8.0 EXPERIMENTAL RESULTS

The computer-vision based facial expression recognition system described in the

previous chapters has been trained and experimented with a large set of image sequences

containing nine frequently occurred facial expressions of many subjects with various

expression intensities. The experimental results are very exciting and have shown a great

promise of our automatic recognition system.

8.1 Data Acquisition, Experimental Setup, and Digitizing

The database consists of 90 adult volunteers and 4 infants. The subjects included both

male (35%) and female (65%). They ranged in both age (from 1 to 35 years of age) and

ethnicity (81% Caucasian, 14% African-American, 4% Asian or Indian, and 1% Hispanic).

The data acquisition was done in 8 sessions over a 2-month period 1. More than 400

image sequences and 8000 images were made available to this research.

Adult subjects were seated 2 meters directly in front of a standard VHS video camera,

with a video rate of 30 frames per second, which was manually adjusted to capture a full-

face frontal view. None of the subjects wore eyeglasses. Some of subjects had hair

covering their foreheads, and several subjects wore caps, or had makeup on their brows,

eyelids or lips. Overhead fluorescent and incandescent lights as well as two halogen lights

attached to portable umbrellas were positioned to the front at 30 degrees left and right,

and were adjusted to provide maximum illumination with a minimum of facial shadows

(Figure 61). Although reflection and lighting may have varied across individuals because

of different facial skin colors and different times, constant illumination was used for each

subject. These constraints - constant illumination using
1 This was done by Miss Adena J. Zlochower and Dr. Jeffrey F. Cohn, Department of

Psychology, University of Pittsburgh.

165

165

fixed light sources, and no eyeglasses - were imposed to minimize optical flow

degradation.

None of the subjects were previously trained in displaying specific facial expressions.

Prior to video recording, subjects practiced the expressions with FACS experts. During

recording, subjects were free to look at the experts and copy their expressions. Subjects

were asked to perform six basis expressions (joy, fear, anger, disgust, sadness, and

surprise), and a series of “expression units” corresponding to individual AUs (e.g., AU12)

and AU combinations (e.g., AU12+25) (see Table 3 for a complete list, and Figure 4 for

“expression units”). Each expression was repeated 3 times, and the best expression was

chosen. Each posed expression began from neutral, reached peak, and ended at neutral

Figure 61 Experimental setup.

+300

-300

Subject

Light

Light

VHS Video
Camera

2 m

166

166

expressions again. There is at least a half second duration (15 frames) of neutral

expression between posed expressions. Even though these untraining subjects have seen

the expressions demonstrated by experts, subjects still showed a range of posing ability.

Not all of the expressions conformed to the “expression units,” such as the combination of

“expression units”: AU1+2+4, AU12+20+25 and AU12+15. The spontaneous

expressions showed more variability. In addition, facial expressions (non-rigid motion)

with some out-of-plane head motion (rigid motion) such as yawing or pitch less than ±100

occurred concurrently, even though all subjects were viewed frontally.

Each frame of video sequence was automatically digitized into 490 x 640-pixel image

on a Sun Sparc 20 workstation using the K2T digitizer. For feature point tracking and

high gradient component analysis, the size of each frame was kept the same as the original

490 x 640-pixel image. To save the computing time when using dense flow tracking, the

image size of each frame was automatically cropped to 417 x 385 pixels, which exactly

covered the entire face and cut out the unnecessary background.

8.2 Segmentation and Coding by Human Observers (Ground Truth)

Before digitizing, the image sequences were segmented and coded by two certified

FACS coders. Training a FACS coder is time consuming and takes approximately 100

hours to achieve acceptable levels of reliability, and coding criteria are subject to drift over

the course of prolonged studies. It can take up to 10 hours of coding time per minute (30

frames/second) of taped facial behavior depending on the comprehensiveness of the

system and the density of behavior changes.

Certified FACS coders segmented video tape from the beginning of the beginning

duration, to the apex duration, and finally to the end of the ending duration to capture an

expression sequence (103). For each expression sequence, the beginning duration is defined

as the last 2 ~ 4 frames of the neutral expression, which are prior to the facial movement,

to the beginning of the apex duration. The ending duration is defined as from the end of

167

167

the apex duration to the first 2 ~ 4 frames of the neutral expression, which are after facial

movement. The apex duration is defined as the maximum movement of facial motion,

which is between the end of the beginning duration and the beginning of the ending

duration. According to our experiments, generally there are at least 3 frame without any

obvious movement at the apex duration (Figure 62). The velocity of facial motion for the

beginning duration or the ending duration increases then decreases, like the oscillation of a

spring between compression and release (Figure 62). Different expressions (from the

beginning of the beginning duration to the end of the ending duration) correspond to

different durations from 1/2 second (15 frames) to 3 1/3 seconds (100 frames).

All expression sequences were coded by two FACS experts at different dates. The

overall agreement between the two FACS experts is 97%. Disagreement occurred due to

fatigue during observation, which produced misclassification of subtly asymmetric

expressions, eye blinking, or out-of-plane head motion. The agreement at eyebrow (upper

face) expressions for AU1+4 was only 78%, because it is easy to confuse AU1+4 with

either AU1 or AU4. The confusing between AU1+4 and AU1 occurs when very weak

inner brows close together during inner brow raised, or the Ω shape of the furrow appears

at the forehead during inner brow raised but without closing inner brows together (Figure

63.a). The confusion between AU1+4 and AU4 occurs when inner brows close together

with eye blinking, head rotation pitching in the vertical direction, the Ω shape of furrow at

the forehead, or asymmetric brow motion (Figure 63.b) In addition, the confusion among

AU12+25, AU20+25 and AU12+20+25 also occurs sometimes, because these “expression

units” have common muscle movement in the lip region (Figure 63.c). The final FACS

AU coding for each expression sequence, which includes the subtle motion, instant motion

(expression appears temporarily for only few frames but can not be seen at the peak

expressions) and asymmetric motion, is set by the agreement of both FACS experts to be

the ground true of our training and recognition processes.

In our experimental study, we used image sequences which start from the beginning of

the beginning duration and end during the apex duration. These digitized image sequences

168

168

Expression
Intensity

Frame
10 15 25

0.0

0.5

1.0

Beginning Duration Ending Duration
Apex

Duration

Neutral
Expression

Neutral
Expression

One Facial Expression

Figure 62 Each facial expression begins from the beginning duration,
continues through the apex duration, and ends at the ending
duration. In our current work, we segmented each facial
expression to include only the beginning and apex durations.

0 5 20

169

169

Ω shape of furrows (usually occurs in AU1+4) appears when the inner
brows are raised (AU1).

Medial portion of the eyebrows is raised (AU1) and pulled together (AU4).

Both left (AU1) and right images (AU1+2) have the same permanent Ω
shapes of furrows at her forehead (usually in AU1+4).

AU1+15+17 AU1+2+12+27

AU1+17 AU1+15+17

AU1+4+20+25 AU1+4+20+25

Standard AU1+4

Figure 63.a Standard AU1+4 expressions and manual misclassification of three
AU1 expressions and one AU1+2 expression to AU1+4 expressions.

170

170

Figure 63.b Manual misclassification of three AU4 expressions to AU1+4
expressions. These mistakes are because of (1) Ω shape of furrows at
the forehead, (2) confusing expression, and (3) asymmetric brow
motion. The standard AU4 expression is shown in Figure 63.c (3).

(1) AU4+15+17 (3) AU4+20+25(2) AU4+15+17

(1) AU1+4+20+25 (2) AU1+4+12+20+25
 Confusion between
 AU4 and AU1+4 occurs

(3) AU4+12+20+25

Figure 63.c Confusions among AU12+25, AU20+25 (also in Figure 63.a and
63.b) and AU12+20+25.

(4) AU6+12+25 (5) AU6+12+25

171

171

are in arbitrary length varying from 9 to 47 frames. The average number of images per

expression sequence is about 20.

8.3 Automatic Expression Recognition

Our goal is to discriminate subtle differences in facial expressions for the upper face

region: AU4, AU1+4, and AU1+2, and for the lower face region: AU12, AU6+12+25,

AU20+25, AU9+17, AU17+23+24, and AU15+17. The experimental image sequences

were processed for extraction of expression information and coding. About one half of

them were used in training, and the other half in testing. From these two sets, subsets

were processed by three methods (facial feature point tracking, dense flow tracking with

PCA, and high gradient component analysis). The extracted expression information is

normalized using affine transformation, converted to displacement vector sequences,

weight vector sequences, and mean-variance vector sequences, and then vector quantized

into symbol sequences for use in training and recognition processes (Figure 64).

8.3.1 Training Process

In reality, the same facial expression may appear different among individuals because

of different motion intensities. To design a robust recognition system, the training data

were selected to cover all possible facial actions and expression intensities for each facial

expression (Figure 65). Motions in upper facial expressions and in lower facial

expressions were separately extracted. For upper facial expressions, the training data

consist of 100 image sequences for high gradient component analysis, 60 image sequences

for facial feature point tracking, and of which a subset of 45 sequences for dense flow

tracking. For lower facial expressions, the training data consist of 120, 120, and 60 image

sequences, respectively (Table 9). We used a smaller subset of data for dense flow

tracking because of its requirement of excessive processing time.

172

172

Motion Furrow
Sequences

Rigid and Non-rigid Motion Separation and Geometric Normalization

Mean-Variance
Vector Sequences

Dense Flow
Sequences

Principal Component
Analysis

Weight Vector
Sequences

Displacement Vector
Sequences

Gradient Distribution

Feature Point Flow
Sequences

Hidden Markov
Model

Hidden Markov
Model

Hidden Markov
Model

Figure 64 Three sets of extracted information as inputs to the recognition
system using Hidden Markov Models.

Extraction System

Symbol SequencesSymbol SequencesSymbol Sequences

Vector QuantizationVector QuantizationVector Quantization

Recognition System

173

173

Figure 65 The images at the same row have the same facial expressions, but
different facial actions or expression intensities.

AU12 AU12

AU6+12+25 AU6+12+25

AU15+17 AU15+17

AU4+17+23+24 AU4+17+23+24

AU15+17

AU4+17+23+24

174

174

Methods for the
Extraction of
Expression
Information

Feature Point
Tracking

Dense Flow
Tracking with

Principal
Component

Analysis

High Gradient
Component

Analysis in the
Spatio-Temporal

Domain

Codebook Size (M)
for the Upper Facial
Expressions

Hidden Markov
Model (HMM)

M = 16

(60 training symbol
sequences)

2nd-order 3-state
left-right HMM

M = 16

(45 training symbol
sequences)

2nd-order 3-state
left-right HMM

M = 32

(100 training
symbol sequences)

2nd-order 3-state
left-right HMM

Codebook Size (M)
for the Lower Facial
Expressions

Hidden Markov
Model (HMM)

M = 32

(120 training
symbol sequences)

3rd-order 4-state
left-right HMM

M = 16

(60 training symbol
sequences)

3rd-order 4-state
left-right HMM

M = 32

(120 training
symbol sequences)

3rd-order 4-state
left-right HMM

Table 9 Different Hidden Markov Models for 3 upper facial expressions
and 6 lower facial expressions.

a13

a12
1 2

a11 a22

a23
3

a33

The 2nd-order 3-state left-right
Hidden Markov Model for AU4,
AU1+4, and AU1+2.

a13 a24

a12
1 2

a11 a22

a23
3

a33

a34
4

a44

a14

The 3rd-order 4-state left-right
Hidden Markov Model for AU12,
AU6+12+25, AU20+25, AU9+17,
AU17+23+24, and AU15+17.

175

175

Before using HMMs for training or recognition process, any motion vector sequence

is preprocessed by vector quantization to an observable symbol sequence O. The

codebooks are created based on their corresponding training data. The codebook size M,

which is power of 2, is chosen to be less than or equal to the total number of training

frames divided by 50. So, the codebook size for the training data having 45 and 60 image

sequences (around 45 x 20 = 900 and 60 x 20 = 1200 frames) is M = 24 (24 ≤ 900/50 = 18,

and 1200/50 = 24 < 25) (Table 9). The codebook size for the training data having 100 and

120 image sequences (around 100 x 20 = 2000, and 120 x 20 = 2400 frames) is M = 25 (25

≤ 2000/50 = 40, and 2400/50 = 48 < 26) (Table 9). The 12- and 20-dimensional

displacement vectors from feature point tracking (for upper and lower facial expressions,

respectively) (Figure 19), the 20- and 30-dimensional weight vectors from the dense flow

tracking with principal component analysis (PCA) (Figures 29 and 30), and the 32- and

32-dimensional mean-variance vectors from the high gradient component analysis (Figure

41) are each vector quantized to one codeword (or observable symbol) ot, 0 ≤ ot ≤ M-1,

according to its respective codebook, where the subscript t denotes the frame t.

Based on these training symbol sequences, we determine the HMM topology using the

method that we have developed. Thus, a 2nd-order 3-state left-right HMM and a 3rd-

order 4-state left-right HMM are used for modeling the three upper facial expressions and

six lower facial expressions, respectively (Table 9).

There are three sets of information extracted from the upper and lower facial

expressions data by three methods. For each set of data, two sets of HMM parameters λ

= (π,A,B) are trained. Parameter sets λAU4, λAU1+4, and λAU1+2 characterize the most likely

occurrences of the three upper facial “expression units” (individual AUs or AU

combinations), and sets λAU12, λAU6+12+25, λAU20+25, λAU9+17, λAU17+23+24, and λAU15+17

characterize the six lower facial “expression units.” These trained HMM parameter sets

serve to evaluate any observable symbol sequence of facial expression to give the most

likely classification (Figure 66).

To initialize the training of each model parameter set, the initial state probability at the

176

176

first state π1 is set to 1, and the rest states are set to 0. Each element of the state-

transition probability matrix ANxN and the output observable symbol probability matrix

BMxN is initialized to a very small value (say, 10-6) of a uniformly distributed random

variable. The Baum-Welch method is then applied to estimate the parameters λ = (π,A,B)

in iterations based on the Forward procedure (variable α) and the Backward procedure

(variable β). After each iteration, the estimated probability for each element of these

parameters is smoothed by setting a numeric floor 0.0001 to avoid zeroing the parameter

element and producing an unreliable result. They are then renormalized to meet the

Figure 66 The training process for the Hidden Markov Model (an example for
the lower facial expressions: AU12, AU6+12+25, AU20+25,
AU9+17, AU17+23+24 and AU15+17).

Initial Parameter
Estimation

Baum-Welch
Parameter Estimation

AU12
Symbol

Sequence Set

AU15+17
Symbol

Sequence Set

Baum-Welch
Parameter Estimation

λAU12 =
(πAU12, AAU12, BAU12)

λAU15+17 =
(πAU15+17, AAU15+17,
 BAU15+17)

Recognition Process

177

177

π

 State 1 State 2 State 3 State 4

1.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000

A
State State 1 State 2 State 3 State 4

1
2
3
4

0.852713734696394 0.147286265303606 0.000000000000000 0.000000000000000
0.000000000000000 0.530337222246666 0.106073169816378 0.363589607936957
0.000000000000000 0.000000000000000 0.861441737692501 0.138558262307499
0.000000000000000 0.000000000000000 0.000000000000000 1.000000000000000

B
Symbol State 1 State 2 State 3 State 4

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000
0.000000000000000 0.000006813844404 0.028598228023638 0.000000000000000
0.999999999231619 0.133964815503377 0.000000000000000 0.000000000000000
0.000000000000000 0.000000000000000 0.113344687439651 0.534742185973886
0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000
0.000000000000000 0.017482535428337 0.858057084052733 0.000000182200935
0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000
0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000
0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000
0.000000000587439 0.424273591136245 0.000000000483978 0.000000000000000
0.000000000180942 0.424272244087637 0.000000000000000 0.000000000000000
0.000000000000000 0.000000000000000 0.000000000000000 0.465257631825179
0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000
0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000
0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000
0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000

required statistical constraint, and go on for further iteration. The trained parameter

values for λAU6+12+25, for example, are shown in Table 10.

Table 10 The trained parameter set λ = (π,A,B) of the 3rd-order 4-state
Hidden Markov Model, whose topology is determined in Figures
58 and 60, for the lower facial expression AU6+12+25 using
dense flow tracking method (codebook size M=16).

178

178

8.3.2 Recognition Results

From the testing data, any observable symbol sequence O is evaluated or recognized

by selecting the maximum output probability P(O | λi) from the HMM parameter set λi,

where λi is one of the HMM parameter set such as λAU12, λAU6+12+25, λAU20+25, λAU9+17,

λAU17+23+24 and λAU15+17 for the lower facial expressions (Figure 67). If the output

probability P(O | λi) (usually it is close to 1) is greater than other output probability P(O |

λk), then the symbol sequence O is recognized as the facial expression represented by the

model λi.

The recognition result using the HMM classifiers was evaluated by comparison with

the coding of human observers coding taken as the ground truth. Two FACS experts

P(O | λAU12)

P(O | λAU15+17)

λAU12 =
(πAU12, AAU12,BAU12)

λAU15+17 =
(πAU15+17, AAU15+17,
 BAU15+17)

Maximum
Likelihood
Decision

Expression Intensity Estimation

Any Symbol
Sequence:
O=(o1,o2,...,ot,...,oT),
0 ≤ ot ≤ M-1

Figure 67 The recognition process for the Hidden Markov Model (an example for
the lower facial expressions: AU12, AU6+12+25, AU20+25, AU9+17,
AU17+23+24 and AU15+17).

Facial Expression i

179

179

agreed on 97% of the collected facial expressions. The agreement for the AU1+4 was

only 78%, since AU1+4 was easily confused with AU1 or AU4. The other point of

disagreement was AU12+25, AU20+25 and AU12+20+25.

Because the computation time of different extraction methods is very different (the

dense flow tracking is very time consuming when compared with the other two methods),

and these methods were developed at different time (about 6 months apart), the number of

image sequences used in experiments are not the same as indicated in Table 11. Those

used in the dense flow study is a subset of the image sequences used in the feature point

tracking study, which is a subset of those used in the high gradient components study.

This situation is true for both training and testing. The test results of each study are given

in Table 12, 13 and 14, respectively. The average recognition rate of the three upper

facial expressions is 85% by feature point tracking, 92% by dense flow tracking with PCA,

and 85% by high gradient component analysis. These results are based on 60, 45, and 100

training image sequences and 75, 60, and 160 testing image sequences. The average

recognition rate of the six lower face expressions is 88% by feature point tracking, 92% by

dense flow tracking with PCA, and 81% by high gradient component detection, based on

120, 60, and 120 training image sequences and 150, 90, and 150 testing image sequences

(Table 11).

Comparing the recognition results of three different extraction methods, it is obvious

that the dense flow tracking with PCA has the best performance for all facial expressions

tested except AU17+23+24, for which the feature point tracking method is better, 92%

against 87% (Table 12 and 13). The high gradient component analysis has the worst

performance (Table 14). This is because dense flow tracking includes the entire motion

information of a facial expression, such as allowing tracking a textureless region, which

provides more complete information for the recognition process; but it requires

substantially more computation time. It is subject to error due to occlusion (hair covering

the forehead) or large discontinuities appearance of tongue or teeth when the mouth

opens). The latter occurred in the case of 2-level dense flow estimation used for saving

180

180

Training Image Sequences

Three Methods Feature Point
Tracking

Dense Flow
Tracking with PCA

High Gradient
Component

Analysis
No. of Sequences for
the Upper Facial
Expressions

60 45 100

No. of Sequences for
the Lower Facial
Expressions

120 60 120

Testing Image Sequences

Three Methods Feature Point
Tracking

Dense Flow
Tracking with PCA

High Gradient
Component

Analysis
No. of Sequences for
the Upper Facial
Expressions

Recognition Results

75

85%

60

92%

160

85%
No. of Sequences for
the Lower Facial
Expressions

Recognition Results

150

88%

90

92%

150

81%

Table 11 The number of the training and testing image sequences (the average
number of frames per image sequence is 20) and their corresponding
recognition rates.

181

181

 HMM

Human

Recognition

Rate

22 3 0 88%

4 19 2 76%

0 2 23 92%

 HMM

Human

Recognition

Rate

25 0 0 0 0 0 100%

0 21 4 0 0 0 84%

0 5 20 0 0 0 80%

0 0 0 22 3 0 88%

0 0 0 0 23 2 92%

0 0 0 1 3 21 84%

AU4

AU1+2

AU1+2

AU12

AU12

AU6+12+
25

AU6+12+
25

AU20+25

AU20+25

AU9+17

AU9+17

AU15+17

AU15+17

AU17+23
+24

AU17+23
+24

Table 12 Recognition results of the feature point tracking method. (The
number given in each block is the number of testing image
sequences.)

The average recognition rate for three upper facial expressions is 85%
based on 75 testing image sequences.

The average recognition rate for six lower facial expressions is 88%
based on 150 testing image sequences.

AU1+4

AU1+4AU4

182

182

 HMM

Human

Recognition

Rate

21 2 0 93%

2 12 1 80%

0 0 22 100%

 HMM

Human

Recognition

Rate

15 0 0 0 0 0 100%

0 13 2 0 0 0 87%

0 2 13 0 0 0 87%

0 0 0 15 0 0 100%

0 0 0 0 13 2 87%

0 0 0 0 1 14 93%

AU4

AU1+2

AU4 AU1+2

AU12

AU12

AU6+12+
25

AU6+12+
25

AU20+25

AU20+25

AU9+17

AU9+17

AU15+17

AU15+17

AU17+23
+24

AU17+23
+24

Table 13 Recognition results of the dense flow tracking method. (The number
given in each block is the number of testing image sequences.)

The average recognition rate for three upper facial expressions is 92%
based on 60 testing image sequences.

The average recognition rate for six lower facial expressions is 92%
based on 90 testing image sequences.

AU1+4

AU1+4

183

183

 HMM

Human

Recognition

Rate

26 4 0 0 87%

5 43 2 0 86%

0 1 24 5 80%

0 0 7 43 86%

 HMM

Human

Recognition

Rate

86 14 86%

12 38 76%

AU0

AU0

AU4

AU4

AU1+4

AU1+4

AU1+2

AU1+2

Table 14 Recognition results of the motion furrow detection method. (The
number given in each block is the number of testing image sequences.)

The average recognition rate for three upper facial expressions is 85%
based on 160 testing image sequences.

The average recognition rate for six lower facial expressions is 81%
based on 150 testing image sequences.

AU12 or

AU6+12+25

AU12 or

AU6+12+25

AU9+17 or

AU17+23+24

AU9+17 or

AU17+23+24

184

184

processing time.

High gradient component detection is sensitive to changes in transient facial features

(e.g., furrows), but is subject to error due to individual differences in subjects. Younger

subjects, especially infants, show less furrowing than older ones, which reduces the

information value of the high gradient components. Older subjects, in general, have

permanent shapes of furrows on their faces. No matter how different their expressions or

expression intensities are, the similar shape of furrows still can be seen such as in Figure

63.a (images at the second row). Occasionally, different FACS AUs may have the similar

shape of furrows such as between AU12 and AU6+12+25, between AU6+12+25 and

AU20+25, or between AU9+17 and AU17+23+24, since there are common facial muscle

actions for both facial motions (Figure 68). Furthermore, the crow-feet wrinkles may or

may not appear during facial expression AU6+12+25 (Figure 1). With these reasons,

explaining the FACS AUs based only on the shape of furrows is not adequate.

Furthermore, we used a constant threshold for motion line or edge detection. Since the

gray values on each facial image are sensitive to facial motion and lighting, which depend

on individual subjects, a dynamic thresholding would be needed.

The optical flow using the pyramid approach is a simple, fast, and accurate method of

tracking facial feature points. It tracks large displacement well and is also sensitive to

subtle feature motion.

In general, the pattern of errors in all three methods are similar, i.e., errors were

resulted from classifying an expression to an expression type which is most similar to the

target (e.g., AU4 was confused with AU1+4 but not AU1+2). It appears that the

automatic feature point tracking method has given very good performance and its

processing was very efficient. Potentially it can be developed into a real time recognition

system. Summary of all three different extraction and recognition methods for facial

expressions is in Table 15.

185

185

Figure 68 Different FACS AUs have the similar shape of furrows such as
between AU12 and AU6+12+25, between AU6+12+25 and
AU20+25, and between AU9+17 and AU17+23+24, since there are
common facial muscle actions for both facial motions.

AU12 AU6+12+25

AU6+12+25 AU(1+4)+20+25

AU(4+)9+17 AU(4+)17+23+24

186

186

Extraction System

Three
Methods

Feature Point
Tracking
(5-Level Pyramid)

Dense Flow Tracking
with PCA
(2-Level Pyramid)

High Gradient
Component
Analysis in the
Spatio-Temporal
Domain

Computing
Time

Fast (1%)
(70 (13x13-pixel)
windows: 20
seconds/frame)
(SUN Sparc 5)

Very Slow (98%)
(417 x 385 pixels:
20 minutes/frame)
(SGI-Irix: 6 times faster
than Sparc 5)

Fast (1%)
(417 x 385 pixels:
5 second/frame)
(SUN Sparc 5)

Hair at
Forehead

Occlusion Occlusion No occlusion

Lighting Sensitive Sensitive Sensitive
Subtle Motion
(< 2 pixel)

Sensitive
(Subpixel accuracy)

Insensitive Sensitive

Large Motion
(> 15 pixels)

100 pixels
(Subpixel accuracy)

Missed tracking Sensitive

Advantage Simple and accurate
May run in real time

Includes the entire face
motion region

May run in real time

Disadvantage Limited to pre-
selected features

Time consuming Detection error from
individual differences
in subjects (younger
> older)

Recognition System
(Recognition Rate)

Different
Inputs to
HMMs

Displacement Vector
Sequence

Weight Vector
Sequence

Mean-Variance
Vector Sequence

Upper Facial
Expressions

85% 92% 85%

Lower Facial
Expressions

88% 92% 81%

Table 15 Summary of three different extraction and recognition methods for
facial expressions.

187

187

9.0 CONCLUSIONS

This research addressed the problem of automatic facial expression recognition based

on FACS AUs. We have developed a computer vision system that automatically

recognizes facial expressions with subtle differences and also estimates expression

intensity. Three methods are used to extract facial motion information and estimate

motion intensity: feature point tracking using the coarse-to-fine pyramid method, dense

flow tracking together with the principal component analysis, and high gradient

component analysis in the spatio-temporal domain, and is then used to discriminate subtle

differences in facial expressions observed from image sequences of varying lengths. To

determine the optimum HMM topology, a method has been developed and successfully

applied to the facial expression recognition. Facial expressions of different types,

intensities, and durations from a large number of untrained subjects have been tested. The

results show that our system has high accuracy in facial expression recognition.

9.1 Contributions

The major contributions of this dissertation are summarized below.

This is the first automatic facial expression recognition system that has the capability

of recognizing nine facial expressions based on FACS AUs: 3 subtly different expressions

occurring in the upper face region, and 6 occurring in the lower face region. This system

has successful trained with a significant number of image sequences containing various

expressions from different individuals. It has been tested yielding good recognition

performance.

Three methods have been developed for automatic extraction of information in facial

expressions from an image sequence. The first method is facial feature point tracking by

188

188

applying the coarse-to-fine pyramid approach to track facial feature motion starting from

selected feature points pertinent to facial expressions. It has subpixel accuracy for both

subtle feature motion and large facial motion. A facial expression is then represented by a

displacement vector sequence formed by concatenation of displacement vectors of facial

feature points. The process is automatic except the interactive initialization of the feature

points selection. It may run in real time. The second method is the wavelet-based multi-

resolution level dense flow tracking over an entire region. The principal component

analysis is then applied to the computed motion field to compress the information in terms

of weighted eigenflows. A facial expression is then abstracted as an appropriate weight

vector sequence. The third method is the high gradient component analysis in the spatio-

temporal domain to automatically extract motion lines and edges corresponding to

furrows appearing in face regions. This information is abstracted as a vector sequence

where each vector consists of means and variances of high gradient components in 16

blocks for each frame region.

It is our pioneering effort to apply HMM for automatic recognition of facial

expressions in image sequences of arbitrary lengths. For each type of the facial motion

extraction and with the encoded symbol sequences obtained therefrom as inputs, two

HMMs have been constructed: one models 3 facial expressions in the upper face region,

and the other models 6 facial expressions in the lower face region. These models are of

low order with simple feedforward connections and are used in the maximum likelihood

decision. They have been successfully trained and tested yielding high recognition rate.

A method has been developed to determinate an “optimal” HMM topology for

modeling facial expressions, “optimal” in the sense of plausible fewest elements of model

parameters. Each state of the HMM corresponds to one level of motion of facial

expressions. The number of states required for each HMM is proportional to some

measure of variation in motion among the training data of different classes. Applying

these method gives a 2nd-order 3-state left-right HMM for modeling the upper facial

189

189

expressions and a 3rd-order 4-state left-right HMM for modeling the lower facial

expressions, respectively.

Differences in facial expression intensity can be used to discriminate between

deliberate and spontaneous expressions, measure the degree of emotion, and analyze and

synthesize facial expressions for teleconferencing or MPEG-4 applications. Expression

intensity estimation may also provide an index for expression segmentation. We have

given a method for estimating expression intensity based on each type of the extracted

expression information and either a nonlinear mapping or a minimum distance criterion.

9.2 Suggestions for Future Work

Potential applications of our automatic facial expression recognition system include:

assessment of nonverbal behavior in clinical and research settings such as psychological

research of facial behavior coding, the communication between parents and preverbal

infants, biomedical applications such as pre/post surgical path planning or clinical

improvement prediction, law enforcement for lie detection, tiresome detecting, detection

of tired drivers to help avoid car accidents, lip-reading to compliment speech recognition

(audio-vision analysis), teleconferencing and MPEG-4 by analyzing and synthesizing facial

signals, animation of the face, and the human-computer interface/interaction to make a

computer able to “see.”

Based on the work in this dissertation, the following problems are suggested for

further research:

1. Recognition of more facial expressions by adding more “expression units” of

individual AUs and AU combinations into the automatic recognition system.

2. Separation of non-rigid facial motion from rigid head motion when the latter

involves a motion greater than ±300.

3. Detail comparison of three methods of extraction of facial expression information

by using a larger but the same set of training and testing data.

190

190

4. Studies on Hidden Markov Model integration either from the view point of a

multi-dimensional HMM with multiple inputs or from the view point of decision

integration of multiple HMMs.

5. Investigations on computational issues with regard to (a) both 2-level and more

than 2-level wavelet-based dense flow estimation, and (b) eigenflow computation.

6. Standardization of expression intensities.

7. Automatic segmentation of facial expression subsequences from a video sequence

based on, for example, expression intensity estimation, for use in a real-time system.

8. Implementation of a real-time system. At the present time, the facial feature point

tracking is the most likely method to approach running in real time; automatic

segmentation of facial expression subsequences will be one of the key problems to be

solved.

APPENDIX

192

192

APPENDIX

The Connected Component Labeling (CC labeling) Algorithm (43):

I. The Top-Down Process:

Step 1: Three tables are used for the global minimum of each row in a binary image (1:

foreground, and 0: background). All three tables are initialized at the beginning

when processing each row.

a. Label table: This table records every label number which occurred in this

row.

b. Equal table: This table has two columns indicating the different labels at the

left (first) and right (second) columns belonging to the same classification.

The label number at the first column is equal to or larger than that at the

second column.

c. Link table: Each link table records the label numbers within the same

classification, which can be linked together and arranged by increasing order.

Step 2: A 2 x 3 (row x column = r x c) CC labeling operator

has been used for each row beginning from the left most and top most (0,0)

position of the image. (r,c) is the center position of the operator at row ‘r’ and

column ‘c’, and I(r,c) is its corresponding binary value. Label(r,c) means a label

number is assigned to the pixel at position (r,c).

If I(r,c) > 0, then process as following; otherwise go to next pixel.

a. If I(r-1,c) > 0, then Label(r,c) = Label(r-1,c). Else

b. If I(r-1,c+1) > 0, then Label(r,c) = Label(r-1,c+1).

(r-1,c-1)

(r,c-1) (r,c)

(r-1,c) (r-1,c+1)

193

193

1. If I(r-1,c-1) > 0 and Label(r-1,c+1) ≠ Label(r-1,c-1), then record both

label numbers to Equal table and put both number to the Link table. Else

2. If I(r,c-1) > 0 and Label(r-1,c+1) ≠ Label(r,c-1), then record both

label numbers to Equal table and put both number to the Link table. Else

c. If I(r-1,c-1) > 0, then Label(r,c) = Label(r-1,c-1). Else

d. If I(r,c-1) > 0, then Label(r,c) = Label(r,c-1).

Step 3: Check each Link table. If nothing exists in this table, then no label number will

be changed. Otherwise, use the label number in the current Link table to do the

following process in the top-down order.

Scan the second column in the whole Equal table from top to bottom. If

there is the same label number as the Link table, then check if the label

number at the first column is larger than the label number at the current Link

table. If it is, then the label number at the first column of Equal table is

replaced by the label number at the current Link table.

Example:

After this step, these three tables will be like these examples:

1

1

1

1

1

1

1

1

1

1

1

2

2

2

3

3
CC Labeling

Currently
process
this row

Label Table

Index Label

1

2

3

Label[0]

Link Table

Index Link Label

Equal Table

Index
Label

1

2

2

3

1st 2nd

Label[1]

Label[2]

Equal[0]

Equal[1]
Link[0]

Link[1]

Link[2]

1

2

3

194

194

1.1 Pop out label number Link[0] = 1 from the Link table, and find out if label

number ‘2’ is equal to ‘1’ from the Equal table: Equal[0](Label[1],Label[0])

where Label[1] = 2 and Label[0] =1.

1.2 Because Equal[0](Label[1],Label[0]), and (Label[1] = 2) > (Label[0] = 1)

at Equal table, Label [1] = 1. That is, Label[1] = 2 = 1 = Label[0].

2.1 Pop out label number Link[2] = 3 from the Link table, and find out if label

number ‘3’ is equal to ‘2’ from the Equal table: Equal[1](Label[2],Label[1])

where Label[2] = 3 and Label[1] = 2 = 1 = Label[0].

2.2 Because Equal[1](Label[2],Label[1]), and (Label[2] = 3) > (Label[1] = 2) at

Equal table, Label [2] = 1. That is, Label[2] = 3 = Label[1] = 2 = Label[0] = 1.

3.1 Pop out label number Link[3] = 3 from the Link table, but there is no label

number ‘3’ at the second column of the Equal table: Then stop.

Step 4: The same row of the image is examined again (the second pass). If the label

number is different from the Label table, then change it.

Label Table

Index Label

1

1

3

Label[0]

Label[1]

Label[2]

Label Table

Index Label

1

1

1

Label[0]

Label[1]

Label[2]

Label Table

Index Label

1

2

3

Label[0]

Label[1]

Label[2]

Label Table

Index Label

1

1

3

Label[0]

Label[1]

Label[2]

195

195

II. The Bottom-Up Process:

The process is similar to the Top-Down process by two passes for each row,

beginning from the bottom to the top rows of the image, and left to right for each row.

The 2 x 3 operator is:

Since the Link table is already set, we only need the Label table and Equal table to set

the same connected components to have the same label number.

(r,c-1)

(r+1,c-1) (r+1,c)

(r,c)

(r+1,c+1)

1

1

1

1

1

1

1

1

1

1

1

2

2

1

3

3
CC Labeling

Currently
process
this row

BIBLIOGRAPHY

197

197

BIBLIOGRAPHY

1. Aizawa, K., Harashima, H., and Saito, T., "Model-Based Analysis Synthesis Image

Coding System for a Person’s Face," Signal Processing: Image Communication 1,
pp. 139-152, 1989.

2. Anandan, P., “A Computational Framework and an Algorithm for the Measurement

of Visual Motion,” International Journal of Computing Vision, Vol. 2, pp. 283-310,
1989.

3. Barron. J.L., Fleet, D.J., and Beauchemin, S.S., “Systems and Experiment

Performance of Optical Flow Techniques,” International Journal of Computer
Vision, Vol. 12, No. 1, pp. 43-77, 1994.

4. Bartlett, M.S., Viola, P.A., Sejnowski, T.J., Golomb, B.A., Larsen, J., Hager, J.C.,

and Ekman, P., "Classifying Facial Action," Advances in Neural Information
Processing Systems 8, pp. 823-829, MIT Press, Cambridge, MA, 1996.

5. Bassili, J.N., "Emotion Recognition: The Role of Facial Movement and the Relative

Importance of Upper and Lower Areas of the Face," Journal of Personality and
Social Psychology, Vol. 37, pp. 2049-2059, 1979.

6. Baum, L.E., Petrie, T., Soules, G., and Weiss, N., "A Maximization Technique

Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains,"
Annals of Mathematical Statistics, Vol. 41, No. 1, pp. 164-171, 1970.

7. Belhumeur, P.N., Hespanha, J.P., and Kriegman, D.J., “Eigenfaces vs. Fisherfaces:

Recognition Using Class Specific Linear Projection,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 19, No. 7, pp. 711-720, 1997.

8. Bergen, J.R., Anandan, P., Hanna, K.J., and Hingorani, R., “Hierarchical Model-

Based Motion Estimation,” Proc. of Second European Conference on Computer
Vision, pp. 237-252, Springer-Verlag, May 1992.

9. Beymer, D., “Face Recognition Under Varying Pose,” MIT Artificial Intelligence

Laboratory, A.I. Memo No. 1461, December 1993.

10. Beymer, D., “Vectorizing Face Images by Interleaving Shape and Texture

Computations,” MIT Artificial Intelligence Laboratory, A.I. Memo No. 1537,
September 1995.

198

198

11. Black, M.J., and Anandan, P., “A Framework for the Robust Estimation of Optical

Flow,” In Proc. International Conference on Computer Vision, pp. 231-236, Berlin,
Germany, May 1993.

12. Black, M.J., and Yacoob, Y., "Tracking and Recognizing Facial Expressions in

Image Sequences, Using Local Parameterized Models of Image Motion," University
of Maryland, Technical Report CS-TR-3401, January 1995.

13. Black, M.J., Yacoob, Y., Jepson, A.D., and Fleet, D.J., "Learning Parameterized

Models of Image Motion," IEEE Conference on Computer Vision and Pattern
Recognition, pp. 561-567, Puerto Rico, June 1997.

14. Blake, A., Isard, M., and Reynard, D., “Learning to Track the Visual Motion of

Contours,” In J. Artifical Intelligence, 1995.

15. Bregler, C., and Konig, Y., “Eigenlips for Robust Speech Recognition,”

Proceedings of the IEEE International Conference on Acoustics, Speech, and
Signal Processing, pp. 669-672, Adelaide, 1994.

16. Bruce, V., Recognizing Faces, Lawrence Erlbaum Associates, London, 1988.

17. Brunelli, R., and Poggio, T., “Face Recognition: Features versus Templates,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, Vol. 15, No. 10, pp.
1042-1052, October 1993.

18. Cai, W., and Wang, J., “Adaptive Multiresolution Collocation Methods for Initial

Boundary Value Problems of Nonlinear PDEs,” Society for Industrial and Applied
Mathematics, Numer. Anal. , Vol. 33, No. 3, pp. 937-970, June 1996.

19. Canny, J., “A Computational Approach to Edge Detection,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, Vol. 8, No. 6, pp. 679-698, 1986.

20. Chellappa, R., Sirohey, S., Wilson, C.L., and Barnes, C.S., "Human and Machine

Recognition of Faces: A Survey," University of Maryland, Technical Report CS-
TR-3339, August 1994.

21. Choi, C.S., Harashima, H., and Takebe, T., "Analysis and Synthesis of Facial

Expressions in Knowledge-Based Coding of Facial Image Sequences," Proceedings
of the IEEE International Conference on Acoustics, Speech, and Signal Processing,
pp. 2737-2740, Toronto, Canada, May 1991.

22. Chui, C.K., An Introduction to Wavelets, Academic Press, 1992.

199

199

23. Cohn J.F., and Elmore, M., “Effect of Contingent Changes in Mothers’ Affective

Expression on the Organization of Behavior in 3-Month-Old Infants,” Infant
Behavior and Development, Vol. 11, pp. 493-505, 1988.

24. Cohn, J.F., Zlochower, A.J., Lien, J.J., Wu, Y.T., and Kanade, T., “Facial

Expression Analysis: Preliminary Results of a New Image-Processing Based
Method,” Proceedings of the 9th Conference of the International Society for
Research on Emotions, pp. 329-333, Toronto, Canada, August 1996.

25. Cohn, J.F., Zlochower, A.J., Lien, J.J., Wu, Y.T., and Kanade, T., “Facial

Expression Can Be Measured by Image Processing of Video Sequences,” Biennial
Meeting of the Society for Research in Child Development, pp. 98, Washington,
D.C., April 1997.

26. Cohn, J.F., Zlochower, A.J., Lien, J.J., Wu, Y.T., and Kanade, T., “Automated Face

Coding: A Computer-Vision Based Method of Facial Expression Analysis,” 7th
European Conference on Facial Expression, Measurement, and Meaning, Salzburg,
Austria, July 1997.

27. Cohn, J.F., Zlochower, A.J., Lien, J.J., and Kanade, T., “Feature-Point Tracking by

Optical Flow Discriminates Subtle Differences in Facial Expression,” Third IEEE
International Conference on Automatic Face and Gesture Recognition, pp. 396-
401, Nara, Japan, April 1998.

28. Cohn, J.F., Zlochower, A.J., Lien, J.J., and Kanade, T., “Automated Face Coding: A

Computer-Vision Based Method of Facial Expression Analysis,” Journal of
Psychophysiology, In Press.

29. Cootes, T.F., Taylor, C.J., Cooper, D.H., and Graham, J., “Active Shape Models -

Their Training and Application,” Computer Vision and Image Understanding, Vol.
61, No. 1, pp. 38-59, January 1995.

30. Cottrell, G.W., and Metcalfe, J., “EMPATH: Face, Gender and Emotion

Recognition Using Holons,” Advances in Neural Information Processing Systems 3,
pp. 564-571, San Mateo, CA, 1991.

31. Craw, I., and Cameron, P., “Face Recognition by Computer,” Proceedings of the

British Machine Vision Conference, pp. 487-507, 1992.

32. Darwin, C., The Expression of Emotions in Man and Animals, John Murray, 1872,

reprinted by University of Chicago press, 1965.

200

200

33. Ding, J., Shimamura, M., Kobayashi, H., and Nakamura, T., "Neural Network
Structures for Expression Recognition," Proceedings of International Joint
Conference on Neural Network, pp. 1420-1423, 1993.

34. Ekman, P., and Friesen, W.V., The Facial Action Coding System, Consulting

Psychologists Press Inc., San Francisco, CA, 1978.

35. Ekman, P., “Facial Expression and Emotion,” American Psychologist, Vol. 48, pp.

384-392, 1993.

36. Essa, I.A., "Analysis, Interpretation and Synthesis of Facial Expressions," MIT

Media Laboratory, Perceptual Computing Technical Report 303, Ph.D. dissertation,
February 1995.

37. Forney, G.D., “The Vitervi Algorithm,” Proceedings of the IEEE, Vol. 61, No. 3,

pp. 268-278, March 1973.

38. Fridlund, A.J., Human Facial Expression: An Evolutionary View, Academic Press,

San Diego, CA, 1994.

39. Golomb, B., Lawrence, D., and Sejnowski, T., “SEXnet: A Neural Network

Identifies Sex From Human Faces,” Advances in Neural Information Processing
System 3, pp. 572-577, San Mateo, CA, 1991.

40. Gray, R.M., “Vector Quantization,” IEEE ASSP Magazine, pp. 4-29, April 1984.

41. Hager, J., and Ekman, P., “The Essential Behavioral Science of the Face and

Gesture that Computer Scientists Need to Know,” Proceedings of the International
Workshop on Automatic Face- and Gesture-Recognition, pp. 7-11, Zurich,
Switzerland, June 1995.

42. Hancock, P.J.B., Burton, A.M., and Bruce, V., “Face Processing: Human Perception

and Principal Components Analysis,” Memory and Cognition 24, pp. 26-40, 1996.

43. Haralick, R.M., and Shapiro, L.G., Computer and Robot Vision Volume I, Addison-

Wesley, 1992.

44. Hashiyama, T., and Furuhashi T., Uchikawa, Y., and Kato, H., “A Face Graph

Method Using a Fuzzy Neural Network for Expressing Conditions of Complex
Systems.”

45. Heeger, D.J., “Optical Flow Using Spatiotemporal Filters,” International Journal of

Computer Vision, Vol. 1, pp. 279-302, 1988.

201

201

46. Himer, W., Schneider, F., Kost, G., and Heimann, H., “Computer-Based Analysis of

Facial Action: A New Approach,” Journal of Psychophysiology, Vol. 5, No. 2, pp.
189-195, 1991.

47. Horn, B.K.P., and Schunk, B.G., “Determining Optical Flow,” Artificial

Intelligence, Vol. 17, pp. 185-203, 1981.

48. Kaiser, S., and Wherle, T., “Automated Coding of Facial Behavior in Human-

Computer Interactions with FACS,” Journal of Nonverbal Behavior, Vol. 16, No. 2,
pp. 65-140, 1992.

49. Kanade, T., Computer Recognition of Human Faces, Basel & Stuttgart, Birkhauser

Verlag, 1977.

50. Kass, M., Witkin, A., and Terzopoulos, D., “Snakes: Active Contour Models,”

International Journal of Computer Vision, pp. 321-331, 1988.

51. Kaucic, R., Dalton, B., and Blake, A., “Real-Time Lip Tracking for Audio-Visual

Speech Recognition Applications,” In Proc. European Conference Computer Vision,
pp. 376-387, Cambridge, UK, 1996.

52. Kim, H.J., and Li, C.C., “A Non-Orthogonal Wavelet Edge Detector with Four

Filter-Coefficients,” Mathematical Imaging: Wavelet Applications in Signal and
Image Processing, SPIE, Vol. 2034, San Diego, CA, 1993.

53. Kimura, S., and Yachida, M., “Facial Expression Recognition and its Degree

Estimation,” IEEE Computer Vision and Pattern Recognition, pp. 295-300, 1997.

54. Kirby, M., and Sirovich, L., "Application of the Karhuneh-Loeve Procedure for the

Characterization of Human Faces," IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 12, No. 1, pp. 103-108, January 1990.

55. Kobayashi, H., and Hara, F., "The Recognition of Basic Facial Expressions by

Neural Network," Proceedings of International Joint Conference on Neural
Network, pp. 460-466, 1991.

56. Kobayashi, H., and Hara, F., "Recognition of Six Basic Facial Expressions and their

Strength by Neural Network," IEEE International Workshop on Robot and Human
Communication, pp. 381-386, September 1992.

202

202

57. Kobayashi, H., and Hara, F., "Recognition of Mixed Facial Expressions by Neural
Network," IEEE International Workshop on Robot and Human Communication,
pp. 387-391, September 1992.

58. Lanitis, A., Taylor, C.J., and Cootes, T.F., “Automatic Interpretation and Coding of

Face Images Using Flexible Models,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 19, No. 7, pp. 743-756, 1997.

59. Lee, K-F, "Large-Vocabulary Speaker-Independent Continuous Speech

Recognition: The SPHINX System," Carnegie Mellon University, Computer
Science Department, Ph.D. dissertation, April 1988.

60. Li, H., Roivainen, P., and Forchheimer, R., “3-D Motion Estimation in Model-Based

Facial Image Coding,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 15, No. 6, pp. 545-555, June 1993.

61. Li, Y., and Kobatake, H., “Extraction of Facial Sketch Images and Expression

Transformation Based on FACS,” IEEE, pp. 520-523.

62. Lien, J.J., Kanade, T., Zlochower, A.J., Cohn, J.F., and Li, C.C., "Automatically

Recognizing Facial Expressions in the Spatio-Temporal Domain," Workshop on
Perceptual User Interfaces, pp. 94-97, Banff, Alberta, Canada, October 19-21,
1997. Also available at http://www.cs.cmu.edu/~jjlien

63. Lien, J.J., Kanade, T., Cohn, J.F., and Li, C.C., "Automated Facial Expression

Recognition Based on FACS Action Units," Third IEEE International Conference
on Automatic Face and Gesture Recognition, pp. 390-395, Nara, Japan, April 14-
16, 1998. Also available at http://www.cs.cmu.edu/~jjlien

64. Lien, J.J., Kanade, T., Cohn, J.F., and Li, C.C., "Subtly Different Facial Expression

Recognition and Expression Intensity Estimation," IEEE Conference on Computer
Vision and Pattern Recognition, Santa Barbara, CA, June 23-25, 1998. Also
available at http://www.cs.cmu.edu/~jjlien

65. Linde, Y., Buzo, A., and Gray, R., "An Algorithm for Vector Quantizer Design,"

IEEE Transaction on Communications, Vol. COM-28, NO. 1, pp. 84-95, January
1980.

66. Lucas, B.D., “Generalized Image Matching by the Method of Differences," Carnegie

Mellon University, Technical Report CMU-CS-85-160, Ph.D. dissertation, July
1984.

203

203

67. Mase, K., and Pentland, A., "Automatic Lip-reading by Optical-Flow Analysis,"
Systems and Computers in Japan, Vol. 22, No. 6, pp. 67-76, 1991.

68. Mase, K., "Recognition of Facial Expression from Optical Flow," Institute of

Electronics, Information and Communication Engineers Transactions, Vol. E74,
pp. 3474-3483, 1991.

69. Matsuno, K., Lee, C-W, Kimura, S., and Tsuji, S., “Automatic Recognition of

Human Facial Expressions,” International Conference on Computer Vision, pp.
352-359, 1995.

70. McNeil, D., “So You Think Gestures Are Nonverbal ?” Psychological Review, 92,

pp. 350-371, 1985.

71. Morimoto, C., Yacoob, Y., and Davis, L., “Recognition of Head Gestures Using

Hidden Markov Models,” International Conference on Pattern Recognition, pp.
461-465, Austria, 1996.

72. Moses, Y., Reynard, D., and Blake, A., “Determining Facial Expressions in Real

Time,” International Workshop on Automatic Face- and Gesture-Recognition, pp.
332-337, Zurich, Switzerland, June 1995.

73. Murase, H., and Nayar, S.K., "Visual Learning and Recognition of 3-D Objects from

Appearance," International Journal of Computer Vision, Vol. 14, No. 1, pp. 5-24,
1995.

74. O’Toole, A.J., and Edelman, S., “Structural Aspects of Face Recognition and the

other Race Effect,” Memory and Cognition, 22, pp. 208-224, 1994.

75. Padgett, C., and Cottrell, G., “Representing Face Images for Emotion

Classification,” Advances in Neural Information Processing Systems 9, pp. 894-900,
Cambridge, MA, 1997.

76. Paul, D.B., "Speech Recognition Using Hidden Markov Models," The Lincoln

Laboratory Journal, Vol. 3, No. 1, pp. 41-62, 1990.

77. Poelman, C.J., "The Paraperspective and Projective Factorization Methods for

Recovering Shape and Motion," Carnegie Mellon University, Technical Report
CMU-CS-95-173, Ph.D. dissertation, July 1995.

78. Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P., Numerical

Recipes in C, The Art of Scientific Computing, 2nd Edition, Cambridge University
Press, 1992.

204

204

79. Rabiner, L.R., "A Tutorial on Hidden Markov Models and Selected Applications in

Speech Recognition," Proceedings of The IEEE, Vol. 77, No. 2, pp. 257-285,
February 1989.

80. Ralescu, A., and Hartani, R., “Some Issues in Fuzzy and Linguistic Modeling,”

IEEE Proc. of International Conference on Fuzzy Systems, 1995.

81. Rinn, W.E., “The Neuropsychology of Facial Expression: A Review of the

Neurological and Psychological Mechanisms for Producing Facial Expressions,”
Psychological Bulletin, 95, pp. 52-77, 1984.

82. Rosenblum, M., Yacoob, Y., and Davis, L.S., “Human Emotion Recognition from

Motion Using a Radial Basis Function Network Architecture,” University of
Maryland, Technical Report CS-TR-3304, June 1994.

83. Samal, A., and Iyengar, P.A., “Automatic Recognition and Analysis of Human Faces

and Facial Expression: A Survey," Pattern Recognition, Vol. 25, No. 1, pp. 65-77,
1992.

84. Samaria, F., and Young, S., "HMM-Based Architecture for Face Identification,"

Image and Vision Computing, Vol. 12, No. 8, pp. 537-543, October 1994.

85. Sato, T., Yamaguchi, T., “Generation of Facial Expression Using Chaotic

Retrieval,” IEEE Symposium on Emerging Technologies & Factory Automation,
1994.

86. Scherer, K.R., and Ekman, P., (Eds.), Approaches to Emotion, Lawrence Erlbaum

Associates, 1984.

87. Starner. T., and Pentland, A., “Visual Recognition of American Sign Language

Using Hidden Markov Models”, Proceedings of the International Workshop on
Automatic Face- and Gesture-Recognition, pp. 189-194, Zurich, Switzerland, June
1995.

88. Stork, D.G., and Hennecke, M.E., "Speechreading: An Overview of Image

Processing, Feature Extraction, Sensory Integration and Pattern Recognition
Techniques," Proceedings of the Second International Conference on Automatic
Face and Gesture Recognition, Killington, Vermont, pp. xvi-xxvi, October 1996.

89. Suwa, M., Sugie, N., and Fujimura, K., “A Preliminary Note on Pattern Recognition

of Human Emotional Expression,” pp. 408-410.

205

205

90. Szeliski, R. and Coughlan, J. “Spline-Based Image Registration,” International
Journal of Computer Vision, Vol. 22, No. 3, pp. 199-218, 1997.

91. Terzopoulos, D., and Waters, K., “Analysis and Synthesis of Facial Image

Sequences Using Physical and Anatomical Models,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 15, No. 6, pp. 569-579, June 1993.

92. Tomasi, C., "Shape and Motion from Image Streams: A Factorization Method,"

Carnegie Mellon University, Technical Report CMU-CS-91-172, Ph.D. dissertation,
September 1991.

93. Turk, M., and Pentland, A., "Eigenfaces for Recognition," Journal of Cognitive

Neuroscience, Vol. 3, No. 1, pp. 71-86, 1991.

94. Ushida, H., Takagi, T., and Yamaguchi, T., “Recognition of Facial Expressions

Using Conceptual Fuzzy Sets,” Proc. of the 2nd IEEE International Conference on
Fuzzy Systems, pp. 594-599, 1993.

95. Valentin, D., Abdi, H., O’Toole, A.J., and Cottrell, G.W., “Connectionist Models of

Face Processing: A Survey,” Pattern Recognition, Vol. 27, No. 9, pp. 1209-1230,
1994.

96. Vanger, P., Honlinger, R., and Haken, H., “Applications of Synergetics in Decoding

Facial Expressions of Emotion,” Proceedings of the International Workshop on
Automatic Face- and Gesture-Recognition, pp. 24-29, Zurich, Switzerland, June
1995.

97. Vetter, T., and Poggio, T. “Linear Object Classes and Image Synthesis from a Single

Example Image,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. 19, No. 7, pp. 733-741, 1997.

98. Viterbi, A.J., “Error Bounds for Convolutional Codes and an Asymptotically

Optimal Decoding Algorithm,” IEEE Transactions on Information Theory, Vol. 13,
pp. 260-269, April 1967.

99. Wallbott, H., “Effects of Distortion of Spatial and Temporal Resolution of Video

Stimuli on Emotion Attributions,” Journal of Nonverbal Behavior, Vol. 16, No. 1,
pp. 5-20, 1992.

100. Waters, K., “A Physical Model of Facial Tissue and Muscle Articulation Derived

from Computer Tomography Data,” SPIE Visualization in Biomedical Computing,
1808, pp. 574-583, 1992.

206

206

101. Wu, Y.T., Kanade, T., Cohn, J.F., and Li, C.C., “Optical Flow Estimation Using
Wavelet Motion Model,” IEEE International Conference on Computer Vision, pp.
992-998, Bombay, India, January 1998.

102. Xiong, Y., “High Precision Image Matching and Shape Recovery,” Carnegie Mellon

University, Ph.D. dissertation, 1995.

103. Yacoob, Y., and Davis, L., "Recognizing Human Facial Expression,” University of

Maryland, Technical Report CS-TR-3265, May 1994.

104. Yamato, J., Ohya, J., and ISHII, K., "Recognizing Human Action in Time-

Sequential Images Using Hidden Markov Model," IEEE International Conference
on Computer Vision, pp. 379-385, 1992.

105. Yang, J., "Hidden Markov Model for Human Performance Modeling," University of

Akron, Ph.D. dissertation, August 1994.

106. Yuille, A.L., Cohen, D.S., and Hallinan, P.W., “Feature Extraction from Faces Using

Deformable Templates,” International Journal of Computer Vision, Vol. 8, pp. 104-
109, 1992.

107. Zlochower, A.J., Cohn, J.F., Lien, J.J., and Kanade, T., “Automated Face Coding: A

Computer Vision Based Method of Facial Expression Analysis in Parent-Infant
Interaction,” International Conference on Infant Studies, Atlanta, Georgia, April
1998.

