AUTOMATIC RECOGNITION OF FACIAL EXPRESSIONS USING HIDDEN MARKOV MODELS AND ESTIMATION OF EXPRSSION INTENSITY

by

Jenn-Jier James Lien

B.S. in Biomedical Engineering, Chun Yuan University, Taiwan, 1989M.S. in Electrical Engineering, Washington University, St. Louis, Missouri, 1993

Submitted to the Graduate Faculty
of the School of Engineering
in partial fulfillment of
the requirements for the degree of
Doctor
of
Philosophy

1998

The author grants permission
to reproduce single copies.
Signed

COMMITTEE SIGNATURE PAGE

This dissertation was presented

by

	39
_	Jenn-Jier James Lien
	It was defended on
_	April 14, 1998
	and approved by
(Signature)	
(~-8)	Committee Co-Chair
	Dr. Ching-Chung Li, Professor of Electrical Engineering
(Signature)	
()	Committee Co-Chair
	Dr. Takeo Kanade, Professor and Director of the Robotics Institute,
	School of Computer Science, Carnegie Mellon University
(Signature)	
	Committee Co-Chair
	Dr. Jeffrey F. Cohn, Professor of Psychology
(Signature)	
	Committee Member
	Dr. Henry Y.H. Chuang, Professor of Computer Science
(Signature)	
	Committee Member
	Dr. Richard W. Hall, Professor of Electrical Engineering
(Signature)	
	Committee Member
	Dr. Morton Kanefsky, Professor of Electrical Engineering
(Signature)	
, ,	Committee Member
	Dr. Marwan A. Simaan, Professor and Chairman of Electrical Engineering

ACKNOWLEDGEMENTS

I am greatly indebted to Professor Takeo Kanade and Professor Ching-Chung Li, my co-advisors and my mentors, for not only providing invaluable guidance, advice, criticism and encouragement but also giving me the latitude I have needed to develop as a researcher. I thank Professor Jeffrey Cohn, co-advisor, for his support and teaching with the Facial Action Coding System (FACS). I would also like to thank the other members of my thesis committee: Professors Richard Hall, Morton Kanefsky, Marwan Simaan and Henry Chuang for their valuable suggestions and feedback.

My years at the Vision and Autonomous Systems Center of the Robotics Institute, Carnegie Mellon University have been priceless. I consider myself lucky to be a part of this research center and spend many nights with friends discussing technical issues. I would like to thank Jie Yang and Michael Nechyba for sharing their experiences with Hidden Markov Models; Conrad Poelman, Richard Madison and Yalin Xiong for exchanging knowledge on optical flows; Peter Rander, Henry Rowley, Shumeet Baluja, Teck Khim, Wei Hua, Mei Han, Mei Chen, Dongmei Zhang, Michael Smith, Daniel Morris and Farhana Kagalwala for much needed help; and Adena Zlochower for her help with FACS on the facial expression analysis project. My thanks also go to Chung-Hui Anne Lin for her support and encouragement. I would especially like to thank David LaRose and Yu-Te Wu, who have been tremendous fun to work and play with, and who have provided countless hours of invaluable discussions on the topics presented here.

Special thanks to Matthew Turk, Steve Shafer, P. Anandan, Richard Szeliski and Harry Shum at Microsoft Vision group for their valuable comments and suggestions.

Finally, I would like to thank my parents, Chin-Chuan Lien and Wen-Hua Shih, as well as my other family members: Jenn-Ren Lien, Jenn-Yueh Lien, Shu-Hua Chien, Hui-Yin Christia Tien for their constant love, support and encouragement. Without them, none of this would have been possible. I cannot begin to thank them enough, and they will always have my respect and love.

ABSTRACT

Signature	
	Professor Ching-Chung Li
Signature	
	Professor Takeo Kanade
Signature	
	Professor Jeffrev F. Cohn

AUTOMATIC RECOGNITION OF FACIAL EXPRESSIONS USING HIDDEN MARKOV MODELS AND ESTIMATION OF EXPRSSION INTENSITY

Jenn-Jier James Lien, Ph.D.

Facial expressions provide sensitive cues about emotional responses and play a major role in the study of psychological phenomena and the development of nonverbal communication. Facial expressions regulate social behavior, signal communicative intent, and are related to speech production. Most facial expression recognition systems focus on

only six basic expressions. In everyday life, however, these six basic expressions occur relatively infrequently, and emotion or intent is more often communicated by subtle changes in one or two discrete features, such as tightening of the lips which may communicate anger. Humans are capable of producing thousands of expressions that vary in complexity, intensity, and meaning. The objective of this dissertation is to develop a computer vision system, including both facial feature extraction and recognition, that automatically discriminates among subtly different facial expressions based on Facial Action Coding System (FACS) action units (AUs) using Hidden Markov Models (HMMs).

Three methods are developed to extract facial expression information for automatic recognition. The first method is facial feature point tracking using the coarse-to-fine pyramid method, which can be sensitive to subtle feature motion and is capable to handle large displacements with subpixel accuracy. The second is dense flow tracking together with principal component analysis, where the entire facial motion information per frame is compressed to a low-dimensional weight vector for discrimination. And the third is high gradient component (*i.e.*, furrow) analysis in the spatio-temporal domain, which exploits the transient variance associated with the facial expression.

Upon extraction of the facial information, non-rigid facial expressions are separated from the rigid head motion components, and the face images are automatically aligned and normalized using an affine transformation. The resulting motion vector sequence is vector quantized to provide input to an HMM-based classifier, which addresses the time warping problem. A method is developed for determining the HMM topology optimal for our recognition system. The system also provides expression intensity estimation, which has significant effect on the actual meaning of the expression.

We have studied more than 400 image sequences obtained from 90 subjects. The experimental results of our trained system showed an overall recognition accuracy of 87%, and also 87% in distinguishing among sets of three and six subtly different facial expressions for upper and lower facial regions, respectively.

DESCRIPTORS

Action Unit (AU) Computer Vision and Pattern Recognition

Dense Flow Eigenflow

Expression Intensity Estimation Facial Action Coding System (FACS)

Facial Expression Recognition Feature Point Tracking

Furrow Extraction Hidden Markov Model (HMM)

Human-Computer Interaction (HCI) Motion Line/Edge Extraction

Optical Flow Principal Component Analysis (PCA)

Rigid and Non-Rigid Motion Wavelet-Based Motion Estimation

TABLE OF CONTENTS

		P	age
ACKN	OWLE	DGMENTS	iii
ABST	RACT.		iv
LIST (OF FIG	URES	X
LIST (OF TAE	BLES	xvii
1.0	INTRO	ODUCTION	1
	1.1	Related Works	2
	1.2	Problem Statement	7
	1.3	Objective of the Research	10
	1.4	Organization of the Dissertation	11
2.0	FACIA	AL EXPRESSION RECOGNITION SYSTEM OVERVIEW	13
	2.1	Three Methods of Feature Motion Extraction	13
	2.2	Recognition Using Hidden Markov Models	16
	2.3	Facial Action Coding System and "Expression Units"	18
	2.4	Rigid and Non-Rigid Motion Separation and Geometric	
		Normalization	22
3.0	FACIA	AL FEATURE POINT TRACKING	25
	3.1	Dot Tracking and Reliability of Feature Point Selection	25
	3.2	Motion Estimation and Flow Window	30
	3.3	Motion Confidence Estimation	35
	3.4	Tracking Subpixel and Large Motion	37
	3.5	Analysis of Feature Point Tracking Problems	42
	3.6	Data Quantization and Conversion for the Recognition System	43
	3.7	Expression Intensity Estimation	49
4.0	DENS	E FLOW TRACKING AND EIGENFLOW COMPUTATION	53
	4 1	Wavelet-Based Motion Estimation	53

	4.2	Dense Flow Tracking
	4.3	Eigenflow Computation
	4.4	Data Quantization and Conversion for the Recognition System 70
	4.5	Correlation and Distance in Eigenspace
	4.6	Expression Intensity Estimation
5.0	HIGH	I GRADIENT COMPONENT ANALYSIS
	5.1	High Gradient Component Detection in the Spatial Domain 80
	5.2	High Gradient Component Detection in the Spatio-Temporal
		Domain
	5.3	Morphology and Connected Component Labeling
	5.4	Analysis of High Gradient Component Detection Problems 96
	5.5	Data Quantization and Conversion for the Recognition System 98
	5.6	Expression Intensity Estimation
6.0	FACI	AL EXPRESSION RECOGNITION USING HIDDEN MARKOV
	MOD	ELS
	6.1	Preprocessing of Hidden Markov Models: Vector Quantization 105
	6.2	Beginning from Markov Models
	6.3	Extension of Markov Models: Hidden Markov Models
	6.4	Three Basic Problems of Hidden Markov Models
		6.4.1 Probability Evaluation Using the Forward-Backward
		Procedure
		6.4.2 Optimal State Sequence Using the Dynamic Programming
		Approach121
		6.4.3 Parameter Estimation Using the Baum-Welch Method 124
	6.5	Computation Considerations
		6.5.1 Choice of Hidden Markov Model
		6.5.2 Initialization of Hidden Markov Model Parameter
		Estimation 131

		6.5.3	Computation of Scaling	131
		6.5.4	Computation of Smoothing for Insufficient Training Data	. 134
		6.5.5	Computation of Normalization	135
		6.5.6	Computation of Convergence	136
		6.5.7	Computation of Confidence	137
7.0	DETE	ERMINA	ATION OF HIDDEN MARKOV MODEL TOPOLOGY	138
	7.1	The M	lethod	138
		7.1.1	Step 1: The 1st-Order Markov Model	139
		7.1.2	Step 2: The 1st-Order Hidden Markov Model	140
		7.1.3	Step 3: The Multi-Order Hidden Markov Model	159
	7.2	Physic	eal Meaning of Hidden Markov Model Topology	162
8.0	EXPE	RIMEN	VTAL RESULTS	. 164
	8.1	Data A	Acquisition, Experimental Setup, and Digitizing	164
	8.2	Segme	entation and Coding by Human Observers (Ground Truth)	166
	8.3	Auton	nated Expression Recognition	171
		8.3.1	Training Process	171
		8.3.2	Recognition Results	178
9.0	CONC	CLUSIC	DNS	187
	9.1	Contri	butions	187
	9.2	Sugge	stions for Future Work	189
APPE	NDIX.			191
BIRI	IOGD A	риу		106

LIST OF FIGURES

Figure	e No.	age
1	Comparison of different smile expressions with different expression intensities.	
	The presence or absence of one or more facial actions can change their	
	interpretations	8
2	The user interface created by programming in C, Motif, X Toolkit and Xlib	14
3	Block diagram of a facial expression recognition system	15
4	"Expression units" of subtly different facial expressions in our study (taken	
	from ⁽³⁴⁾)	19
5	Normalization of each face image to a standard 2-dimensional face model	23
6	Dot tracking: each dot is marked by a cross (+) at its center, lines trailing from	
	the dots represent changes in the location of dots due to facial expression	28
7	Locations of selected facial feature points (marked by a cross '+') which reflect	
	the muscle motion of facial features	29
8	Feature point tracking based on tracking the movement of an $n \times n$ feature	
	window between two consecutive frames (here, <i>n</i> is 13 pixels)	30
9	Window (weight) function $w(x)$ can be used to control the accuracy of motion	
	estimation based on the gradient varying from point to point (66)	33
10	Comparison of Lucas-Kanade, spline-based and wavelet-based window	
	functions	34
11	Trackability of various feature regions in a binary image: (a) contains no image	
	texture so it would make a poor feature; (b) and (c) have high gradients locally	
	either in one direction, or the horizontal- $(I_c^{'}$ -) and vertical- $(I_r^{'}$ -) gradients are	
	highly correlated with each other as in (c), they also are not trackable; only	
	feature (d) can be used as a trackable feature (77)	36
12	Feature point tracking excluding the pyramid method: it is sensitive to subtle	
	motion such as eye blinking, but it loses tracking for large motion such as	

	mouth opening and suddenly raising eye brows. Lines trailing along feature	
	points (marked by a cross '+') denote their movements across image frames in	
	the sequence	39
13	A 5-level pyramid for feature point tracking	40
14	Feature point tracking including the pyramid method: it is sensitive to subtle	
	motion such as eye blinking and also tracks accurately for large motion such as	
	mouth opening and suddenly raising eye brows	44
15	The feature point tracking error due to violation of the feature region's	
	trackability condition: tracking along the edge direction at both brows and	
	mouth regions with deformed shapes	45
16	Reducing the tracking error by locating feature points away from edges of	
	facial features: the tracking for brow region is improved, but is still erroneous	
	in mouth region with large mouth opening	45
17	Reducing the tracking error by using a large window size which requires more	
	processing time	46
18	Reducing the tracking error by increasing the value of the weighting factor K	
	(K=0.5) of the inter-level confidence base in order to include more global	
	information from the previous low-resolution level processing in the pyramid	
	method	46
19	Displacement vector of the facial feature point tracking to be encoded for input	
	to a Hidden Markov Model	47
20	An example illustrating the expression intensity estimation by following the	
	non-linear mapping $(k = 7)$ of the constrained feature point displacement for	
	the case of AU2	49
21	Expression intensity time course of AU1, 2 and 5 fit to the displacement	
	changes of facial feature points based on the non-linear mapping (107)	52
22	a. 1- and 2-dimensional scaling functions and wavelets (101)	54

	b. Dilation and translation of 1-dimensional basis (scaling and wavelet)	
	functions (101)	55
23	Automatic dense flow tracking for an image sequence. Out-of-plane motion	
	(pitch) occurs at the bottom image. Dense flows are shown once for every 13	
	pixels	61
24	Good tracking performance of using the wavelet-based dense flow for (a)	
	furrow discontinuities at the forehead and chin regions, and (b) textureless	
	regions with reflections at the forehead and cheek	63
25	Tracking errors of the 2-level wavelet-based dense flow because of (a) large	
	movements of brows or mouth, and (b) eye blinking also introduces motion	
	error at brow regions	64
26	Dense flow normalization using affine transformation: (a) includes both the	
	rigid head motion in upward and leftward direction and non-rigid facial	
	expression, and (b) eliminates the rigid head motion by using the affine	
	transformation	65
27	The mean (average) flow c is divided into horizontal flow c_h and vertical flow	
	c_v for further processing by the principal component analysis (PCA)	67
28	Each dense flow image is divided into horizontal and vertical flow images for	
	the principal component analysis (PCA)	72
29	a. Computation of eigenflow (eigenvector) number for the upper facial	
	expressions: (a.1) is for the horizontal flow and (a.2) is for the vertical flow.	
	The compression rate is 93:1 (932:10) and from which the recognition rate is	
	92% based on 45 training and 60 testing image sequences	73
	b. Computation of eigenflow (eigenvector) number for the lower facial	
	expressions: (b.1) is for the horizontal flow and (b.2) is for the vertical flow.	
	The compression rate is 80:1 (1212:15) and from which the recognition rate is	
	92% based on 60 training and 90 testing image sequences	74

30	Principal component analysis (PCA) for (a) horizontal flow weight vector and	
	(b) vertical flow weight vector for the upper facial expressions $(M' = 10)$	75
31	Expression intensity matching by seeking the minimum distance between the	
	weight vector of the testing frame and the weight vectors of all frames in a	
	training sequence, whose expression intensity values are known. Each weight	
	vector of the training image corresponds to a given expression intensity value	79
32	a. High gradient component (furrow) detection for the forehead and eye	
	regions	82
	b. High gradient component (furrow) detection for the mouth, cheek, and chin	
	regions	83
	c. High gradient component (furrow) detection for the chin region	84
33	Permanent furrows or hair occlusion.	85
34	The procedure of the high gradient component analysis in the spatio-temporal	
	domain, which can reduce the effect of the permanent high gradient	
	components (furrows) and hair occlusion for the upper facial expression	88
35	(a) Original gray value images. (b) High gradient component (furrow)	
	detection in the spatial domain. (c) High gradient component analysis in the	
	spatio-temporal domain	89
36	a. High gradient component detection with different constant threshold	
	values	90
	b. High gradient component detection with different constant threshold	
	values	91
37	a. Younger subjects, especially infants (Figure 37.a), show smoother	
	furrowing than older ones (Figure 37.b), and initial expressions show weaker	
	furrowing than that of peak expressions for each sequence	92
	b. Younger subjects, especially infants (Figure 37.a), show smoother	
	furrowing than older ones (Figure 37.b), and initial expressions show weaker	
	furrowing than that of peak expressions for each sequence	93

38	a. Delete redundant high gradient components using morphological
	transformation including erosion and dilation processings
	b. Delete the redundant high gradient components using the connected
	component labeling algorithm
39	Horizontal line (furrow) detection using different sizes of detectors. (b) If the
	size of the detector is too small compared with the width and length of the line
	(furrow), then each line will be extracted to two lines. (c) It is necessary to
	adjust the size of the line detector to match the width and length of the line in
	order to obtain the correct result
40	Teeth can be extracted directly from the subtraction of the gray value image at
	the current frame to that at first frame for each image sequence whose absolute
	value is larger than a constant threshold
41	Mean-Variance vector of the high gradient component analysis in the spatio-
	temporal domain for input to the Hidden Markov Model
42	Furrow expression intensity matching by measuring the minimum value
	(distance) of the sum of squared differences (SSD) between the mean-variance
	vector of the known training image and that of the testing image. Each mean-
	variance vector of the training image corresponds to a given expression
	intensity value
43	Vector quantization for encoding any vector sequence to a symbol sequence
	based on the codebook110
44	The construction (topology) of the Hidden Markov Model113
45	The tree structure of the computational complexity for direct evaluation of the
	output probability $P(O \lambda)$ (105)
46	The Forward and Backward Procedures
47	The tree structure of the computational complexity for the forward and
	backward procedures (79)

48	A posterior probability variable $\gamma(i)$ which is the probability of being in state i
	at time t by given the HMM parameter set λ and the entire observable symbol
	sequence O
49	The probability variable $\xi_i(i,j)$ which represents the probability of being in state
	i at time t , and state j at time $t+1$ given the observable symbol sequence O and
	the HMM parameter set λ
50	(a) 4 state ergodic HMM (b) 1st-order 4-state left-right (Bakis) HMM (c) 2nd-
	order 4-state left-right HMM
51	A 1st-order 3-state Markov Model used to represent the observable symbol
	sequence140
52	A 1st-order Hidden Markov Model can be used to represent the combination
	of all 1st-order Markov Models for facial expression AU12
53	A 1st-order Hidden Markov Model can be used to represent the combination
	of all 1st-order Markov Models for facial expression AU12
54	A 1st-order Hidden Markov Model can be used to represent the combination
	of all 1st-order Markov Models for facial expression AU15+17 146
55	A 1st-order Hidden Markov Model can be used to represent the combination
	of all 1st-order Markov Models for facial expression AU15+17 148
56	A 1st-order Hidden Markov Model can be used to represent the combination
	of all 1st-order Markov Models for facial expression AU17+23+24150
57	A 1st-order Hidden Markov Model can be used to represent the combination
	of all 1st-order Markov Models for facial expression AU6+12+25
58	A 1st-order Hidden Markov Model can be used to represent the combination
	of all 1st-order Markov Models for facial expression AU6+12+25
59	A 1st-order Hidden Markov Model can be used to represent the combination
	of all 1st-order Markov Models for facial expression AU6+12+25
60	The 1st-order 2-, 3- and 4-state Hidden Markov Models can combine to be a
	3rd-order 4-state Hidden Markov Model

61	Experimental setup
62	Each facial expression begins from the beginning duration, continues through
	the apex duration, and ends at the ending duration. In our current work, we
	segmented each facial expression to include only the beginning and apex
	durations
63	a. Standard AU1+4 expressions and manual misclassification of three AU1
	expressions and one AU1+2 expression to AU1+4 expressions
	b. Manual misclassification of three AU4 expressions to AU1+4 expressions.
	These mistakes are because of (1) Ω shape of furrows at the forehead, (2)
	confusing expression, and (3) asymmetric brow motion. The standard AU4
	expression is shown in Figure 63.c (3)
	c. Confusions among AU12+25, AU20+25 (also in Figure 63.a and 63.b) and
	AU12+20+25
64	Three sets of extracted information as inputs to the recognition system using
	Hidden Markov Models
65	The images at the same row have the same facial expressions, but different
	facial actions or expression intensities
66	The training process for the Hidden Markov Model (an example for the lower
	facial expressions: AU12, AU6+12+25, AU20+25, AU9+17, AU17+23+24
	and AU15+17)
67	The recognition process for the Hidden Markov Model (an example for the
	lower facial expressions: AU12, AU6+12+25, AU20+25, AU9+17,
	AU17+23+24 and AU15+17)
68	Different FACS AUs have the similar shape of furrows such as between AU12
	and AU6+12+25, between AU6+12+25 and AU20+25, and between AU9+17
	and AU17+23+24, since there are common facial muscle actions for both facial
	motions

LIST OF TABLES

Table 1	No. Page
1	Correspondence between facial expressions and elements of the Hidden
	Markov Model
2	Comparison of modeling facial expressions with modeling speech using
	HMMs
3	Action Units (AUs) in the Facial Action Coding System (FACS) (34)
4	Sample symbol sequences for three upper facial expressions and six lower
	facial expressions under consideration
5	The dictionary for expression intensity estimation (image: 417 x 385 pixels) 50
6	Sample symbol sequences for three upper facial expressions and six lower
	facial expressions under consideration
7	Sample symbol sequences for three upper facial expressions and six lower
	facial expressions under consideration
8	Physical meaning of the Hidden Markov Model topology
9	Different Hidden Markov Models for 3 upper facial expressions and 6 lower
	facial expressions
10	The trained parameter set $\lambda = (\pi, A, B)$ of the 3rd-order 4-state Hidden Markov
	Model, whose topology is determined in Figures 58 and 60, for the lower facial
	expression AU6+12+25 using dense flow tracking method (codebook size
	<i>M</i> =16)
11	The number of the training and testing image sequences (the average number
	of frames per image sequence is 20) and their corresponding recognition
	rates
12	Recognition results of the feature point tracking method. (The number given
	in each block is the number of testing image sequences.)

13	Recognition results of the dense flow tracking method. (The number given in
	each block is the number of testing image sequences.)
14	Recognition results of the motion furrow detection method. (The number
	given in each block is the number of testing image sequences.)
15	Summary of three different extraction and recognition methods for facial
	expressions