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AUTOMATIC RECOGNITION OF FACIAL EXPRESSIONS USING HIDDEN
MARKOV MODELSAND ESTIMATION OF EXPRSSION INTENSITY

Jenn-Jier James Lien, Ph.D.

Facial expressions provide sensitive cues about emotional responses and play a major
role in the study of psychologica phenomena and the development of nonverbal
communication. Facial expressions regulate social behavior, signa communicative intent,

and are related to speech production. Most facial expression recognition systems focus on



only six basic expressions. In everyday life, however, these six basic expressions occur
relatively infrequently, and emotion or intent is more often communicated by subtle
changes in one or two discrete features, such as tightening of the lips which may
communicate anger. Humans are capable of producing thousands of expressions that vary
in complexity, intensity, and meaning. The objective of this dissertation is to develop a
computer vision system, including both facia feature extraction and recognition, that
automatically discriminates among subtly different facial expressions based on Facia
Action Coding System (FACS) action units (AUs) using Hidden Markov Models
(HMMs).

Three methods are developed to extract facia expression information for automeatic
recognition. The first method is facia feature point tracking using the coarse-to-fine
pyramid method, which can be sensitive to subtle feature motion and is capable to handle
large displacements with subpixel accuracy. The second is dense flow tracking together
with principal component analysis, where the entire facial motion information per frame is
compressed to a low-dimensional weight vector for discrimination. And the third is high
gradient component (i.e., furrow) analysis in the spatio-temporal domain, which exploits
the transient variance associated with the facial expression.

Upon extraction of the facial information, non-rigid facial expressions are separated
from the rigid head motion components, and the face images are automatically aligned and
normalized using an affine transformation. The resulting motion vector sequence is vector
guantized to provide input to an HMM-based classifier, which addresses the time warping
problem. A method is developed for determining the HMM topology optimal for our
recognition system. The system also provides expression intensity estimation, which has
significant effect on the actual meaning of the expression.

We have studied more than 400 image sequences obtained from 90 subjects. The
experimental results of our trained system showed an overall recognition accuracy of 87%,
and also 87% in distinguishing among sets of three and six subtly different facial

expressions for upper and lower facial regions, respectively.
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