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ABSTRACT
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      Professor Takeo Kanade
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      Professor Jeffrey F. Cohn

AUTOMATIC RECOGNITION OF FACIAL EXPRESSIONS USING HIDDEN

MARKOV MODELS AND ESTIMATION OF EXPRSSION INTENSITY

Jenn-Jier James Lien, Ph.D.

Facial expressions provide sensitive cues about emotional responses and play a major

role in the study of psychological phenomena and the development of nonverbal

communication.  Facial expressions regulate social behavior, signal communicative intent,

and are related to speech production.  Most facial expression recognition systems focus on
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only six basic expressions.  In everyday life, however, these six basic expressions occur

relatively infrequently, and emotion or intent is more often communicated by subtle

changes in one or two discrete features, such as tightening of the lips which may

communicate anger.  Humans are capable of producing thousands of expressions that vary

in complexity, intensity, and meaning.  The objective of this dissertation is to develop a

computer vision system, including both facial feature extraction and recognition, that

automatically discriminates among subtly different facial expressions based on Facial

Action Coding System (FACS) action units (AUs) using Hidden Markov Models

(HMMs).

Three methods are developed to extract facial expression information for automatic

recognition.  The first method is facial feature point tracking using the coarse-to-fine

pyramid method, which can be sensitive to subtle feature motion and is capable to handle

large displacements with subpixel accuracy.  The second is dense flow tracking together

with principal component analysis, where the entire facial motion information per frame is

compressed to a low-dimensional weight vector for discrimination.  And the third is high

gradient component (i.e., furrow) analysis in the spatio-temporal domain, which exploits

the transient variance associated with the facial expression.

Upon extraction of the facial information, non-rigid facial expressions are separated

from the rigid head motion components, and the face images are automatically aligned and

normalized using an affine transformation.  The resulting motion vector sequence is vector

quantized to provide input to an HMM-based classifier, which addresses the time warping

problem.  A method is developed for determining the HMM topology optimal for our

recognition system.  The system also provides expression intensity estimation, which has

significant effect on the actual meaning of the expression.

We have studied more than 400 image sequences obtained from 90 subjects.  The

experimental results of our trained system showed an overall recognition accuracy of 87%,

and also 87% in distinguishing among sets of three and six subtly different facial

expressions for upper and lower facial regions, respectively.
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